JP6203241B2 - Subject information acquisition apparatus, subject information acquisition method, and program - Google Patents
Subject information acquisition apparatus, subject information acquisition method, and program Download PDFInfo
- Publication number
- JP6203241B2 JP6203241B2 JP2015254373A JP2015254373A JP6203241B2 JP 6203241 B2 JP6203241 B2 JP 6203241B2 JP 2015254373 A JP2015254373 A JP 2015254373A JP 2015254373 A JP2015254373 A JP 2015254373A JP 6203241 B2 JP6203241 B2 JP 6203241B2
- Authority
- JP
- Japan
- Prior art keywords
- correction
- processing
- power intensity
- subject
- scanning line
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Ultra Sonic Daignosis Equipment (AREA)
Description
本発明は、被検体情報取得装置、被検体情報取得方法、及びプログラムに関する。特に、被検体に弾性波を送信し、被検体内で反射する反射波を受信して被検体情報を取得する技術に関する。 The present invention relates to a subject information acquisition apparatus, a subject information acquisition method, and a program. In particular, the present invention relates to a technique for acquiring subject information by transmitting an elastic wave to a subject and receiving a reflected wave reflected within the subject.
被検体情報取得装置である超音波診断装置において、パルスエコー法によって画像データを形成する場合の深さ方向の空間分解能は、弾性波である超音波の波長をλ、送信波数をnとすると、(nλ)/2で一般的に表すことが可能である。例えば、12MHzの中心周波数の超音波を2波長分送信した場合は約0.13mm程度となる。 In the ultrasonic diagnostic apparatus which is the object information acquisition apparatus, the spatial resolution in the depth direction when image data is formed by the pulse echo method is that the wavelength of the ultrasonic wave, which is an elastic wave, is λ, and the transmission wave number is n. It can be generally expressed as (nλ) / 2. For example, when two wavelengths of ultrasonic waves having a center frequency of 12 MHz are transmitted, the length is about 0.13 mm.
パルスエコー法について説明する。まず超音波パルスを被検体に送信すると、被検体内での音響インピーダンス差に応じて超音波が反射されて戻ってくる。次に、この反射波を受信し、この反射波の受信信号を用いて画像データを生成する。代表的には、受信信号の波形の包絡線を取得し、この包絡線を輝度値に変換して画像データを生成する。得られた画像を表示することによって、超音波を送受信した方向の走査線上の輝度情報が得られる。この走査線上の輝度情報を複数取得する、つまり被検体内の複数の方向もしくは位置において超音波の送受信を繰り返すことで、被検体内の画像化が可能となる。 The pulse echo method will be described. First, when an ultrasonic pulse is transmitted to the subject, the ultrasonic wave is reflected and returned according to the acoustic impedance difference in the subject. Next, the reflected wave is received, and image data is generated using the received signal of the reflected wave. Typically, an envelope of the waveform of the received signal is acquired, and the envelope is converted into a luminance value to generate image data. By displaying the obtained image, luminance information on the scanning line in the direction in which ultrasonic waves are transmitted and received can be obtained. By acquiring a plurality of pieces of luminance information on the scanning line, that is, by repeating transmission and reception of ultrasonic waves in a plurality of directions or positions within the subject, imaging within the subject becomes possible.
上記のように、パルスエコー法を用いることで約0.13mm程度の深さ方向の空間分解能は実現できるが、より高い空間分解能が要求されている。例えば頚動脈の血管壁の層構造をさらに詳細に観察することができれば、動脈硬化などの早期発見への寄与が考えられる。 As described above, the spatial resolution in the depth direction of about 0.13 mm can be realized by using the pulse echo method, but higher spatial resolution is required. For example, if the layer structure of the vascular wall of the carotid artery can be observed in more detail, it can be considered to contribute to early detection of arteriosclerosis and the like.
このような深さ方向の空間分解能を向上する技術として、非特許文献1では周波数領域干渉計法(FDI法:Frequency Domain Interferometry)ならびに適応型信号処理であるCapon法を適用し、血管壁の層構造を画像化した結果が示されている。受信信号にFDI法及びCapon法を適用することで、さらに深さ方向(走査線方向)の空間分解能を向上させることができる。しかしながら、FDIの処理を行うために切り出した深さ方向の信号の範囲(処理レンジ内)には、複数の反射層が存在することが想定される。また、近接した反射層からの複数の反射波は、高い相関性を有している可能性が高い。このような高い相関性を有する複数の反射波の受信信号に対してCapon法などの適応型信号処理をそのまま適用すると、所望の信号を打ち消すなどの予期しない動作を行うことが知られている。周波数平均法(frequency averaging technique)を用いることで、このような相関性を有する波(相関性干渉波)による影響を低減(抑圧)し、反射波の受信信号に対してFDI法ならびにCapon法が適用可能となる。
As a technique for improving the spatial resolution in the depth direction, Non-Patent
しかしながら、反射波の受信信号にFDI法及び適応型信号処理を適用する場合、1走査線ごとに処理を実施するため、隣接する走査線同士で相関性干渉波の抑圧の程度が一致しない。この結果、得られた画像データにおいて走査線と交差する方向の連続性が乏しくなる部分が生じる可能性があることが分かった。 However, when the FDI method and adaptive signal processing are applied to the received signal of the reflected wave, since the processing is performed for each scanning line, the degree of suppression of the correlation interference wave does not match between adjacent scanning lines. As a result, it has been found that there may be a portion where the continuity in the direction intersecting the scanning line is poor in the obtained image data.
一方で、走査線と交差する方向の空間分解能は、弾性波の送信及び受信の際の収束条件によって変化する。被検体内の観察領域に存在する微小な反射体などを見落とすことなく画像化するために、一般的なパルスエコー法では、走査線間の距離(走査線間隔)は、走査線と交差する方向の空間分解能よりも短く設定される。そのため、FDI法及び適応型信号処理を用いない場合、隣接する走査線間の連続性が乏しくなることはないと考えられる。 On the other hand, the spatial resolution in the direction intersecting with the scanning line changes depending on the convergence condition at the time of transmission and reception of elastic waves. In order to form an image without overlooking a minute reflector or the like existing in the observation region in the subject, the distance between the scanning lines (scanning line interval) is a direction intersecting the scanning lines in a general pulse echo method. Is set shorter than the spatial resolution. Therefore, when the FDI method and adaptive signal processing are not used, it is considered that the continuity between adjacent scanning lines does not become poor.
つまり、FDI法及び適応型信号処理を用いることによって、走査線と交差する方向の連続性が、一般的な画像(受信信号の包絡線を取得して生成した画像)よりも低くなる可能性が生じる。そして、連続性が低くなると視認性が低下するという特有の課題が生じる。本発明は、上記の課題に鑑み、FDI法及び適応型信号処理を適用する場合において、走査線ごとの相関性干渉波の抑圧の程度の差による画像の視認性低下の影響を低減することを目的とする。 That is, by using the FDI method and adaptive signal processing, the continuity in the direction intersecting the scanning line may be lower than that of a general image (an image generated by acquiring an envelope of a received signal). Arise. And the unique subject that visibility will fall if continuity becomes low arises. In view of the above problems, the present invention reduces the effect of image visibility degradation due to the difference in the degree of suppression of correlated interference waves for each scanning line when applying the FDI method and adaptive signal processing. Objective.
本発明の被検体情報取得装置は、被検体内から伝播した弾性波を用いて被検体内の情報を取得する被検体情報取得装置であって、前記弾性波を受信した複数の変換素子から出力される複数の電気信号を用いて包絡線を取得する包絡線取得手段と、前記弾性波を受信した複数の変換素子から出力される前記複数の電気信号を用いて周波数領域干渉計法と周波数平均法を用いた適応型信号処理とを行い、複数の走査線上の各位置での電力強度を算出し、電力強度分布を取得するFDI適応処理手段と、前記FDI適応処理手段により取得された電力強度分布に対して、前記走査線と交差する方向において、隣接する前記走査線間の電力強度の変動が小さくなるように前記電力強度分布に補正処理を行う補正手段と、前記補正手段により補正された電力強度または前記包絡線に基づいて画像データを生成する画像処理手段と、を有し、前記補正手段は、前記補正処理を行う電力強度の数を、前記弾性波の送受信の集束条件により変更することを特徴とする。 The subject information acquisition device of the present invention is a subject information acquisition device that acquires information in a subject using elastic waves propagated from within the subject, and outputs the information from a plurality of conversion elements that have received the elastic waves. Envelope acquisition means for acquiring an envelope using a plurality of electrical signals, and frequency domain interferometry and frequency averaging using the plurality of electrical signals output from the plurality of conversion elements that have received the elastic waves FDI adaptive processing means for performing adaptive signal processing using a method, calculating power intensity at each position on a plurality of scanning lines, and obtaining power intensity distribution; and power intensity acquired by the FDI adaptive processing means Correction means for correcting the power intensity distribution so that fluctuations in power intensity between the adjacent scanning lines are reduced in the direction intersecting the scanning lines with respect to the distribution, and corrected by the correcting means Possess an image processing means for generating image data based on the force strength or the envelope, the said correction means, the number of power intensity to perform the correction process, to change the focusing condition of the transmission and reception of the acoustic wave It is characterized by that.
本発明の被検体情報取得方法は、被検体内から伝播した弾性波を用いて被検体内の情報を取得する被検体情報取得方法であって、前記弾性波を受信した複数の変換素子から出力される複数の電気信号を用いて包絡線を取得する包絡線取得ステップと、前記弾性波を受信した複数の変換素子から出力される前記複数の電気信号を用いて周波数領域干渉計法と周波数平均法を用いた適応型信号処理とを行い、複数の走査線上の各位置での電力強度を算出し、電力強度分布を取得するFDI適応処理ステップと、前記FDI適応処理ステップにより取得された電力強度分布に対して、前記走査線と交差する方向において、隣接する前記走査線間の電力強度の変動が小さくなるように前記電力強度分布に補正処理を行う補正ステップと、前記補正ステップにより補正された電力強度または前記包絡線に基づいて画像データを生成する画像処理ステップと、を有し、前記補正ステップでは、前記補正処理を行う電力強度の数を、前記弾性波の送受信の集束条件により変更することを特徴とする。 The subject information acquisition method of the present invention is a subject information acquisition method for acquiring information in a subject using elastic waves propagated from within the subject, and is output from a plurality of conversion elements that have received the elastic waves. An envelope acquisition step of acquiring an envelope using a plurality of electrical signals, and a frequency domain interferometry method and a frequency average using the plurality of electrical signals output from the plurality of conversion elements that have received the elastic wave FDI adaptive processing step of performing adaptive signal processing using a method, calculating power intensity at each position on a plurality of scanning lines, and acquiring a power intensity distribution; and power intensity acquired by the FDI adaptive processing step relative distribution, in a direction crossing the scanning lines, a correction step of performing correction processing to the power intensity distribution as fluctuations in signal strength between the adjacent scanning lines becomes smaller, the correction stearate Has an image processing step of generating image data based on the corrected power strength or the envelope by flop, said correction step, the number of power intensity to perform the correction processing, transmission and reception of the acoustic wave It is characterized by changing according to the focusing condition .
本発明によれば、走査線ごとの相関性干渉波の抑圧の程度の差による画像の視認性低下の影響を低減することができる。 According to the present invention, it is possible to reduce the influence of a decrease in the visibility of an image due to a difference in the degree of suppression of a correlated interference wave for each scanning line.
本発明の実施の形態について、図面を用いて説明する。本発明において、弾性波とは、典型的には超音波であり、音波、超音波、音響波、と呼ばれる弾性波を含む。本発明の被検体情報取得装置とは、被検体に弾性波を送信し、被検体内部で反射した反射波(反射した弾性波)を受信して、被検体情報を画像データとして取得する装置を含む。取得される被検体情報とは、被検体内部の組織の音響インピーダンスの違いを反映した情報である。 Embodiments of the present invention will be described with reference to the drawings. In the present invention, the elastic wave is typically an ultrasonic wave, and includes an elastic wave called a sound wave, an ultrasonic wave, and an acoustic wave. The subject information acquisition device of the present invention is a device that transmits elastic waves to a subject, receives reflected waves reflected inside the subject (reflected elastic waves), and acquires subject information as image data. Including. The acquired subject information is information reflecting the difference in acoustic impedance of the tissue inside the subject.
(本発明の被検体情報取得装置の構成) 本発明の被検体情報取得装置の構成と、FDI法及び適応型信号処理を用いた際の処理内容について図1と図2とを用いて説明する。図1は本発明の適用できる被検体情報取得装置のシステム概要を示す模式図である。本実施形態の被検体情報取得装置は、複数の変換素子002を有する探触子001、受信回路005、送信回路003、整相加算手段006、FDI適応処理手段007、走査線データメモリ008、補正手段009、画像処理手段010、システム制御部004を備える。
(Configuration of the subject information acquisition apparatus of the present invention) The configuration of the subject information acquisition apparatus of the present invention and the processing contents when the FDI method and adaptive signal processing are used will be described with reference to FIGS. . FIG. 1 is a schematic diagram showing a system outline of a subject information acquiring apparatus to which the present invention can be applied. The subject information acquisition apparatus of this embodiment includes a
送信回路003は、システム制御部004からの制御信号に従って、注目位置や注目方向に応じた遅延時間や振幅を有する送信信号を生成する。この送信信号は複数の変換素子002によって弾性波に変換され、弾性波が被検体内部へと送信される。被検体000内部で反射された弾性波(反射波)は被検体内を伝播し、複数の変換素子002によって受信され、複数の受信信号(電気信号)に変換される。受信信号は受信回路005に入力される。受信回路005では、複数の受信信号を増幅し、複数のデジタル信号(デジタル化された電気信号)に変換する。受信回路005から出力されたデジタル信号は整相加算手段006に入力される。整相加算手段006では、弾性波を送信した方向や位置に応じて、複数のデジタル信号に対する遅延処理を行いさらに加算する、つまり整相加算処理を実行する。このように整相加算処理された信号がFDI適応処理手段007に入力される。
The
周波数領域干渉計法(FDI法)は、受信信号を周波数ごとに分解し、分解された信号の位相を注目位置に応じて変化させることで、注目位置における受信電力を推定する方法である。なお、位相の変化量はある基準位置から注目位置までの距離と周波数に対応した波数の積とからあらかじめ決定できる。 The frequency domain interferometer method (FDI method) is a method of estimating received power at a target position by decomposing a received signal for each frequency and changing the phase of the decomposed signal according to the target position. The amount of phase change can be determined in advance from the product of the distance from a certain reference position to the target position and the wave number corresponding to the frequency.
また、適応型信号処理は、受信信号に応じて、その処理パラメータを適応的に変化させる。適応型信号処理の一つであるCapon法は、複数の入力信号に対して、注目位置に関する感度を固定した状態で電力を最小化するように処理する方法である。つまり、FDI法と適応型信号処理とを組み合わせることは、各周波数成分に分解された受信信号に対して、あらかじめ決定された位相変化量・重みではなく、適応型信号処理によって信号に応じて算出された位相変化量・重みを用いて、注目位置における受信電力を推定することになる。 The adaptive signal processing adaptively changes its processing parameter according to the received signal. The Capon method, which is one type of adaptive signal processing, is a method for processing a plurality of input signals so that power is minimized while the sensitivity related to the target position is fixed. In other words, the combination of the FDI method and adaptive signal processing is calculated according to the signal by adaptive signal processing instead of the predetermined phase change amount / weight for the received signal decomposed into each frequency component. The received power at the position of interest is estimated using the phase change amount / weight.
以下、図2を用いて、FDI適応処理手段007の内部での処理を説明する。FDI適応処理手段007は、整相加算された信号を入力信号として受け取る(S200)。その信号から1回で処理する時間分、つまり処理レンジ分の信号を抽出する(S201)。その抽出した信号をフーリエ変換し、周波数ごとの成分Xsk(Xs1、Xs2、Xs3、・・・、XsN)に分割する(S202)。
Hereinafter, processing in the FDI
一方で、システム制御部004から参照信号が入力される(S203)。この参照信号のフーリエ変換を行い、周波数ごとの成分Xrk(Xr1、Xr2、Xr3、・・・、XrN)に分割する(S204)。参照信号とは、被検体内に存在する界面(例えば血管壁等)から返ってくると仮定される反射波の信号波形であり、システム制御部004に記憶されている。そして、入力信号、参照信号それぞれの各周波数成分同士で除算し、ホワイトニング処理を行う(S205)。
On the other hand, a reference signal is input from the system control unit 004 (S203). This reference signal is subjected to Fourier transform and divided into frequency components Xrk (Xr1, Xr2, Xr3,..., XrN) (S204). The reference signal is a signal waveform of a reflected wave assumed to be returned from an interface (for example, a blood vessel wall) existing in the subject, and is stored in the
ここでXwk(k=1,2,・・・,N)はホワイトニング処理後の周波数ごとの成分、ηは安定化のための微小量、*は複素共役を意味する。次に、ホワイトニング処理された各周波数成分からなるベクトルXを用いて、相関行列Rを算出する(S206)。
X=[XW1,XW2,・・・,XWN]T
R=XXT*
なおTは転置を意味する。ここで相関行列RはN×Nのサイズを有する行列となる。
次に相関行列Rから部分行列を抽出し、それらを平均化する周波数平均法を適用する(S207)。
Here, Xwk (k = 1, 2,..., N) is a component for each frequency after whitening processing, η is a minute amount for stabilization, and * is a complex conjugate. Next, a correlation matrix R is calculated using a vector X composed of frequency components subjected to whitening processing (S206).
X = [XW1, XW2,..., XWN] T
R = XXX *
T means transposition. Here, the correlation matrix R is a matrix having a size of N × N.
Next, a frequency averaging method for extracting partial matrices from the correlation matrix R and averaging them is applied (S207).
Rmij=XW(i+m−1)XW(j+m−1)*
R’は周波数平均相関行列、RmはRmijを要素に持つ相関行列Rの部分行列である。
このようにして周波数平均相関行列R’が算出される(S208)。
Rmij = XW (i + m−1) XW (j + m−1) *
R ′ is a frequency average correlation matrix, and Rm is a partial matrix of the correlation matrix R having Rmij as elements.
In this way, the frequency average correlation matrix R ′ is calculated (S208).
次に拘束ベクトルCが入力される(S209)。拘束ベクトルCは、処理レンジ内での位置rに応じて変化するベクトルであり、以下の式で定義される。 Next, the constraint vector C is input (S209). The constraint vector C is a vector that changes according to the position r within the processing range, and is defined by the following equation.
C=[exp(jk1r),exp(jk2r),・・・,exp(jk(N−M+1)
r)]
これらの周波数平均相関行列R’ならびに拘束ベクトルCを用いて、処理レンジ内の電力強度分布P(r)を算出する(S210)。
C = [exp (jk1r), exp (jk2r),..., Exp (jk (N−M + 1)
r)]
The power intensity distribution P (r) within the processing range is calculated using the frequency average correlation matrix R ′ and the constraint vector C (S210).
η’Eは逆行列算出を安定させるために加算した対角行列である。
η′E is a diagonal matrix added to stabilize the inverse matrix calculation.
このように、FDI適応処理手段007では、整相加算された信号を入力信号としてFDI法及び適応型信号処理(ここではCapon法を用いた)を行い、電力強度分布を出力する。本発明において、取得される電力強度分布は、被検体内部の組織の音響インピーダンスの違いを反映した被検体情報を示す。
As described above, the FDI
出力された電力強度分布は走査線データメモリ008で保存される。このようにして、1回の弾性波送信に対する受信信号の処理を行い、1走査線に関する電力強度分布を算出し、保存する。この動作を繰り返すことで複数の走査線の電力強度分布を走査線データメモリ008に保存してゆく。
The output power intensity distribution is stored in the scanning
走査線データメモリ008から出力された複数の走査線の電力強度分布を入力として、補正手段009では走査線と交差する方向(典型的には走査線と垂直な方向)の電力強度分布の連続性が増加するように補正を行う。つまり、補正手段009は、走査線と交差する方向において、隣接する走査線間の電力強度の変動が小さくなる補正処理を行う。このような補正を行った複数の走査線の電力強度分布を入力とし、画像処理手段010はシステム制御部004からの指示に従って、エッジ強調やコントラスト調整などの各種画像処理を行い、輝度データ(画像データ)を出力する。画像表示手段011では入力された輝度データを画像として表示する。なお、画像表示手段011は、本発明の被検体情報取得装置とは別に提供されていても良い。
Using the power intensity distributions of the plurality of scanning lines output from the scanning
補正手段009における動作の概念について図3を用いて説明する。図3は走査線301A〜301F上の電力強度分布を模式的に示した図である。走査線上にある白丸がそれぞれの位置での電力強度を示す。先述したように一般的には走査線と交差する方向(図3中の横方向)の空間分解能は走査線間距離よりも大きい(長い)。つまり走査線と交差する方向の電力強度(例えば302)の分布はなだらかな変化となる。しかしFDI法及び適応型信号処理を用いた場合、相関性干渉波の抑圧の程度が走査線ごとに異なるため、走査線と交差する方向の電力強度の連続性が低くなる可能性がある。補正手段009では走査線と交差する方向に並んだ電力強度に対して、隣接する走査線間の電力強度の変動が小さくなる補正を行い、連続性を向上させる。
The concept of the operation in the
このように、走査線と交差する方向の連続性を増加させることで、FDI法及び適応型信号処理を用いた際に、走査線方向の空間分解能が向上するだけでなく、画像の視認性低下を低減し、より安定した視認性の高い画像を得ることが出来る。 Thus, by increasing the continuity in the direction intersecting the scanning line, when using the FDI method and adaptive signal processing, not only the spatial resolution in the scanning line direction is improved, but also the visibility of the image is reduced. And a more stable and highly visible image can be obtained.
また、補正を行う走査線の本数(つまり、補正を行う電力強度の数)は、弾性波の送信及び受信の際の集束条件によって変更することが好ましい。本発明の補正を行うことにより、走査線と交差する方向の分解能は低下するため、補正を行う走査線の本数は多ければ多いほど良いというものではない。 In addition, the number of scanning lines to be corrected (that is, the number of power intensities to be corrected) is preferably changed according to the focusing condition at the time of transmission and reception of elastic waves. By performing the correction according to the present invention, the resolution in the direction intersecting the scanning line is lowered, so that the larger the number of scanning lines to be corrected, the better.
ここで、走査線と交差する方向の空間分解能は、弾性波の集束条件により変わる。弾性波の波長をλ、複数の変換素子の開口幅をD、深さ方向(走査線方向)の距離をzとすると、収束幅は、1.22(λ/D)zで表せる。つまり、走査線と交差する方向の空間分解能は、波長λ、開口幅D、深さ方向の距離zによって決まる。 Here, the spatial resolution in the direction crossing the scanning line varies depending on the focusing condition of the elastic wave. When the wavelength of the elastic wave is λ, the opening width of the plurality of conversion elements is D, and the distance in the depth direction (scanning line direction) is z, the convergence width can be expressed by 1.22 (λ / D) z. That is, the spatial resolution in the direction intersecting the scanning line is determined by the wavelength λ, the aperture width D, and the distance z in the depth direction.
そこで、本発明では、この集束条件(波長λ、開口幅D、深さ方向の距離zの設定条件)によって決まる空間分解能を変えた際は、補正を行う電力強度の数を変えることが好ましい。具体的には、補正を行う電力強度の数は、走査線と交差する方向の空間分解能の2倍以下の範囲の数とすることが好ましい。より好ましくは、補正を行う電力強度の数は、走査線と交差する方向の空間分解能以下の範囲の数である。 Therefore, in the present invention, when the spatial resolution determined by this focusing condition (setting condition of wavelength λ, aperture width D, depth direction distance z) is changed, it is preferable to change the number of power intensities to be corrected. Specifically, it is preferable that the number of power intensities to be corrected is a number in a range not more than twice the spatial resolution in the direction intersecting the scanning line. More preferably, the number of power intensities to be corrected is a number in a range equal to or lower than the spatial resolution in the direction crossing the scanning line.
なお、ここではCapon法の処理について述べたが、相関性干渉波の影響を抑制するために周波数平均法が必要となる他の適応型信号処理、MUSIC法やESPRIT法などにおいても本発明は適用できる。
以下、図面を用いて本発明による被検体情報取得装置の各実施形態を詳細に説明する。
Although the Capon method has been described here, the present invention can also be applied to other adaptive signal processing that requires the frequency averaging method to suppress the influence of correlated interference waves, the MUSIC method, the ESPRIT method, and the like. it can.
Hereinafter, embodiments of the subject information acquiring apparatus according to the present invention will be described in detail with reference to the drawings.
(第1の実施形態)
本発明の第1の実施形態では、図1に示したシステムを用いて処理を行う形態について述べる。システムの動作は先ほど説明した通りであるため省略し、補正手段009における動作を説明する。
(First embodiment)
In the first embodiment of the present invention, a mode in which processing is performed using the system shown in FIG. 1 will be described. Since the operation of the system is the same as described above, a description thereof will be omitted, and the operation of the
本実施形態における補正手段009は、入力された複数の走査線の電力強度分布に対して補正処理を行う。補正手段009に入力される、それぞれK点の電力強度情報を有するL本の走査線を示す信号を以下のように表す。
The
Y1[s]、Y2[s]、・・・、YL[s](s=1,2,・・・,K)
それぞれの電力強度は被検体内では図3に示したような位置関係となる。
Y1 [s], Y2 [s],..., YL [s] (s = 1, 2,..., K)
Each electric power intensity has a positional relationship as shown in FIG.
補正手段009は、走査線と交差する方向における隣接走査線間の電力強度分布の変動を小さくする補正処理を行うため、まず、走査線と交差する方向の電力強度(例えばY1[5]、Y2[5]、Y3[5]・・・)を抽出する。本実施形態では下式で示される補正処理を行い、新たな電力強度Yk’を求める。なお、hiは、別途設定される係数である。
The
図4は本実施形態の補正手段による補正処理の効果を示す図である。縦軸は深さ方向(走査線方向)の距離を示し、横軸は、走査線と交差する方向の距離を示す。図4(A)〜(C)は全て、豚大腿動脈からの反射波を受信して大腿動脈の血管壁を画像化した結果である。図4(C)は受信信号を包絡線検波することにより豚大腿動脈を画像化した結果(所謂Bモード像)である。図4中の401、402で示した位置がそれぞれ大腿動脈の血管壁である。図4(A)は受信信号にFDI法及びCapon法を適用した結果である。
走査線方向(画像の上下方向)の空間分解能が向上しているが、走査線ごとに相関性の抑圧の程度が異なるため、走査線と交差する方向(画像の左右方向)に連続性が乏しい部分が存在することが分かる。
FIG. 4 is a diagram showing the effect of the correction process by the correction means of this embodiment. The vertical axis represents the distance in the depth direction (scanning line direction), and the horizontal axis represents the distance in the direction intersecting the scanning line. FIGS. 4A to 4C are all the results of receiving the reflected wave from the porcine femoral artery and imaging the femoral artery blood vessel wall. FIG. 4C shows a result (so-called B-mode image) obtained by imaging the porcine femoral artery by performing envelope detection on the received signal. The positions indicated by 401 and 402 in FIG. 4 are the blood vessel walls of the femoral artery. FIG. 4A shows the result of applying the FDI method and Capon method to the received signal.
Although the spatial resolution in the scanning line direction (up and down direction of the image) has been improved, the degree of suppression of correlation differs for each scanning line, so the continuity is poor in the direction intersecting the scanning line (the left and right direction of the image) You can see that there is a part.
図4(B)は本実施形態の補正手段においてh0=h1=h2=h3=h4=1、w=5の係数を用いて補正処理した結果である。走査線方向(画像の上下方向)の空間分解能は図4(C)よりも高く、走査線と交差する方向(画像の左右方向)の連続性が図4(A)よりも高まり、視認性が向上していることが分かる。 FIG. 4B shows the result of correction processing using the coefficients h0 = h1 = h2 = h3 = h4 = 1 and w = 5 in the correction means of this embodiment. The spatial resolution in the scanning line direction (the vertical direction of the image) is higher than that in FIG. 4C, and the continuity in the direction intersecting the scanning line (the horizontal direction in the image) is higher than that in FIG. It can be seen that it has improved.
図5は図4の画像中の一つの走査線(画像の上下方向)の電力強度分布をプロットしたものである。それぞれのプロットは、包絡線検波により得られたBモード画像(501)、FDI法ならびにCapon法を適用した結果(502)、本実施形態による処理結果(503)を示している。この図5から分かるように本発明を適用した結果においても、走査線方向の解像度が一般的なBモード画像と比較して高いことが分かる。 FIG. 5 is a plot of the power intensity distribution of one scanning line (up and down direction of the image) in the image of FIG. Each plot shows a B-mode image (501) obtained by envelope detection, a result of applying the FDI method and the Capon method (502), and a processing result (503) according to the present embodiment. As can be seen from FIG. 5, even in the result of applying the present invention, the resolution in the scanning line direction is higher than that of a general B-mode image.
以上のように、本実施形態によれば、FDI法ならびにCapon法を適用し、走査線方向の空間分解能を向上させ、さらに走査線と交差する方向の連続性高い、安定した画像データを提供することができる。 As described above, according to the present embodiment, the FDI method and the Capon method are applied to improve the spatial resolution in the scanning line direction and to provide stable image data with high continuity in the direction intersecting the scanning line. be able to.
なお、本実施形態における補正手段の補正処理は、走査線と交差する方向の電力強度分布に対する平滑化を行うFIRフィルタとして動作している。係数は平滑化フィルタとしての性能を有していれば、一様なもの(矩形状)であっても、三角形状、台形状、ガウシアン形状などのその他の係数であっても同様の効果を得ることが出来る。 Note that the correction processing of the correction unit in this embodiment operates as an FIR filter that performs smoothing on the power intensity distribution in the direction crossing the scanning line. As long as the coefficient has the performance as a smoothing filter, the same effect can be obtained even if the coefficient is uniform (rectangular) or other coefficients such as triangular, trapezoidal, and Gaussian. I can do it.
(第2の実施形態)
本発明にかかる第2の実施形態においても、図1に示したシステムを用いて処理を行う具体的な形態について述べる。システムの動作は先ほど説明した通りであるため省略し、補正手段009における動作を説明する。本実施形態における補正手段009は、入力された複数の走査線の電力強度分布に対して下式で示される補正処理を行う。
(Second Embodiment)
Also in the second embodiment of the present invention, a specific mode for performing processing using the system shown in FIG. 1 will be described. Since the operation of the system is the same as described above, a description thereof will be omitted, and the operation of the
図6は本実施形態の一例として、本実施形態の補正手段において[a1,a2,a3,a4,a5,a6]=[1,0,0.6334,0,0.0557,0],[b0,b1,b2,b3,b4,b5]=[0.0528,0.2639,0.5279,0.2639,0.0528]の係数を用いて処理した結果である。図6より、走査線方向(画像の上下方向)の空間分解能は一般的なBモード画像(図4(C))よりも高く、走査線と交差する方向(画像の左右方向)の連続性が図4(A)よりも高まり、視認性が向上していることが分かる。
FIG. 6 shows, as an example of this embodiment, [a1, a2, a3, a4, a5, a6] = [1, 0, 0.6334, 0, 0.0557, 0], [ b0, b1, b2, b3, b4, b5] = [0.0528, 0.2639, 0.5279, 0.2639, 0.0528]. From FIG. 6, the spatial resolution in the scanning line direction (the vertical direction of the image) is higher than that of a general B-mode image (FIG. 4C), and the continuity in the direction crossing the scanning line (the horizontal direction of the image) is high. It can be seen that the visibility is improved as compared with FIG. 4A.
以上のように、本実施形態によれば、FDI法ならびにCapon法を適用し、走査線方向の空間分解能を向上させ、さらに走査線と交差する方向の連続性が高い、安定した画像データを提供することができる。なお、本実施形態の補正手段009における補正処理は、走査線と交差する方向の電力強度分布に対する平滑化を行うIIRフィルタとして動作しており、その係数は平滑化フィルタとしての性能を有していれば、その他の係数であっても同様の効果を得ることが出来る。このように補正処理においてIIRフィルタを用いることで、少ない計算負荷(計算に用いる係数の数が少ない)であっても、より好適なフィルタ特性を実現し補正処理を行うことが可能となる。
As described above, according to the present embodiment, the FDI method and the Capon method are applied to improve the spatial resolution in the scanning line direction and provide stable image data with high continuity in the direction intersecting the scanning line. can do. Note that the correction processing in the
(第3の実施形態)
本発明にかかる第3の実施形態においても、図1に示したシステムを用いて処理を行う形態について述べる。システムの動作は先ほど説明した通りであるため省略し、補正手段009における動作を説明する。
(Third embodiment)
Also in the third embodiment of the present invention, a mode in which processing is performed using the system shown in FIG. 1 will be described. Since the operation of the system is the same as described above, a description thereof will be omitted, and the operation of the
本実施形態における補正手段009は、複数の走査線の電力強度分布を入力された後、走査線と交差する方向の電力強度(例えばY1[5]、Y2[5]、Y3[5]・・・)をNX個抽出する。このNX個の電力強度を強度順に並べ替え、NXが偶数の場合、NX/2+1番目の電力強度、NXが奇数の場合は、(NX+1)/2番目の電力強度を出力とする補正処理を行う。 The correction means 009 according to this embodiment receives power intensity distributions of a plurality of scanning lines, and then receives power intensity in a direction intersecting the scanning lines (for example, Y1 [5], Y2 [5], Y3 [5],... Extract NX). The NX power intensities are rearranged in order of intensity. When NX is an even number, the NX / 2 + 1th power intensity is output, and when NX is an odd number, correction processing is performed to output the (NX + 1) / 2th power intensity. .
図7は、本実施形態の補正手段においてNX=3として補正処理を行った結果である。
走査線方向(画像の上下方向)の空間分解能は一般的なBモード画像(図4(C))よりも高く、走査線と交差する方向(画像の左右方向)の連続性が図4(A)よりも高まり、視認性が向上していることが分かる。
FIG. 7 shows the result of the correction processing performed with NX = 3 in the correction means of this embodiment.
The spatial resolution in the scanning line direction (the vertical direction of the image) is higher than that of a general B-mode image (FIG. 4C), and the continuity in the direction intersecting the scanning line (the horizontal direction of the image) is as shown in FIG. ) And the visibility is improved.
以上のように、本実施形態によれば、FDI法ならびにCapon法を適用し、走査線方向の空間分解能を向上させ、さらに走査線と交差する方向の連続性が高い、安定した画像を提供することができる。なお、本実施形態における補正手段における補正処理は、走査線と交差する方向の電力分布に対するメディアンフィルタとして動作しており、平滑化を行う補正効果が得られている。 As described above, according to the present embodiment, the FDI method and the Capon method are applied to improve the spatial resolution in the scanning line direction and provide a stable image with high continuity in the direction intersecting the scanning line. be able to. Note that the correction processing in the correction means in this embodiment operates as a median filter for the power distribution in the direction intersecting the scanning line, and a correction effect for smoothing is obtained.
(第4の実施形態)
本発明にかかる第4の実施形態においても、図1に示したシステムを用いて処理を行う形態について述べる。システムの動作は先ほど説明した通りであるため省略し、補正手段009における動作を説明する。
(Fourth embodiment)
In the fourth embodiment according to the present invention, a mode in which processing is performed using the system shown in FIG. 1 will be described. Since the operation of the system is the same as described above, a description thereof will be omitted, and the operation of the
本実施形態における補正手段009は、複数の走査線の電力強度分布が入力された後、走査線と交差する方向の電力強度(例えばY1[5]、Y2[5]、Y3[5]・・・)をNX個抽出する。このNX個の電力強度分布に対してフーリエ変換し、所定の周波数より高い周波数帯域を通さないローパスフィルタを適用する。
The
このローパスフィルタを適用することにより、走査線と交差する方向において、高周波成分をカットすることができる。つまり、走査線と交差する方向において、隣接する走査線間の電力強度の変動を小さくすることができる。 By applying this low-pass filter, the high frequency component can be cut in the direction intersecting the scanning line. That is, fluctuations in power intensity between adjacent scanning lines can be reduced in the direction intersecting the scanning lines.
以上のように、本実施形態によれば、実施形態1〜3と同様に、FDI法ならびにCapon法を適用し、走査線方向の空間分解能を向上させ、さらに走査線と交差する方向の連続性が高い、安定した画像を提供することができる。 As described above, according to the present embodiment, as in the first to third embodiments, the FDI method and the Capon method are applied, the spatial resolution in the scanning line direction is improved, and the continuity in the direction intersecting the scanning line is further improved. Can provide a high and stable image.
(第5の実施形態)
本実施形態は、整相加算された信号の入力先を切り替える切替え手段を有することを特徴とする。図8は本発明の第5の実施形態にかかるシステム概略図である。実施形態1〜4とは異なる部分に絞って説明を行う。
(Fifth embodiment)
The present embodiment is characterized by having switching means for switching the input destination of the signal subjected to phasing addition. FIG. 8 is a system schematic diagram according to the fifth embodiment of the present invention. The description will focus on parts different from the first to fourth embodiments.
本実施形態の被検体情報取得装置は、図1で説明した各構成に加えて、更に切替え手段701と包絡線取得手段702とを有する。弾性波の送受信を行い、整相加算処理を行うところまでは前述した実施形態1〜4と同様である。本実施形態では、整相加算手段006において整相加算処理された信号が、切替え手段701に入力される。切替え手段701はシステム制御部004からの指示に従って、入力された信号を包絡線取得手段702もしくはFDI適応処理手段007に出力する。
The subject information acquisition apparatus of the present embodiment further includes a
まず、切替え手段701が包絡線取得手段702にのみ整相加算処理された信号を出力した場合の動作について述べる。包絡線取得手段702では入力された信号の包絡線を取得し、走査線データメモリ008に包絡線データとして出力する。走査線データメモリ008ならびに補正手段009はいずれも包絡線データをそのまま次の手段に渡し、最終的に画像処理手段010に包絡線データを入力する。画像処理手段010はシステム制御部004からの指示に従って、エッジ強調やコントラスト調整などの各種画像処理を行い、輝度データ(画像データ)を出力する。画像表示手段011では入力された輝度データを画像として表示する。
First, an operation when the
次に、切替え手段701がFDI適応処理手段007にのみ整相加算処理された信号を出力した場合の動作について述べる。この場合は、FDI適応処理手段007ならびに走査線データメモリ008、補正手段009は実施形態1〜4と同様に走査線が隣接する方向の連続性を向上させる補正処理を行う。
Next, an operation when the
このように、包絡線データに対しては補正手段009を動作させず、FDI適応処理手段007で処理された電力強度分布に対しては補正手段009を動作させ、電力強度分布が連続的になるように補正するように制御を行う。ただし、本実施形態は、包絡線取得手段702と画像処理手段010とが接続されていてもよく、その場合は、包絡線データがそのまま画像処理手段に入力される。
As described above, the
本実施形態のシステムは、例えば装置操作者からの明示的な指示や操作者が選択した撮像モードなどによって、システム制御部004が、切替え手段701に指示を出すように設定すると良い。このような設定により、深さ方向の空間分解能を重視する場合(例えば頸動脈の血管壁の厚みを測定する場合)やこれまでの一般的なBモード画像(包絡線検波を用いて取得された画像)と比較したい場合に対応可能である。
The system according to this embodiment may be set so that the
また、システム制御部004からの指示により、すでに連続性を有しているBモード画像に対して必要以上の補正処理を実施せず、連続性が乏しい部分が存在するFDI法と適応型信号処理とを適用した画像データに対しては補正処理を行うことが出来る。
Further, in response to an instruction from the
(第6の実施形態)
また、本発明は、以下の処理を実行することによっても実現される。即ち、上述した各実施形態の機能を実現するソフトウェア(プログラム)を、ネットワーク又は各種記憶媒体を介してシステム或いは装置に供給し、そのシステム或いは装置のコンピュータ(またはCPUやMPU等)がプログラムを読み出して実行する処理である。
(Sixth embodiment)
The present invention can also be realized by executing the following processing. That is, software (program) that realizes the functions of the above-described embodiments is supplied to a system or apparatus via a network or various storage media, and a computer (or CPU, MPU, etc.) of the system or apparatus reads the program. To be executed.
000 被検体
001 探触子
002 変換素子
003 送信回路
004 システム制御部
005 受信回路
006 整相加算手段
007 FDI適応処理手段
008 走査線データメモリ
009 補正手段
010 画像処理手段
011 画像表示系
301A〜301F 走査線
701 切替え手段
702 包絡線取得手段
000
Claims (16)
前記弾性波を受信した複数の変換素子から出力される複数の電気信号を用いて包絡線を取得する包絡線取得手段と、
前記弾性波を受信した複数の変換素子から出力される前記複数の電気信号を用いて周波数領域干渉計法と周波数平均法を用いた適応型信号処理とを行い、複数の走査線上の各位置での電力強度を算出し、電力強度分布を取得するFDI適応処理手段と、
前記FDI適応処理手段により取得された電力強度分布に対して、前記走査線と交差する方向において、隣接する前記走査線間の電力強度の変動が小さくなるように前記電力強度分布に補正処理を行う補正手段と、
前記補正手段により補正された電力強度または前記包絡線に基づいて画像データを生成する画像処理手段と、
を有し、
前記補正手段は、前記補正処理を行う電力強度の数を、前記弾性波の送受信の集束条件により変更することを特徴とする被検体情報取得装置。 A subject information acquisition device that acquires information in a subject using elastic waves propagated from within the subject,
An envelope acquisition means for acquiring an envelope using a plurality of electrical signals output from a plurality of conversion elements that have received the elastic wave;
Frequency domain interferometry and adaptive signal processing using frequency averaging are performed using the plurality of electrical signals output from the plurality of transducers that have received the elastic wave, and at each position on a plurality of scanning lines. FDI adaptive processing means for calculating the power intensity of and acquiring the power intensity distribution;
For the power intensity distribution acquired by the FDI adaptive processing means, correction processing is performed on the power intensity distribution so that the fluctuation of the power intensity between the adjacent scanning lines is reduced in the direction intersecting the scanning line. Correction means;
Image processing means for generating image data based on the power intensity corrected by the correction means or the envelope; and
Have
The object information acquisition apparatus according to claim 1, wherein the correction unit changes the number of power intensities to be subjected to the correction process according to a focusing condition of the elastic wave transmission / reception.
前記弾性波を受信した複数の変換素子から出力される複数の電気信号を用いて包絡線を取得する包絡線取得ステップと、
前記弾性波を受信した複数の変換素子から出力される前記複数の電気信号を用いて周波数領域干渉計法と周波数平均法を用いた適応型信号処理とを行い、複数の走査線上の各位置での電力強度を算出し、電力強度分布を取得するFDI適応処理ステップと、
前記FDI適応処理ステップにより取得された電力強度分布に対して、前記走査線と交差する方向において、隣接する前記走査線間の電力強度の変動が小さくなるように前記電力強度分布に補正処理を行う補正ステップと、
前記補正ステップにより補正された電力強度または前記包絡線に基づいて画像データを生成する画像処理ステップと、
を有し、
前記補正ステップでは、前記補正処理を行う電力強度の数を、前記弾性波の送受信の集束条件により変更することを特徴とする被検体情報取得方法。 A subject information acquisition method for acquiring information in a subject using elastic waves propagated from within the subject,
An envelope acquisition step of acquiring an envelope using a plurality of electrical signals output from a plurality of conversion elements that have received the elastic wave;
Frequency domain interferometry and adaptive signal processing using frequency averaging are performed using the plurality of electrical signals output from the plurality of transducers that have received the elastic wave, and at each position on a plurality of scanning lines. FDI adaptive processing step for calculating the power intensity of the power and obtaining the power intensity distribution;
The power intensity distribution acquired by the FDI adaptive processing step is corrected for the power intensity distribution so that the fluctuation of the power intensity between the adjacent scan lines is reduced in the direction crossing the scan line. A correction step;
An image processing step of generating image data based on the power intensity corrected by the correction step or the envelope; and
Have
In the correction step, the number of power intensities to be subjected to the correction process is changed according to a focusing condition for transmitting / receiving the elastic wave.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015254373A JP6203241B2 (en) | 2015-12-25 | 2015-12-25 | Subject information acquisition apparatus, subject information acquisition method, and program |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015254373A JP6203241B2 (en) | 2015-12-25 | 2015-12-25 | Subject information acquisition apparatus, subject information acquisition method, and program |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011086511A Division JP2012217624A (en) | 2011-04-08 | 2011-04-08 | Subject information obtaining apparatus, subject information obtaining method, and program |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016040021A JP2016040021A (en) | 2016-03-24 |
JP6203241B2 true JP6203241B2 (en) | 2017-09-27 |
Family
ID=55540614
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015254373A Active JP6203241B2 (en) | 2015-12-25 | 2015-12-25 | Subject information acquisition apparatus, subject information acquisition method, and program |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6203241B2 (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5869538A (en) * | 1981-10-22 | 1983-04-25 | 株式会社東芝 | Ultrasonic diagnostic apparatus |
JP2005245479A (en) * | 2004-03-01 | 2005-09-15 | Fuji Photo Film Co Ltd | Ultrasonic diagnostic apparatus |
JP5312081B2 (en) * | 2009-02-10 | 2013-10-09 | キヤノン株式会社 | Biological information processing apparatus and biological information processing method |
-
2015
- 2015-12-25 JP JP2015254373A patent/JP6203241B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016040021A (en) | 2016-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6253999B2 (en) | Ultrasonic diagnostic apparatus, image processing apparatus, and image processing method | |
JP6071582B2 (en) | Subject information acquisition apparatus and control method thereof | |
JP6282942B2 (en) | Ultrasonic diagnostic apparatus, image processing apparatus, and image processing program | |
EP2304463B1 (en) | Ultrasound apparatus and method for side lobe suppression | |
JP6315893B2 (en) | Subject information acquisition apparatus, subject information acquisition method, and program | |
JP2012217624A (en) | Subject information obtaining apparatus, subject information obtaining method, and program | |
JP6342212B2 (en) | Ultrasonic diagnostic equipment | |
EP2751588B1 (en) | Subject information obtaining apparatus using elastic waves, method for obtaining subject information using elastic waves, and program for performing said method | |
EP2905633A1 (en) | Ultrasonic diagnosis apparatus, image processing apparatus, and image processing method | |
JP6103857B2 (en) | Subject information acquisition apparatus, display method, and program | |
JP2013075150A (en) | Object information acquiring apparatus and control method thereof | |
US10743842B2 (en) | Ultrasound signal processor, ultrasound signal processing method, and ultrasound diagnostic device | |
JP6238556B2 (en) | Subject information acquisition apparatus, control method therefor, and probe | |
JP5950518B2 (en) | Subject information acquisition apparatus, subject information acquisition method, and program | |
JP6697609B2 (en) | Ultrasonic diagnostic device, image processing device, and image processing method | |
US8652049B2 (en) | Ultrasonic diagnostic apparatus | |
JP6203241B2 (en) | Subject information acquisition apparatus, subject information acquisition method, and program | |
JP7282492B2 (en) | Ultrasound diagnostic device, medical image processing device and medical image processing program | |
JP6863817B2 (en) | Ultrasound imaging device | |
JP5190248B2 (en) | Ultrasonic diagnostic equipment | |
JP6498329B2 (en) | Subject information acquisition apparatus, subject information acquisition method, and program | |
JP2019097794A (en) | Ultrasonic diagnostic apparatus, medical image processing apparatus, and program of the same | |
JP4664209B2 (en) | Ultrasonic diagnostic apparatus and ultrasonic imaging program for performing imaging thereof | |
JP5393568B2 (en) | Ultrasonic imaging method and ultrasonic imaging apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160125 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160125 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20161213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161220 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170217 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170418 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170615 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170801 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170829 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6203241 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |