JP6201534B2 - Steel for carburized parts - Google Patents

Steel for carburized parts Download PDF

Info

Publication number
JP6201534B2
JP6201534B2 JP2013180506A JP2013180506A JP6201534B2 JP 6201534 B2 JP6201534 B2 JP 6201534B2 JP 2013180506 A JP2013180506 A JP 2013180506A JP 2013180506 A JP2013180506 A JP 2013180506A JP 6201534 B2 JP6201534 B2 JP 6201534B2
Authority
JP
Japan
Prior art keywords
carburized
parts
welding
steel
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013180506A
Other languages
Japanese (ja)
Other versions
JP2015048505A (en
Inventor
森田 敏之
敏之 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2013180506A priority Critical patent/JP6201534B2/en
Publication of JP2015048505A publication Critical patent/JP2015048505A/en
Application granted granted Critical
Publication of JP6201534B2 publication Critical patent/JP6201534B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Gears, Cams (AREA)

Description

この発明は、相手部材に圧接により接合されて成る浸炭部品に用いられる浸炭部品用鋼に関する。 This invention relates to carburized parts for steel used in the carburized part article formed are joined by pressure contact to the mating member.

機械構造部品等を金属製の相手部材に接合する手法として従来から溶接による接合、特に母材の接合しようとする部分を加熱し、母材のみか又は母材と溶加材(溶接棒等)とを溶融させ、融合状態の溶融金属を凝固させることで、機械的な圧力を加えずに接合する融接(一般には溶接と言うとこの融接を指すことが多い)が広く用いられてきた。
TIG溶接,MIG溶接,レーザー溶接,電子ビーム溶接と呼ばれているものはこの融接に属する。
Conventionally, as a method for joining machine structural parts to metal counterparts, welding is performed, especially the part to be joined of the base metal is heated, and only the base material or the base material and filler metal (welding rod, etc.) Has been widely used for melting without solidification of the molten metal in a fused state, and joining without applying mechanical pressure (generally speaking, welding is often referred to as this fusion welding). .
The so-called TIG welding, MIG welding, laser welding, and electron beam welding belong to this fusion welding.

ところで、例えば自動車用の歯車や軸受部品等の高い表面硬度が求められる機械部品では、一般にSCR420等のJIS鋼種を部品形状に加工した後、浸炭焼入れを施し、表面硬化して使用しているが、この種の浸炭部品は融接が困難な部材である。   By the way, for machine parts that require high surface hardness such as gears and bearing parts for automobiles, JIS steel grades such as SCR420 are generally processed into part shapes, then carburized and hardened, and surface hardened for use. This type of carburized component is a member that is difficult to weld.

浸炭部品は高炭素濃度部材であり、そのためこれを溶融させたときにCが酸化されて生ずるCOによりブローホールを発生させたり、或いは溶融部の凝固→マルテンサイト変態によって割れを生じたりし、これらの問題のため融接による接合が困難であった。
そのため浸炭部品を相手部材に固定し、取り付ける手段として従来では専らボルト止めやリベット止めが用いられて来た。
しかしながらボルト止め,リベット止めによる固定は面倒であるとともに、所要コストが高く、また形状的な自由度が低い。
The carburized component is a high carbon concentration member, and therefore, when this is melted, blown holes are generated by CO 2 produced by oxidation of C, or cracking occurs due to solidification → martensitic transformation of the molten part, Due to these problems, joining by fusion welding is difficult.
Therefore, conventionally, bolting and riveting have been used exclusively as means for fixing and attaching the carburized parts to the mating member.
However, fixing by bolting and riveting is troublesome, requires high cost, and has a low degree of freedom in shape.

近年、摩擦圧接,フラッシュ圧接等の圧接による接合方法が広く普及して来ており、このような接合方法を用いて上記の浸炭部品を相手部材に接合するといったことも考えられる。
ここで摩擦圧接は、母材を突き合せて圧力を加え、相対回転運動させたときの摩擦熱を利用して接合する方法で、フラッシュ圧接は電圧印加した母材同士を突き合せたときの放電による熱を利用して接合部を高温に熱し、その状態で圧力を加えて接合する方法で、何れも接合部を加熱軟化させた上で、外力により接合部に塑性変形を与え、接合を行う方法である(圧接は溶接の一分類に属する)。
In recent years, joining methods by pressure welding such as friction welding and flash welding have become widespread, and it is conceivable to join the above-mentioned carburized parts to a mating member using such a joining method.
Here, friction welding is a method in which the base metal is abutted against each other, pressure is applied, and frictional heat is applied when the relative rotational movement is applied, and flash welding is a discharge when the base materials to which voltage is applied are butted together. In this method, the joint is heated to a high temperature using the heat generated by the pressure and the pressure is applied in that state, and in each case, the joint is heated and softened, and then the joint is plastically deformed by an external force to perform the joining. Method (pressure welding belongs to a class of welding).

これらの圧接では、接合面は主として外圧の作用により固相状態において接合されるが、塑性変形を容易にするために補助的加熱を行い、局部溶融を伴う場合もある。   In these pressure welding, the joint surfaces are joined in a solid phase mainly by the action of external pressure. However, in order to facilitate plastic deformation, auxiliary heating may be performed, which may involve local melting.

図1は摩擦圧接による接合方法の一例を模式的に示している。
図示のようにこの摩擦圧接では、一方の被接合部材10Aを回転させながら、非回転状態のもう一方の被接合部材10Bに対して一旦低い荷重(摩擦圧力)で軸方向に押し付けることで摩擦熱を発生させる((a),(b),(c)参照)。
その後、更に大きな加圧(アプセット圧力)を行うと同時に、ブレーキによって回転側の被接合部材10Aを回転停止させる。
その際に摩擦熱により軟化した接合部付近に大きな塑性変形(アプセット寄り代)を引き起し、一対の被接合部材10A,10Bを接合する。
FIG. 1 schematically shows an example of a joining method by friction welding.
As shown in the figure, in this friction welding, while one member 10A is rotated, the frictional heat is generated by pressing the member 10B in the axial direction with a low load (friction pressure) once against the other non-rotating member 10B. (See (a), (b), (c)).
Thereafter, a larger pressure (upset pressure) is applied, and at the same time, the rotation-side bonded member 10A is stopped by the brake.
At that time, a large plastic deformation (upset shift margin) is caused in the vicinity of the joint softened by the frictional heat, and the pair of members to be joined 10A and 10B are joined.

浸炭部品の接合方法として、この種の圧接を適用することも考えられるが、浸炭部品の有する問題として、浸炭部品は高硬度(もともと浸炭部品は硬さを高めるために浸炭処理が施されている)であって塑性変形が困難であるため、圧接による接合方法の適用が難しい。   Although it is conceivable to apply this type of pressure welding as a method of joining carburized parts, the problem with carburized parts is that the carburized parts have high hardness (carburized parts are originally carburized to increase their hardness. ) And plastic deformation is difficult, so it is difficult to apply a joining method by pressure welding.

例えばC含有量が1%(質量%)以上の高C含有量の鋼や鋳鉄から成る部材を相手部材として圧接したとき、具体例を挙げれば例えば高C含有量のFCD400等の鋳鉄部材を相手部材として圧接したとき、高硬度の浸炭部品と相手部材との硬さの差が大きいため、外力を加えて浸炭部品と相手部材とを圧接にて接合しようとすると、軟らかい相手部材ばかりが塑性変形してしまって浸炭部材が塑性変形せず、接合を上手くできない。
浸炭部品を相手部材とした場合にも同様に圧接が困難で、何れの部材も接合に必要な塑性変形を生じ難いため、上手く接合ができない。
こうした理由で、一般に浸炭部品は融接に代えて圧接を行うことも難しく、これまではボルトやビレットなどによる接合が行われて来た。
For example, when a member made of steel or cast iron having a high C content with a C content of 1% (mass%) or more is pressed as a mating member, for example, a cast iron member such as FCD400 having a high C content is mated. When pressed as a member, there is a large difference in hardness between the carburized part with high hardness and the mating member, so when applying external force to join the carburized component and the mating member by pressure welding, only the soft mating member is plastically deformed. As a result, the carburized member is not plastically deformed and the joining cannot be performed well.
Similarly, when a carburized part is used as a mating member, it is difficult to perform pressure welding, and any member is difficult to cause plastic deformation necessary for joining, and thus cannot be joined well.
For these reasons, it is generally difficult for carburized parts to be welded instead of fusion welding, and until now, joining with bolts or billets has been performed.

尚、本発明に対する先行技術として、下記特許文献1には「浸炭部品」についての発明が、特許文献2には「ショットピーニングによる表面強化処理を施した浸炭部品」についての発明が、特許文献3には「低歪真空浸炭ガス焼入れ用鋼およびそれから製造した低歪浸炭部品」についての発明が、特許文献4には、「転動部材用鋼、転動部材、及び、転動部材の製造方法」についての発明が、特許文献5には「高強度浸炭高周波焼入れ部品」についての発明が、特許文献6には「浸炭部品の製造方法及び鋼部品」についての発明が示され、それぞれにおいて本発明の鋼と類似した組成の鋼が開示されている。
しかしながらこれら文献には、浸炭部品を相手部材に対して圧接にて接合する点、更には圧接と関連した浸炭部品及び鋼の熱伝導率その他に関する言及は無く、文献に記載の発明は本発明とは別異のものである。
As prior art to the present invention, Patent Document 1 below discloses an invention related to “carburized parts”, and Patent Document 2 discloses an invention related to “carburized parts subjected to surface strengthening treatment by shot peening”. The invention of “low strain vacuum carburizing gas quenching steel and low strain carburized parts produced therefrom” is disclosed in Patent Document 4, “rolling member steel, rolling member, and rolling member manufacturing method” Patent Document 5 discloses an invention relating to “high-strength carburized induction-hardened parts”, and Patent Document 6 discloses an invention relating to “manufacturing method and steel parts of carburized parts”. Steels having compositions similar to those of these steels are disclosed.
However, in these documents, there is no reference to the point where the carburized parts are joined to the mating member by pressure welding, and further, the carburized parts related to the pressure welding and the thermal conductivity of the steel and the like. Are different.

特開2007−291486号公報JP 2007-291486 A 特開2008−156673号公報JP 2008-156673 A 特開2008−195997号公報JP 2008-195997 A 特開2009−114488号公報JP 2009-114488 A 特開2008−280610号公報JP 2008-280610 A 特開2010−90437号公報JP 2010-90437 A

本発明は以上のような事情を背景とし、相手部材に良好に圧接接合されて、相手部材との間で強い接合力を発揮する浸炭部品に用いる浸炭部品用鋼を提供することを目的としてなされたものである。 The present invention is the background of the above circumstances, it is well pressed bonded to the other member, for the purpose of providing a strong bonding force exerts used carburized part article carburized parts steel with the mating member It was made.

而して請求項1は、真空浸炭され、相手部材に対して圧接により接合される浸炭部品に用いられる鋼であって、質量%でC:0.10〜0.30%,Si:0.40〜3.00%,Mn:0.30〜3.00%,P:0.030%以下,S:0.030%以下,Cu:0.01〜1.00%,Ni:0.01〜3.00%,Cr:0.30〜3.00%,残部Fe及び不可避的不純物の組成を有し且つ下記式(1)及び式(2)を満たしていることを特徴とする。
[Si%]+[Ni%]+[Cu%]−[Cr%]>0.3・・・式(1)
24×[Si%]+3.2×[Mn%]+6.8×[Cr%]>28・・・式(2)
Thus, claim 1 is a steel used for carburized parts that are vacuum carburized and joined to the mating member by pressure welding, and in terms of mass%, C: 0.10 to 0.30%, Si: 0.40 to 3.00%, Mn : 0.30 to 3.00%, P: 0.030% or less, S: 0.030% or less, Cu: 0.01 to 1.00%, Ni: 0.01 to 3.00%, Cr: 0.30 to 3.00%, balance Fe and inevitable impurities In addition, the following formulas (1) and (2) are satisfied.
[Si%] + [Ni%] + [Cu%] − [Cr%]> 0.3 (1)
24 x [Si%] + 3.2 x [Mn%] + 6.8 x [Cr%]> 28 ... Formula (2)

発明の作用・効果Effects and effects of the invention

浸炭部品を圧接にて良好に相手部材に接合するためには、
1)浸炭部品の相手部材への接合予定部に酸化物ができるだけ無い状態にしなければならない。相手部材への接合界面に酸化物が存在していると、酸化物は硬く、溶けないし、またくっ付かず、剥れ易いため、このような酸化物があると上手く接合できないからである。
2)浸炭部品を圧接にて良好に相手部材に接合する上で、浸炭部品の接合予定部における炭化物の存在もまた同様に問題となる。炭化物もまた硬く、溶けないし、くっ付かず、剥れ易い点で酸化物と同様だからである。
3)浸炭部品の硬さを確保し、そのことによって浸炭部品の塑性変形が難しい状況の下でも、浸炭部品は相手部材に接合し易いものでなければならない。
In order to join carburized parts to the mating member by pressure welding,
1) There should be as little oxide as possible in the planned joining part of the carburized part to the mating member. This is because if an oxide is present at the bonding interface to the mating member, the oxide is hard, does not melt, does not stick, and easily peels off.
2) When the carburized component is favorably joined to the mating member by pressure welding, the presence of carbide in the joining portion of the carburized component is also a problem. This is because the carbide is also hard, does not melt, does not stick, and is easy to peel off.
3) Ensuring the hardness of the carburized part, so that the carburized part must be easy to join to the mating member even under conditions where plastic deformation of the carburized part is difficult.

第1の問題に対して、浸炭部品を真空浸炭部品とすることで解決を図ることができる。
酸素を含む雰囲気中で行う従来のガス浸炭であると、浸炭部品の表面に酸化膜が付いてしまうため、浸炭部品を上手く圧接にて相手部材に接合できない。
そこで浸炭部品を真空浸炭部品とすることで、浸炭部品の接合予定部をできるだけ酸化物の無い状態とし、問題の解決を図ることができる。
The first problem, a solution by the vacuum carburizing parts the carburizing components may FIG Rukoto.
In the case of conventional gas carburizing performed in an atmosphere containing oxygen, an oxide film is formed on the surface of the carburized component, and therefore the carburized component cannot be joined to the mating member by pressure welding.
With where immersion vacuum carburizing parts charcoal component, and the absence of only oxides possible predetermined joining portions of the carburized parts to solve the problem it is FIG Rukoto.

例えば浸炭部品の摩擦圧接では、接合予定部に酸化物があったとしても、それが僅かであればこれをバリとして排出させた上、新生面同士を押し付けて凝着させ、接合できるものの、酸化物は良好な接合を阻害する要因となる。
しかるに真空浸炭部品ではこのような酸化物の存在を可及的に少なくし又は無くすことができ、酸化物による問題を解決できる。
For example, in friction welding of carburized parts, even if there is an oxide in the part to be joined, if it is very small, it can be discharged as a burr, and the new surfaces can be pressed and adhered to each other for joining. Is a factor that inhibits good bonding.
However, the presence of such oxides can be reduced or eliminated as much as possible in vacuum carburized parts, and the problems caused by oxides can be solved.

第2の問題、即ち浸炭部品の接合予定部に炭化物が生成して、これが接合を阻害する問題に対して、浸炭部品に用いる鋼を、炭化物の生成を阻害するような成分系、具体的には式(1)を満たす組成とすることで解決を図ることができる。 Second problem, i.e., generation of carbides predetermined joining portions of the carburized parts, which for the problem of inhibiting the bonding, the steel used for carburizing parts, component so as to inhibit the generation of carbide, specifically the solved by a composition satisfying the formula (1) may FIG Rukoto in.

第3の問題に対し、鋼の熱伝導率、即ち浸炭部品の熱伝導率を低下させることによって解決を図ることができる。
具体的には、熱伝導率の低下に最も効果の大きなSiの含有量を一定量以上に多くし、同じく熱伝導率の低下に働く他の成分Mn,Crを、熱伝導率低下に対する寄与率に応じて含有させたこと、具体的には鋼の組成、即ち浸炭部品が式(2)を満たすようにすることで解決を図ることができる。
To third problem, a solution by lowering the thermal conductivity of steel, i.e. the thermal conductivity of the carburized part can Figure Rukoto.
Specifically, the content of Si, which is the most effective in reducing thermal conductivity, is increased to a certain level or more, and other components Mn and Cr that also contribute to lowering thermal conductivity are contributed to lowering thermal conductivity. it contained, specifically, the composition of the steel, i.e. carburized parts to solved by to satisfy the equation (2) may FIG isosamples according to.

熱伝導率を低下させることで、浸炭部品の硬さを高く保ちつつ、接合面に熱ができるだけ集中するようにし、以て接合面付近を効果的に熱によって部分的に軟化させ、浸炭部品が高硬度であることによる接合の難しさの問題を解決できる。 By reducing the thermal conductivity, heat is concentrated on the joint surface as much as possible while keeping the hardness of the carburized component high, so that the vicinity of the joint surface is effectively partially softened by heat, The problem of difficulty in joining due to high hardness can be solved .

以上のようにすることで、従来圧接が困難とされていた浸炭部品であっても、相手部材に対して良好に圧接にて接合することができる。
また圧接が特に困難とされていた相手部材に対しても、浸炭部品を良好に圧接により接合することができる。
而して接合された浸炭部品は、相手部材との間に強固な接合力を生じ、相手部材とともに接合強度の信頼性の高い圧接接合体を構成する。
By doing in the above way , even carburized parts that have been conventionally difficult to be welded can be joined to the mating member with good pressure welding.
In addition, the carburized component can be well bonded to the mating member that has been particularly difficult to press.
Thus, the bonded carburized parts generate a strong bonding force with the mating member, and constitute a pressure-bonded joint with the mating member having a high bonding strength.

尚、真空浸炭はアセチレン,エチレン,プロパン等種々の炭化水素ガスを浸炭ガスとして使用することができる。浸炭パターンも任意である。
また真空度についても様々な真空度にて浸炭処理することができるが、酸素による影響を排除する上で2kPa以下の圧力とすることが望ましい。
炭部品における接合予定部の酸化物量は面積率で30%以下としておくことが望ましい。より望ましくは面積率をゼロとしておく。
また接合予定部の炭化物量は面積率で15%以下としておくことが望ましく、より望ましくは面積率をゼロとしておく。
In the vacuum carburizing, various hydrocarbon gases such as acetylene, ethylene and propane can be used as the carburizing gas. The carburization pattern is also arbitrary.
Moreover, although the carburizing process can be performed at various vacuum degrees, it is desirable to set the pressure to 2 kPa or less in order to eliminate the influence of oxygen.
Oxide content of the bonding scheduled portions in carburizing components it is desirable that not more than 30% by area ratio. More preferably, the area ratio is set to zero.
Moreover, it is desirable that the amount of carbide in the planned joining portion is 15% or less in terms of area ratio, and more desirably, the area ratio is zero.

本発明は浸炭部品用鋼に関するもので、この浸炭部品用鋼を用いて真空浸炭により浸炭部品を製造し、相手部材と圧接により接合することで、接合強度が高強度で、接合部の強度品質の高い浸炭部品と相手部材との圧接接合体を構成することができる。 The present invention relates to steel for carburized parts, and manufactures carburized parts by vacuum carburizing using the steel for carburized parts, and joins the mating member by pressure welding so that the joint strength is high and the strength quality of the joint. High pressure carburized parts and a mating member can be formed.

次に本発明および参考例における化学成分の限定理由につき以下に説明する。
C:0.10〜0.30%
Cは機械部品として強度を得る上で必要な元素で、含有量が0.10%を下回ると部品の心部にフェライトが生成して強度が低くなるため、0.10%以上含有させる。一方0.30%を超えると加工性、特に被削性が低くなって部品の成形に不利になるため上限値を0.30%とする。
Next, the reasons for limiting the chemical components in the present invention and reference examples will be described below.
C: 0.10 to 0.30%
C is an element necessary for obtaining strength as a machine part. If the content is less than 0.10%, ferrite is generated in the core of the part and the strength is lowered, so 0.10% or more is contained. On the other hand, if it exceeds 0.30%, the workability, in particular the machinability, is lowered and disadvantageous for the molding of the parts.

Si:0.40〜3.00%
Siは、後述するCu、Niと共に、炭化物生成を抑制する元素であり、また熱伝導率を低くする上で有用な元素である。Siの下限を0.40%としたのは熱伝導率を低下させるためであり、またSiが少なすぎると耐焼付性・耐かじり性が低下し、強度が低下するためである。一方、Siの上限を3.00%としたのは、Siが多すぎると加工性、特に被削性が劣化するためである。
Si: 0.40 to 3.00%
Si, together with Cu and Ni described later, is an element that suppresses the formation of carbides, and is an element that is useful for lowering the thermal conductivity. The reason why the lower limit of Si is set to 0.40% is to reduce thermal conductivity, and too little Si reduces seizure resistance and galling resistance and decreases strength. On the other hand, the upper limit of Si is set to 3.00% because workability, particularly machinability, is deteriorated if there is too much Si.

Mn:0.30〜3.00%
Mnは脱酸剤として鋼の溶製時に添加される。Mnは炭化物の生成にはあまり影響を与えないが、熱伝導率を低下させる元素として有用である。
但し、0.30%に達しない少量では、心部にフェライトが生成して強度が低くなり、また熱伝導率低下への寄与が不十分である。逆に3.00%を超える過大な量では、加工性特に被削性が低くなる。
Mn: 0.30 to 3.00%
Mn is added as a deoxidizer during the melting of steel. Mn has little effect on the formation of carbides, but is useful as an element that lowers the thermal conductivity.
However, in a small amount that does not reach 0.30%, ferrite is generated in the core and the strength is lowered, and the contribution to the decrease in thermal conductivity is insufficient. On the other hand, if the amount exceeds 3.00%, workability, particularly machinability, is lowered.

P:0.030%以下
S:0.030%以下
これらは不純物であって、脆化を招くなど、部品の機械的性質にとって好ましくない成分であるから、その量は低い方がよい。上記の値は、ともに許容限度である。
P: 0.030% or less S: 0.030% or less Since these are impurities and are components that are not preferable for the mechanical properties of the parts, such as embrittlement, the amount is preferably low. Both of the above values are acceptable limits.

Cu:0.01〜1.00%
Cuは、前述したSi、後述するNiと共に、炭化物生成を抑制する元素である。Cuの下限を0.01%としたのは、Cuが少なすぎると焼入性が低下し、強度が低下するためである。一方、Cuの上限を1.00%としたのは、Cuが多すぎると加工性、特に被削性が劣化するためである。
Cu: 0.01 to 1.00%
Cu is an element that suppresses the formation of carbides together with Si described above and Ni described later. The reason why the lower limit of Cu is set to 0.01% is that if the amount of Cu is too small, the hardenability decreases and the strength decreases. On the other hand, the reason why the upper limit of Cu is set to 1.00% is that if there is too much Cu, workability, particularly machinability, deteriorates.

Ni:0.01〜3.00%
Niは、前述したSi、Cuと共に、炭化物生成を抑制する元素である。Niの下限を0.01%としたのは、Niが少なすぎると焼入性が低下し、強度が低下するためである。一方、Niの上限を3.00%としたのは、Niが多すぎると加工性、特に被削性が劣化するためである。
Ni: 0.01 to 3.00%
Ni is an element that suppresses the formation of carbides together with the aforementioned Si and Cu. The reason why the lower limit of Ni is set to 0.01% is that if Ni is too small, the hardenability is lowered and the strength is lowered. On the other hand, the upper limit of Ni is set to 3.00% because if Ni is too much, workability, particularly machinability, deteriorates.

Cr:0.30〜3.00%
Crは炭化物の生成を促進する成分であり、炭化物生成を阻害する観点から、更には加工性特に被削性の観点から、本発明では含有量を3.00%以下に規制する。但し含有量が少なすぎると焼入れ性が低くなって、製品の機械的特性が不満足になるので、また熱伝導率低下に寄与するため含有量を0.30%以上とする。
Cr: 0.30 to 3.00%
Cr is a component that promotes the formation of carbides. In the present invention, the content is restricted to 3.00% or less from the viewpoint of inhibiting the formation of carbides, and further from the viewpoint of workability, particularly machinability. However, if the content is too small, the hardenability becomes low and the mechanical properties of the product become unsatisfactory, and the content is made 0.30% or more in order to contribute to a decrease in thermal conductivity.

Mo:2.00%以下
焼入れ性を向上させ、焼戻し軟化抵抗性を高めるために添加することができる。多量になると鋼の加工性を悪くするので2.00%以下の含有量とする。望ましい含有量の下限値は0.01%である。
Mo: 2.00% or less It can be added to improve hardenability and increase temper softening resistance. If the amount is too large, the workability of steel deteriorates, so the content should be 2.00% or less. The lower limit of the desirable content is 0.01%.

Al:0.20%以下
結晶粒の粗大化を抑制する働きがあり、その効果を得たい場合には含有させることができる。望ましい量は0.005%以上である。但し含有量が過大になると鋼中にアルミナが形成されて強度の低下を招き、また加工性を損なうため、含有量を0.20%以下とする。
Al: 0.20% or less Al has a function of suppressing the coarsening of crystal grains, and can be contained if the effect is desired. A desirable amount is 0.005% or more. However, if the content is excessive, alumina is formed in the steel, resulting in a decrease in strength, and the workability is impaired, so the content is made 0.20% or less.

Nb:0.20%以下
Ti:0.20%以下
これらの成分は、浸炭時に生じる結晶粒の成長を抑制し、整粒組織を保つ上で有効である。但し過大な添加は加工性に悪影響を及ぼすので、それぞれ含有量を0.20%以下とする。Nb,Tiの望ましい含有量の下限値はそれぞれ0.001%,0.001%である。
Nb: 0.20% or less
Ti: 0.20% or less These components are effective in suppressing the growth of crystal grains generated during carburizing and maintaining a sized structure. However, excessive addition has an adverse effect on processability, so the content should be 0.20% or less. The lower limit values of the desirable contents of Nb and Ti are 0.001% and 0.001%, respectively.

N:0.05%以下
Nが存在すると結晶粒の粗大化を防止する作用があるので、少なくとも0.001%を存在させることが好ましい。この効果は0.05%程度で飽和するので、含有量をこれ以下とする。
N: 0.05% or less When N is present, there is an effect of preventing the coarsening of crystal grains. Therefore, it is preferable that at least 0.001% be present. Since this effect is saturated at about 0.05%, the content is made less than this.

B:0.01%以下
Bは、焼入れ性の向上に効果があるので、所望により添加する。大量の存在は加工性にとって有害であるから、0.01%以下の範囲内で添加量を選択する。望ましい含有量の下限値は0.001%である。
B: 0.01% or less B is effective in improving hardenability, so is added as desired. Since the presence of a large amount is harmful to processability, the addition amount is selected within a range of 0.01% or less. The lower limit of the desirable content is 0.001%.

[Si%]+[Ni%]+[Cu%]−[Cr%]>0.3・・・式(1)
Si,Ni及びCuは炭化物の生成を抑制し、一方Crは増加させる。
浸炭部品に生じた炭化物が、浸炭部品と相手部材との圧接の妨げとなるのを防ぐことを狙いとする本発明では、Si,Ni,Cu及びCrの添加量をバランスさせ、真空浸炭時における炭化物生成を阻む。その目的のためにSi,Ni,Cu,Crが上記式(1)を満たすように含有させる。
[Si%] + [Ni%] + [Cu%] − [Cr%]> 0.3 (1)
Si, Ni and Cu suppress the formation of carbides, while Cr increases.
In the present invention aiming at preventing the carbide generated in the carburized part from interfering with the pressure contact between the carburized part and the mating member, the amount of addition of Si, Ni, Cu and Cr is balanced, and at the time of vacuum carburizing Prevents carbide formation. For that purpose, Si, Ni, Cu and Cr are contained so as to satisfy the above formula (1).

24×[Si%]+3.2×[Mn%]+6.8×[Cr%]>28・・・式(2)
Si,Mn,Crは、鋼の熱伝導率を低下させる効果がある。式(2)中Si,Mn,Crの係数は、それぞれ熱伝導率低下に対する寄与度を表している。
式(2)の左辺の値が28を超えるように成分調整することで、圧接時において浸炭部品の接合面に生じた摩擦熱の拡散を抑え、接合を良好に行うことができる。
24 x [Si%] + 3.2 x [Mn%] + 6.8 x [Cr%]> 28 ... Formula (2)
Si, Mn, and Cr have the effect of reducing the thermal conductivity of steel. In formula (2), the coefficients of Si, Mn, and Cr represent the degree of contribution to the decrease in thermal conductivity.
By adjusting the components so that the value of the left side of Equation (2) exceeds 28, diffusion of frictional heat generated on the joint surface of the carburized component during pressure welding can be suppressed, and bonding can be performed satisfactorily.

摩擦圧接による接合方法の一例を模式的に表した図である。It is the figure which represented typically an example of the joining method by friction welding. 引張試験片の形状を示した図である。It is the figure which showed the shape of the tension test piece.

次に本発明の実施例を以下に説明する。
表1の実施例、参考例および比較例に示す化学組成の鋼を溶製し、熱間鍛造にてφ12mmの棒材に加工し、真空浸炭処理を行った。
真空浸炭は次のような条件の下で行った。
ここでは滴注式ガス浸炭炉を用い、キャリアガスにメタノール分解ガスを、エンリッチガスにプロパンを使用して行った。炉内を真空引きして1.5kPaの減圧状態とし、上記棒材を950℃に加熱して60分間浸炭処理した。
次いで1.5kPaの下で60分拡散処理をした後、温度を焼入れ温度である850℃に落として30分間保持し、その後油焼入れを行った。更にその後180℃で60分間焼戻しを行った。
Next, examples of the present invention will be described below.
Steels having chemical compositions shown in the examples , reference examples, and comparative examples in Table 1 were melted and processed into rods having a diameter of 12 mm by hot forging, followed by vacuum carburization.
The vacuum carburization was performed under the following conditions.
Here, a drop-type gas carburizing furnace was used, using methanol decomposition gas as the carrier gas and propane as the enriched gas. The inside of the furnace was evacuated to a reduced pressure of 1.5 kPa, and the bar was heated to 950 ° C. and carburized for 60 minutes.
Next, after 60 minutes of diffusion treatment under 1.5 kPa, the temperature was lowered to the quenching temperature of 850 ° C. and held for 30 minutes, followed by oil quenching. Further, tempering was performed at 180 ° C. for 60 minutes.

Figure 0006201534
Figure 0006201534

以上のようにして真空浸炭処理した試験片について酸化物面積率,炭化物面積率の測定を行い、またφ12mmのJIS FCD400の棒材を相手部材として圧接試験を行った。更に圧接による接合部から接合面を含む引張試験片を切り出して引張試験を行った。
ここで酸化物面積率,炭化物面積率は以下のようにして求めた。また圧接試験は以下の条件の下で行った。
The oxide area ratio and the carbide area ratio were measured for the test pieces vacuum-carburized as described above, and a pressure welding test was performed using a JIS FCD400 rod of φ12 mm as a mating member. Further, a tensile test piece including a joint surface was cut out from a joint portion by pressure welding and a tensile test was performed.
Here, the oxide area ratio and the carbide area ratio were obtained as follows. The pressure contact test was performed under the following conditions.

<酸化物面積率及び炭化物面積率の測定>
浸炭後の棒材の表面をナイタールで腐食し、SEM観察(1000倍)を行って酸化物及び炭化物の面積率の測定を行った。
<Measurement of oxide area ratio and carbide area ratio>
The surface of the bar material after carburizing was corroded with nital, and SEM observation (1000 times) was performed to measure the area ratio of oxides and carbides.

<圧接試験>
ブレーキ式摩擦圧接機を用い、摩擦圧力40MPa,アプセット圧力100MPa,全寄り量2mmの条件で摩擦圧接を行った。
<Pressure welding test>
Using a brake friction welding machine, friction welding was performed under the conditions of a friction pressure of 40 MPa, an upset pressure of 100 MPa, and a total displacement of 2 mm.

<引張試験>
圧接による接合部から接合面を含む引張試験片を切り出し、引張試験を行った。
図2に引張試験片の形状を示す。試験片はJIS Z 2201の14A号試験片に基づいており、図中左半分が浸炭部品であり、右半分がFCD400材である。
これらの結果が表2に示してある。
<Tensile test>
A tensile test piece including a bonded surface was cut out from the bonded portion by pressure welding, and a tensile test was performed.
FIG. 2 shows the shape of the tensile test piece. The test piece is based on a JIS Z 2201 No. 14A test piece, and the left half in the figure is a carburized part and the right half is an FCD400 material.
These results are shown in Table 2.

Figure 0006201534
Figure 0006201534

これら表1,2より以下のことが分かる。
比較例1は、Siの添加量が本発明の下限値よりも少なく、式(1)の左辺([Si%]+[Ni%]+[Cu%]−[Cr%])の値が本発明の下限値を下回っており、浸炭後浸炭部品に炭化物が発生している。また式(2)の左辺(24×[Si%]+3.2×[Mn%]+6.8×[Cr%])の値も本発明の下限値を下回っていて浸炭部品の熱伝導率が十分に低くない。
その結果、圧接による接合部の強度が低く、引張試験において接合部で破断している。
From Tables 1 and 2, the following can be understood.
In Comparative Example 1, the amount of Si added is less than the lower limit of the present invention, and the value of the left side ([Si%] + [Ni%] + [Cu%] − [Cr%]) of the formula (1) is It is below the lower limit of the invention, and carbides are generated in the carburized parts after carburizing. Moreover, the value of the left side (24 × [Si%] + 3.2 × [Mn%] + 6.8 × [Cr%]) of the formula (2) is also below the lower limit of the present invention, and the thermal conductivity of the carburized parts is Not low enough.
As a result, the strength of the joint by pressure welding is low, and the joint is broken in the tensile test.

一方、比較例2,3は、Siの添加量は本発明の範囲内であるものの、式(1)の左辺の値が本発明の下限値を下回っており、浸炭後炭化物が発生している。また式(2)の左辺の値が本発明の下限値を下回っていて、浸炭部品の熱伝導率が低くない。
その結果、圧接後の引張試験において接合部で破断が生じており、接合強度も低い。
On the other hand, in Comparative Examples 2 and 3, although the addition amount of Si is within the range of the present invention, the value on the left side of the formula (1) is lower than the lower limit value of the present invention, and carbides are generated after carburizing. . Moreover, the value of the left side of Formula (2) is less than the lower limit of this invention, and the thermal conductivity of a carburized component is not low.
As a result, in the tensile test after pressure welding, fracture occurs at the joint and the joint strength is low.

比較例4は、ガス浸炭を行っているため浸炭後の浸炭部品に酸化物が発生しており、圧接後の引張試験において接合部で破断が生じており、接合強度に低い。   In Comparative Example 4, since gas carburizing is performed, oxides are generated in the carburized parts after carburizing, fractures are generated at the joints in the tensile test after pressure welding, and the bonding strength is low.

比較例5,6は、式(2)の左辺の値が本発明の下限値を下回っており、浸炭部品の熱伝導率が低くない。
その結果、圧接における接合部の強度が低く、引張試験において接合部で破断が生じている。
In Comparative Examples 5 and 6, the value on the left side of Equation (2) is below the lower limit of the present invention, and the thermal conductivity of the carburized component is not low.
As a result, the strength of the joint portion in the pressure welding is low, and the fracture occurs in the joint portion in the tensile test.

これらに対し、式(1)の左辺の値,式(2)の左辺の値が何れも本発明で規定する範囲を満たした鋼を用いて真空浸炭され、圧接接合されて成る実施例および参考例は、圧接による接合部の強度が十分に高強度で、そのために圧接後の引張試験では接合部で破断せずにFCD400母材側で破断を生じている。
On the other hand, Examples and References in which the value of the left side of Equation (1) and the value of the left side of Equation (2) are both vacuum carburized and pressure welded using steel satisfying the range defined in the present invention. In the example , the strength of the joint portion by pressure welding is sufficiently high, and therefore, in the tensile test after pressure welding, the fracture occurs at the FCD400 base material side without breaking at the joint portion.

10A,10B 被接合部材         10A, 10B Joined member

Claims (1)

真空浸炭され、相手部材に対して圧接により接合される浸炭部品に用いられる鋼であって、
質量%で
C:0.10〜0.30%
Si:0.40〜3.00%
Mn:0.30〜3.00%
P:0.030%以下
S:0.030%以下
Cu:0.01〜1.00%
Ni:0.01〜3.00%
Cr:0.30〜3.00%
残部Fe及び不可避的不純物の組成を有し且つ下記式(1)及び式(2)を満たしていることを特徴とする浸炭部品用鋼。
[Si%]+[Ni%]+[Cu%]−[Cr%]>0.3・・・式(1)
24×[Si%]+3.2×[Mn%]+6.8×[Cr%]>28・・・式(2)
Steel used for carburized parts that are vacuum carburized and joined by pressure welding to the mating member,
By mass% C: 0.10 to 0.30%
Si: 0.40 to 3.00%
Mn: 0.30 to 3.00%
P: 0.030% or less S: 0.030% or less
Cu: 0.01 to 1.00%
Ni: 0.01 to 3.00%
Cr: 0.30 to 3.00%
A steel for carburized parts having a composition of remaining Fe and inevitable impurities and satisfying the following formulas (1) and (2).
[Si%] + [Ni%] + [Cu%] − [Cr%]> 0.3 (1)
24 x [Si%] + 3.2 x [Mn%] + 6.8 x [Cr%]> 28 ... Formula (2)
JP2013180506A 2013-08-30 2013-08-30 Steel for carburized parts Active JP6201534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013180506A JP6201534B2 (en) 2013-08-30 2013-08-30 Steel for carburized parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013180506A JP6201534B2 (en) 2013-08-30 2013-08-30 Steel for carburized parts

Publications (2)

Publication Number Publication Date
JP2015048505A JP2015048505A (en) 2015-03-16
JP6201534B2 true JP6201534B2 (en) 2017-09-27

Family

ID=52698769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013180506A Active JP6201534B2 (en) 2013-08-30 2013-08-30 Steel for carburized parts

Country Status (1)

Country Link
JP (1) JP6201534B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE511100C2 (en) * 1995-09-07 1999-08-02 Volvo Wheel Loaders Ab Shaft and procedure for its manufacture
SE507440C2 (en) * 1996-06-20 1998-06-08 Sandvik Ab Friction welded drill rod and method of manufacturing the drill rod
SE507439C2 (en) * 1996-06-24 1998-06-08 Sandvik Ab Friction welded drill rod and method of manufacturing the drill rod
JP4254816B2 (en) * 2005-08-24 2009-04-15 大同特殊鋼株式会社 Carburized parts
JP5018586B2 (en) * 2007-04-09 2012-09-05 大同特殊鋼株式会社 High strength carburizing induction hardening parts
JP2009114488A (en) * 2007-11-02 2009-05-28 Daido Steel Co Ltd Steel for rolling member, rolling member and method for manufacturing rolling member

Also Published As

Publication number Publication date
JP2015048505A (en) 2015-03-16

Similar Documents

Publication Publication Date Title
JP7052041B2 (en) A method of preparing welded steel blanks by preparing filler wires with a defined carbon content, a method of manufacturing welded parts using related welded blanks, hot press forming and cooled steel parts and related parts.
JP5423324B2 (en) Steel plate for high-strength line pipe and steel pipe for high-strength line pipe with excellent resistance to hydrogen-induced cracking
JP5157606B2 (en) TIG welding method of high strength steel using flux cored wire
US9457416B2 (en) Fillet weld joint and method for gas shielded arc welding
EP2832889A1 (en) Low yield ratio high-strength steel plate having superior strain aging resistance, production method therefor, and high-strength welded steel pipe using same
RU2677554C1 (en) Steel plates for construction pipes or tubes, steel plates for construction pipes or tubes manufacturing method, and construction pipes or tubes
JP2009197327A (en) Hollow member and method for production thereof
JP2009255169A (en) Flux-cored wire for extra-low hydrogen welding, and method for producing the same
JPS629646B2 (en)
JP2009131870A (en) Flux-cored wire for submerged arc welding of low-temperature steel, and welding method using the same
CN110382154B (en) Fillet welded joint and method for manufacturing same
JP2011001599A (en) Steel for machine structure suitable to friction pressure welding, method for producing the same, and friction pressure-welded component
JP5549176B2 (en) Method for producing martensitic stainless steel welded pipe with excellent intergranular stress corrosion cracking resistance
JP7277834B2 (en) SOLID WIRE FOR WELDING ALUMINUM PLATED STEEL STEEL AND METHOD FOR MANUFACTURING WELD JOINT
JP2019532816A (en) Method of manufacturing a steel part including adding molten metal on a support part, and part obtained thereby
WO1995027586A1 (en) Alloy foil capable of liquid-phase diffusion welding of heat-resisting material in oxidizing atmosphere
JPWO2012108027A1 (en) High-strength steel for steam piping and method for manufacturing the same
JP2007136547A (en) Method for producing metallic flux cored wire with little slag and welded joint having high fatigue strength
JP7024798B2 (en) Steel plate, tailored blank, hot press molded product, steel pipe, hollow hardened molded product, steel plate manufacturing method, tailored blank manufacturing method, hot pressed molded product manufacturing method, steel pipe manufacturing method, and hollow hardened molded product. Manufacturing method
JP2009191330A (en) Electric resistance steel tube
JP5028761B2 (en) Manufacturing method of high strength welded steel pipe
JP6201534B2 (en) Steel for carburized parts
JP2002239722A (en) Lap fillet welding method for steel sheet excellent in fatigue strength of weld zone
JP6638002B2 (en) Manufacturing method of welding joint and welding method
JP2005288504A (en) Welded joint excellent in fatigue strength and its welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160623

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20161222

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170814

R150 Certificate of patent or registration of utility model

Ref document number: 6201534

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150