JP6204805B2 - Imaging apparatus, control method therefor, program, and storage medium - Google Patents

Imaging apparatus, control method therefor, program, and storage medium Download PDF

Info

Publication number
JP6204805B2
JP6204805B2 JP2013244328A JP2013244328A JP6204805B2 JP 6204805 B2 JP6204805 B2 JP 6204805B2 JP 2013244328 A JP2013244328 A JP 2013244328A JP 2013244328 A JP2013244328 A JP 2013244328A JP 6204805 B2 JP6204805 B2 JP 6204805B2
Authority
JP
Japan
Prior art keywords
shake correction
image
shake
subject
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013244328A
Other languages
Japanese (ja)
Other versions
JP2015102757A (en
Inventor
伸茂 若松
伸茂 若松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2013244328A priority Critical patent/JP6204805B2/en
Publication of JP2015102757A publication Critical patent/JP2015102757A/en
Application granted granted Critical
Publication of JP6204805B2 publication Critical patent/JP6204805B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Adjustment Of Camera Lenses (AREA)
  • Studio Devices (AREA)

Description

本発明は、手振れ等の振れによる画像振れを補正する像振れ補正装置を備える撮像装置に関するものである。   The present invention relates to an imaging apparatus including an image shake correction apparatus that corrects image shake due to shake such as camera shake.

現在のカメラは露出決定やピント合わせといった、撮影上の重要な作業が全自動化され、また手振れ等による像振れを防ぐ像振れ補正装置を搭載したカメラでは、撮影者の撮影ミスを誘発する要因は殆どなくなっている。   Current cameras are fully automated for important shooting tasks such as determining exposure and focusing, and with cameras equipped with image stabilization devices that prevent image blur due to camera shake etc. Almost gone.

ここで、像振れ補正装置について簡単に説明する。カメラの手振れは通常、周波数1乃至10Hz程度の振動である。シャッタのレリーズ時点で手振れが起きても像振れの無い撮影を可能にするには、手振れによるカメラの角度振れを検出し、検出値に応じて像振れ補正用レンズ(以下、補正レンズという)を動かす必要がある。その際、カメラの振動を正確に検出して振れによる光軸変化を補正することが重要となる。原理的には角速度等の検出結果を得る振動検出部と、その演算処理結果に基づいて補正レンズを変位させる駆動制御部が搭載されることで、画像振れが抑制される。   Here, the image blur correction apparatus will be briefly described. Camera shake is usually vibration with a frequency of about 1 to 10 Hz. To enable shooting without image shake even when camera shake occurs at the shutter release time, camera shake due to camera shake is detected, and an image shake correction lens (hereinafter referred to as a correction lens) is detected according to the detected value. I need to move it. At that time, it is important to correct the change of the optical axis due to the shake by accurately detecting the vibration of the camera. In principle, image blurring is suppressed by mounting a vibration detection unit that obtains detection results such as angular velocity and a drive control unit that displaces the correction lens based on the calculation processing result.

しかしながら、主被写体が移動している状態での撮影や、焦点距離が大きくなる望遠側での撮影においては、次のような問題がある。主被写体が移動している場合、主被写体が撮影画像内から外れてしまう場合があり、動き続ける被写体を撮影者の操作によって追尾するには、撮影者の特別な技術が必要である。また、焦点距離が大きくなる望遠レンズを有するカメラで、望遠撮影を行う場合、手振れによる像振れの影響が大きくなるため、主被写体を撮影画像中心に保持することが難しい場合がある。そのとき、撮影者が撮影画像内に被写体を戻そうとしてカメラを微調整するように操作しても、撮影者が意図して操作した振れ量も手振れと判断されて補正されてしまう可能性がある。そのため、像振れ補正制御の影響により、被写体を撮影画像内や撮影画像中心に微調整する操作が難しい場合があった。   However, there are the following problems in shooting with the main subject moving and shooting on the telephoto side where the focal length increases. When the main subject is moving, the main subject may fall out of the captured image, and a special technique of the photographer is required to track the moving subject by the operation of the photographer. In addition, when performing telephoto shooting with a camera having a telephoto lens with a large focal length, it may be difficult to hold the main subject at the center of the captured image because of the effect of image blur due to camera shake. At that time, even if the photographer operates to fine-tune the camera in order to return the subject to the captured image, the shake amount that the photographer intentionally operates may be determined as camera shake and corrected. is there. Therefore, there are cases where it is difficult to finely adjust the subject within the captured image or the center of the captured image due to the influence of image blur correction control.

被写体を追尾する技術として、例えば、特許文献1には、光軸と交差する方向に光学系の一部を移動する像振れ補正装置を用いて、自動的に被写体を追尾するカメラが提案されている。撮像素子からの画像信号、AF情報などから、被写体の位置を検出し、被写体追尾演算量を算出し、振れ補正演算量に被写体追尾演算量を合成することで、像振れを補正しながら被写体追尾を可能としている。   As a technique for tracking a subject, for example, Patent Document 1 proposes a camera that automatically tracks a subject using an image blur correction apparatus that moves a part of the optical system in a direction intersecting the optical axis. Yes. Detects the position of the subject from the image signal from the image sensor, AF information, etc., calculates the subject tracking calculation amount, and synthesizes the subject tracking calculation amount with the shake correction calculation amount, thereby correcting the image blur while tracking the subject. Is possible.

特開2010−93362号公報JP 2010-93362 A

しかしながら、特許文献1に開示されているような従来の被写体追尾技術では、像振れ補正装置の駆動可能な範囲が限られている。そのため、被写体追尾演算量や振れ補正量が大きい場合、すぐに像振れ補正部材がその可動端まで移動してしまい、被写体追尾と振れ補正制御を精度よく両立させることが難しかった。   However, in the conventional subject tracking technique disclosed in Patent Document 1, the range in which the image blur correction apparatus can be driven is limited. Therefore, when the subject tracking calculation amount and the shake correction amount are large, the image shake correction member immediately moves to the movable end, and it is difficult to achieve both subject tracking and shake correction control with high accuracy.

また、被写体追尾が振れ補正の駆動限界(可動範囲の端位置)に達してしまった場合、撮影者が操作して被写体を画面枠に戻そうとフレーミングすることになる。しかし、撮影者が意図して行っているフレーミング動作を手振れとして判断して、像振れ補正を行ってしまうことがあり、振れ補正が撮影者のフレーミング操作を邪魔してしまったり、振れ補正の駆動限界に達しやすくなってしまう場合あった。   When the subject tracking reaches the shake correction driving limit (end position of the movable range), the photographer operates to perform framing to return the subject to the screen frame. However, there may be a case where the framing operation intended by the photographer is determined as camera shake and image blur correction may be performed, and the shake correction may interfere with the photographer's framing operation, or drive the shake correction. Sometimes it was easy to reach the limit.

本発明は上述した課題に鑑みてなされたものであり、その目的は、像振れ補正効果を確保しつつ、主被写体を撮影画像内や撮影画像の中心に遷移させ易くした撮像装置を提供することである。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide an imaging device that can easily shift a main subject to a captured image or the center of the captured image while ensuring an image blur correction effect. It is.

本発明に係わる撮像装置は、撮像装置であって、被写体像を撮像する撮像手段と、前記撮像装置の振れを検出する振れ検出手段により検出された前記撮像装置の振れ量に基づいて、前記撮像装置の振れによって引き起こされる画像振れを補正する振れ補正量を算出する演算手段と、記撮像手段から出力される画像信号に基づいて画像内の被写体の位置を検出する位置検出手段と、画像をブロック分割し、前記被写体が分割された画像内のどのブロックに位置するかを検出し、前記被写体が画像の中心から離れたブロックに位置する場合に、振れ補正手段による画像振れ補正制御を行うための閾値を、前記被写体が画像内の中心に位置するときの閾値から変更し、前記振れ補正量の前回の値が、変更された前記閾値を超えたときに、前記振れ補正量の前回の値と前記閾値との差分が所定値より大きい場合の前記振れ補正量の減算量を、前記振れ補正量の前回の値と前記閾値との差分が前記所定値より小さい場合の前記減算量に比べて大きくする減算量算出手段と、を備え、前記演算手段は、前記振れ検出手段から得られる振れ量から前記減算量を減算することで、前記被写体が画像の中心に向かう方向の振れ補正量を弱めて前記画像振れを補正するように前記振れ補正量を算出することを特徴とする。 Imaging device according to the present invention is an imaging apparatus, based on the shake amount of the image pickup device detected by the shake detection means for detecting a shake of the image pickup means and the image pickup device for capturing an object image, the imaging calculating means for calculating the shake correction amount for correcting an image blur caused by the shake of the apparatus, position detecting means for detecting the position of the object in the image based on the image signal output from the pre-Symbol imaging means, image In order to perform image shake correction control by shake correction means when block division is performed, and in which block the subject is located in the divided image is detected, and the subject is located in a block away from the center of the image Is changed from the threshold value when the subject is located at the center in the image, and the shake value is corrected when the previous value of the shake correction amount exceeds the changed threshold value. The subtraction amount of the shake correction amount when the difference between the previous positive value and the threshold is greater than a predetermined value, and the difference between the previous value of the shake correction amount and the threshold is less than the predetermined value. A subtraction amount calculation means for making the subtraction amount larger than the subtraction amount , wherein the calculation means subtracts the subtraction amount from a shake amount obtained from the shake detection means, whereby the subject moves toward the center of the image. The shake correction amount is calculated so as to correct the image shake by weakening the shake correction amount.

本発明によれば、像振れ補正効果を確保しつつ、主被写体を撮影画像内や撮影画像の中心に遷移させ易くした撮像装置を提供することが可能となる。   According to the present invention, it is possible to provide an imaging apparatus that can easily shift the main subject to the captured image or the center of the captured image while ensuring the image blur correction effect.

本発明の第1の実施形態に係る像振れ補正装置を備えた撮像装置を模式的に示す斜視図。1 is a perspective view schematically showing an imaging apparatus provided with an image shake correction apparatus according to a first embodiment of the present invention. 第1の実施形態に係る像振れ補正装置を備えた撮像装置の上面図及び制御ブロック図。FIG. 2 is a top view and a control block diagram of an imaging apparatus provided with an image shake correction apparatus according to the first embodiment. 画面をブロックに分けて行う被写体位置検出を説明するための図。The figure for demonstrating subject position detection performed by dividing a screen into blocks. 第1の実施形態における角速度減算量算出を説明するための図。The figure for demonstrating the angular velocity subtraction amount calculation in 1st Embodiment. 第1の実施形態における角速度減算量算出を説明するための図。The figure for demonstrating the angular velocity subtraction amount calculation in 1st Embodiment. 第1の実施形態における振れ補正量算出を説明するための図。FIG. 5 is a diagram for explaining shake correction amount calculation in the first embodiment. 第1の実施形態における振れ補正量算出を説明するための図。FIG. 5 is a diagram for explaining shake correction amount calculation in the first embodiment. 第1の実施形態における像振れ補正装置の動作を示すフローチャート。5 is a flowchart showing the operation of the image shake correction apparatus according to the first embodiment. 第2の実施形態に係る像振れ補正装置を備えた撮像装置の上面図及び制御ブロック図。FIG. 6 is a top view and a control block diagram of an imaging apparatus provided with an image shake correction apparatus according to a second embodiment. 第2の実施形態における振れ補正範囲と画角を示す図。FIG. 10 is a diagram illustrating a shake correction range and a field angle according to the second embodiment.

以下、本発明の実施形態について、添付図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

(第1の実施形態)
図1は、本発明の第1の実施形態に係る像振れ補正装置を備えた撮像装置101を模式的に示す斜視図である。図2は撮像装置101の撮像部の構成と、CPU(中央演算処理装置)105で実行される像振れ補正処理の機能ブロックを示す図である。
(First embodiment)
FIG. 1 is a perspective view schematically showing an imaging apparatus 101 including an image shake correction apparatus according to the first embodiment of the present invention. FIG. 2 is a diagram illustrating a configuration of an imaging unit of the imaging apparatus 101 and functional blocks of image blur correction processing executed by a CPU (Central Processing Unit) 105.

カメラ101の本体にはレリーズボタン104が設けられ、レリーズボタン104の操作によるスイッチの開閉信号がカメラCPU(中央演算処理装置)105に送られる。被写体像を結像させる撮影光学系の光軸102上には、振れ補正レンズ115と撮像素子106が位置する。角速度計103は、矢印103pの方向(ピッチ方向)、103yの方向(ヨー方向)の角度振れを検出する角速度検出手段である。角速度計103の出力は、カメラCPU105に入力される。角速度計103の出力は、オフセット減算部108において、角速度計に検出ノイズとして付加されるオフセット成分が減算される。例えば、HPF(ハイパスフィルタ或いは高域透過フィルタ)でDC成分をカットする。オフセット減算後の角速度は、減算器109で角速度減算量算出部114の出力が減算された後に、角度算出部110にて積分され、角度信号に変換される。   A release button 104 is provided on the main body of the camera 101, and a switch open / close signal generated by operating the release button 104 is sent to a camera CPU (central processing unit) 105. A shake correction lens 115 and an image sensor 106 are positioned on the optical axis 102 of the photographing optical system for forming a subject image. The angular velocity meter 103 is angular velocity detection means for detecting angular fluctuations in the direction of the arrow 103p (pitch direction) and in the direction of 103y (yaw direction). The output of the angular velocity meter 103 is input to the camera CPU 105. An offset component added as detection noise to the angular velocity meter is subtracted from the output of the angular velocity meter 103 by the offset subtracting unit 108. For example, the DC component is cut by HPF (high-pass filter or high-pass transmission filter). The angular velocity after the offset subtraction is integrated by the angle calculation unit 110 and converted into an angle signal after the output of the angular velocity subtraction amount calculation unit 114 is subtracted by the subtractor 109.

角速度減算量算出部114では、被写体位置検出部113からの被写体位置と、敏感度調整部111の出力である振れ補正目標位置に基づいて、角速度減算量が演算される。この詳細については、後に説明する。   The angular velocity subtraction amount calculation unit 114 calculates the angular velocity subtraction amount based on the subject position from the subject position detection unit 113 and the shake correction target position that is the output of the sensitivity adjustment unit 111. Details of this will be described later.

角度算出部110の出力は敏感度調整部111に入力される。敏感度調整部111は、ズーム、フォーカスの位置情報107およびそれらにより求まる焦点距離や撮影倍率に基づいて角度算出部110の出力を増幅し、角度振れ補正目標値にする。これはレンズのフォーカスやズームなどの光学情報の変化により振れ補正レンズ115の振れ補正ストロークに対するカメラ像面での振れ補正敏感度が変化することを補正するためである。   The output of the angle calculation unit 110 is input to the sensitivity adjustment unit 111. The sensitivity adjustment unit 111 amplifies the output of the angle calculation unit 110 based on the zoom and focus position information 107 and the focal length and imaging magnification obtained from the information, and sets the angle shake correction target value. This is for correcting the change in the shake correction sensitivity on the camera image plane with respect to the shake correction stroke of the shake correction lens 115 due to a change in optical information such as lens focus and zoom.

敏感度調整部111で求まった角度振れ補正目標値を駆動制御部112に出力し、振れ補正レンズ115を駆動することで画像振れ補正を行わせる。以上が角度振れ補正の概略構成である。   The angular shake correction target value obtained by the sensitivity adjustment unit 111 is output to the drive control unit 112, and the shake correction lens 115 is driven to perform image shake correction. The above is the schematic configuration of the angular shake correction.

図2に示す例では、振れ補正手段として、算出された補正量に基づいて振れ補正レンズ115を光軸に垂直な面内で移動される、いわゆる光学振れ補正が採用される。像振れ補正方法には補正レンズを用いた光学振れ補正に限らず、撮像素子を光軸に垂直な面内で移動させることで振れ補正を行う方法がある。また、撮像素子が出力する各撮影フレームの切り出し位置を変更することで、振れの影響を軽減させる電子振れ補正もあり、複数の振れ補正方法を組み合わせて像振れ補正を行うこともできる。   In the example shown in FIG. 2, so-called optical shake correction in which the shake correction lens 115 is moved in a plane perpendicular to the optical axis based on the calculated correction amount is employed as the shake correction means. The image shake correction method is not limited to optical shake correction using a correction lens, and there is a method for performing shake correction by moving the image sensor in a plane perpendicular to the optical axis. Also, there is electronic shake correction that reduces the influence of shake by changing the cut-out position of each shooting frame output by the image sensor, and image shake correction can also be performed by combining a plurality of shake correction methods.

次に、手振れに基づく像振れ補正と、被写体追尾を両立して補正レンズを制御する方法について説明する。   Next, a description will be given of a method of controlling the correction lens while achieving both image shake correction based on camera shake and subject tracking.

被写体位置検出部113での被写体位置検出方法について、以下説明する。撮像素子106は被写体からの反射光を電気信号に変換することで画像情報を得る。その情報は、デジタル信号に変換される。デジタル信号に変換された画像情報は、被写体位置検出部113に送られる。   A subject position detection method in the subject position detection unit 113 will be described below. The image sensor 106 obtains image information by converting reflected light from the subject into an electrical signal. The information is converted into a digital signal. The image information converted into the digital signal is sent to the subject position detection unit 113.

被写体位置検出部113では、AF追尾情報から画像内における被写体位置を検出する。任意の対象物をAF追尾する方法として、逐次更新されるテンプレート画像との一致度の高い領域を探すパターンマッチング法や、現フレームと前フレームとの画像差分から対象位置を探す相対差分法などがある。また、対象物から単一あるいは複数の色や輝度、もしくはヒストグラムを抽出し、それらと一致度の高い領域を探索する色・輝度一致法なども知られている。これらのうちのいずれかの方法によりAF追尾を行うことができる。   The subject position detection unit 113 detects the subject position in the image from the AF tracking information. As a method for AF tracking of an arbitrary object, there are a pattern matching method for searching for a region having a high degree of coincidence with a template image that is sequentially updated, a relative difference method for searching for a target position from an image difference between the current frame and the previous frame is there. Also known is a color / luminance matching method for extracting a single or a plurality of colors, luminances or histograms from an object and searching for a region having a high degree of coincidence with them. AF tracking can be performed by any one of these methods.

上記のAF追尾により検出された被写体位置を基に、図3のように画像をブロック分割し、主被写体がどこのブロックに位置しているかを被写体位置検出部113が出力する。本実施形態では、画像を9ブロックに分割したが、ブロック数を増やして細かく判定してもよい。   Based on the subject position detected by the AF tracking described above, the image is divided into blocks as shown in FIG. 3, and the subject position detection unit 113 outputs to which block the main subject is located. In the present embodiment, the image is divided into nine blocks, but it may be determined more finely by increasing the number of blocks.

次に角速度減算量算出部114での角速度減算量算出方法を以下に説明する。図4は、図2に示す各制御ブロック(108、109、110)における時系列データを示す図である。図4(a)の401は、角速度103からオフセット減算部108にてオフセットを減算された後の角速度であり、401を積分し、角度算出した信号は図4(c)の403となる。振れ補正レンズ115の可動範囲に制限がなく振れ補正が行える場合は振れ補正目標値は403のようになる。   Next, the angular velocity subtraction amount calculation method in the angular velocity subtraction amount calculation unit 114 will be described below. FIG. 4 is a diagram showing time-series data in each control block (108, 109, 110) shown in FIG. Reference numeral 401 in FIG. 4A denotes an angular velocity after the offset is subtracted from the angular velocity 103 by the offset subtracting unit 108. The signal obtained by integrating 401 and calculating the angle is 403 in FIG. 4C. When there is no limitation on the movable range of the shake correction lens 115 and shake correction can be performed, the shake correction target value is 403.

しかし、振れ補正レンズ115の可動範囲には限りがあり、例えば振れ補正可動範囲が図4(c)のA2からB2までの間と制限されている場合、信号403は振れ補正可動範囲を超えてしまっているため、振れ補正が不能な状態になってしまう。   However, the movable range of the shake correction lens 115 is limited. For example, when the shake correction movable range is limited to between A2 and B2 in FIG. 4C, the signal 403 exceeds the shake correction movable range. As a result, shake correction cannot be performed.

そこで、振れ補正目標値(制御周期の前回サンプリング値)を用いて、角速度減算量を算出し、角速度から角速度減算量を減算後に積分することで、振れ補正可動範囲が図4(c)のA2からB2の状態で振れ補正目標値を算出できるようにする。   Therefore, by calculating the angular velocity subtraction amount using the shake correction target value (previous sampling value of the control cycle), and integrating after subtracting the angular velocity subtraction amount from the angular velocity, the shake correction movable range is A2 in FIG. To allow the shake correction target value to be calculated in the state of B2.

角速度減算量は、図4(d)、図4(e)に示すテーブルより算出する。図4(d)については、横軸が振れ補正目標位置、縦軸がゲインαである。振れ補正目標位置がA1以下のときゲインαは0となり、振れ補正目標位置がA2以上のときゲインαは1となり、振れ補正目標位置がA1とA2の間に位置するときゲインαはA1−A2間を線形補間した値となる。   The angular velocity subtraction amount is calculated from the tables shown in FIGS. 4 (d) and 4 (e). In FIG. 4D, the horizontal axis is the shake correction target position, and the vertical axis is the gain α. When the shake correction target position is A1 or less, the gain α is 0, when the shake correction target position is A2 or more, the gain α is 1, and when the shake correction target position is located between A1 and A2, the gain α is A1-A2. It is a value obtained by linear interpolation.

図4(e)についても同様の方法でゲインβを求める。横軸が振れ補正目標位置、縦軸がゲインβである。振れ補正目標位置がB1以上のときゲインβは0となり、振れ補正目標位置がB2以下のときゲインβは1となり、振れ補正目標位置がB1とB2の間に位置するときゲインβはB1−B2間を線形補間した値となる。   Also for FIG. 4E, the gain β is obtained by the same method. The horizontal axis is the shake correction target position, and the vertical axis is the gain β. When the shake correction target position is B1 or more, the gain β is 0, when the shake correction target position is B2 or less, the gain β is 1, and when the shake correction target position is located between B1 and B2, the gain β is B1-B2. It is a value obtained by linear interpolation.

上記により求めたゲインαとゲインβより角速度減算量を算出する。角速度減算量は式(1)、式(2)から算出され、角速度の符号によって乗算されるゲインが異なる。オフセット減算部108の出力である角速度の符号がプラスの場合、角速度にゲインαを乗算し、角速度の符号がマイナスの場合、角速度にゲインβを乗算する。   The angular velocity subtraction amount is calculated from the gain α and gain β obtained as described above. The angular velocity subtraction amount is calculated from the equations (1) and (2), and the gain multiplied by the sign of the angular velocity is different. When the sign of the angular velocity that is the output of the offset subtracting unit 108 is plus, the angular velocity is multiplied by a gain α, and when the sign of the angular velocity is minus, the angular velocity is multiplied by a gain β.

角速度がプラス方向 : 角速度減算量=角速度×α …(1)
角速度がマイナス方向: 角速度減算量=角速度×β …(2)
図4(b)の402は、角速度401から、角速度減算量算出部114で算出された角速度減算量を減算した信号を示す。また、図4(c)の404は、402を積分し、角度を算出した信号であり、振れ補正可動範囲であるA2からB2の間で振れ補正目標値が算出されることになる。
Angular velocity is positive: Angular velocity subtraction amount = Angular velocity x α (1)
Angular velocity is in the negative direction: Angular velocity subtraction amount = Angular velocity x β (2)
Reference numeral 402 in FIG. 4B denotes a signal obtained by subtracting the angular velocity subtraction amount calculated by the angular velocity subtraction amount calculation unit 114 from the angular velocity 401. Further, 404 in FIG. 4C is a signal obtained by integrating 402 and calculating an angle, and a shake correction target value is calculated between A2 and B2 which is the shake correction movable range.

しかし、本実施形態では、角速度減算量算出部114に振れ補正目標位置だけでなく、被写体位置検出部113からの被写体位置も入力されている。被写体位置検出部113は、図3のどのブロックに主被写体が位置しているかを出力する。ここで、被写体位置が305に位置する場合、振れ補正可動範囲を最大限に使用して振れ補正制御を行う。一方、被写体位置が305にない場合、即ち画像の中心から離れている場合、角速度減算量算出部114の処理を以下のように変更する。   However, in this embodiment, not only the shake correction target position but also the subject position from the subject position detection unit 113 are input to the angular velocity subtraction amount calculation unit 114. The subject position detection unit 113 outputs in which block in FIG. 3 the main subject is located. Here, when the subject position is at 305, shake correction control is performed using the shake correction movable range to the maximum. On the other hand, when the subject position is not at 305, that is, away from the center of the image, the processing of the angular velocity subtraction amount calculation unit 114 is changed as follows.

図5を用いて、被写体位置に応じた角速度減算量算出部の変更内容を説明する。被写体位置検出部113で被写体が305の位置にあることが検出された場合、振れ補正可動範囲を最大限に使用し振れ補正制御を行うための閾値A1、A2、B1、B2を設定する。このとき、縦軸にピッチ、横軸にヨーをとった場合の、振れ補正可動範囲と閾値A1、A2、B1、B2の範囲を図5(a)に示す。振れ補正中心位置501を中心とした振れ補正レンズの可動範囲502の中で、閾値A1、B1の範囲を503aで、閾値A2、B2の範囲を504aで示す。このように閾値A1、A2、B1、B2を設定することで、振れ補正可動範囲を最大限に使用し振れ補正制御を行うことができる。   The change contents of the angular velocity subtraction amount calculation unit corresponding to the subject position will be described with reference to FIG. When the subject position detection unit 113 detects that the subject is at the position 305, threshold values A1, A2, B1, and B2 are set for performing shake correction control using the shake correction movable range to the maximum. FIG. 5A shows the shake correction movable range and the ranges of threshold values A1, A2, B1, and B2 when the vertical axis represents pitch and the horizontal axis represents yaw. Of the movable range 502 of the shake correction lens centered on the shake correction center position 501, the ranges of the thresholds A1 and B1 are indicated by 503a, and the ranges of the thresholds A2 and B2 are indicated by 504a. By setting the threshold values A1, A2, B1, and B2 in this way, shake correction control can be performed using the shake correction movable range to the maximum.

一方、被写体が図3の304、306に位置している場合、ピッチ軸の閾値A1、A2、B1、B2を変更する。ここで被写体が304に位置している場合、被写体が画面中央部に向かう方向の振れ補正を弱める制御を行うための閾値A1、A2、B1、B2を設定する。このとき、縦軸にピッチ、横軸にヨーをとった場合の、振れ補正可動範囲と閾値A1、A2、B1、B2の範囲を図5(b)に示す。振れ補正中心位置501を中心とした振れ補正レンズの可動範囲502の中で、閾値A1、B1の範囲を503bで、閾値A2、B2の範囲を504bで示す。このように閾値A1、A2、B1、B2を設定することで、被写体が画面中央部に遷移し易い振れ補正制御を行うことができる。   On the other hand, when the subject is positioned at 304 and 306 in FIG. 3, the threshold values A1, A2, B1, and B2 of the pitch axis are changed. Here, when the subject is positioned at 304, thresholds A1, A2, B1, and B2 are set for performing control to weaken shake correction in the direction in which the subject moves toward the center of the screen. FIG. 5B shows the shake correction movable range and the threshold values A1, A2, B1, and B2 when the vertical axis represents pitch and the horizontal axis represents yaw. Of the movable range 502 of the shake correction lens centered on the shake correction center position 501, the range of threshold values A1 and B1 is indicated by 503b, and the range of threshold values A2 and B2 is indicated by 504b. By setting the threshold values A1, A2, B1, and B2 in this way, it is possible to perform shake correction control that makes it easy for the subject to transition to the center of the screen.

また、被写体が図3の302、308に位置している場合、ヨー軸の閾値A1、A2、B1、B2を変更する。ここで被写体が302に位置している場合、被写体が画面中央部に向かう方向の振れ補正を弱める制御を行うための閾値A1、A2、B1、B2を設定する。このとき、縦軸にピッチ、横軸にヨーをとった場合の、振れ補正可動範囲と閾値A1、A2、B1、B2の範囲を図5(c)に示す。振れ補正中心位置501を中心とした振れ補正レンズの可動範囲502の中で、閾値A1、B1の範囲を503cで、閾値A2、B2の範囲を504cで示す。このように閾値A1、A2、B1、B2を設定することで、被写体が画面中央部に遷移し易い振れ補正制御を行うことができる。   When the subject is positioned at 302 and 308 in FIG. 3, the threshold values A1, A2, B1, and B2 of the yaw axis are changed. Here, when the subject is positioned at 302, thresholds A1, A2, B1, and B2 are set for performing control to weaken the shake correction in the direction in which the subject moves toward the center of the screen. FIG. 5C shows the shake correction movable range and the threshold values A1, A2, B1, and B2 when the vertical axis represents pitch and the horizontal axis represents yaw. Of the movable range 502 of the shake correction lens centered on the shake correction center position 501, the ranges of the thresholds A1 and B1 are indicated by 503c, and the ranges of the thresholds A2 and B2 are indicated by 504c. By setting the threshold values A1, A2, B1, and B2 in this way, it is possible to perform shake correction control that makes it easy for the subject to transition to the center of the screen.

また、被写体が図3の301、303、307、309に位置している場合は、ピッチ軸とヨー軸の閾値A1、A2、B1、B2を変更する。ここで被写体が307に位置している場合、被写体が画面中央部に向かう方向の振れ補正を弱める制御を行うための閾値A1、A2、B1、B2を設定する。このとき、縦軸にピッチ、横軸にヨーをとった場合の振れ補正可動範囲と閾値A1、A2、B1、B2の範囲を図5(d)に示す。振れ補正中心位置501を中心とした振れ補正レンズの可動範囲502の中で、閾値A1、B1の範囲を503dで、閾値A2、B2の範囲を504dで示す。このように閾値A1、A2、B1、B2を設定することで、被写体が画面中央部に遷移し易い振れ補正制御を行うことができる。   When the subject is located at 301, 303, 307, and 309 in FIG. 3, the threshold values A1, A2, B1, and B2 of the pitch axis and the yaw axis are changed. Here, when the subject is located at 307, thresholds A1, A2, B1, and B2 are set for performing control to weaken the shake correction in the direction in which the subject moves toward the center of the screen. At this time, FIG. 5D shows the shake correction movable range and the ranges of the thresholds A1, A2, B1, and B2 when the vertical axis represents pitch and the horizontal axis represents yaw. Of the movable range 502 of the shake correction lens centered on the shake correction center position 501, the ranges of the thresholds A1 and B1 are indicated by 503d, and the ranges of the thresholds A2 and B2 are indicated by 504d. By setting the threshold values A1, A2, B1, and B2 in this way, it is possible to perform shake correction control that makes it easy for the subject to transition to the center of the screen.

図6に本実施形態における制御効果を示す。波形601は、被写体位置に応じた振れ補正制御は行わず、図5(a)の振れ補正範囲を用いて算出された振れ補正目標値を示したものである。また、波形602は被写体位置に応じた振れ補正制御を行った場合の振れ補正目標値を示したものである。Timing1において被写体位置が図3の305から304に変化し、Timing2において被写体位置が図3の304から305に変化した場合のピッチ軸の振れ補正目標値の時系列データを示す。   FIG. 6 shows the control effect in this embodiment. A waveform 601 shows a shake correction target value calculated using the shake correction range of FIG. 5A without performing shake correction control according to the subject position. A waveform 602 shows a shake correction target value when shake correction control according to the subject position is performed. 3 shows time series data of pitch axis shake correction target values when the subject position changes from 305 to 304 in FIG. 3 at Timing 1 and the subject position changes from 304 to 305 in FIG. 3 at Timing 2.

A2−B2の間で振れ補正目標値が算出されており、Timing1からTiming2の間においては、被写体が305に向かう方向、即ち被写体が画面中央部に向かう方向の振れ補正を弱める結果になっている。このようにして被写体が画面中央部に遷移しやすくすることで、振れ補正性能をある程度確保しつつ、被写体追尾を行い易くすることを可能にする。また、被写体が画面中央部に遷移し易いので撮影者のフレーミング動作も行い易くなる。   A shake correction target value is calculated between A2 and B2, and between Time 1 and Time 2, shake correction in the direction of the subject toward 305, that is, the direction of the subject toward the center of the screen is weakened. . By making the subject easily transition to the center of the screen in this way, it becomes possible to easily perform subject tracking while ensuring a certain degree of shake correction performance. In addition, since the subject easily shifts to the center of the screen, the photographer can easily perform the framing operation.

しかし、被写体位置に応じて振れ補正制御を行っている間は、多少なりとも振れ補正が弱まってしまっている。そこで、静止画露光中と静止画露光中以外で振れ補正を変更することによって、被写体追尾が振れ補正制御に及ぼす悪影響を低減する方法を以下に説明する。   However, during the shake correction control according to the subject position, the shake correction is weakened to some extent. Therefore, a method for reducing the adverse effect of subject tracking on shake correction control by changing shake correction during still image exposure and other than during still image exposure will be described below.

被写体位置に応じた振れ補正制御では、これまで説明した方法で振れ補正目標値が演算されるが、静止画露光中は、被写体位置情報は用いず、図5(a)の閾値A1、A2、B1、B2を設定し、振れ補正目標値が演算される。   In the shake correction control according to the subject position, the shake correction target value is calculated by the method described so far, but the subject position information is not used during still image exposure, and the threshold values A1, A2, B1 and B2 are set, and the shake correction target value is calculated.

図7に静止画露光中と静止画露光中以外での振れ補正を説明する時系列データを示す。波形701は、被写体位置に応じた振れ補正制御を行わない場合の、図5(a)の振れ補正範囲の中での振れ補正目標値を表し、波形702は、被写体位置に応じた振れ補正制御を行った場合の振れ補正目標値を表している。704は露光開始のタイミングであり、705は露光終了のタイミングである。静止画露光中の704から705の期間に波形702の振れ補正目標位置で制御してしまうと、被写体追尾の影響により実際の手振れとは異なる振れ補正を行うため、振れ補正制御の効果が低下してしまう恐れがある、
本来は、704と705間の静止画露光中は、701の振れ補正目標位置によって振れ補正を行いたい。そこで、704のタイミングでの701と702の差分をオフセットとて算出し、波形701からオフセットを減算した信号703を704から705の期間は使用する。705で静止画露光が終了すると、波形703に一定速度で波形702に戻るような信号を加え、703と702が一致するまでこの加算を続ける。
FIG. 7 shows time-series data for explaining shake correction during still image exposure and other than during still image exposure. A waveform 701 represents a shake correction target value in the shake correction range of FIG. 5A when the shake correction control according to the subject position is not performed, and a waveform 702 is a shake correction control according to the subject position. This shows the shake correction target value when. Reference numeral 704 denotes an exposure start timing, and reference numeral 705 denotes an exposure end timing. If control is performed at the shake correction target position of the waveform 702 during the period from 704 to 705 during still image exposure, shake correction different from actual camera shake is performed due to the effect of subject tracking, and the effect of shake correction control is reduced. There is a risk that
Originally, during still image exposure between 704 and 705, it is desired to perform shake correction by the shake correction target position 701. Therefore, a difference between 701 and 702 at the timing of 704 is calculated as an offset, and a signal 703 obtained by subtracting the offset from the waveform 701 is used for a period of 704 to 705. When the still image exposure is completed at 705, a signal for returning to the waveform 702 at a constant speed is added to the waveform 703, and this addition is continued until 703 and 702 match.

以上により、露光中は被写体位置に応じた振れ補正制御の振れ補正効果低下の悪影響をなくすことができる。   As described above, it is possible to eliminate the adverse effect of the shake correction effect reduction of the shake correction control according to the subject position during exposure.

図8のフローチャートを参照して、本実施形態の振れ補正制御の全体的な動作について説明する。本フローはカメラの主電源オンでスタートされ、一定のサンプリング周期で実行される。   With reference to the flowchart of FIG. 8, the overall operation of the shake correction control of the present embodiment will be described. This flow starts when the main power of the camera is turned on and is executed at a constant sampling cycle.

まず、ステップS801では、振れ補正SWの状態を検出し、ONであればステップS802へ、OFFであればステップS823へ処理を進める。ステップS802で、角速度計103の信号の取り込みを行う。   First, in step S801, the state of shake correction SW is detected. If it is ON, the process proceeds to step S802, and if OFF, the process proceeds to step S823. In step S802, the signal of the angular velocity meter 103 is captured.

次のステップS803では、振れ補正が可能な状態であるか否かを判定し、振れ補正が可能な状態であるならばステップS804へ進み、振れ補正が可能な状態でないならばステップS823へ処理を進める。ステップS803の判定では、電源の供給開始から角速度計103の出力が安定するまでは振れ補正が可能な状態でないとし、角速度計103の出力が安定した後は振れ補正が可能な状態であるとする。これにより、電源の供給直後の出力値が不安定な状態で振れ補正を行うことによる振れ補正性能の悪化を防ぐことができる。   In the next step S803, it is determined whether or not the shake correction is possible. If the shake correction is possible, the process proceeds to step S804. If the shake correction is not possible, the process proceeds to step S823. Proceed. In the determination in step S803, it is assumed that shake correction is not possible from the start of power supply until the output of the angular velocity meter 103 is stabilized, and that shake correction is possible after the output of the angular velocity meter 103 is stabilized. . As a result, it is possible to prevent deterioration in shake correction performance due to shake correction performed in an unstable output value immediately after power supply.

ステップS804では、画像信号とAF情報などから、追尾対象物があるかどうかを判定し、追尾対象物がある場合、ステップS806で被写体位置を検出する。次にステップS807では、図5を用いて説明したように、被写体位置に応じて閾値A1、A2、B1、B2をピッチ軸、ヨー軸についてそれぞれ算出し、ステップS808へ進む。ステップS804で追尾対象物がないと判定された場合は、被写体位置に応じた振れ補正を行う必要はない。そのため、ステップS805で振れ補正可動範囲を最大限に使用して振れ補正制御を行うための閾値A1、A2、B1、B2(図5(a))をピッチ軸、ヨー軸についてそれぞれ算出し、ステップS808へ進む。   In step S804, it is determined from the image signal and AF information whether there is a tracking target. If there is a tracking target, the subject position is detected in step S806. In step S807, as described with reference to FIG. 5, threshold values A1, A2, B1, and B2 are calculated for the pitch axis and the yaw axis according to the subject position, and the process proceeds to step S808. If it is determined in step S804 that there is no tracking target, it is not necessary to perform shake correction according to the subject position. Therefore, in step S805, thresholds A1, A2, B1, and B2 (FIG. 5A) for performing shake correction control using the shake correction movable range to the maximum are calculated for the pitch axis and the yaw axis, respectively. The process proceeds to S808.

ステップS808からステップS812までは、被写体位置に応じた振れ補正を行うための振れ補正目標値1を算出する演算を行う。ステップS808で振れ補正目標値1の前回サンプリングでの値を取得する。次にステップS809で、ステップS805或いはステップS807で得られた閾値A1、A2、B1、B2と、ステップS808で得られた前回サンプリングの振れ補正目標値1と角速度より、角速度減算量1を算出する。次にステップS810で、角速度からステップS809で算出した角速度減算量を減算し、ステップS811で、ステップS810で得られた信号を積分し、角度1を算出する。次にステップS812で、ズーム、フォーカス情報107より得られる焦点距離や撮影倍率に基づいた敏感度を、角度1に乗算することで振れ補正目標値1が算出される。   From step S808 to step S812, an operation for calculating a shake correction target value 1 for performing shake correction according to the subject position is performed. In step S808, the previous sampling value of the shake correction target value 1 is acquired. In step S809, the angular velocity subtraction amount 1 is calculated from the threshold values A1, A2, B1, and B2 obtained in step S805 or step S807 and the shake correction target value 1 and angular velocity of the previous sampling obtained in step S808. . Next, in step S810, the angular velocity subtraction amount calculated in step S809 is subtracted from the angular velocity, and in step S811, the signal obtained in step S810 is integrated to calculate angle 1. In step S812, the shake correction target value 1 is calculated by multiplying the angle 1 by the sensitivity based on the focal length and the imaging magnification obtained from the zoom and focus information 107.

ステップS813からステップS818までは、静止画露光中のための振れ補正目標値2を算出するための演算を行う。ステップS813で振れ補正可動範囲を最大限に使用して振れ補正制御を行うための閾値A1、A2、B1、B2(図5(a))をピッチ軸、ヨー軸についてそれぞれ算出し、ステップS814へ進む。ステップS814で振れ補正目標値2の前回サンプリングでの値を取得する。次にステップS815で、ステップS813で得られた閾値A1、A2、B1、B2と、ステップS814で得られた前回サンプリングの振れ補正目標値2と角速度より、角速度減算量2を算出する。次にステップS816で、角速度からステップS815で算出した角速度減算量2を減算し、ステップS817で、ステップS816で得られた信号を積分し、角度2を算出する。次にステップS818で、ズーム、フォーカス情報107より得られる焦点距離や撮影倍率に基づいた敏感度を、角度2に乗算することで振れ補正目標値2が算出される。   From step S813 to step S818, an operation for calculating the shake correction target value 2 during still image exposure is performed. In step S813, thresholds A1, A2, B1, and B2 (FIG. 5A) for performing shake correction control using the shake correction movable range to the maximum are calculated for the pitch axis and yaw axis, respectively, and the process proceeds to step S814. move on. In step S814, the previous sampling value of the shake correction target value 2 is acquired. In step S815, an angular velocity subtraction amount 2 is calculated from the threshold values A1, A2, B1, and B2 obtained in step S813, and the shake correction target value 2 and angular velocity of the previous sampling obtained in step S814. Next, in step S816, the angular velocity subtraction amount 2 calculated in step S815 is subtracted from the angular velocity, and in step S817, the signal obtained in step S816 is integrated to calculate angle 2. In step S818, the shake correction target value 2 is calculated by multiplying the angle 2 by the sensitivity based on the focal length and the shooting magnification obtained from the zoom and focus information 107.

ステップS819で静止画露光開始か否かを判定し、静止画露光状態でなければ、ステップS820で振れ補正目標値1を設定し、被写体位置に応じた振れ補正目標値を選択する。ステップS819で静止画露光状態であると判定されれば、ステップS821で振れ補正目標値2を設定し、図7を用いて説明した方法によって、振れ補正目標値を選択する。   In step S819, it is determined whether still image exposure is started. If the still image exposure state is not set, a shake correction target value 1 is set in step S820, and a shake correction target value corresponding to the subject position is selected. If it is determined in step S819 that the still image exposure state is set, a shake correction target value 2 is set in step S821, and the shake correction target value is selected by the method described with reference to FIG.

次にステップS822で振れ補正目標値に基づいて振れ補正レンズが駆動され、振れ補正ルーチンを終了し、次回サンプリング周期まで待つ。ステップS823では振れ補正レンズの駆動を停止し、振れ補正ルーチンを終了し、次回サンプリング周期まで待つ。   Next, in step S822, the shake correction lens is driven based on the shake correction target value, the shake correction routine is terminated, and the next sampling cycle is awaited. In step S823, the drive of the shake correction lens is stopped, the shake correction routine is terminated, and the next sampling cycle is awaited.

以上説明したように、上記の第1の実施形態では、画像内の被写体位置を検出し、被写体が画面中央部に向かう方向の振れ補正を弱めるように振れ補正制御を変更する。これにより、振れ補正制御効果を確保しつつ、被写体が画面中央部に遷移し易い振れ補正制御を行うことができる。   As described above, in the first embodiment, the position of the subject in the image is detected, and the shake correction control is changed so as to weaken the shake correction in the direction in which the subject moves toward the center of the screen. Accordingly, it is possible to perform shake correction control in which the subject easily shifts to the center of the screen while ensuring the shake correction control effect.

以上により、主被写体が画面から外れそうな場合においても振れ補正性能の低下を軽減しつつ、撮影者が主被写体を画面内や画面中心にフレーミング操作し易い振れ補正制御を行うことができる。   As described above, it is possible to perform shake correction control in which the photographer can easily perform a framing operation on the main subject within the screen or at the center of the screen while reducing a decrease in shake correction performance even when the main subject is likely to be off the screen.

なお、本実施形態では、振れ補正レンズを光軸に垂直な面内で移動させる、いわゆる光学振れ補正について説明した。しかし、光学振れ補正に限らず、以下の構成を用いても構わない。
(1)撮像素子を光軸に垂直な面内で移動させることで振れ補正を行う構成。
(2)撮像素子が出力する各撮影フレームの切り出し位置を変更することで振れの影響を軽減させる電子振れ補正による構成。
(3)複数の振れ補正制御を組み合わせて振れ補正を行う構成。
In the present embodiment, the so-called optical shake correction in which the shake correction lens is moved in a plane perpendicular to the optical axis has been described. However, the present invention is not limited to optical shake correction, and the following configuration may be used.
(1) A configuration in which shake correction is performed by moving the image sensor in a plane perpendicular to the optical axis.
(2) A configuration based on electronic shake correction that reduces the influence of shake by changing the cut-out position of each shooting frame output by the image sensor.
(3) A configuration that performs shake correction by combining a plurality of shake correction controls.

(第2の実施形態)
図9は第2の実施形態に係る像振れ補正装置を備えた撮像装置のブロック図である。図2に示した第1の実施形態の像振れ補正装置のブロック図との違いは、ズーム、フォーカス位置情報107が角速度減算量算出部114に入力されている点である。
(Second Embodiment)
FIG. 9 is a block diagram of an image pickup apparatus including the image shake correction apparatus according to the second embodiment. The difference from the block diagram of the image shake correction apparatus of the first embodiment shown in FIG. 2 is that zoom and focus position information 107 is input to the angular velocity subtraction amount calculation unit 114.

第1の実施形態で、画像内の被写体位置に応じて振れ補正制御を変更することで、振れ補正制御効果を確保しつつ、被写体が画面中央部に遷移し易い振れ補正制御を行うことができることを説明した。しかし、振れ補正可動範囲には制限があり、画角に対して振れ補正可動範囲の割合が小さい場合、被写体追尾できる割合が少なくなり、あまり有効的な被写体追尾を行うことができない。逆に、振れ補正範囲を最大限に使用できなくなってしまうので振れ補正効果の低下のみが目立ってしまう。   In the first embodiment, by changing shake correction control according to the position of the subject in the image, it is possible to perform shake correction control in which the subject easily shifts to the center of the screen while ensuring the shake correction control effect. Explained. However, there is a limit to the shake correction movable range, and when the ratio of the shake correction movable range with respect to the angle of view is small, the rate at which the subject can be tracked decreases, and the subject tracking cannot be performed very effectively. On the other hand, since the shake correction range cannot be used to the maximum extent, only a reduction in the shake correction effect is noticeable.

図10(a)に画角と振れ補正可動角度範囲の一例を示す。横軸を焦点距離、縦軸を角度としたとき、1001は画角を、1002は振れ補正可動角度範囲を表している。Wide側で焦点距離が小さい場合、画角1001に対して振れ補正可動角度範囲1002の割合は小さく、Tele側の焦点距離が大きい場合、画角1001に対して振れ補正可動角度範囲1002の割合は大きくなる。図10(b)は、画角に対する振れ補正可動角度範囲の割合1003を表したグラフである。   FIG. 10A shows an example of the field angle and the shake correction movable angle range. When the horizontal axis represents the focal length and the vertical axis represents the angle, 1001 represents the field angle, and 1002 represents the shake correction movable angle range. When the focal length is small on the Wide side, the ratio of the shake correction movable angle range 1002 to the angle of view 1001 is small, and when the focal distance on the Tele side is large, the ratio of the shake correction movable angle range 1002 to the angle of view 1001 is growing. FIG. 10B is a graph showing the ratio 1003 of the shake correction movable angle range to the angle of view.

画角に対する振れ補正角度の割合が大きいときは、被写体位置に応じて振れ補正制御を変更することで被写体追尾を積極的に行いたい。一方、画角に対する振れ補正角度の割合が小さいときは、被写体追尾できる割合が少ないため被写体追尾がそれほど有効ではなく、かつ振れ補正効果を弱めてしまう。そのため、被写体位置に応じて振れ補正制御を変更する被写体追尾を積極的に行いたくない。よって、第2の実施形態においては、以下のように、第1の実施形態と異なる制御を行うことで上記問題を解決する。   When the ratio of the shake correction angle to the angle of view is large, it is desirable to actively perform subject tracking by changing the shake correction control according to the subject position. On the other hand, when the ratio of the shake correction angle to the angle of view is small, since the ratio of subject tracking is small, subject tracking is not so effective and the shake correction effect is weakened. Therefore, it is not desired to actively perform subject tracking that changes shake correction control according to the subject position. Therefore, in the second embodiment, the above problem is solved by performing control different from that of the first embodiment as follows.

ズーム、フォーカス位置情報107から得られる焦点距離と、振れ補正可動角度範囲から図10(b)の画角に対する振れ補正角度の割合1003を算出する。画角に対する振れ補正可動角度範囲の割合1003が、閾値1004よりも小さいか大きいかで、被写体位置に応じた振れ補正制御を行うか否かを切り替える。1003が1004よりも小さい焦点距離の場合、図5(a)に示す閾値A1、A2、B1、B2を常に設定し、振れ補正可動範囲を最大限に使用して振れ補正制御を行う。1003が1004以上の焦点距離(所定値以上の焦点距離)の場合、被写体位置に応じて閾値A1、A2、B1、B2を設定し、被写体位置に応じた振れ補正制御を行う。   A ratio 1003 of the shake correction angle with respect to the angle of view in FIG. 10B is calculated from the focal length obtained from the zoom and focus position information 107 and the shake correction movable angle range. Whether or not to perform shake correction control according to the subject position is switched depending on whether the ratio 1003 of the shake correction movable angle range to the angle of view is smaller or larger than the threshold 1004. When the focal length 1003 is smaller than 1004, the threshold values A1, A2, B1, and B2 shown in FIG. 5A are always set, and the shake correction control is performed using the shake correction movable range to the maximum. When 1003 is a focal length of 1004 or more (focal length of a predetermined value or more), threshold values A1, A2, B1, and B2 are set according to the subject position, and shake correction control according to the subject position is performed.

以上説明したように、第2の実施形態では、画角に対する振れ補正角度の割合、或いは焦点距離に応じて、被写体位置に応じた振れ補正制御を行うか否かを設定する。これにより、被写体追尾が有効となる条件でのみ被写体が画面中央部に遷移し易い振れ補正制御を行い、それ以外の場合は被写体位置に応じた振れ補正制御を行わず、振れ補正可動範囲を最大限に使用して振れ補正制御を行う。これにより、振れ補正効果が向上する。   As described above, in the second embodiment, whether to perform shake correction control according to the subject position is set according to the ratio of the shake correction angle to the angle of view or the focal length. As a result, shake correction control that makes it easy for the subject to transition to the center of the screen is performed only under conditions where subject tracking is effective.In other cases, shake correction control is not performed according to the subject position, and the shake correction movable range is maximized. Used to limit the shake correction. Thereby, the shake correction effect is improved.

(その他の実施形態)
また、本発明は、以下の処理を実行することによっても実現される。即ち、上述した実施形態の機能を実現するソフトウェア(プログラム)を、ネットワーク又は各種記憶媒体を介してシステム或いは装置に供給し、そのシステム或いは装置のコンピュータ(またはCPUやMPU等)がプログラムを読み出して実行する処理である。
(Other embodiments)
The present invention can also be realized by executing the following processing. That is, software (program) that realizes the functions of the above-described embodiments is supplied to a system or apparatus via a network or various storage media, and a computer (or CPU, MPU, or the like) of the system or apparatus reads the program. It is a process to be executed.

本発明は、デジタル一眼レフやデジタルコンパクトカメラの像振れ補正装置に限らずデジタルビデオカメラや、監視カメラ、Webカメラ、携帯電話などの撮像装置にも搭載できる。   The present invention can be mounted not only on an image blur correction apparatus for a digital single lens reflex camera and a digital compact camera but also in an imaging apparatus such as a digital video camera, a surveillance camera, a Web camera, and a mobile phone.

Claims (8)

撮像装置であって、
被写体像を撮像する撮像手段と、
前記撮像装置の振れを検出する振れ検出手段により検出された前記撮像装置の振れ量に基づいて、前記撮像装置の振れによって引き起こされる画像振れを補正する振れ補正量を算出する演算手段と、
記撮像手段から出力される画像信号に基づいて画像内の被写体の位置を検出する位置検出手段と
画像をブロック分割し、前記被写体が分割された画像内のどのブロックに位置するかを検出し、前記被写体が画像の中心から離れたブロックに位置する場合に、振れ補正手段による画像振れ補正制御を行うための閾値を、前記被写体が画像内の中心に位置するときの閾値から変更し、前記振れ補正量の前回の値が、変更された前記閾値を超えたときに、前記振れ補正量の前回の値と前記閾値との差分が所定値より大きい場合の前記振れ補正量の減算量を、前記振れ補正量の前回の値と前記閾値との差分が前記所定値より小さい場合の前記減算量に比べて大きくする減算量算出手段と、を備え、
前記演算手段は、前記振れ検出手段から得られる振れ量から前記減算量を減算することで、前記被写体が画像の中心に向かう方向の振れ補正量を弱めて前記画像振れを補正するように前記振れ補正量を算出することを特徴とする撮像装置。
An imaging device,
Imaging means for capturing a subject image;
On the basis of the shake amount of the image pickup device detected by the shake detection means for detecting a shake of the image pickup apparatus, a calculation means for calculating the shake correction amount for correcting the image blur caused by the shake of the image pickup device,
Position detecting means for detecting the position of the object in the image based on the image signal output from the pre-Symbol imaging means,
When the image is divided into blocks, it is detected in which block the subject is located in the divided image, and when the subject is located in a block away from the center of the image, image shake correction control by shake correction means is performed. The threshold for performing is changed from the threshold when the subject is positioned at the center in the image, and the previous value of the shake correction amount is changed when the previous value of the shake correction amount exceeds the changed threshold value. The subtraction amount of the shake correction amount when the difference between the value and the threshold value is greater than a predetermined value, and the subtraction amount when the difference between the previous value of the shake correction amount and the threshold value is less than the predetermined value. A subtraction amount calculating means for increasing the comparison ,
The calculation means subtracts the subtraction amount from the shake amount obtained from the shake detection means, thereby reducing the shake correction amount in the direction in which the subject is directed toward the center of the image and correcting the shake. An imaging apparatus that calculates a correction amount.
前記位置検出手段が被写体の位置を検出できない場合に、前記被写体の位置に応じた前記値の変更を行わないことを特徴とする請求項に記載の撮像装置。 It said position when the detection means can not detect the position of the subject, the imaging apparatus according to claim 1, characterized in that does not change the threshold value according to the position of the object. 静止画露光中を判定する判定手段をさらに備え、静止画露光中は前記被写体の位置に応じた前記値の変更を行わないことを特徴とする請求項に記載の撮像装置。 Further comprising determination means for determining in the still image exposure, the imaging apparatus according to claim 1, during the still image exposure, characterized in that does not change the threshold value according to the position of the object. 画角に対する振れ補正可動角度範囲の割合を算出する手段をさらに備え、画角に対する振れ補正可動角度範囲の割合が大きい場合に、前記被写体の位置に応じた前記閾値の変更を行い、画角に対する振れ補正可動角度範囲の割合が小さい場合に、前記被写体の位置に応じた前記閾値の変更を行わないことを特徴とする請求項に記載の撮像装置。 Further comprising means for calculating a ratio of the corrected movable angular range deflection relative angle, when the ratio of the correction movable angular range deflection relative angle is large, make changes of the threshold value according to the position of the object relative to the angle of view The imaging apparatus according to claim 1 , wherein the threshold value is not changed according to the position of the subject when the ratio of the shake correction movable angle range is small. 撮影光学系の焦点距離を取得する取得手段をさらに備え、前記焦点距離が所定値以上の場合に、前記被写体の位置に応じた前記閾値の変更を行い、前記焦点距離が前記所定値より小さい場合に、前記被写体の位置に応じた前記閾値の変更を行わないことを特徴とする請求項に記載の撮像装置。 Further comprising an acquisition means for obtaining the focal length of the photographing optical system, wherein when the focal length is equal to or greater than a predetermined value, to change the said threshold value according to the position of the object, if the focal length is less than the predetermined value The imaging apparatus according to claim 1 , wherein the threshold value is not changed according to the position of the subject. 被写体像を撮像する撮像手段を備える撮像装置を制御する方法であって、
前記撮像装置の振れを検出する振れ検出手段により検出された前記撮像装置の振れ量に基づいて、前記撮像装置の振れによって引き起こされる画像振れを補正する振れ補正量を算出する演算工程と、
記撮像手段から出力される画像信号に基づいて画像内の被写体の位置を検出する位置検出工程と
画像をブロック分割し、前記被写体が分割された画像内のどのブロックに位置するかを検出し、前記被写体が画像の中心から離れたブロックに位置する場合に、振れ補正手段による画像振れ補正制御を行うための閾値を、前記被写体が画像内の中心に位置するときの閾値から変更し、前記振れ補正量の前回の値が、変更された前記閾値を超えたときに、前記振れ補正量の前回の値と前記閾値との差分が所定値より大きい場合の前記振れ補正量の減算量を、前記振れ補正量の前回の値と前記閾値との差分が前記所定値より小さい場合の前記減算量に比べて大きくする減算量算出工程と、を有し、
前記演算工程では、前記振れ検出手段から得られる振れ量から前記減算量を減算することで、前記被写体が画像の中心に向かう方向の振れ補正量を弱めて前記画像振れを補正するように前記振れ補正量を算出することを特徴とする撮像装置の制御方法。
A method for controlling an image pickup apparatus including an image pickup means for picking up a subject image,
On the basis of the shake amount of the image pickup device detected by the shake detection means for detecting a shake of the image pickup apparatus, a calculation step of calculating the shake correction amount for correcting the image blur caused by the shake of the image pickup device,
A position detection step of detecting a position of the object in the image based on the image signal output from the pre-Symbol imaging means,
When the image is divided into blocks, it is detected in which block the subject is located in the divided image, and when the subject is located in a block away from the center of the image, image shake correction control by shake correction means is performed. The threshold for performing is changed from the threshold when the subject is positioned at the center in the image, and the previous value of the shake correction amount is changed when the previous value of the shake correction amount exceeds the changed threshold value. The subtraction amount of the shake correction amount when the difference between the value and the threshold value is greater than a predetermined value, and the subtraction amount when the difference between the previous value of the shake correction amount and the threshold value is less than the predetermined value. And a subtraction amount calculation step for increasing the comparison,
In the calculation step, the shake amount is subtracted from the shake amount obtained from the shake detection means, thereby reducing the shake correction amount in the direction of the subject toward the center of the image and correcting the shake. A method for controlling an imaging apparatus, characterized by calculating a correction amount.
請求項に記載の制御方法の各工程をコンピュータに実行させるためのプログラム。 The program for making a computer perform each process of the control method of Claim 6 . 請求項に記載の制御方法の各工程をコンピュータに実行させるためのプログラムを記憶したコンピュータが読み取り可能な記憶媒体。 A computer-readable storage medium storing a program for causing a computer to execute each step of the control method according to claim 6 .
JP2013244328A 2013-11-26 2013-11-26 Imaging apparatus, control method therefor, program, and storage medium Active JP6204805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013244328A JP6204805B2 (en) 2013-11-26 2013-11-26 Imaging apparatus, control method therefor, program, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013244328A JP6204805B2 (en) 2013-11-26 2013-11-26 Imaging apparatus, control method therefor, program, and storage medium

Publications (2)

Publication Number Publication Date
JP2015102757A JP2015102757A (en) 2015-06-04
JP6204805B2 true JP6204805B2 (en) 2017-09-27

Family

ID=53378473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013244328A Active JP6204805B2 (en) 2013-11-26 2013-11-26 Imaging apparatus, control method therefor, program, and storage medium

Country Status (1)

Country Link
JP (1) JP6204805B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6056774B2 (en) * 2014-01-17 2017-01-11 ソニー株式会社 Imaging apparatus, imaging method, and program.
JP6584259B2 (en) * 2015-09-25 2019-10-02 キヤノン株式会社 Image blur correction apparatus, imaging apparatus, and control method
JP6742819B2 (en) * 2016-05-30 2020-08-19 キヤノン株式会社 Image blur correction device, optical device, imaging device, and control method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008209577A (en) * 2007-02-26 2008-09-11 Nikon Corp Camera
JP2010093362A (en) * 2008-10-03 2010-04-22 Nikon Corp Imaging apparatus and optical apparatus
JP2011114684A (en) * 2009-11-27 2011-06-09 Nikon Corp Image pickup device
JP2012013778A (en) * 2010-06-29 2012-01-19 Nikon Corp Imaging apparatus
JP5247782B2 (en) * 2010-09-09 2013-07-24 キヤノン株式会社 Optical apparatus, imaging apparatus including the same, and control method of optical apparatus
US8643734B2 (en) * 2010-11-10 2014-02-04 Apple Inc. Automatic engagement of image stabilization

Also Published As

Publication number Publication date
JP2015102757A (en) 2015-06-04

Similar Documents

Publication Publication Date Title
JP6727791B2 (en) Tracking control device, tracking control method, and imaging device
US9264616B2 (en) Image capturing apparatus, method of controlling the same, and storage medium for correcting image blurring of a captured image
JP5501119B2 (en) Imaging apparatus and control method thereof
US8767079B2 (en) Image capture apparatus and control method thereof
US10425584B2 (en) Image pickup system, control method thereof, image pickup apparatus, and lens device
US9253391B2 (en) Image capture apparatus and control method for tracking of focus position
JP6257207B2 (en) Image shake correction apparatus and control method therefor, lens barrel, and imaging apparatus
JP2015034879A (en) Image shake correction device and control method for the same, lens barrel, optical device and imaging device
JP6995561B2 (en) Image stabilization device and its control method, image pickup device
JP2016142925A (en) Imaging apparatus, method of controlling the same, program, and storage medium
US10551634B2 (en) Blur correction device, imaging apparatus, and blur correction method that correct an image blur of an object in a target image region
JP6516544B2 (en) CONTROL DEVICE, OPTICAL DEVICE, IMAGING DEVICE, AND CONTROL METHOD
US8369697B2 (en) Optical device
JP2018037772A (en) Imaging apparatus and control method of the same
JP6204805B2 (en) Imaging apparatus, control method therefor, program, and storage medium
JP2013205723A (en) Image blur correction device, imaging device, and control method of image blur correction device
JP6613149B2 (en) Image blur correction apparatus and control method therefor, imaging apparatus, program, and storage medium
JP6268981B2 (en) Blur correction device, interchangeable lens and camera
JP2020118789A (en) Imaging apparatus, imaging system, control method of imaging apparatus, and program
JP2012249071A (en) Imaging apparatus
JP7451152B2 (en) Imaging device, control method and computer program
JP6448709B2 (en) Image shake correction apparatus, image shake correction method, imaging apparatus, and optical apparatus
JP7214424B2 (en) Imaging device and its control method
WO2020012960A1 (en) Imaging device
WO2019203147A1 (en) Imaging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170901

R151 Written notification of patent or utility model registration

Ref document number: 6204805

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151