JP6206227B2 - Positive electrode active material and non-aqueous electrolyte secondary battery - Google Patents

Positive electrode active material and non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP6206227B2
JP6206227B2 JP2014020583A JP2014020583A JP6206227B2 JP 6206227 B2 JP6206227 B2 JP 6206227B2 JP 2014020583 A JP2014020583 A JP 2014020583A JP 2014020583 A JP2014020583 A JP 2014020583A JP 6206227 B2 JP6206227 B2 JP 6206227B2
Authority
JP
Japan
Prior art keywords
active material
particles
positive electrode
electrode active
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014020583A
Other languages
Japanese (ja)
Other versions
JP2015149160A (en
Inventor
充 山内
充 山内
秀造 小澤
秀造 小澤
一臣 漁師
一臣 漁師
牛尾 亮三
亮三 牛尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2014020583A priority Critical patent/JP6206227B2/en
Publication of JP2015149160A publication Critical patent/JP2015149160A/en
Application granted granted Critical
Publication of JP6206227B2 publication Critical patent/JP6206227B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウムイオン二次電池などの非水系電解質二次電池において正極材料として用いられる正極活物質及びその正極活物質を用いた非水系電解質二次電池、具体的には、正極活物質として用いられるリチウムコバルト複合酸化物とリチウム遷移金属複合酸化物の混合物からなる正極活物質及びその正極活物質を用いた非水系電解質二次電池に関する。   The present invention relates to a positive electrode active material used as a positive electrode material in a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery, and a non-aqueous electrolyte secondary battery using the positive electrode active material, specifically, as a positive electrode active material The present invention relates to a positive electrode active material composed of a mixture of a lithium cobalt composite oxide and a lithium transition metal composite oxide and a non-aqueous electrolyte secondary battery using the positive electrode active material.

近年、携帯電話やノート型パソコンなどの携帯機器の普及にともない、高いエネルギー密度を有する小型、軽量な二次電池の開発が強く望まれている。このようなものとして、リチウム、リチウム合金、金属酸化物あるいはカーボンを負極として用いるリチウムイオン二次電池があり、研究開発が盛んに行われている。   In recent years, with the widespread use of portable devices such as mobile phones and notebook computers, development of small and lightweight secondary batteries with high energy density is strongly desired. As such a battery, there is a lithium ion secondary battery using lithium, a lithium alloy, a metal oxide, or carbon as a negative electrode, and research and development are actively performed.

リチウム複合酸化物、特に合成が比較的容易なリチウムコバルト複合酸化物を正極材料に用いたリチウムイオン二次電池は、4V級の高い電圧が得られるため、高エネルギー密度を有する電池として期待され、実用化が進んでいる。リチウムコバルト複合酸化物は、リチウムニッケル複合酸化物、リチウムニッケルコバルトマンガン複合酸化物等の他の正極活物質と比較して充填性が高いという特徴がある。   A lithium ion secondary battery using a lithium composite oxide, particularly a lithium cobalt composite oxide that is relatively easy to synthesize as a positive electrode material, is expected as a battery having a high energy density because a high voltage of 4V class is obtained. Practical use is progressing. The lithium cobalt composite oxide is characterized by high filling properties compared to other positive electrode active materials such as lithium nickel composite oxide and lithium nickel cobalt manganese composite oxide.

一般的に、正極活物質の充填性の向上には、正極活物質となる粒子の球状性を向上させること、粒子自体の密度を向上させること、粒度分布に適正な幅を持たせること、粒径を適正な範囲で大きくすることなどが有効である。また、正極活物質の充填性は、正極活物質の前駆体として用いられる水酸化コバルトなどの水酸化物、酸化コバルトなどの酸化物の充填性をそのまま反映する傾向がある。   In general, to improve the filling property of the positive electrode active material, it is necessary to improve the sphericity of the particles serving as the positive electrode active material, to improve the density of the particles themselves, to give a proper width to the particle size distribution, It is effective to increase the diameter within an appropriate range. Moreover, the filling property of the positive electrode active material tends to reflect the filling property of hydroxides such as cobalt hydroxide and oxides such as cobalt oxide used as the precursor of the positive electrode active material.

上述の水酸化物や酸化物の粉体特性に関して、例えば、特許文献1には、酸化コバルトの粒形がほぼ球形であり、50%粒径(D50)が1.5〜15μm、D90がD50の2倍以下、D10がD50の1/5以上であり、かつ比表面積が2〜15m/gである酸化コバルト粉が開示されている。 Regarding the powder characteristics of the hydroxides and oxides described above, for example, in Patent Document 1, the particle shape of cobalt oxide is almost spherical, the 50% particle size (D50) is 1.5 to 15 μm, and D90 is D50. The cobalt oxide powder whose D10 is 1/5 or more of D50 and whose specific surface area is 2-15 m < 2 > / g is disclosed.

また、特許文献2には、タッピング密度が2.3g/cm以上であり、かつほぼ球状であって、さらに平均粒径が5μm〜15μmであるオキシ水酸化コバルト粒子が開示されている。 Patent Document 2 discloses cobalt oxyhydroxide particles having a tapping density of 2.3 g / cm 3 or more, a substantially spherical shape, and an average particle size of 5 μm to 15 μm.

さらに、特許文献3には、約0.5乃至2.2g/cmの密度、約1μmを超える、典型的には約1乃至20μmの粒径、および約0.5乃至20m/gの比表面積を有する水酸化コバルトまたはコバルトと他の金属から形成される合金の水酸化物が開示されている。 In addition, US Pat. No. 6,057,059 has a density of about 0.5 to 2.2 g / cm 3 , a particle size of greater than about 1 μm, typically about 1 to 20 μm, and about 0.5 to 20 m 2 / g A hydroxide of cobalt hydroxide having a specific surface area or an alloy formed from cobalt and other metals is disclosed.

しかしながら、特許文献1〜3に記載の水酸化物や酸化物は、粒子の性状の総合的な検討が十分とは言えず、得られるリチウムコバルト複合酸化物の充填性が十分なものとなるとは言いがたい。   However, the hydroxides and oxides described in Patent Documents 1 to 3 cannot be said to have sufficient comprehensive examination of the properties of the particles, and the resulting lithium cobalt composite oxide has sufficient filling properties. It's hard to say.

一方、特許文献4には、底面の平均粒子径が1〜30μm、かつ平均粒子高さが0.2〜10μmであり、六角柱状の水酸化コバルト粒子が開示されているが、このようなアスペクト比の低い形状は、充填性の向上に不利である。   On the other hand, Patent Document 4 discloses hexagonal columnar cobalt hydroxide particles having an average particle diameter of 1 to 30 μm at the bottom and an average particle height of 0.2 to 10 μm. A shape with a low ratio is disadvantageous for improving the filling property.

さらに、特許文献5には、コバルト塩の水溶液と、苛性アルカリ溶液を同一槽内に連続的に供給、撹拌し、供給塩濃度、供給塩流量、槽内温度を一定にして槽内のpH値を11.0〜13.5の範囲に制御することによりコバルト水酸化物を得るコバルト水酸化物の製造法が開示されている。このような連続法では、粒度分布が広く充填性の向上に効果があると考えられるが、サイクル特性の改善を課題としており、充填性に対する検討が十分なものとは言いがたい。   Furthermore, in Patent Document 5, an aqueous solution of cobalt salt and a caustic solution are continuously supplied and stirred in the same tank, and the pH value in the tank is kept constant with the supply salt concentration, the supply salt flow rate, and the temperature in the tank being constant. Discloses a method for producing a cobalt hydroxide to obtain a cobalt hydroxide by controlling the value in the range of 11.0 to 13.5. In such a continuous method, it is considered that the particle size distribution is wide and effective in improving the filling property, but improvement of cycle characteristics is an issue, and it is difficult to say that the study on the filling property is sufficient.

また、特許文献6には、一般式Liで表される活物質Aと、一般式Li 1−yで表される異種元素固溶活物質Bとの混合組成からなる正極活物質が開示されている。この正極活物質では、タップ密度と電子伝導ネットワークを改善して、高容量で高レート特性を有する非水系電解質二次電池を提供できるとしている。しかしながら、粒径の異なる2種の活物質の混合のみが検討されており、混合される粉体の特性についての検討が十分ではなく、充填性が満足されているとは言い難い。 Patent Document 6 discloses an active material A represented by a general formula Li x M 1 O 2 and a different element solid solution active material B represented by a general formula Li x M 2 y M 3 1-y O 2. A positive electrode active material having a mixed composition is disclosed. With this positive electrode active material, it is said that the tap density and the electron conduction network can be improved to provide a non-aqueous electrolyte secondary battery having high capacity and high rate characteristics. However, only mixing of two kinds of active materials having different particle diameters has been studied, and examination of characteristics of the mixed powder is not sufficient, and it cannot be said that the filling property is satisfied.

以上のように、リチウムコバルト複合酸化物の充填性を向上させるためには、リチウムコバルト複合酸化物の前駆体である水酸化コバルト粒子を含め、粒子自体の密度や粒度分布を検討する必要があるが、特許文献1〜6に記載のリチウムコバルト複合酸化物あるいはその前駆体では、十分な充填性を得ることができない。そのため、リチウムコバルト複合酸化物の充填性の更なる改善が望まれている。   As described above, in order to improve the filling properties of the lithium cobalt composite oxide, it is necessary to examine the density and particle size distribution of the particles themselves, including the cobalt hydroxide particles that are precursors of the lithium cobalt composite oxide. However, the lithium cobalt composite oxide described in Patent Documents 1 to 6 or a precursor thereof cannot obtain sufficient filling properties. Therefore, the further improvement of the filling property of lithium cobalt complex oxide is desired.

特開2001−354428号公報JP 2001-354428 A 特開2007−001809号公報JP 2007-001809 A 特表2003−503300号公報Special table 2003-503300 gazette 特開平11−292549号公報JP 11-292549 A 特開平09−022692号公報JP 09-022692 A 特開2006−156004号公報JP 2006-156004 A

そこで、本発明は、このような問題に鑑みて、高い充填性を有し、電池特性にも優れた非水系電解質二次電池用の正極活物質及びその正極活物質を用いた非水系電解質二次電池を提供するものである。   Therefore, in view of such problems, the present invention has a positive electrode active material for a non-aqueous electrolyte secondary battery that has high filling properties and excellent battery characteristics, and a non-aqueous electrolyte secondary material using the positive electrode active material. A secondary battery is provided.

本発明者は、非水系電解質二次電池用の正極活物質の充填性に関して鋭意検討した結果、粒度分布が狭い活物質粒子と、その活物質粒子より粒径が小さい活物質粒子を混合することで、高い充填性と優れた電池特性を有する正極活物質が得られるとの知見を得て、本発明を完成したものである。   As a result of diligent research regarding the filling property of the positive electrode active material for the non-aqueous electrolyte secondary battery, the present inventor mixed active material particles having a narrow particle size distribution and active material particles having a smaller particle diameter than the active material particles. Thus, the present invention has been completed with the knowledge that a positive electrode active material having high filling properties and excellent battery characteristics can be obtained.

上述した目的を達成する本発明に係る正極活物質は、活物質粒子Aと活物質粒子Bとの混合物からなる非水系電解質二次電池用の正極活物質であって、活物質粒子Aは、一次粒子が凝集した球状の二次粒子からなり、平均粒径が10〜25μmであり、粒度分布のばらつきを示す(d90−d10)/MV(ただし、MVはレーザ回折式粒度分布計を用いて、レーザ回折散乱法によって測定することができる体積平均粒径)の値が0.65以下であるリチウムコバルト複合酸化物粒子であり、粒子の断面観察において、二次粒子の断面長径が3μm以上の粒子内で確認される最大長径が0.3μm以上の空隙の個数(N1)の該二次粒子の断面長径(L)に対する比(N1/L)が0.5以下、最大長径が0.5μm以上の空隙の個数(N2)の該二次粒子の断面長径(L)に対する比(N2/L)が0.2以下であり、かつ該空隙の最大長径が該二次粒子の断面長径の25%以下であり、活物質粒子Bは、一般式Li 1−y (ただし、MはCo、Ni、Mnから選ばれる少なくとも1種の元素、MはM1以外の遷移金属元素、2族元素、及び13族元素から選ばれる少なくとも1種の元素、0.95≦x≦1.1、0≦y≦0.15)で表される層状構造の六方晶系結晶構造を有し、平均粒径が活物質粒子Aより小さく、球状のリチウム遷移金属複合酸化物粒子であることを特徴とする。 The positive electrode active material according to the present invention that achieves the above-described object is a positive electrode active material for a non-aqueous electrolyte secondary battery comprising a mixture of active material particles A and active material particles B, and the active material particles A are: It consists of spherical secondary particles in which primary particles are aggregated, and has an average particle size of 10 to 25 μm, and shows variation in particle size distribution (d90-d10) / MV (where MV is measured using a laser diffraction particle size distribution meter) , A lithium cobalt composite oxide particle having a volume average particle diameter (which can be measured by a laser diffraction scattering method) of 0.65 or less, and the cross-sectional major axis of the secondary particles is 3 μm or more in cross-sectional observation of the particles. The ratio (N1 / L) of the number of voids (N1) having a maximum major axis of 0.3 μm or more confirmed in the particles to the sectional major axis (L) of the secondary particles is 0.5 or less, and the maximum major axis is 0.5 μm. Number of voids above (N2) Ratio cross sectional length (L) of the secondary particles (N2 / L) is 0.2 or less, and the maximum diameter of the voids is not more than 25% of the cross sectional length of the secondary particles, the active material particles B Is a general formula Li x M 1 1-y M 2 y O 2 (where M 1 is at least one element selected from Co, Ni and Mn, M 2 is a transition metal element other than M1, a group 2 element, And at least one element selected from Group 13 elements, 0.95 ≦ x ≦ 1.1, 0 ≦ y ≦ 0.15), and a hexagonal crystal structure having a layered structure, and an average particle diameter Is smaller than the active material particle A, and is characterized by spherical lithium transition metal composite oxide particles.

上述した目的を達成する本発明に係る非水系電解質二次電池は、正極が正極活物質によって形成されていることを特徴とする。   The nonaqueous electrolyte secondary battery according to the present invention that achieves the above-described object is characterized in that the positive electrode is formed of a positive electrode active material.

本発明は、高充填性を有する正極活物質を提供することができる。本発明では、電池の体積当たりに充填される正極活物質を多くすることができ、高容量化が可能となり、電池特性に優れた非水系電解質二次電池を得ることができ、工業的価値は極めて高いものといえる。   The present invention can provide a positive electrode active material having a high filling property. In the present invention, the positive electrode active material filled per volume of the battery can be increased, the capacity can be increased, a non-aqueous electrolyte secondary battery having excellent battery characteristics can be obtained, and the industrial value is It can be said that it is extremely expensive.

実施例1で作製した活物質粒子Aの断面SEM像である。2 is a cross-sectional SEM image of active material particles A produced in Example 1. FIG.

以下に、本発明を適用した非水系電解質二次電池用の正極活物質及び非水系電解質二次電池について詳細に説明する。なお、本発明は、特に限定がない限り、以下の詳細な説明に限定されるものではない。本発明に係る実施の形態の説明は、以下の順序で行う。
1.正極活物質
2.非水系電解質二次電池
Hereinafter, a positive electrode active material for a non-aqueous electrolyte secondary battery to which the present invention is applied and a non-aqueous electrolyte secondary battery will be described in detail. Note that the present invention is not limited to the following detailed description unless otherwise specified. The embodiment according to the present invention will be described in the following order.
1. 1. Positive electrode active material Non-aqueous electrolyte secondary battery

<1.正極活物質>
本発明の実施の形態に係る水酸化コバルト粒子は、非水系電解質二次電池の正極活物質の前駆体であって、特にリチウムイオン二次電池の正極活物質の前駆体となるものである。
<1. Cathode active material>
The cobalt hydroxide particles according to the embodiment of the present invention are precursors of a positive electrode active material of a non-aqueous electrolyte secondary battery, and are particularly precursors of a positive electrode active material of a lithium ion secondary battery.

正極活物質は、活物質粒子Aと活物質粒子Bとの混合物からなり、非水系電解質二次電池の正極活物質に好適なものである。   The positive electrode active material is composed of a mixture of active material particles A and active material particles B, and is suitable for a positive electrode active material of a non-aqueous electrolyte secondary battery.

活物質粒子Aは、一次粒子が凝集した球状の二次粒子からなり、平均粒径が10〜25μmであり、粒度分布のばらつきを示す(d90−d10)/MVの値が0.65以下であるリチウムコバルト複合酸化物粒子である。   The active material particle A is composed of spherical secondary particles in which primary particles are aggregated, has an average particle size of 10 to 25 μm, and shows a variation in particle size distribution (d90−d10) / MV is 0.65 or less. Some lithium cobalt composite oxide particles.

活物質粒子Bは、一般式Li 1−y (ただし、MはCo、Ni、Mnから選ばれる少なくとも1種の元素、MはM以外の遷移金属元素、2族元素、及び13族元素から選ばれる少なくとも1種の元素、0.95≦x≦1.1、0≦y≦0.15)で表される層状構造の六方晶系結晶構造を有し、平均粒径が正極活物質Aより小さく、球状のリチウム遷移金属複合酸化物粒子である。 The active material particle B has a general formula Li x M 1 1-y M 2 y O 2 (where M 1 is at least one element selected from Co, Ni, and Mn, and M 2 is a transition metal element other than M 1. A hexagonal crystal structure having a layered structure represented by at least one element selected from group 2 elements and group 13 elements, 0.95 ≦ x ≦ 1.1, 0 ≦ y ≦ 0.15) In addition, the average particle size is smaller than that of the positive electrode active material A, and is a spherical lithium transition metal composite oxide particle.

正極活物質は、活物質粒子Aとその活物質粒子Aより粒径が小さい活物質粒子Bを混合することにより、活物質粒子Aの粒子の隙間に活物質粒子Bを配して正極活物質の充填性を向上させ、電池の正極に用いられた際に高密度の正極を実現することが可能である。さらに、活物質粒子Aは、粒度分布が狭いため、単に粒径の異なる活物質粒子を混合した場合よりも高い充填性を有する正極活物質が得られる。   The positive electrode active material is prepared by mixing the active material particles A and the active material particles B having a particle size smaller than that of the active material particles A, thereby arranging the active material particles B in the gaps between the active material particles A. It is possible to improve the filling property of the battery and to realize a high-density positive electrode when used for the positive electrode of a battery. Furthermore, since the active material particles A have a narrow particle size distribution, a positive electrode active material having a higher packing property than that obtained by simply mixing active material particles having different particle sizes can be obtained.

[活物質粒子A]
(形状・平均粒径)
活物質粒子Aは、一次粒子が凝集した球状の二次粒子から構成されており、平均粒径が10〜25μm、好ましくは15〜25μmである。ここで、平均粒径とは、MV(体積平均粒径)を意味する。
[Active material particles A]
(Shape / average particle size)
The active material particles A are composed of spherical secondary particles in which primary particles are aggregated, and have an average particle size of 10 to 25 μm, preferably 15 to 25 μm. Here, the average particle diameter means MV (volume average particle diameter).

平均粒径を10〜25μmとすることで、活物質粒子A自体の充填性を高いものとすることができ、活物質粒子Bと混合することで高い充填性を有する正極活物質とすることができる。平均粒径が10μm未満の場合には、活物質粒子A自体の充填性が低下するため、粒径の小さい活物質粒子Bと混合しても高い充填性を有する正極活物質とならない。一方、平均粒径が25μmを超える場合には、活物質粒子Aの粒度分布が広がり、サイクル特性や出力特性などの電池特性が低下するという問題が生じる。   By setting the average particle size to 10 to 25 μm, the filling property of the active material particles A can be made high, and by mixing with the active material particles B, a positive electrode active material having high filling properties can be obtained. it can. When the average particle size is less than 10 μm, the filling properties of the active material particles A themselves are lowered, so that even when mixed with the active material particles B having a small particle size, a positive electrode active material having high filling properties is not obtained. On the other hand, when the average particle size exceeds 25 μm, the particle size distribution of the active material particles A is widened, resulting in a problem that battery characteristics such as cycle characteristics and output characteristics are deteriorated.

また、活物質粒子Aは、球状であるため、高い充填性を有する。ここで、球状とは、楕円形や粒子表面に凹凸がある球状を含むものである。   Moreover, since the active material particle A is spherical, it has a high filling property. Here, the spherical shape includes an elliptical shape and a spherical shape having irregularities on the particle surface.

(平均アスペクト比)
活物質粒子Aは、平均アスペクト比が0.7以上であることが好ましい。その平均アスペクト比を0.7以上とすることで、球状性が高く、充填性に優れた粒子となる。アスペクト比が0.7を下回る場合には、二次粒子の球状性が劣り、活物質粒子Aの粒子間の空隙が増え、正極活物質の充填性が低下することがある。
(Average aspect ratio)
The active material particles A preferably have an average aspect ratio of 0.7 or more. By setting the average aspect ratio to 0.7 or more, particles having high sphericity and excellent filling properties are obtained. When the aspect ratio is less than 0.7, the spherical shape of the secondary particles is inferior, voids between the particles of the active material particles A are increased, and the filling property of the positive electrode active material may be lowered.

ここで、平均アスペクト比は、個々の粒子において求めたアスペクト比の平均値である。個々の粒子におけるアスペクト比は、走査型電子顕微鏡による粒子外観観察における二次粒子の画像上で、二次粒子の外縁上の点から最大長さとなる他の外縁上の点の距離を測定粒径として、当該二次粒子において最大の測定粒径に対する最小の測定粒径の比を計測することにより求めることができる。平均アスペクト比は、走査型電子顕微鏡の外観観察から任意の20個以上の二次粒子について求めたアスペクト比を個数平均することで得られる。   Here, the average aspect ratio is an average value of aspect ratios obtained for individual particles. The aspect ratio of each individual particle is measured by measuring the distance between the point on the outer edge of the secondary particle and the point on the other outer edge that is the maximum length on the image of the secondary particle in the observation of the particle appearance with a scanning electron microscope. As described above, it can be obtained by measuring the ratio of the minimum measured particle size to the maximum measured particle size in the secondary particles. The average aspect ratio can be obtained by averaging the number of aspect ratios obtained for any 20 or more secondary particles from appearance observation of a scanning electron microscope.

(粒度分布のばらつき)
活物質粒子Aは、粒子の粒度分布のばらつきを示す指標である(d90−d10)/MVの値が0.65以下、好ましくは0.6以下である。
(Variation of particle size distribution)
The active material particle A has a value of (d90−d10) / MV, which is an index indicating variation in the particle size distribution of the particles, of 0.65 or less, preferably 0.6 or less.

(d90−d10)/MVの値が0.65以下であることにより、活物質粒子Aの粒度分布の広がりが抑制されて高い粒径の均一性が得られ、微粒子や粗大粒子の混入が抑制されるため、活物質粒子Bと混合した際の粒度分布を制御して高い充填性を有する正極活物質が得られる。また、微粒子や粗大粒子の混入によるサイクル特性や充放電特性などの電池特性の低下を抑制することができる。   When the value of (d90-d10) / MV is 0.65 or less, the spread of the particle size distribution of the active material particles A is suppressed, high particle size uniformity is obtained, and mixing of fine particles and coarse particles is suppressed. Therefore, a positive electrode active material having high filling properties can be obtained by controlling the particle size distribution when mixed with the active material particles B. In addition, deterioration of battery characteristics such as cycle characteristics and charge / discharge characteristics due to mixing of fine particles and coarse particles can be suppressed.

一方、(d90−d10)/MVの値が0.6を超える場合には、微粒子や粗大粒子の混入が増加するため、高い充填性を有する正極活物質とならないばかりか、粗大粒子増加による非水系電解質二次電池内の短絡という問題を生じる原因となる。   On the other hand, when the value of (d90−d10) / MV exceeds 0.6, the mixture of fine particles and coarse particles increases, so that not only a positive electrode active material having high filling properties but also non-existence due to an increase in coarse particles. This causes a problem of short circuit in the aqueous electrolyte secondary battery.

ここで、d90、d10は、それぞれ体積累積分布が90%、10%になる粒径である。(d90−d10)/MVは、小さいほど高い粒径の均一性が得られるが、製造上の制約等を考慮すると、(d90−d10)/MVの下限は、通常0.3程度である。なお、d90、d10およびMV(体積平均粒径)は、レーザ回折式粒度分布計を用いて、レーザ回折散乱法によって測定することができる。   Here, d90 and d10 are particle sizes at which the volume cumulative distribution becomes 90% and 10%, respectively. The smaller the (d90-d10) / MV, the higher the uniformity of the particle size, but considering the manufacturing restrictions and the like, the lower limit of (d90-d10) / MV is usually about 0.3. In addition, d90, d10, and MV (volume average particle diameter) can be measured by a laser diffraction scattering method using a laser diffraction particle size distribution meter.

(N1/L、N2/L、空隙の最大長径)
さらに、活物質粒子Aは、粒子の断面観察において、二次粒子の断面長径が3μm以上の粒子内で確認される最大長径が0.3μm以上の空隙の個数(N1)の二次粒子の断面長径(L)に対する比(N1/L)が0.5以下であることが好ましい。また、二次粒子の断面長径が3μm以上の粒子内で確認される最大長径が0.5μm以上の空隙の個数(N2)の二次粒子の断面長径(L)に対する比(N2/L)が0.2以下であることが好ましい。更に、これらの条件に加えて空隙の最大長径が二次粒子の断面長径の25%以下であることが好ましい。
(N1 / L, N2 / L, maximum long diameter of void)
Furthermore, the active material particle A is a cross-section of secondary particles having the number of voids (N1) having a maximum major axis of 0.3 μm or more that is confirmed in a particle having a sectional major axis of 3 μm or more in the cross-sectional observation of the particles. The ratio (N1 / L) to the long diameter (L) is preferably 0.5 or less. Further, the ratio (N2 / L) of the number of voids (N2) having a maximum major axis of 0.5 μm or more to be confirmed in a particle having a sectional major axis of secondary particles of 3 μm or more to the sectional major axis (L) of the secondary particles. It is preferable that it is 0.2 or less. Furthermore, in addition to these conditions, it is preferable that the maximum major axis of the voids is 25% or less of the cross-sectional major axis of the secondary particles.

これにより、活物質粒子Aは、緻密性の高いリチウムコバルト複合酸化物粒子となる。N1/L、N2/L、および空隙の最大長径のいずれかが上述の範囲を超えると、粒子内の空隙率が高い状態となり、活物質粒子Aの緻密性が低下する。   As a result, the active material particles A become highly dense lithium cobalt composite oxide particles. When any one of N1 / L, N2 / L, and the maximum major axis of the void exceeds the above range, the void ratio in the particles becomes high, and the density of the active material particles A decreases.

なお、最大長径が0.3μm未満の空隙は、正確に空隙であるか判断することが困難であるとともに、粒子の緻密性に対する影響が小さいため除外する。さらに、空隙の個数あるいは大きさを計測する粒子として、断面長径が3μm未満の粒子を除外している。これは、断面長径が3μm未満の粒子は、断面観察が粒子の任意の位置での断面であるため、粒子の表面付近の断面である可能性があり、このような表面付近の断面では、粒子表面の凹みが空隙として観察され、粒子内部の空隙を正確に評価できない可能性があるためである。   It should be noted that voids having a maximum major axis of less than 0.3 μm are excluded because it is difficult to accurately determine whether they are voids and the influence on the denseness of the particles is small. Further, particles having a cross-sectional major axis of less than 3 μm are excluded as particles for measuring the number or size of voids. This is because a particle whose cross-sectional major axis is less than 3 μm is a cross-section near the surface of the particle because the cross-sectional observation is a cross-section at an arbitrary position of the particle. This is because the dents on the surface are observed as voids and the voids inside the particles may not be accurately evaluated.

断面長径および空隙の最大長径は、走査型電子顕微鏡観察上における測定する二次粒子あるいは空隙の外縁の点から最大長さとなる他の外縁上の点の距離であり、空隙の最大長径は空隙における最大の空隙長径を意味する。   The cross-sectional major axis and the maximum major axis of the void are the distance between the secondary particle to be measured on a scanning electron microscope or the point on the other outer edge that is the maximum length from the point of the outer edge of the void. It means the maximum gap length.

さらに、空隙の最大長径は、2μm以下であることが好ましい。活物質粒子Aの空隙の最大長径は、二次粒子の断面長径の25%以下であるが、粒径が大きい二次粒子では許容される空隙の最大長径も相対的に大きくなる。したがって、空隙の最大長径を2μm以下とすることで、粒径の大きな粒子においても緻密性をより高いものとすることができる。   Furthermore, it is preferable that the maximum major axis of the gap is 2 μm or less. The maximum major axis of the voids of the active material particles A is 25% or less of the cross-sectional major axis of the secondary particles, but the maximum major axis of the voids allowed for the secondary particles having a large particle size is relatively large. Therefore, by setting the maximum major axis of the voids to 2 μm or less, it is possible to make the denseness higher even for particles having a large particle size.

(タップ密度)
また、活物質粒子Aは、タップ密度が2〜3g/mlであることが好ましい。これにより、活物質粒子Aと活物質粒子Bを混合した正極活物質の充填性をさらに高めることができる。活物質粒子Aのタップ密度は高いほど活物質粒子Bを混合した正極活物質の充填性も高くなるが、タップ密度が3g/mlを超えると、活物質粒子Aに混入する微粒子や粗大粒子が増加して、電池特性が低下するという問題が生じることがある。
(Tap density)
The active material particles A preferably have a tap density of 2 to 3 g / ml. Thereby, the filling property of the positive electrode active material obtained by mixing the active material particles A and the active material particles B can be further enhanced. The higher the tap density of the active material particles A, the higher the filling property of the positive electrode active material mixed with the active material particles B. However, when the tap density exceeds 3 g / ml, fine particles and coarse particles mixed in the active material particles A This may increase the problem that the battery characteristics deteriorate.

(組成)
活物質粒子Aは、上述した通りリチウムコバルト複合酸化物からなり、その組成は、一般式としてLiCoOと表せるものであり、非水系電解質二次電池の特性を改善するために通常添加される元素を含んでもよい。
(composition)
The active material particle A is composed of a lithium cobalt composite oxide as described above, and its composition can be expressed as LiCoO 2 as a general formula, and is an element that is usually added to improve the characteristics of the nonaqueous electrolyte secondary battery May be included.

[活物質粒子B]
(組成)
活物質粒子Bは、一般式LixM 1−y (ただし、MはCo、Ni、Mnから選ばれる少なくとも1種の元素、MはM以外の遷移金属元素、2族元素、及び13族元素から選ばれる少なくとも1種の元素、0.95≦x≦1.1、0≦y≦0.15)で表される層状構造の六方晶系結晶構造を有し、平均粒径が活物質粒子Aより小さく、球状のリチウム遷移金属複合酸化物である。
[Active material particles B]
(composition)
The active material particle B has a general formula LixM 1 1-y M 2 y O 2 (where M 1 is at least one element selected from Co, Ni, and Mn, M 2 is a transition metal element other than M 1 , 2 A group element and at least one element selected from group 13 elements, 0.95 ≦ x ≦ 1.1, 0 ≦ y ≦ 0.15) and a hexagonal crystal structure having a layered structure, It is a spherical lithium transition metal composite oxide having an average particle size smaller than that of the active material particle A.

一般式で表される組成で層状構造の六方晶系結晶構造するリチウム遷移金属複合酸化物は、良好な電池特性を有するため、活物質粒子Aと混合した際に、充填性を高くすることができ、しかも良好な電池特性を有する正極活物質を得ることができる。   Since the lithium transition metal composite oxide having a hexagonal crystal structure with a layered structure in the composition represented by the general formula has good battery characteristics, when mixed with the active material particles A, the filling property may be increased. In addition, a positive electrode active material having good battery characteristics can be obtained.

一般式におけるMは、電池特性を向上させるものであり、Al、Mg、Ca、Ti、Fe、V、Cr、Zr、Nb、Mo、Wから選ばれる少なくとも1種の元素であることが好ましい。 M 2 in the general formula improves battery characteristics, and is preferably at least one element selected from Al, Mg, Ca, Ti, Fe, V, Cr, Zr, Nb, Mo, and W. .

(形状・平均粒径)
活物質粒子Bは、その平均粒径が正極活物質Aより小さく、粒子形状が球状である。活物質粒子Bの平均粒径を活物質粒子Aの平均粒径より小さくすることで、活物質粒子Aの粒子間に活物質粒子Bを配することが可能であり、正極活物質の充填性を高くすることができる。また、粒子形状を球状とすることで、活物質粒子Aの粒子間に活物質粒子Bを配することが容易になるとともに、活物質粒子Aの粒子間隔を狭めることができ、正極活物質の充填性を高くすることができる。
(Shape / average particle size)
The active material particles B have an average particle size smaller than that of the positive electrode active material A and a spherical particle shape. By making the average particle size of the active material particles B smaller than the average particle size of the active material particles A, it is possible to arrange the active material particles B between the particles of the active material particles A, and the filling property of the positive electrode active material Can be high. Further, by making the particle shape spherical, it becomes easy to arrange the active material particles B between the particles of the active material particles A, and the interval between the active material particles A can be reduced. Fillability can be increased.

正極活物質の充填性をさらに高くするためには、活物質粒子Bの平均粒径が3〜10μmであること好ましく、3〜8μmであることがより好ましい。   In order to further increase the filling property of the positive electrode active material, the average particle diameter of the active material particles B is preferably 3 to 10 μm, and more preferably 3 to 8 μm.

活物質粒子Bの平均粒径が3μm未満になると、活物質粒子Bに充放電時の電流が集中することにより、電池特性が低下する恐れが生じる。一方、平均粒径が10μmを超えると、活物質粒子Aの粒子間に配される活物質粒子Bが減少して、正極活物質の充填性がより高いものとならないことがある。   When the average particle diameter of the active material particles B is less than 3 μm, the current at the time of charge / discharge concentrates on the active material particles B, so that the battery characteristics may be deteriorated. On the other hand, when the average particle size exceeds 10 μm, the active material particles B arranged between the particles of the active material particles A may decrease, and the filling property of the positive electrode active material may not be higher.

さらに、活物質粒子Bの平均粒径は、活物質粒子Aの平均粒径に対する比で0.5以下とすることが好ましく、0.4以下とすることがより好ましい。これにより、活物質粒子Aの粒子間隔を狭くするとともに活物質粒子Aの粒子間に活物質粒子Bを多く配することが可能となり、正極活物質の充填性をさらに高めることができる。   Furthermore, the average particle diameter of the active material particles B is preferably 0.5 or less, more preferably 0.4 or less, as a ratio to the average particle diameter of the active material particles A. Thereby, it becomes possible to narrow the particle interval of the active material particles A and to arrange many active material particles B between the particles of the active material particles A, and it is possible to further improve the filling property of the positive electrode active material.

(粒度分布のばらつき)
活物質粒子Bの粒度分布のばらつきを示す指標である(d90−d10)/MVの値が0.65以下であることが好ましく、0.60以下であることがより好ましくい。
(Variation of particle size distribution)
The value of (d90-d10) / MV, which is an index indicating the variation in the particle size distribution of the active material particles B, is preferably 0.65 or less, and more preferably 0.60 or less.

(d90−d10)/MVの値が0.65以下であることにより、微粒子や粗大粒子の混入を抑制すること可能であり、正極活物質の電池特性の低下を抑制するとともに、充填性をさらに向上させることができる。(d90−d10)/MVの値が0.60を超えると、微粒子の混入による電池特性の低下や粗大粒子の混入による十分な充填性が得られないという問題が生じることがある。   When the value of (d90-d10) / MV is 0.65 or less, mixing of fine particles and coarse particles can be suppressed, and the deterioration of the battery characteristics of the positive electrode active material is suppressed, and the filling property is further increased. Can be improved. When the value of (d90-d10) / MV exceeds 0.60, there may be a problem that battery characteristics are deteriorated due to mixing of fine particles and sufficient filling property cannot be obtained due to mixing of coarse particles.

[活物質粒子Aと活物質粒子Bの混合]
活物質粒子Aと活物質粒子Bの質量混合比(A:B)が70:30〜90:10であることが好ましく、75:25〜90:10であることがより好ましい。これにより、活物質粒子Aの粒子間に配する活物質粒子Bの量を十分なものとすることができ、正極活物質の充填性をさらに向上させることができる。
[Mixing of active material particles A and active material particles B]
The mass mixing ratio (A: B) between the active material particles A and the active material particles B is preferably 70:30 to 90:10, and more preferably 75:25 to 90:10. Thereby, the amount of the active material particles B disposed between the active material particles A can be made sufficient, and the filling property of the positive electrode active material can be further improved.

正極活物質は、活物質粒子Aと活物質粒子Bの持つ粉体としての性状を維持しながら、各粒子が偏在しないように混合することで得られる。混合には、一般的な混合機を使用することができ、例えば、シェーカーミキサー、レーディゲミキサー、ジュリアミキサー、Vブレンダーなどを用いることができ、混合前の粒子の性状が破壊されない程度で、各粒子が十分に混合されればよい。   The positive electrode active material is obtained by mixing the particles so that the particles are not unevenly distributed while maintaining the properties of the active material particles A and the active material particles B as powder. For mixing, a general mixer can be used. For example, a shaker mixer, a Laedige mixer, a Julia mixer, a V blender, etc. can be used, and the properties of the particles before mixing are not destroyed. It is sufficient that each particle is sufficiently mixed.

[活物質粒子Aの製造方法]
活物質粒子Aは、前駆体に水酸化コバルト粒子を用いて製造する。水酸化コバルト粒子は、反応容器内を非酸性雰囲気に制御しながら、塩素含有コバルト塩水溶液、無機アルカリ水溶液およびアンモニウムイオン含有水溶液を反応容器に供給して反応液とし、反応液の液温25℃基準におけるpH値を10.5〜12.0となるように制御して、核を生成する核生成工程を行う。次に、核生成工程において反応液中に形成された核を含有する粒子成長用水溶液を、液温25℃基準におけるpH値が9.5〜10.5、かつ核生成工程におけるpH値より低くなるように制御して粒子成長を行う粒子成長工程を行う。これにより、水酸化コバルト粒子を得ることができる。
[Method for Producing Active Material Particle A]
The active material particles A are produced using cobalt hydroxide particles as a precursor. While controlling the inside of the reaction vessel to a non-acidic atmosphere, the cobalt hydroxide particles are supplied with a chlorine-containing cobalt salt aqueous solution, an inorganic alkali aqueous solution and an ammonium ion-containing aqueous solution to the reaction vessel to obtain a reaction solution. A nucleation step for generating nuclei is performed by controlling the pH value at the reference to be 10.5 to 12.0. Next, the aqueous solution for particle growth containing nuclei formed in the reaction solution in the nucleation step has a pH value of 9.5 to 10.5 based on the liquid temperature of 25 ° C. and lower than the pH value in the nucleation step. A particle growth step is performed in which particle growth is performed under control. Thereby, cobalt hydroxide particles can be obtained.

塩素含有コバルト塩水溶液は、塩素の含有量がコバルトの含有量に対してモル比で1〜3であることが好ましく、1.5〜3であることがより好ましい。塩素の含有量をモル比で1〜3とすることで、水酸化コバルト粒子の緻密性をより向上させることができる。   The chlorine-containing cobalt salt aqueous solution preferably has a chlorine content of 1 to 3 in terms of molar ratio with respect to the cobalt content, and more preferably 1.5 to 3. By setting the chlorine content to 1 to 3 in terms of molar ratio, the denseness of the cobalt hydroxide particles can be further improved.

塩素含有コバルト塩水溶液の濃度は、コバルトとして1mol/L〜2.6mol/Lとすることが好ましく、さらには1.5mol/L〜2.2mol/Lとすることが好ましい。   The concentration of the chlorine-containing cobalt salt aqueous solution is preferably 1 mol / L to 2.6 mol / L as cobalt, and more preferably 1.5 mol / L to 2.2 mol / L.

アンモニウムイオン含有水溶液としては、反応液のアンモニア濃度を、好ましくは5g/L〜20g/L、より好ましくは7.5g/L〜15g/Lに調整する。アンモニア濃度を5g/L〜20g/Lに調整することにより、さらに充填性が高い水酸化コバルト粒子を得ることができる。アンモニア濃度が5g/L未満になると、一次粒子の形状が板状になりやすくなり、充填性が低下することがある。一方、アンモニア濃度が20g/Lを超えると、上述した粒子の外形、平均アスペクト比、平均粒径、粒度分布の広がりを示す指標、粒子内の空隙、タップ密度などの粒子の形態、構造の制御には効果が無く、薬品費用や排水処理費用が大きくなり、コスト高になるという問題が生じる。   As an aqueous solution containing ammonium ions, the ammonia concentration of the reaction solution is preferably adjusted to 5 g / L to 20 g / L, more preferably 7.5 g / L to 15 g / L. By adjusting the ammonia concentration to 5 g / L to 20 g / L, cobalt hydroxide particles having higher packing properties can be obtained. When the ammonia concentration is less than 5 g / L, the shape of the primary particles tends to be plate-like, and the filling property may be lowered. On the other hand, when the ammonia concentration exceeds 20 g / L, control of particle shape and structure such as the above-described particle shape, average aspect ratio, average particle size, index indicating the spread of particle size distribution, voids in the particle, tap density, etc. Is not effective, and there is a problem that the cost of chemicals and wastewater treatment increases and the cost increases.

無機アルカリ水溶液としては、反応液のpH値が、所定の数値となるように制御できれば特に限定されず、例えば、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物水溶液などを適宜使用することができる。   The inorganic alkaline aqueous solution is not particularly limited as long as the pH value of the reaction solution can be controlled to a predetermined value. For example, an aqueous alkali metal hydroxide solution such as sodium hydroxide or potassium hydroxide is appropriately used. Can do.

反応容器内の非酸化性雰囲気は、酸素濃度が5容量%以下の不活性ガス混合雰囲気が好ましく、酸素濃度が2容量%以下の不活性ガス混合雰囲気がより好ましい。   The non-oxidizing atmosphere in the reaction vessel is preferably an inert gas mixed atmosphere having an oxygen concentration of 5% by volume or less, and more preferably an inert gas mixed atmosphere having an oxygen concentration of 2% by volume or less.

活物質粒子Aは、上述のようにして得られた水酸化コバルト粒子を前駆体として、通常のリチウムコバルト複合酸化物の製造方法と同様にして製造することができる。すなわち、水酸化コバルト粒子とリチウム化合物とを混合し、酸化性雰囲気、好ましくは大気雰囲気に調整して、800℃〜1100℃で、好ましくは850℃〜1000℃で焼成して、リチウムコバルト複合酸化物粒子からなる活物質粒子Aを得ることができる。   The active material particles A can be produced in the same manner as in the ordinary method for producing a lithium cobalt composite oxide using the cobalt hydroxide particles obtained as described above as a precursor. That is, cobalt hydroxide particles and a lithium compound are mixed, adjusted to an oxidizing atmosphere, preferably an air atmosphere, and calcined at 800 ° C. to 1100 ° C., preferably 850 ° C. to 1000 ° C. Active material particles A composed of product particles can be obtained.

水酸化コバルト粒子は、300℃〜900℃の温度に加熱し、水酸化コバルト粒子に含有されている水分を除去して酸化コバルト粒子としてもよい。また、焼成後に凝集が認められた際には解砕してもよい。   The cobalt hydroxide particles may be heated to a temperature of 300 ° C. to 900 ° C. to remove moisture contained in the cobalt hydroxide particles, thereby forming cobalt oxide particles. Moreover, when aggregation is recognized after baking, you may crush.

[活物質粒子Bの製造方法]
活物質粒子Bは、公知の技術を用いて得ることが可能であるが、粒度分布が均一な粒子を得る場合には、例えば、国際公開第2011/067937号公報で開示された製造方法を用いることで得ることができる。
[Method for Producing Active Material Particle B]
The active material particles B can be obtained using a known technique. However, when obtaining particles having a uniform particle size distribution, for example, the production method disclosed in International Publication No. 2011/067937 is used. Can be obtained.

以上のような正極活物質は、リチウムコバルト複合酸化物からなる充填性の高い活物質粒子Aに、更にリチウム遷移金属複合酸化物からなる活物質粒子Aよりも粒径が小さい活物質粒子Bが混合されていることにより、活物質粒子Aの粒子間に活物質粒子Bが入り込み、充填性が高いものとなっている。したがって、この正極活物質は、非水系電解質二次電池における正極の充填密度を高くすることができ、高いクーロン効率を得ることができる。その結果、高充填密度の正極を備えた高容量の非水系電解質二次電池を得ることができ、非水系電解質二次電池の正極材料として極めて有用である。   In the positive electrode active material as described above, active material particles A having a high filling property made of lithium cobalt composite oxide and active material particles B having a smaller particle diameter than active material particles A made of lithium transition metal composite oxide are further included. By being mixed, the active material particles B enter between the particles of the active material particles A, and the filling property is high. Therefore, this positive electrode active material can increase the packing density of the positive electrode in the non-aqueous electrolyte secondary battery, and can obtain high Coulomb efficiency. As a result, a high-capacity nonaqueous electrolyte secondary battery having a positive electrode with a high packing density can be obtained, and it is extremely useful as a positive electrode material for a nonaqueous electrolyte secondary battery.

<2.非水系電解質二次電池>
上述した正極活物質は、非水系電解質二次電池の正極活物質として好適に用いられるものである。以下、非水系電解質二次電池用として用いられる際の実施態様を例示する。
<2. Non-aqueous electrolyte secondary battery>
The positive electrode active material described above is preferably used as a positive electrode active material for a non-aqueous electrolyte secondary battery. Hereinafter, the embodiment at the time of using for nonaqueous electrolyte secondary batteries is illustrated.

非水系電解質二次電池は、上述の正極活物質を用いた正極を採用したものでる。非水系電解質二次電池は、正極材料に上述した正極活物質を用いたこと以外は、一般的な非水系電解質二次電池と実質的に同様の構造を備えているため、簡単に説明する。   A non-aqueous electrolyte secondary battery employs a positive electrode using the above-described positive electrode active material. Since the nonaqueous electrolyte secondary battery has substantially the same structure as a general nonaqueous electrolyte secondary battery except that the positive electrode active material described above is used as the positive electrode material, it will be briefly described.

非水系電解質二次電池は、ケースと、このケース内に収容された正極、負極、非水系電解液およびセパレーターを備えた構造を有している。   The nonaqueous electrolyte secondary battery has a structure including a case, and a positive electrode, a negative electrode, a nonaqueous electrolyte solution, and a separator housed in the case.

正極は、シート状の部材であり、正極活物質を含有する正極合材ペーストを、例えば、アルミニウム箔製の集電体の表面に塗布し乾燥して形成することができる。   The positive electrode is a sheet-like member, and can be formed by applying a positive electrode mixture paste containing a positive electrode active material to the surface of a current collector made of aluminum foil, for example, and drying it.

正極合材ペーストは、正極合材に、溶剤を添加して混練して形成されたものである。正極合材は、上述の正極活物質と、導電材および結着剤とを混合して形成されたものである。   The positive electrode mixture paste is formed by adding a solvent to the positive electrode mixture and kneading. The positive electrode mixture is formed by mixing the above-described positive electrode active material, a conductive material, and a binder.

導電材は、特に限定されないが、例えば、天然黒鉛、人造黒鉛、膨張黒鉛などの黒鉛や、アセチレンブラックやケッチェンブラックなどのカーボンブラック系材料を用いることができる。   The conductive material is not particularly limited. For example, graphite such as natural graphite, artificial graphite, and expanded graphite, and carbon black materials such as acetylene black and ketjen black can be used.

正極合材に使用される結着剤は、特に限定されないが、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、フッ素ゴム、エチレンプロピレンジエンゴム、スチレンブタジエン、セルロース系樹脂、ポリアクリル酸などを用いることができる。なお、正極合材には、活性炭などを添加してもよく、活性炭などを添加することによって、正極の電気二重層容量を増加させることができる。   The binder used for the positive electrode mixture is not particularly limited. For example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), fluorine rubber, ethylene propylene diene rubber, styrene butadiene, cellulose resin, poly Acrylic acid or the like can be used. In addition, activated carbon etc. may be added to a positive electrode compound material, and the electric double layer capacity | capacitance of a positive electrode can be increased by adding activated carbon etc.

溶剤は、特に限定されないが、例えばN−メチル−2−ピロリドンなどの有機溶剤を用いることができる。   The solvent is not particularly limited, and for example, an organic solvent such as N-methyl-2-pyrrolidone can be used.

負極は、銅などの金属箔集電体の表面に、負極合材ペーストを塗布し、乾燥して形成されたシート状の部材である。   The negative electrode is a sheet-like member formed by applying a negative electrode mixture paste to the surface of a metal foil current collector such as copper and drying it.

負極活物質は、例えば、金属リチウムやリチウム合金などのリチウムを含有する物質や、リチウムイオンを吸蔵および脱離できる吸蔵物質を採用することができる。   As the negative electrode active material, for example, a material containing lithium, such as metallic lithium or a lithium alloy, or an occlusion material that can occlude and desorb lithium ions can be employed.

吸蔵物質は、特に限定されないが、例えば、天然黒鉛、人造黒鉛、フェノール樹脂などの有機化合物焼成体、およびコークスなどの炭素物質の粉状体を用いることができる。   The occlusion material is not particularly limited, and for example, natural graphite, artificial graphite, an organic compound fired body such as phenol resin, and a carbon material powder such as coke can be used.

セパレーターは、例えば、ポリエチレンやポリプロピレンなどの薄い膜で、微細な孔を多数有する膜を用いることができる。なお、セパレーターの機能を有するものであれば、特に限定されない。   As the separator, for example, a thin film such as polyethylene or polypropylene and a film having many fine holes can be used. In addition, if it has a function of a separator, it will not specifically limit.

非水系電解液は、支持塩としてのリチウム塩を有機溶媒に溶解したものである。有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、トリフルオロプロピレンカーボネートなどの環状カーボネート;ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネートなどの鎖状カーボネート;テトラヒドロフラン、2−メチルテトラヒドロフラン、ジメトキシエタンなどのエーテル化合物;エチルメチルスルホンやブタンスルトンなどの硫黄化合物;リン酸トリエチルやリン酸トリオクチルなどのリン化合物などから選ばれる1種を、単独で、あるいは2種以上を混合して用いることができる。支持塩としては、LiPF、LiBF、LiClO、LiAsF、LiN(CFSO、およびそれらの複合塩などを用いることができる。 The nonaqueous electrolytic solution is obtained by dissolving a lithium salt as a supporting salt in an organic solvent. Examples of the organic solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and trifluoropropylene carbonate; chain carbonates such as diethyl carbonate, dimethyl carbonate, ethylmethyl carbonate, and dipropyl carbonate; tetrahydrofuran, 2-methyltetrahydrofuran, and dimethoxy Ether compounds such as ethane; sulfur compounds such as ethyl methyl sulfone and butane sultone; phosphorus compounds such as triethyl phosphate and trioctyl phosphate can be used alone or in admixture of two or more. . As the supporting salt, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 , and complex salts thereof can be used.

上述の構成を有する非水系電解質二次電池は、上述の正極活物質を用いた正極を有しているので、正極活物質の充填密度が高く、高い電極密度を得ることができる。これにより、非水系電解質二次電池では、高い初期放電容量とクーロン効率が得られ、高容量となる。また、非水系電解質二次電池は、高い体積エネルギー密度を有する。さらに、従来の正極活物質と比較して、微細粒子の混入がないため、サイクル特性に優れている。また、熱安定性が高く、安全性においても優れている。   Since the non-aqueous electrolyte secondary battery having the above-described configuration has a positive electrode using the above-described positive electrode active material, the packing density of the positive electrode active material is high and a high electrode density can be obtained. Thereby, in a non-aqueous electrolyte secondary battery, a high initial discharge capacity and coulomb efficiency are obtained, and the capacity becomes high. Moreover, the nonaqueous electrolyte secondary battery has a high volume energy density. Furthermore, compared with the conventional positive electrode active material, since there is no mixing of fine particles, the cycle characteristics are excellent. Further, it has high thermal stability and is excellent in safety.

以下に、本発明の実施例及び比較例によって、本発明をさらに詳細に説明するが、本発明は、これらの実施例によって何ら限定されるものではない。各実施例および各比較例における各種の評価方法を以下の通りである。   Hereinafter, the present invention will be described in more detail by way of examples and comparative examples of the present invention, but the present invention is not limited to these examples. Various evaluation methods in each example and each comparative example are as follows.

(1)体積平均粒径及び粒度分布測定
レーザ回折式粒度分布計(商品名マイクロトラック、日機装株式会社製)を用いて測定した。
(1) Volume average particle size and particle size distribution measurement It measured using the laser diffraction type particle size distribution meter (brand name Microtrack, Nikkiso Co., Ltd. product).

(2)粒子の外観及び平均アスペクト比
走査型電子顕微鏡(SEM、商品名S−4700、株式会社日立ハイテクノロジーズ製)により粒子の外観を観察し、任意に選択した20個の粒子を測定した値から、平均値を算出することにより求めた。
(2) Appearance and average aspect ratio of particles A value obtained by observing the appearance of particles with a scanning electron microscope (SEM, trade name S-4700, manufactured by Hitachi High-Technologies Corporation) and measuring 20 arbitrarily selected particles. From this, the average value was calculated.

(3)緻密性
粒子の断面を走査型電子顕微鏡(SEM、商品名S−4700、株式会社日立ハイテクノロジーズ製)を用いて1000倍で観察し、断面全体が観察可能な粒子を選択し、断面長径及び空隙の最大長径を計測することにより評価した。
(3) Denseness The cross section of the particles is observed at 1000 times using a scanning electron microscope (SEM, trade name S-4700, manufactured by Hitachi High-Technologies Corporation), and the particles whose entire cross section is observable are selected. Evaluation was made by measuring the major axis and the maximum major axis of the void.

(4)金属成分の分析
試料を溶解した後、ICP発光分光法(ICP:Inductively Coupled Plasma)により分析した。
(4) Analysis of metal component After the sample was dissolved, it was analyzed by ICP emission spectroscopy (ICP: Inductively Coupled Plasma).

(5)結晶構造の同定
X線回折測定装置(パナリティカル社製、X‘Pert PRO)により得られたX線回折パターンを用いて同定した。
(5) Identification of crystal structure It identified using the X-ray-diffraction pattern obtained by the X-ray-diffraction measuring apparatus (the product made by Panalical, X'Pert PRO).

(6)電池評価
得られた正極活物質を用いて、2032型コイン電池を構成し、これにより初期容量についての評価を行った。具体的には、正極活物質粉末70質量%に、アセチレンブラック20質量%及びPTFE10質量%を加えて混合し、150mgを秤量してペレットを作製し、正極とした。また、負極にはリチウム金属を使用し、電解液には1MのLiClO4を支持塩とするエチレンカーボネート(EC)とジエチルカーボネート(DEC)の等量混合溶液(富山薬品工業製)を使用し、露点が−80℃に管理されたAr雰囲気のグローブボックス中で、2032型のコイン電池を作製した。
(6) Battery evaluation A 2032 type coin battery was constructed using the positive electrode active material thus obtained, and the initial capacity was evaluated. Specifically, 20% by mass of acetylene black and 10% by mass of PTFE were added to and mixed with 70% by mass of the positive electrode active material powder, and 150 mg was weighed to produce pellets, which were used as the positive electrode. Moreover, lithium metal is used for the negative electrode, and an equivalent mixed solution of ethylene carbonate (EC) and diethyl carbonate (DEC) (made by Toyama Pharmaceutical Co., Ltd.) using 1M LiClO 4 as a supporting salt is used for the electrolyte. A 2032 type coin battery was produced in a glove box in an Ar atmosphere in which the dew point was controlled at −80 ° C.

作製したコイン電池を24時間程度放置し、開路電圧(OCV;Open Circuit Voltage)が安定した後、正極に対する電流密度を0.5mA/cm2としてカットオフ電圧4.4Vまで充電して初期充電容量とし、1時間の休止後カットオフ電圧3.0Vまで放電したときの容量を初期放電容量とした。 The prepared coin battery is left for about 24 hours, and after the open circuit voltage (OCV) is stabilized, the current density with respect to the positive electrode is set to 0.5 mA / cm 2 and charged to a cutoff voltage of 4.4 V to obtain an initial charge capacity. The capacity when discharging to a cut-off voltage of 3.0 V after 1 hour of rest was defined as the initial discharge capacity.

(実施例1)
まず、活物質粒子Aを以下のようにして製造した。
Example 1
First, the active material particles A were produced as follows.

邪魔板を4枚取り付けた槽容積5Lの晶析反応槽に、純水1.4L、25質量%アンモニア水を90ml投入して恒温槽及び加温ジャケットにて40℃に加温し、25質量%水酸化ナトリウム水溶液を添加して、反応槽内の反応液のpHを25℃基準で11.5に調整した。反応槽内には窒素ガスを3L/分で供給し、反応槽内の酸素濃度を1容量%以下に制御した。   Into a crystallization reaction tank of 5 L with 4 baffle plates, 1.4 L of pure water and 90 ml of 25 mass% ammonia water were added and heated to 40 ° C. in a thermostatic chamber and a heating jacket, and 25 mass % Aqueous sodium hydroxide solution was added to adjust the pH of the reaction solution in the reaction vessel to 11.5 based on 25 ° C. Nitrogen gas was supplied into the reaction tank at 3 L / min, and the oxygen concentration in the reaction tank was controlled to 1% by volume or less.

核生成工程の晶析反応は、反応液を攪拌しつつ、定量ポンプを用いて、コバルトのモル濃度1.2mol/Lの塩化コバルト水溶液を5ml/分で供給し、併せて25質量%アンモニア水を0.8ml/分で供給しつつ、25質量%水酸化ナトリウム水溶液を断続的に添加し、25℃でのpHが11.5になるように制御して行った。規定量の反応が終了した後、35質量%塩酸を適量投入し、反応液のpHを25℃基準で10.0に調整した。   In the crystallization reaction of the nucleation step, a cobalt chloride aqueous solution having a molar concentration of cobalt of 1.2 mol / L is supplied at a rate of 5 ml / min using a metering pump while stirring the reaction solution, and 25 mass% ammonia water is also added. Was supplied at a rate of 0.8 ml / min, and a 25% by mass aqueous sodium hydroxide solution was intermittently added, and the pH at 25 ° C. was controlled to be 11.5. After the prescribed amount of reaction was completed, an appropriate amount of 35 mass% hydrochloric acid was added, and the pH of the reaction solution was adjusted to 10.0 based on 25 ° C.

粒子成長工程の晶析反応は、反応液(粒子成長用水溶液)を攪拌しつつ、定量ポンプを用いて、核生成工程と同様に塩化コバルト水溶液、アンモニア水、水酸化ナトリウム水溶液を添加し、反応液のpHが25℃で10.0になるように制御して行った。塩化コバルト水溶液中の塩素含有量は、コバルトに対してモル比で2.1であった。液中のアンモニア濃度は15g/Lであった。粒子成長工程を8時間行い、得られた水酸化コバルト粒子を含むスラリーを固液分離し、水洗し、乾燥して粉末状の水酸化コバルトを得た。   The crystallization reaction in the particle growth process is performed by adding a cobalt chloride aqueous solution, ammonia water, and sodium hydroxide aqueous solution in the same manner as in the nucleation process using a metering pump while stirring the reaction solution (particle growth aqueous solution). The pH of the liquid was controlled to be 10.0 at 25 ° C. The chlorine content in the cobalt chloride aqueous solution was 2.1 in terms of molar ratio with respect to cobalt. The ammonia concentration in the liquid was 15 g / L. The particle growth step was performed for 8 hours, and the resulting slurry containing cobalt hydroxide particles was solid-liquid separated, washed with water, and dried to obtain powdered cobalt hydroxide.

得られた水酸化コバルト粒子をコバルトに対するリチウムのモル比(Li/Co)が1.00となるようにシェーカーミキサー装置(ウィリー・エ・バッコーフェン(WAB)社)を用いて炭酸リチウムと混合し、空気気流中にて、990℃で10時間焼成した。冷却した後、解砕して活物質粒子Aを得た。   The obtained cobalt hydroxide particles were mixed with lithium carbonate using a shaker mixer apparatus (Willy et Bacofen (WAB)) so that the molar ratio of lithium to cobalt (Li / Co) was 1.00. Firing was performed at 990 ° C. for 10 hours in an air stream. After cooling, it was crushed to obtain active material particles A.

得られた活物質粒子Aの結晶構造は、LiCoOで表される層状化合物であることが確認された。また、平均粒径、(d90−d10)/MV、タップ密度を測定した。 The crystal structure of the obtained active material particles A was confirmed to be a layered compound represented by LiCoO 2 . Moreover, the average particle diameter, (d90-d10) / MV, and tap density were measured.

また、図1に示す断面SEM像から二次粒子の緻密性を評価したところ、二次粒子の断面観察において、二次粒子の断面長径が3μm以上の粒子内で確認される最大長径が0.3μm以上の空隙の個数(N1)の二次粒子の断面長径(L)に対する比(N1/L)が0.5以下、最大長径が0.5μm以上の空隙の個数(N)の二次粒子の断面長径(L)に対する比(N2/L)が0.2以下であり、かつ空隙の最大長径が二次粒子の断面長径の25%以下であることが確認された。空隙の最大長径は1.8μmであった。   Moreover, when the density of the secondary particles was evaluated from the cross-sectional SEM image shown in FIG. 1, when the cross-section of the secondary particles was observed, the maximum long-diameter confirmed in the particles having a cross-sectional major axis of 3 μm or more was 0. Secondary particles having a ratio (N1 / L) of the number of voids (N1) of 3 μm or more to the cross-sectional major axis (L) of the secondary particles of 0.5 or less and the number of voids (N) having a maximum major axis of 0.5 μm or more It was confirmed that the ratio (N2 / L) to the cross-sectional major axis (L) was 0.2 or less, and the maximum major axis of the voids was 25% or less of the sectional major axis of the secondary particles. The maximum long diameter of the void was 1.8 μm.

次に、活物質粒子Bを以下のようにして製造した。   Next, active material particles B were produced as follows.

反応槽(34L)内に水を17L入れて撹拌しながら、槽内温度を40℃に設定し、反応槽に窒素ガスを流通させて窒素ガス雰囲気とした。反応槽内の水に25%水酸化ナトリウム水溶液と25%アンモニア水を適量加えることにより、液温25℃におけるpHとして、槽内の反応液のpHが12.6となるように調整した。また、反応液中のアンモニウムイオン濃度を15g/Lに調節した。   While putting 17 L of water in the reaction vessel (34 L) and stirring, the temperature in the vessel was set to 40 ° C., and nitrogen gas was passed through the reaction vessel to create a nitrogen gas atmosphere. By adding appropriate amounts of 25% aqueous sodium hydroxide and 25% aqueous ammonia to the water in the reaction tank, the pH at the liquid temperature of 25 ° C. was adjusted to 12.6. Further, the ammonium ion concentration in the reaction solution was adjusted to 15 g / L.

次に、硫酸ニッケルと硫酸コバルトを水に溶かしてNi:Co=0.82:0.15となるように調整した1.8mol/Lの混合水溶液を、反応槽内の反応液に88ml/分で加えた。同時に、25質量%アンモニア水および25質量%水酸化ナトリウム水溶液も反応槽内の反応液に一定速度で加えていき、得られた核生成用水溶液中のアンモニウムイオン濃度を15g/Lとなるように保持した状態で、pHを12.6に制御しながら2分30秒間晶析を行って、核生成を行った。   Next, a mixed aqueous solution of 1.8 mol / L prepared by dissolving nickel sulfate and cobalt sulfate in water so that Ni: Co = 0.82: 0.15 was added to the reaction solution in the reaction tank at 88 ml / min. Added in. At the same time, 25 mass% aqueous ammonia and 25 mass% sodium hydroxide aqueous solution are also added to the reaction liquid in the reaction tank at a constant rate so that the ammonium ion concentration in the obtained aqueous solution for nucleation is 15 g / L. In this state, crystallization was performed for 2 minutes and 30 seconds while controlling the pH to 12.6 to perform nucleation.

その後、液温25℃における核生成用水溶液pHが11.6(粒子成長pH)になるまで、25質量%水酸化ナトリウム水溶液の供給のみを一時停止して、粒子成長用水溶液を得た。   Thereafter, until the nucleation aqueous solution pH at a liquid temperature of 25 ° C. reached 11.6 (particle growth pH), only the supply of the 25 mass% sodium hydroxide aqueous solution was temporarily stopped to obtain an aqueous solution for particle growth.

得られた粒子成長用水溶液の液温25℃におけるpHとして、反応液のpHが11.6に到達した後、再度、25質量%水酸化ナトリウム水溶液の供給を再開し、pHを11.6に制御した状態で、2時間粒子の成長を行った。反応槽内が満液になったところで水酸化ナトリウム溶液の供給を停止するとともに撹拌を止めて静置することにより、生成物の沈殿を促した。その後、反応槽から上澄み液を半量抜き出した後、水酸化ナトリウム溶液の供給を再開し、2時間晶析を行った後(計4時間)、粒子の成長を終了させた。そして、得られた生成物を水洗、濾過、乾燥させることにより、粒子を回収した。   After the pH of the reaction solution reached 11.6 as the pH at 25 ° C. of the obtained particle growth aqueous solution, the supply of the 25 mass% sodium hydroxide aqueous solution was resumed, and the pH was adjusted to 11.6. In a controlled state, the particles were grown for 2 hours. When the reaction tank became full, the supply of the sodium hydroxide solution was stopped and the stirring was stopped and the mixture was allowed to stand to promote precipitation of the product. Thereafter, after removing half of the supernatant from the reaction vessel, the supply of the sodium hydroxide solution was resumed, and after crystallization for 2 hours (4 hours in total), the particle growth was terminated. And the particle | grains were collect | recovered by washing with water, filtering, and drying the obtained product.

得られた粒子を別の反応槽に移して常温の水と混合してスラリーとし、この混合水溶液にアルミン酸ナトリウムの水溶液および硫酸を撹拌しながら加えて、スラリーのpHを9.5に調整した。その後、1時間撹拌を続けることによりニッケルコバルト複合水酸化物粒子表面に水酸化アルミニウムの被覆を行った。このとき、アルミン酸ナトリウムの水溶液は、スラリー中の金属元素モル比が、Ni:Co:Al=0.82:0.15:0.03となるように加えた。撹拌停止後に水溶液を濾過して水酸化アルミニウム被覆を行った粒子を水洗することにより、複合水酸化物を得た。   The obtained particles were transferred to another reaction vessel and mixed with water at room temperature to form a slurry. To this mixed aqueous solution, an aqueous solution of sodium aluminate and sulfuric acid were added with stirring to adjust the pH of the slurry to 9.5. . Thereafter, stirring was continued for 1 hour to coat the surface of nickel cobalt composite hydroxide particles with aluminum hydroxide. At this time, the aqueous solution of sodium aluminate was added such that the molar ratio of metal elements in the slurry was Ni: Co: Al = 0.82: 0.15: 0.03. After the stirring was stopped, the aqueous solution was filtered, and the particles coated with aluminum hydroxide were washed with water to obtain a composite hydroxide.

得られた複合水酸化物粒子を、空気(酸素濃度:21容量%)気流中にて温度700℃で6時間の熱処理を行い、複合酸化物粒子を得た。Li/Me=1.02(原子比)となるように水酸化リチウムを秤量し、この水酸化リチウムと得られた複合酸化物粒子とをシェーカーミキサー装置を用いて混合することにより、混合物を得た。   The obtained composite hydroxide particles were heat-treated at 700 ° C. for 6 hours in an air stream (oxygen concentration: 21 vol%) to obtain composite oxide particles. Lithium hydroxide is weighed so that Li / Me = 1.02 (atomic ratio), and this lithium hydroxide and the obtained composite oxide particles are mixed using a shaker mixer device to obtain a mixture. It was.

得られたこの混合物を酸素気流中(酸素濃度:100容量%)にて500℃で4時間仮焼した後、730℃で24時間焼成し、冷却した後に解砕して活物質粒子Bを得た。得られた活物質粒子Bの結晶構造は、Li1.017Ni0.82Co0.15Al0.03で表される層状化合物であることが確認された。そして、活物質粒子Bの平均粒径、(d90−d10)/MVを測定した。 The obtained mixture was calcined at 500 ° C. for 4 hours in an oxygen stream (oxygen concentration: 100% by volume), then calcined at 730 ° C. for 24 hours, cooled and crushed to obtain active material particles B. It was. It was confirmed that the crystal structure of the obtained active material particles B was a layered compound represented by Li 1.017 Ni 0.82 Co 0.15 Al 0.03 O 2 . And the average particle diameter of the active material particle B, (d90-d10) / MV, was measured.

得られた活物質粒子Aおよび活物質粒子Bを質量比で80:20となるように秤量し、シェーカーミキサー装置を用いて混合し、正極活物質を得た。得られた正極活物質のタップ密度、初期放電容量を測定した。   The obtained active material particles A and active material particles B were weighed to a mass ratio of 80:20 and mixed using a shaker mixer device to obtain a positive electrode active material. The tap density and initial discharge capacity of the obtained positive electrode active material were measured.

(実施例2)
活物質粒子Aおよび活物質粒子Bを質量比で85:15となるように秤量して混合した以外は実施例1と同様にして正極活物質を得るとともに評価した。
(Example 2)
A positive electrode active material was obtained and evaluated in the same manner as in Example 1 except that the active material particles A and the active material particles B were weighed and mixed so that the mass ratio was 85:15.

(比較例1)
活物質粒子Aを活物質粒子Bと混合せず正極活物質として、実施例1と同様に評価した。
(Comparative Example 1)
The active material particles A were not mixed with the active material particles B and evaluated as the positive electrode active material in the same manner as in Example 1.

(比較例2)
活物質粒子Aの核生成工程において、反応液のpHを25℃基準で12.5に調整した以外は、実施例1と同様にして正極活物質を得るとともに評価した。活物質粒子Aの緻密性を評価したところ、断面全体が観察され二次粒子の断面長径が3μm以上の粒子において、観察した粒子内で確認されたN1/Lが最大で0.8、N2/Lが最大で0.5であり、空隙の最大長径は二次粒子の断面長径の27%であった。また、空隙の最大長径は3.8μmであり、粒子内に空隙が多いことが確認された。
(Comparative Example 2)
In the nucleation process of the active material particles A, a positive electrode active material was obtained and evaluated in the same manner as in Example 1 except that the pH of the reaction solution was adjusted to 12.5 based on 25 ° C. When the denseness of the active material particles A was evaluated, the N1 / L observed in the observed particles was 0.8 at the maximum in the particles whose entire cross section was observed and the cross sectional major axis of the secondary particles was 3 μm or more. L was 0.5 at the maximum, and the maximum long diameter of the voids was 27% of the cross-sectional long diameter of the secondary particles. The maximum long diameter of the voids was 3.8 μm, and it was confirmed that there were many voids in the particles.

Claims (8)

活物質粒子Aと活物質粒子Bとの混合物からなる非水系電解質二次電池用の正極活物質であって、
活物質粒子Aは、一次粒子が凝集した球状の二次粒子からなり、平均粒径が10〜25μmであり、粒度分布のばらつきを示す(d90−d10)/MV(ただし、MVはレーザ回折式粒度分布計を用いて、レーザ回折散乱法によって測定することができる体積平均粒径)の値が0.65以下であるリチウムコバルト複合酸化物粒子であり、粒子の断面観察において、二次粒子の断面長径が3μm以上の粒子内で確認される最大長径が0.3μm以上の空隙の個数(N1)の該二次粒子の断面長径(L)に対する比(N1/L)が0.5以下、最大長径が0.5μm以上の空隙の個数(N2)の該二次粒子の断面長径(L)に対する比(N2/L)が0.2以下であり、かつ該空隙の最大長径が該二次粒子の断面長径の25%以下であり、
活物質粒子Bは、一般式Li 1−y (ただし、MはCo、Ni、Mnから選ばれる少なくとも1種の元素、MはM以外の遷移金属元素、2族元素、及び13族元素から選ばれる少なくとも1種の元素、0.95≦x≦1.1、0≦y≦0.15)で表される層状構造の六方晶系結晶構造を有し、平均粒径が前記活物質粒子Aより小さく、球状のリチウム遷移金属複合酸化物粒子であることを特徴とする正極活物質。
A positive electrode active material for a non-aqueous electrolyte secondary battery comprising a mixture of active material particles A and active material particles B,
The active material particle A is composed of spherical secondary particles in which primary particles are aggregated, has an average particle size of 10 to 25 μm, and shows variation in particle size distribution (d90-d10) / MV (where MV is a laser diffraction type) using a particle size distribution meter, a lithium cobalt composite oxide particles value is 0.65 or less of the volume average particle diameter) which can be measured by a laser diffraction scattering method, the cross-sectional observation of the particles, the secondary particles The ratio (N1 / L) of the number of voids (N1) having a maximum major axis of 0.3 μm or more to be confirmed in particles having a sectional major axis of 3 μm or more to the sectional major axis (L) of the secondary particles is 0.5 or less, The ratio (N2 / L) of the number of voids (N2) having a maximum major axis of 0.5 μm or more to the sectional major axis (L) of the secondary particles is 0.2 or less, and the maximum major axis of the voids is the secondary 25% or less of the cross-sectional major axis of the particles,
The active material particle B has a general formula Li x M 1 1-y M 2 y O 2 (where M 1 is at least one element selected from Co, Ni, and Mn, and M 2 is a transition metal element other than M 1. A hexagonal crystal structure having a layered structure represented by at least one element selected from group 2 elements and group 13 elements, 0.95 ≦ x ≦ 1.1, 0 ≦ y ≦ 0.15) And a positive electrode active material having a mean particle size smaller than that of the active material particles A and spherical lithium transition metal composite oxide particles.
前記活物質粒子Bの平均粒径が3〜10μmであり、
前記活物質粒子Aと前記活物質粒子Bの質量混合比が70:30〜90:10であることを特徴とする請求項に記載の正極活物質。
The average particle diameter of the active material particles B is 3 to 10 μm,
2. The positive electrode active material according to claim 1 , wherein a mass mixing ratio of the active material particles A and the active material particles B is 70:30 to 90:10.
前記活物質粒子Bの平均粒径は、前記活物質粒子Aの平均粒径に対する比が0.5以下であることを特徴とする請求項1又は請求項2に記載の正極活物質。 The positive electrode active material according to claim 1 or 2 , wherein a ratio of the average particle diameter of the active material particles B to the average particle diameter of the active material particles A is 0.5 or less. 前記活物質粒子Bの粒度分布のばらつきを示す(d90−d10)/MV(ただし、MVはレーザ回折式粒度分布計を用いて、レーザ回折散乱法によって測定することができる体積平均粒径)の値が0.65以下であることを特徴とする請求項1乃至請求項のいずれか1項に記載の正極活物質。 (D90-d10) / MV (where MV is a volume average particle diameter that can be measured by a laser diffraction scattering method using a laser diffraction particle size distribution meter ) indicating a variation in the particle size distribution of the active material particles B the positive electrode active material according to any one of claims 1 to 3 values, characterized in that it is 0.65 or less. 前記活物質粒子Aの平均アスペクト比が0.7以上であることを特徴とする請求項1乃至請求項のいずれか1項に記載の正極活物質。 The positive electrode active material according to any one of claims 1 to 4 average aspect ratio of the active material particles A is equal to or less than 0.7. 前記活物質粒子Aのタップ密度が2〜3g/mlであることを特徴とする請求項1乃至請求項のいずれか1項に記載の正極活物質。 The positive electrode active material according to any one of claims 1 to 5 tap density of the active material particles A is characterized in that it is a 2 to 3 g / ml. 前記Mは、Al、Mg、Ca、Ti、Fe、V、Cr、Zr、Nb、Mo、Wから選ばれる少なくとも1種の元素であることを特徴とする請求項1乃至請求項のいずれか1項に記載の正極活物質。 Wherein M 2 are both Al, Mg, Ca, Ti, Fe, V, Cr, Zr, Nb, Mo, of claims 1 to 6, characterized in that at least one element selected from W 2. The positive electrode active material according to claim 1. 正極が、請求項1乃至請求項のいずれか1項に記載の正極活物質によって形成されていることを特徴とする非水系電解質二次電池。 A non-aqueous electrolyte secondary battery, wherein the positive electrode is formed of the positive electrode active material according to any one of claims 1 to 7 .
JP2014020583A 2014-02-05 2014-02-05 Positive electrode active material and non-aqueous electrolyte secondary battery Active JP6206227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014020583A JP6206227B2 (en) 2014-02-05 2014-02-05 Positive electrode active material and non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014020583A JP6206227B2 (en) 2014-02-05 2014-02-05 Positive electrode active material and non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2015149160A JP2015149160A (en) 2015-08-20
JP6206227B2 true JP6206227B2 (en) 2017-10-04

Family

ID=53892393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014020583A Active JP6206227B2 (en) 2014-02-05 2014-02-05 Positive electrode active material and non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP6206227B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102521605B1 (en) 2018-03-02 2023-04-12 유미코아 Cathode Materials for Rechargeable Lithium Ion Batteries
JP6550598B1 (en) * 2018-03-23 2019-07-31 住友化学株式会社 Lithium mixed metal oxide, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
CN113224271B (en) * 2020-01-21 2022-04-22 宁德新能源科技有限公司 Cathode material, and electrochemical device and electronic device comprising same
KR102558390B1 (en) * 2020-10-26 2023-07-24 주식회사 에코프로비엠 Positive electrode active material and lithium secondary battery comprising the same
CN114497512A (en) * 2020-12-14 2022-05-13 宁德新能源科技有限公司 Electrochemical device and electronic device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4268392B2 (en) * 2002-09-26 2009-05-27 Agcセイミケミカル株式会社 Positive electrode active material for lithium secondary battery and method for producing the same
JP4968872B2 (en) * 2005-04-04 2012-07-04 日本化学工業株式会社 Lithium secondary battery positive electrode active material, method for producing the same, and lithium secondary battery
CN102263259A (en) * 2006-12-28 2011-11-30 Agc清美化学股份有限公司 Lithium-containing composite oxide and method for production thereof
JP5695373B2 (en) * 2009-09-09 2015-04-01 日立マクセル株式会社 Electrode for electrochemical element and electrochemical element using the same
JP2013065467A (en) * 2011-09-16 2013-04-11 Panasonic Corp Lithium ion secondary battery
KR101669112B1 (en) * 2012-05-08 2016-10-25 삼성에스디아이 주식회사 Composite metal precursor, positive electrode active material prepared therefrom, positive electrode for lithium secondary battery including the same, and lithium secondary battery employing the same
JP6069632B2 (en) * 2012-06-08 2017-02-01 株式会社Gsユアサ Positive electrode paste, positive electrode for non-aqueous electrolyte battery using the same, and method for producing non-aqueous electrolyte battery

Also Published As

Publication number Publication date
JP2015149160A (en) 2015-08-20

Similar Documents

Publication Publication Date Title
JP7120012B2 (en) Nickel-manganese composite hydroxide and method for producing same, positive electrode active material for non-aqueous electrolyte secondary battery and method for producing same, and non-aqueous electrolyte secondary battery
JP6582824B2 (en) Nickel-manganese-containing composite hydroxide and method for producing the same
JP6596978B2 (en) Transition metal composite hydroxide particles and production method thereof, positive electrode active material for nonaqueous electrolyte secondary battery and production method thereof, and nonaqueous electrolyte secondary battery
JP6159395B2 (en) Transition metal composite hydroxide particles and production method thereof, positive electrode active material for nonaqueous electrolyte secondary battery, production method thereof, and nonaqueous electrolyte secondary battery
JP6142929B2 (en) Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
JP7215169B2 (en) Nickel-manganese composite hydroxide and method for producing same, positive electrode active material for non-aqueous electrolyte secondary battery and method for producing same, and non-aqueous electrolyte secondary battery
KR101842823B1 (en) Nickel composite hydroxide and process for producing same, positive active material for nonaqueous-electrolyte secondary battery and process for producing same, and nonaqueous-electrolyte secondary battery
KR101612591B1 (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
JP6331983B2 (en) Method for producing transition metal composite hydroxide particles and method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP5877817B2 (en) Non-aqueous secondary battery positive electrode active material and non-aqueous electrolyte secondary battery using the positive electrode active material
JP6252384B2 (en) Nickel composite hydroxide and manufacturing method thereof, positive electrode active material and manufacturing method thereof, and non-aqueous electrolyte secondary battery
JP6252383B2 (en) Manganese cobalt composite hydroxide and method for producing the same, positive electrode active material and method for producing the same, and non-aqueous electrolyte secondary battery
JP7260249B2 (en) TRANSITION METAL CONTAINING COMPOSITE HYDROXIDE PARTICLES AND MANUFACTURING METHOD THEREFOR, POSITIVE ACTIVE MATERIAL FOR NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY AND MANUFACTURING METHOD THEREOF, AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
JP2016115658A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method thereof, and nonaqueous electrolyte secondary battery
JP2017210395A (en) Nickel composite hydroxide and manufacturing method therefor, cathode active material for nonaqueous electrolyte secondary cell and manufacturing method therefor and nonaqueous electrolyte secondary cell
WO2018021554A1 (en) Positive electrode active substance for non-aqueous electrolyte secondary battery, method for producing same, and non-aqueous electrolyte secondary battery
JP7135855B2 (en) Nickel-manganese composite hydroxide and method for producing same, positive electrode active material for non-aqueous electrolyte secondary battery and method for producing same, and non-aqueous electrolyte secondary battery
JP6233175B2 (en) Cobalt hydroxide particles and method for producing the same, and positive electrode active material and method for producing the same
JP6206227B2 (en) Positive electrode active material and non-aqueous electrolyte secondary battery
WO2015198676A1 (en) Manganese composite hydroxide and method for producing same, positive electrode active material and method for producing same, and nonaqueous electrolyte secondary battery
JP2017154916A (en) Nickel composite hydroxide and production method of the same, positive electrode active substance for non-aqueous electrolyte secondary battery and production method of the substance, and non-aqueous electrolyte secondary battery
JP2016031854A (en) Transition metal complex hydroxide particle and manufacturing method thereof, and method for manufacturing positive electrode active material for nonaqueous electrolyte secondary batteries with the same
JP2019119661A (en) Transition metal-containing composite hydroxide particle and manufacturing method therefor, cathode active material for nonaqueous electrolyte secondary battery and manufacturing method therefor, and nonaqueous electrolyte secondary battery
JPWO2018097191A1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6179374B2 (en) Cobalt hydroxide particles, method for producing the same, and method for producing positive electrode active material for non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170321

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170821

R150 Certificate of patent or registration of utility model

Ref document number: 6206227

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150