JP6199218B2 - Manufacturing method of slab for thick plate - Google Patents

Manufacturing method of slab for thick plate Download PDF

Info

Publication number
JP6199218B2
JP6199218B2 JP2014061824A JP2014061824A JP6199218B2 JP 6199218 B2 JP6199218 B2 JP 6199218B2 JP 2014061824 A JP2014061824 A JP 2014061824A JP 2014061824 A JP2014061824 A JP 2014061824A JP 6199218 B2 JP6199218 B2 JP 6199218B2
Authority
JP
Japan
Prior art keywords
ingot
rolling
steel
thickness
steel ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014061824A
Other languages
Japanese (ja)
Other versions
JP2015182118A (en
Inventor
斧田 博之
博之 斧田
森下 雅史
雅史 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2014061824A priority Critical patent/JP6199218B2/en
Publication of JP2015182118A publication Critical patent/JP2015182118A/en
Application granted granted Critical
Publication of JP6199218B2 publication Critical patent/JP6199218B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、厚板用スラブの製造方法に関する。
The present invention relates to a method for producing a thick plate slab.

鋳造法により得た鋼塊を一対の分塊圧延ロールで圧延して厚板用鋼を生成する場合、分塊圧延時に鋼塊の頭部及び底部に、厚み方向に折れ込む二枚板状のオーバーラップと幅方向中央部が圧延方向から視て凹形状となるフィッシュテールとが成長し形状不良部(以下、これらを含めてクロップと記す)となる。   When producing steel for thick plates by rolling a steel ingot obtained by a casting method with a pair of ingot rolling rolls, a double plate-like shape that folds in the thickness direction at the head and bottom of the ingot at the time of ingot rolling The overlap and the fish tail having a concave shape when viewed in the rolling direction are grown from the rolling direction to form a defective shape portion (hereinafter referred to as a crop).

クロップは、製品に使用できず切り捨てられる部分であるため、クロップによるロスを極限まで減らすことが分塊圧延の歩留り向上の上で重要な課題である。なお、鋼種によるが、鋼塊の頭部側では押湯部分に生ずる偏析不良部の切り捨て量が分塊圧延の歩留りに大きく影響し、頭部側のトップクロップによる分塊圧延の歩留りへの影響は小さい。   Since the crop is a portion that cannot be used in the product and is cut off, it is an important issue to improve the yield of the partial rolling to reduce the loss due to the crop to the limit. Depending on the steel type, the amount of rounding off of segregation failure occurring in the hot metal part on the head side of the steel ingot has a significant effect on the yield of segment rolling, and the effect on the yield of segment rolling by the top crop on the head side. Is small.

そこで、(1)底部を絞り形状とすることにより、分塊圧延時に発生するボトムクロップの大きさを低減する鋼塊(特開昭56−53802号公報参照)や、(2)分塊圧延を行う前に大径ロールによって鋼塊の底部に凹部を形成(噛み戻し圧延)することにより、鋼塊の底部を絞り形状とする鋼塊(特開昭53−93158号公報参照)が考案されている。   Therefore, (1) a steel ingot (refer to Japanese Patent Laid-Open No. Sho 56-53802) that reduces the size of the bottom crop generated during the block rolling by making the bottom portion a drawing shape, and (2) the block rolling is performed. A steel ingot (see Japanese Patent Application Laid-Open No. 53-93158) has been devised in which the bottom of the steel ingot is formed into a drawn shape by forming a recess in the bottom of the steel ingot with a large-diameter roll (rolling back rolling). Yes.

しかし、上記(1)の鋼塊でも、分塊圧延ロールの外径が小さい場合や分塊圧延ロールによる圧下量が小さい場合にはオーバーラップが生じ易く、ボトムクロップの大きさを十分に低減できないおそれがある。この理由は、圧延する鋼塊の厚さに比して分塊圧延ロールの外径が小さい又は圧下量が小さいと、分塊圧延ロールによって圧延される表層部のメタルが厚さ方向中央部のメタルよりも流動し易いため、鋼塊の端部にオーバーラップが生じ易くなるからである。   However, even in the case of the steel ingot of (1) above, when the outer diameter of the segment rolling roll is small or when the amount of reduction by the segment rolling roll is small, overlap is likely to occur, and the size of the bottom crop cannot be reduced sufficiently. There is a fear. The reason for this is that if the outer diameter of the rolling roll is small or the amount of reduction is small compared to the thickness of the steel ingot to be rolled, the surface layer metal rolled by the rolling roll will be in the middle in the thickness direction. This is because it is easier to flow than metal, so that overlap easily occurs at the end of the steel ingot.

また、上記(2)の鋼塊でも、分塊圧延ロールの外径が小さい場合又は圧下量が小さい場合にはオーバーラップが生じ易く、ボトムクロップの大きさを十分に低減できないおそれがある。また、噛み戻し圧延は大径ロールによる強圧下が必要であるため設備改造が必要となるおそれや、噛み戻し圧延を実施するために生産性が低下するおそれもある。   Further, even in the case of the steel ingot of (2), when the outer diameter of the split roll is small or the reduction amount is small, the overlap is likely to occur, and the size of the bottom crop may not be sufficiently reduced. In addition, since biting rolling requires strong reduction with a large-diameter roll, there is a risk that facility modification may be required, and productivity may be reduced because biting rolling is performed.

特開昭56−53802号公報JP-A-56-53802 特開昭53−93158号公報JP-A-53-93158

本発明は、上述のような事情に基づいてなされたものであり、分塊圧延して厚板用スラブを生成する際の生産性を低下させることなくボトムクロップロスを低減できる分塊圧延用鋼塊の提供を目的とする。   The present invention has been made based on the above-described circumstances, and steel for split rolling that can reduce bottom crop loss without reducing productivity when split rolling to produce a slab for thick plate. The purpose is to provide lumps.

上記課題を解決するためになされた発明は、質量が20t以上80t以下、厚みが200mm以上600mm以下の厚板用スラブを製造する方法であって、分塊圧延用鋼塊を鋳造する工程と、上記分塊圧延用鋼塊を、半径r(mm)の一対の分塊圧延ロールを用いて圧下量d(mm)で熱間圧延する工程とを備え、上記分塊圧延用鋼塊が、上下底が長方形で軸中心に対称な角錐台状のベース形状を有し、上記長方形の一対の長辺側側面に、ベース形状を基準として厚みが小さく上底に向かって漸増する第一テーパ部、この第一テーパ部に連続する部分円柱凹面状の連結部、及びこの連結部に連続し、厚みがベース形状まで漸増する第二テーパ部を下底側から順に有し、上記ベース形状の中心軸を通り上下底の長辺と垂直な断面において、上記ベース形状の下底と長辺側側面を延長した第一仮想面とが成す傾斜角θ3が70°以上89°以下であり、上記下底における厚みD(mm)が、上記分塊圧延ロールの半径r(mm)及び圧下量d(mm)との間で下記式(1)、及びベース形状厚みD0(mm)との間で下記式(2)を満たし、上記断面において、上記下底と第一テーパ部とが成す傾斜角θ2が80°以上90°未満、上記下底と第二テーパ部を延長した第二仮想面とが成す傾斜角θ1が45°以上75°以下、第一テーパ部の高さHが100mm以上400mm以下であり、上記断面を基準とする連結部の曲率半径が10mm以上70mm以下であることを特徴とする。
3×(r×d)0.5<D<5×(r×d)0.5 ・・・(1)
0.5<D/D0<0.8 ・・・(2)
The invention made to solve the above problems is a method of manufacturing a slab for a thick plate having a mass of 20 t or more and 80 t or less and a thickness of 200 mm or more and 600 mm or less, the step of casting a steel ingot for split rolling, Hot-rolling the ingot for ingot rolling with a reduction amount d (mm) using a pair of ingot rolling rolls having a radius of r (mm). A first tapered portion having a base shape of a truncated pyramid that has a rectangular bottom and a base that is symmetrical with respect to the axial center, and that gradually increases toward the upper base with a small thickness on the basis of the base shape on a pair of long side surfaces of the rectangle; The base-shaped central axis has a partial cylindrical concave connecting portion that continues to the first tapered portion, and a second tapered portion that continues to the connecting portion and has a thickness that gradually increases to the base shape from the bottom side. In the cross section passing through the long side of the top and bottom bottom, above The inclination angle θ3 formed by the bottom bottom of the source shape and the first imaginary plane extending from the long side surface is 70 ° or more and 89 ° or less, and the thickness D (mm) at the bottom bottom is the above-mentioned block rolling roll The following formula (1) is satisfied between the radius r (mm) and the reduction amount d (mm), and the following formula (2) is satisfied with the base shape thickness D0 (mm). And the first taper portion has an inclination angle θ2 of 80 ° or more and less than 90 °, and the inclination angle θ1 formed by the lower bottom and the second virtual surface extending the second taper portion is 45 ° or more and 75 ° or less, The height H of the tapered portion is 100 mm or more and 400 mm or less, and the radius of curvature of the connecting portion based on the cross section is 10 mm or more and 70 mm or less.
3 × (r × d) 0.5 <D <5 × (r × d) 0.5 (1)
0.5 <D / D0 <0.8 (2)

当該分塊圧延用鋼塊は、上記下底における厚みD(mm)、分塊圧延ロールの半径r(mm)及び圧下量d(mm)が上記式(1)を満たすことにより、圧延時における鋼塊の表層部と中心部とのメタル流動の差が小さくなり、鋼塊端部に生ずるオーバーラップ又は厚み方向の凸形状の発生量を低減できるので分塊圧延の歩留りが向上する。また、当該分塊圧延用鋼塊は、曲率半径が上記下限以上の連結部と、傾斜角θ2が上記下限以上で高さHが上記下限以上の第一テーパ部とを有することにより、型抜き時に鋳型の欠けが生じ難いので、鋳型の寿命を長くでき厚板用スラブの製造コストが低減できる。また、当該分塊圧延用鋼塊は、連結部の曲率半径が上記上限以下であることにより鋼塊の割れが防止され、第二テーパ部の傾斜角θ1が上記下限以上であることにより分塊圧延後のスラブに2枚肌(噛み込まれた形状)が生じ難い。また、当該分塊圧延用鋼塊は、第二テーパ部の傾斜角θ1が上記上限以下であり、第一テーパ部の高さHが上記上限以下であることにより、鋼塊内部にザク欠陥が発生し難く、高品質の分塊圧延用鋼塊が得られる。当該分塊圧延用鋼塊は、このような構成の第一テーパ部、第一テーパ部に連続する連結部、及び連結部に連続する第二テーパ部を下底側から順に有することにより、生産性を低下させることなく底部側のクロップロスを低減して分塊圧延の歩留りを向上させることができる。   The ingot for rolling is in the rolling state when the thickness D (mm) at the lower bottom, the radius r (mm) of the rolling roll and the reduction amount d (mm) satisfy the above formula (1). The difference in metal flow between the surface layer portion and the center portion of the steel ingot is reduced, and the amount of overlap or thickness-shaped convex shape generated at the end of the steel ingot can be reduced, so that the yield of the ingot rolling is improved. Further, the ingot for ingot rolling includes a connecting portion having a radius of curvature equal to or greater than the lower limit and a first tapered portion having an inclination angle θ2 equal to or greater than the lower limit and a height H equal to or greater than the lower limit. Sometimes the mold is not easily chipped, so that the life of the mold can be extended and the manufacturing cost of the slab for thick plate can be reduced. Further, the ingot for ingot rolling is prevented from cracking of the ingot when the radius of curvature of the connecting portion is not more than the above upper limit, and the ingot of inclining of the second taper portion is not less than the above lower limit. Two-skin skin (bited shape) hardly occurs in the slab after rolling. Further, in the ingot for ingot rolling, the inclination angle θ1 of the second taper portion is equal to or less than the above upper limit, and the height H of the first taper portion is equal to or less than the above upper limit. It is difficult to generate, and a high-quality ingot for ingot rolling is obtained. The ingot for ingot rolling is produced by having the first tapered portion having such a configuration, the connecting portion continuing to the first tapered portion, and the second tapered portion continuing to the connecting portion in order from the lower bottom side. Therefore, the crop loss on the bottom side can be reduced and the yield of the block rolling can be improved without reducing the property.

なお、「ベース形状」とは、当該分塊圧延用鋼塊の外形を包含する仮想形状を意味し、「上底」とは、下注鋼塊鋳造方法により鋼塊を鋳造する際のベース形状の天面を意味し、「下底」とは、鋼塊を鋳造する際のベース形状の底面を意味する。また、「第一テーパ部の高さ」とは、第一テーパ部が連結部に連続する位置と下底との最短距離を意味する。「圧下量」とは、一対の分塊圧延ロール間を鋼塊が1回通過して圧延される際における一方の分塊圧延ロール当たりの鋼塊の厚みの変化量を意味する。すなわち「圧下量」は、鋼塊が一対の分塊圧延ロール間を1回通過する際の通過前後における厚みの変化量の1/2である。   The “base shape” means a virtual shape that includes the outer shape of the ingot for ingot rolling, and the “upper bottom” means the base shape when casting the steel ingot by the lower steel ingot casting method. The “bottom floor” means the bottom surface of the base shape when casting a steel ingot. The “height of the first taper portion” means the shortest distance between the position where the first taper portion continues to the connecting portion and the bottom bottom. The “rolling amount” means the amount of change in the thickness of the steel ingot per one piece rolling roll when the steel ingot is rolled once through the pair of piece rolling rolls. That is, the “rolling amount” is ½ of the amount of change in thickness before and after passing the steel ingot once between a pair of split rolls.

以上説明したように、本発明の分塊圧延用鋼塊は、分塊圧延して厚板用スラブを生成する際の生産性を低下させることなくボトムクロップロスを低減できる。   As explained above, the ingot for ingot rolling of the present invention can reduce bottom crop loss without reducing productivity when ingot rolling to produce a slab for thick plate.

本発明の一実施形態に係る分塊圧延用鋼塊の幅方向から視た模式的側面図The schematic side view seen from the width direction of the steel ingot for a bundle rolling which concerns on one Embodiment of this invention 図1Aの分塊圧延用鋼塊の厚み方向から視た模式的側面図Schematic side view seen from the thickness direction of the steel for ingot rolling in FIG. 1A 図1Aの破線円形部分Aの拡大図Enlarged view of broken line circular part A in FIG. 1A 図1Aの分塊圧延用鋼塊の分塊圧延方法を示す模式的側面図FIG. 1A is a schematic side view showing a method of performing the rolling of the steel for ingot rolling shown in FIG. 1A.

以下、適宜図面を参照しつつ本発明の分塊圧延用鋼塊の実施形態について説明する。   Hereinafter, embodiments of the steel ingot for split rolling according to the present invention will be described with reference to the drawings as appropriate.

図1A、図1B及び図1Cに示す本発明の一実施形態に係る分塊圧延用鋼塊は、一対の分塊圧延ロールを用いた圧延により質量が20t以上80t以下、厚みが200mm以上600mm以下の厚板用スラブを生成するために用いられ、上底1及び下底2が長方形で軸中心に対称な角錐台状のベース形状3を有する。ベース形状3は、当該分塊圧延用鋼塊の外形を包含する仮想形状であり、図1A及び図1Bでは二点鎖線で示されている。当該分塊圧延用鋼塊は、図2に示す分塊圧延ロール9によって上記長方形の一対の長辺側側面が圧延される。本明細書では、上記一対の長辺側側面が対向する方向を厚さ方向と呼び、下底2から上底1に向かう図1A及び図1Bの上下方向を高さ方向と呼び、上記厚さ方向及び高さ方向と垂直な方向を幅方向と呼ぶ。当該分塊圧延用鋼塊は、上記一対の長辺側側面に、ベース形状3を基準として厚みが小さく上底1に向かって漸増する第一テーパ部4、この第一テーパ部4に連続する部分円柱凹面状の連結部5、及びこの連結部5に連続し、厚みがベース形状3まで漸増する第二テーパ部6を下底2側から順に有している。なお、連結部5は、曲面状であり、第一テーパ部4及び第二テーパ部6のそれぞれと滑らかに連続しているが、図1Bでは、連結部5を分かり易くするために第一テーパ部4及び第二テーパ部6との境界部分に破線を記載している。   The ingot for ingot rolling according to one embodiment of the present invention shown in FIG. 1A, FIG. 1B and FIG. 1C has a mass of 20 to 80 t and a thickness of 200 to 600 mm by rolling using a pair of ingot rolling rolls. The upper base 1 and the lower base 2 are rectangular and have a truncated pyramid-shaped base shape 3 that is symmetric about the axis. The base shape 3 is a virtual shape including the outer shape of the ingot for ingot rolling, and is indicated by a two-dot chain line in FIGS. 1A and 1B. The pair of long side faces of the rectangle are rolled on the ingot for ingot rolling by the ingot rolling roll 9 shown in FIG. In this specification, the direction in which the pair of long side surfaces face each other is referred to as a thickness direction, and the vertical direction in FIGS. 1A and 1B from the lower base 2 toward the upper base 1 is referred to as a height direction. A direction perpendicular to the direction and the height direction is referred to as a width direction. The ingot for ingot rolling is continuous with the first taper portion 4, which has a small thickness with respect to the base shape 3 and gradually increases toward the upper base 1 on the pair of long side surfaces. It has a partial cylindrical concave connection portion 5 and a second taper portion 6 that is continuous to the connection portion 5 and has a thickness that gradually increases to the base shape 3 in this order from the bottom 2 side. In addition, although the connection part 5 is curved-surface shape and continues smoothly with each of the 1st taper part 4 and the 2nd taper part 6, in order to make the connection part 5 easy to understand in FIG. A broken line is shown at the boundary between the portion 4 and the second taper portion 6.

また、当該分塊圧延用鋼塊は、図1A及び図1Bに示すように、頭部に絞り形状の押湯部分が形成されている。当該分塊圧延用鋼塊は、押湯枠方式以外の鋳造方法で鋳造してもよく、頭部に押湯部分を形成しなくてもよいが、押湯部分を形成することにより鋳造時に鋼塊に生じる偏析を押湯部分に集めることができ、高級品質の鋼塊が鋳造できる。偏析が問題となる鋼種において、この押湯部分は、圧延後にトップクロップとして切り捨てられる。   Moreover, as shown in FIG. 1A and FIG. 1B, the said steel ingot for partial rolling has the drawing-shaped feeder part formed in the head. The ingot for ingot rolling may be cast by a casting method other than the feeder frame method, and it is not necessary to form a feeder part on the head. The segregation generated in the lump can be collected in the feeder part, and a high-quality steel ingot can be cast. In the steel type where segregation is a problem, this feeder part is cut off as a top crop after rolling.

上記ベース形状3の中心軸を通り上底1及び下底2の長辺と垂直な断面において、すなわち図1Aの幅方向から視た模式的側面図において、上記ベース形状3の下底2と上記長辺側側面を延長した第一仮想面7とが成す傾斜角θ3の下限は、70°であり、75°がより好ましい。一方、上記傾斜角θ3の上限は、89°であり、88°がより好ましい。上記傾斜角θ3が上記下限未満であると、幅圧延時にトップクロップが大きくなりクロップの切り捨て量が増加するおそれがある。一方、上記傾斜角θ3が上記上限を超えると、型抜き時に鋳型から鋼塊が抜けなくなるおそれがある。   In a cross-section passing through the central axis of the base shape 3 and perpendicular to the long sides of the upper base 1 and the lower base 2, that is, in a schematic side view as viewed from the width direction of FIG. The lower limit of the inclination angle θ3 formed by the first virtual surface 7 extending the side surface on the long side is 70 °, and more preferably 75 °. On the other hand, the upper limit of the inclination angle θ3 is 89 °, more preferably 88 °. If the tilt angle θ3 is less than the lower limit, the top crop may be increased during width rolling, and the crop cut-off amount may increase. On the other hand, if the inclination angle θ3 exceeds the upper limit, the steel ingot may not be removed from the mold during die cutting.

ベース形状3の下底2と上底3との距離を当該分塊圧延用鋼塊の高さH0とした場合、当該分塊圧延用鋼塊の高さH0の下限としては、2000mmが好ましく、2200mmがより好ましい。一方、上記高さH0の上限としては、4000mmが好ましく、3500mmがより好ましい。上記高さH0が上記下限未満であると、高さが低くなることにより切り捨て量が増えるため、分塊圧延の歩留りが低下するおそれがある。一方、上記高さH0が上記上限を超えると、工場内での鋼塊の取り扱いが困難になるおそれがある。   When the distance between the lower base 2 and the upper base 3 of the base shape 3 is the height H0 of the ingot for rolling, the lower limit of the height H0 of the ingot for rolling is preferably 2000 mm, 2200 mm is more preferable. On the other hand, the upper limit of the height H0 is preferably 4000 mm, and more preferably 3500 mm. If the height H0 is less than the lower limit, the amount of cut-off increases as the height decreases, which may reduce the yield of split rolling. On the other hand, if the height H0 exceeds the upper limit, it may be difficult to handle the steel ingot in the factory.

<第一テーパ部>
上記第一テーパ部4は、図1A、図1B及び図1Cに示すように、上記長辺側側面の下底2との接続部分から上底1に向かって直線的に厚みが漸増する部分であり、厚みがベース形状3の厚みよりも小さい。
<First taper part>
As shown in FIGS. 1A, 1B and 1C, the first taper portion 4 is a portion where the thickness gradually increases linearly from the connecting portion with the lower base 2 on the long side surface toward the upper base 1. Yes, the thickness is smaller than the thickness of the base shape 3.

図1Aにおいて、上記下底2と上記第一テーパ部4とが成す傾斜角θ2の下限は、80°であり、82°がより好ましい。また、上記第一テーパ部4の傾斜角θ2は、90°未満であり、89°以下がより好ましい。上記傾斜角θ2が上記下限未満であると、型抜き時に鋳型が欠け、鋳型寿命が短くなるおそれがある。一方、上記傾斜角θ2が上記上限を超えると、型抜き時に鋳型から鋼塊が抜けなくなるおそれがある。   In FIG. 1A, the lower limit of the inclination angle θ2 formed by the lower base 2 and the first tapered portion 4 is 80 °, and more preferably 82 °. Further, the inclination angle θ2 of the first taper portion 4 is less than 90 °, and more preferably 89 ° or less. If the tilt angle θ2 is less than the lower limit, the mold may be lost during die cutting, and the mold life may be shortened. On the other hand, if the inclination angle θ2 exceeds the upper limit, the steel ingot may not be removed from the mold during die cutting.

上記第一テーパ部4の高さHの下限は、100mmであり、105mmがより好ましい。一方、上記高さHの上限は、400mmであり、350mmがより好ましい。上記高さHが上記下限未満であると、熱応力によって鋳型底部の凸部分が欠け鋳型寿命が短くなるおそれがあり、また、下記式(1)との関係によっては、オーバーラップが発生し易くクロップロスが大きくなるおそれがある。一方、上記高さHが上記上限を超えると、鋼塊内部にザク欠陥が発生し易くなり鋼塊の品質が悪化するおそれがある。鋳造時に溶湯が凝固する際、鋳塊の外表面から順次凝固していき、内部に残された溶湯が凝固するときに凝固収縮が生じ、その収縮分により粗大なポロシティの集まりであるザクが形成される。鋼塊は周囲から均一に凝固していくため、ベース形状3のように下底2に対して長辺側側面が傾斜する形状とすることによりザクを上方に集めることができる。しかし、鋼塊の下部にもザクは認められうるため、鋳型下部をベース形状から変更した際にはザク欠陥の発生状況が悪化することが考えられるので、鋼塊の品質を維持するために上記高さHを上記上限以下とする。   The minimum of the height H of the said 1st taper part 4 is 100 mm, and 105 mm is more preferable. On the other hand, the upper limit of the height H is 400 mm, more preferably 350 mm. If the height H is less than the lower limit, the convex portion at the bottom of the mold may be chipped due to thermal stress, and the mold life may be shortened, and depending on the relationship with the following formula (1), overlap is likely to occur. Crop loss may increase. On the other hand, when the height H exceeds the upper limit, a zack defect is likely to occur inside the steel ingot, and the quality of the steel ingot may be deteriorated. When the molten metal solidifies during casting, it gradually solidifies from the outer surface of the ingot, solidification shrinkage occurs when the molten metal remaining inside solidifies, and the shrinkage forms a zaku that is a collection of coarse porosity. Is done. Since the steel ingot is uniformly solidified from the periphery, the zaku can be gathered upward by forming a shape in which the long side surface is inclined with respect to the lower base 2 as in the base shape 3. However, since zaku can be observed in the lower part of the steel ingot, it is considered that when the lower part of the mold is changed from the base shape, the state of occurrence of zaku defects may be deteriorated. Therefore, in order to maintain the quality of the steel ingot, Height H shall be below the above-mentioned upper limit.

当該分塊圧延用鋼塊の下底2における厚みD(mm)は、分塊圧延ロール9の半径及び圧下量をr(mm)及びd(mm)としたとき、下記式(1)を満たす。
3×(r×d)0.5<D<5×(r×d)0.5 ・・・(1)
The thickness D (mm) at the lower bottom 2 of the ingot for rolling steel satisfies the following formula (1) when the radius and rolling amount of the rolling roll 9 are r (mm) and d (mm). .
3 × (r × d) 0.5 <D <5 × (r × d) 0.5 (1)

鋼塊等の材料を圧延ロールにより圧延する際に、圧延ロールの圧延によって材料が変形を起こす厚さは、材料に力を加えている領域の材料進行方向の長さ(以下、「圧下作用長さ」と呼ぶことがある)程度である。従って、圧延対象の鋼塊の厚みに対して圧下作用長さが小さいと、鋼塊の表層部のメタルが厚さ方向中央部のメタルよりも流動し易いため、鋼塊端部にオーバーラップが発生する。逆に、鋼塊の厚みに対して圧下作用長さが大きいと、鋼塊の表層部と中心部とのメタル流動の差が小さくなり、鋼塊端部に圧延方向から視て凸形状が発生する。そのため、鋼塊の厚みに対して圧下作用長さが小さすぎる場合及び大きすぎる場合のいずれの場合もクロップの切り捨て量が増加する。圧下作用長さは、(r×d)0.5で表すことができ、当該分塊圧延用鋼塊の下底2における厚みDが上記式(1)を満たすことにより、鋼塊端部におけるオーバーラップ及び凸形状の発生を抑制でき、クロップの切り捨て量が低減される。 When a material such as a steel ingot is rolled by a rolling roll, the thickness at which the material is deformed by the rolling of the rolling roll is the length in the material traveling direction of the region in which the force is applied to the material (hereinafter referred to as the "rolling action length"). It is sometimes called “sa”. Therefore, if the rolling action length is small relative to the thickness of the steel ingot to be rolled, the metal in the surface layer part of the steel ingot is more likely to flow than the metal in the central part in the thickness direction. Occur. Conversely, if the rolling action length is large relative to the thickness of the steel ingot, the difference in metal flow between the surface layer and the center of the steel ingot is reduced, and a convex shape is generated at the end of the steel ingot as viewed from the rolling direction. To do. Therefore, the amount of crop truncation increases in both cases where the rolling action length is too small and too large with respect to the thickness of the steel ingot. The rolling action length can be expressed by (r × d) 0.5 , and the thickness D at the bottom 2 of the ingot for ingot rolling satisfies the above formula (1). The occurrence of overlap and convex shape can be suppressed, and the crop cut-off amount is reduced.

また、ベース形状3の下底2における厚みをD0(mm)とした場合、上記分塊圧延用鋼塊の下底2における厚みD(mm)との比D/D0の値は、下記式(2)を満たす。
0.5<D/D0<0.8 ・・・(2)
Moreover, when the thickness in the lower base 2 of the base shape 3 is D0 (mm), the value of the ratio D / D0 with respect to the thickness D (mm) in the lower base 2 of the steel for ingot rolling is expressed by the following formula ( 2) is satisfied.
0.5 <D / D0 <0.8 (2)

上記分塊圧延用鋼塊の下底2における厚みDが上記式(1)を満たすときでも、上記比D/D0が0.5以下の場合には、後述する第二テーパ部6の傾斜角θ1が小さいと、分塊圧延後のスラブ表面が2枚肌となり易く、厚板用鋼の製品品質が損なわれるおそれがある。また、上記比D/D0が0.8以上の場合には、十分な歩留り向上効果が得られないおそれがある。   Even when the thickness D of the lower bottom 2 of the steel for ingot rolling satisfies the above formula (1), if the ratio D / D0 is 0.5 or less, the inclination angle of the second taper portion 6 to be described later If θ1 is small, the surface of the slab after the partial rolling tends to have two skins, which may impair the product quality of the steel for thick plates. Further, when the ratio D / D0 is 0.8 or more, there is a possibility that a sufficient yield improvement effect cannot be obtained.

<連結部>
上記連結部5は、図1Cに示すように、上記第一テーパ部4及び第二テーパ部6に滑らかに連続する曲面であり、幅方向から視て曲率半径Rの円柱凹面の一部の形状を有している。なお、図1Cに破線で示す円形は、連結部5の部分円柱凹面と同一の曲率半径Rを有する仮想円を示している。
<Connecting part>
As shown in FIG. 1C, the connecting portion 5 is a curved surface smoothly continuing to the first tapered portion 4 and the second tapered portion 6, and is a partial shape of a cylindrical concave surface having a radius of curvature R when viewed from the width direction. have. 1C indicates a virtual circle having the same radius of curvature R as the partial cylindrical concave surface of the connecting portion 5.

図1Cにおいて、連結部の部分円柱凹面の曲率半径Rの下限は、10mmであり、12mmがより好ましい。一方、上記曲率半径Rの上限は、70mmであり、68mmがより好ましい。上記曲率半径Rが上記下限未満であると、型抜き時に鋳型が欠け、鋳型寿命が短くなるおそれがある。一方、上記曲率半径Rが上記上限を超えると、鋼塊が割れるおそれがある。   In FIG. 1C, the lower limit of the radius of curvature R of the concave surface of the partial cylinder of the connecting portion is 10 mm, and more preferably 12 mm. On the other hand, the upper limit of the curvature radius R is 70 mm, more preferably 68 mm. If the radius of curvature R is less than the lower limit, the mold may be missing when the mold is removed, and the mold life may be shortened. On the other hand, when the curvature radius R exceeds the upper limit, the steel ingot may be broken.

<第二テーパ部>
上記第二テーパ部6は、図1Cに示すように、上記連結部5と滑らかに連続している。上記第二テーパ部6の厚みは、連結部5に連続する部分から上底1に向かってベース形状3まで漸増する。
<Second taper part>
As shown in FIG. 1C, the second tapered portion 6 is smoothly continuous with the connecting portion 5. The thickness of the second tapered portion 6 gradually increases from the portion continuing to the connecting portion 5 toward the base shape 3 toward the upper base 1.

図1Aにおいて、上記下底2と上記第二テーパ部6を延長した第二仮想面8とが成す傾斜角θ1の下限は、45°であり、46°がより好ましい。一方、上記傾斜角θ1の上限は、75°であり、74°がより好ましい。上記傾斜角θ1が上記下限未満であると、分塊圧延後のスラブ表面が2枚肌となり易く、厚板用鋼の製品品質が損なわれるおそれがある。一方、上記傾斜角θ1が上記上限を超えると、鋼塊内部にザク欠陥が発生し易くなり鋼塊の品質が悪化するおそれがある。   In FIG. 1A, the lower limit of the inclination angle θ1 formed by the lower base 2 and the second imaginary surface 8 obtained by extending the second tapered portion 6 is 45 °, and more preferably 46 °. On the other hand, the upper limit of the inclination angle θ1 is 75 °, more preferably 74 °. If the tilt angle θ1 is less than the lower limit, the slab surface after the ingot rolling is likely to have two skins, which may impair the product quality of the steel for thick plates. On the other hand, when the inclination angle θ1 exceeds the upper limit, a zack defect is likely to occur inside the steel ingot, and the quality of the steel ingot may be deteriorated.

なお、当該分塊圧延用鋼塊に用いる鋼種は、特に限定されるものではないが、SS鋼、CrMo鋼、高Ni鋼などを用いることができる。例えば表1に示すような所定の組成に調整した鋼を用いることができる。   The steel type used for the ingot for ingot rolling is not particularly limited, but SS steel, CrMo steel, high Ni steel and the like can be used. For example, steel adjusted to a predetermined composition as shown in Table 1 can be used.

Figure 0006199218
Figure 0006199218

<製品用鋼板の製造方法>
当該分塊圧延用鋼塊は、例えば以下の溶鋼処理工程及び鋳造工程により製造される。さらに、以下の分塊圧延工程及び製品圧延工程により、当該分塊圧延用鋼塊から製品の厚板用鋼板が製造される。
<Production method of steel sheet for products>
The ingot for ingot rolling is manufactured, for example, by the following molten steel processing step and casting step. Furthermore, the steel plate for thick plates of a product is manufactured from the said ingot for rolling and the said rolling ingot and a product rolling process.

(溶鋼処理工程)
高炉や転炉で溶製された溶鋼、又はスクラップを用いて電気炉で溶製された溶鋼は、溶鋼処理工程を経て表1に示すような所定の組成に調整される。また、O(酸素)、H(水素)等のガス成分や不純元素も溶鋼処理工程で除去される。
(Molten steel treatment process)
Molten steel melted in a blast furnace or converter, or molten steel melted in an electric furnace using scrap, is adjusted to a predetermined composition as shown in Table 1 through a molten steel treatment process. Further, gas components such as O (oxygen) and H (hydrogen) and impure elements are also removed in the molten steel treatment process.

(鋳造工程)
質量が20t以上80t以下の鋼塊を鋳造するため、鋳造工程では、一般的な下注鋼塊鋳造方法が採用される。具体的には、本実施形態で規定する形状の分塊圧延用鋼塊に対応する鋳型を作成し、この鋳型に上記溶鋼処理工程で調整した溶湯を注入し静置する。その後、常法により凝固した鋼塊を脱型する。このような工程により当該分塊圧延用鋼塊が製造される。
(Casting process)
In order to cast a steel ingot having a mass of 20 t or more and 80 t or less, a general pouring steel ingot casting method is employed in the casting process. Specifically, a mold corresponding to the ingot for ingot rolling having the shape defined in the present embodiment is prepared, and the molten metal adjusted in the molten steel treatment process is poured into this mold and left still. Thereafter, the solidified steel ingot is demolded by a conventional method. By such a process, the ingot for ingot rolling is manufactured.

(分塊圧延工程)
分塊圧延工程では、一対の分塊圧延ロールを用いて、製造した上記分塊圧延用鋼塊を900℃以上1200℃以下の温度で熱間圧延する。所定の厚みになるまで繰り返し上記分塊圧延用鋼塊を圧延し、厚みが200mm以上600mm以下の半製品のスラブを得る。
(Bunch rolling process)
In the partial rolling step, the manufactured steel ingot for partial rolling is hot-rolled at a temperature of 900 ° C. or higher and 1200 ° C. or lower using a pair of partial rolling rolls. The above-mentioned ingot for ingot rolling is repeatedly rolled until a predetermined thickness is obtained to obtain a semi-finished product slab having a thickness of 200 mm to 600 mm.

(製品圧延工程)
製品圧延工程では、上記分塊圧延工程で得られたスラブを1000℃以上に加熱し、粗圧延機及び仕上圧延機によって所定の厚みとなるまで熱間圧延し、製品用の厚板用鋼を得る。
(Product rolling process)
In the product rolling process, the slab obtained in the above-mentioned block rolling process is heated to 1000 ° C. or higher, hot-rolled to a predetermined thickness by a rough rolling mill and a finish rolling mill, and a steel plate for products is obtained. obtain.

<利点>
当該分塊圧延用鋼塊は、上下底が長方形で軸中心に対称な角錐台状のベース形状を有し、上記長方形の一対の長辺側側面に、ベース形状を基準として厚みが小さい第一テーパ部、この第一テーパ部に連続する部分円柱凹面状の連結部、及びこの連結部に連続し、厚みがベース形状まで漸増する第二テーパ部を下底側から順に有し、これらの各部を上述した構成とすることにより、製品の品質を損なうことなく底部側のクロップロスが低減できる。すなわち、当該分塊圧延用鋼塊により、生産性を低下させることなく分塊圧延の歩留りを向上させることができる。
<Advantages>
The ingot for ingot rolling has a base shape in the shape of a truncated pyramid whose upper and lower bases are rectangular and symmetrical with respect to the axis center, and a first thickness that is small with respect to the base shape on the pair of long side surfaces of the rectangle. A tapered portion, a partially cylindrical concave connecting portion that continues to the first tapered portion, and a second tapered portion that continues to the connecting portion and has a thickness that gradually increases to the base shape, in order from the lower bottom side. With the above-described configuration, the crop loss on the bottom side can be reduced without deteriorating the quality of the product. That is, the yield of the partial rolling can be improved by the steel ingot for the partial rolling without reducing the productivity.

以下、実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.

[鋼塊の鋳造]
図1A、図1B及び図1Cに示すような第一テーパ部、連結部及び第二テーパ部を有し、表2に示す鋼塊の下底における厚みD(mm)、ベース形状の下底における厚みD0(mm)、連結部の曲率半径R(mm)、第二テーパ部の傾斜角θ(°)、第一テーパ部の傾斜角θ(°)、ベース形状の傾斜角θ(°)、及び第一テーパ部の高さH(mm)を有する各鋼塊を鋳型を用いて鋳造した。具体的には、下注鋼塊鋳造方法により鋳型に溶湯を注入し、その後静置して試験用鋼塊を鋳造した。
[Casting steel ingots]
1A, FIG. 1B and FIG. 1C have a first tapered portion, a connecting portion, and a second tapered portion, and the thickness D (mm) at the bottom of the steel ingot shown in Table 2 thickness D0 (mm), the radius of curvature R of the connecting portion (mm), the inclination angle theta 1 of the second tapered portion (°), the inclination angle theta 2 of the first tapered portion (°), based inclination angle shape theta 3 ( °), and each steel ingot having a height H (mm) of the first taper portion was cast using a mold. Specifically, the molten steel was poured into the mold by the casting method of the ingot steel ingot, and then allowed to stand to cast a test ingot.

試験用鋼塊には、鋼種として表1に示す組成を有するSS鋼を用い、鋼塊質量20t以上80t以下の鋼塊を鋳造した。SS鋼は、分塊圧延時の温度が900℃以上1200℃以下と高く鋼種(成分)による変形挙動の差が小さいので他鋼種の変形挙動を模擬することができ、またSS鋼は、製品の厚みが大きく圧下量が少ないためザクが圧着されにくく、ザク欠陥が生成され易いことから、前述のように試験用鋼塊の鋼種としてSS鋼を用いた。   As the test steel ingot, SS steel having the composition shown in Table 1 was used as a steel type, and a steel ingot having a mass of 20 to 80 t was cast. Since SS steel has a high temperature at the time of ingot rolling of 900 ° C. or more and 1200 ° C. or less and the difference in deformation behavior due to the steel type (component) is small, the deformation behavior of other steel types can be simulated. Since the thickness is large and the amount of rolling reduction is small, it is difficult to press-fit the zaku, and zaku defects are easily generated. Therefore, as described above, SS steel was used as the steel type of the test ingot.

[型抜き]
試験用鋼塊を鋳造した後、クレーンを使用して鋳型から押湯枠を外し、クレーンで鋼塊を鋳型ごと吊り上げ、湯道部分の地金切りを行った。その後、鋳型ごと吊り上げた鋼塊を地面上の鋼塊抜き台上に乗せ、鋼塊を鋳型から突出させ、その突出した鋼塊上部をクレーンで掴んで引き上げ、鋳型から鋼塊を抜き出した。
[Die cutting]
After casting the test steel ingot, the feeder frame was removed from the mold using a crane, the steel ingot was lifted together with the mold with the crane, and the runner portion was cut. Thereafter, the steel ingot lifted together with the mold was placed on a steel ingot extraction table on the ground, the steel ingot was protruded from the mold, the upper portion of the protruding steel ingot was grasped with a crane, and the steel ingot was extracted from the mold.

[鋼塊の圧延]
ロール半径rが500mm以上700mm以下の分塊圧延ロールを用いて、30mm又は40mmの圧下量dで900℃以上1200℃以下の温度で試験用鋼塊を熱間圧延し評価用スラブを作成した。さらに、この評価用スラブを製品圧延して製品用の鋼板を得た。
[Rolling steel ingots]
Using an ingot-rolling roll having a roll radius r of 500 mm or more and 700 mm or less, a test steel ingot was hot-rolled at a temperature of 900 ° C. or more and 1200 ° C. or less with a reduction amount d of 30 mm or 40 mm to prepare an evaluation slab. Further, the evaluation slab was rolled to obtain a steel plate for products.

(実施例1)
実施例1では、表1に示すように本発明で規定するパラメータの数値範囲を満たす鋼塊を試験用鋼塊として鋳造し、鋼塊の下底における厚みDに対して上記式(1)の関係を満たす半径rの分塊圧延ロール及び圧下量dでこの試験用鋼塊を圧延し、評価用スラブを作成した。
Example 1
In Example 1, as shown in Table 1, a steel ingot that satisfies the numerical range of the parameters defined in the present invention is cast as a test ingot, and the above formula (1) is expressed with respect to the thickness D at the bottom of the steel ingot. The test steel ingot was rolled with a roll with a radius r satisfying the relationship and a reduction amount d, and an evaluation slab was prepared.

(実施例2、3、比較例1、2)
実施例2、3、比較例1、2の試験用鋼塊は、実施例1の試験用鋼塊とは鋼塊の下底における厚みDが異なるものとした。実施例2は、実施例1と同じ半径rを有する分塊圧延ロールで同じ圧下量dで圧延し、実施例3及び比較例1は、実施例1とは半径rが異なる分塊圧延ロールで圧延し、比較例2は、実施例1とは異なる圧下量dで圧延し、それぞれの評価用スラブを作成した。
(Examples 2 and 3, Comparative Examples 1 and 2)
The test steel ingots of Examples 2 and 3 and Comparative Examples 1 and 2 were different from the test steel ingot of Example 1 in thickness D at the bottom of the steel ingot. Example 2 rolls with the same rolling amount d with the same rolling r having the same radius r as in Example 1, and Example 3 and Comparative Example 1 are the rolling rolls having a radius r different from that of Example 1. Rolling was performed, and Comparative Example 2 was rolled with a reduction amount d different from that in Example 1 to prepare respective evaluation slabs.

(実施例4、5、6、比較例3、4)
実施例4、5、6、比較例3、4の試験用鋼塊は、実施例1の試験用鋼塊とは連結部の曲率半径Rが異なるものとした。実施例5及び実施例6は、実施例1とは半径rが異なる分塊圧延ロールで圧延し、それぞれの評価用スラブを作成した。実施例4、比較例3及び比較例4は、実施例1と同じ半径rを有する分塊圧延ロールで同じ圧下量dで圧延し、それぞれの評価用スラブを作成した。
(Examples 4, 5, and 6, Comparative Examples 3 and 4)
The test steel ingots of Examples 4, 5, 6 and Comparative Examples 3, 4 were different from the test steel ingot of Example 1 in the curvature radius R of the connecting portion. In Example 5 and Example 6, rolling was performed with a block rolling roll having a radius r different from that of Example 1, and respective evaluation slabs were prepared. In Example 4, Comparative Example 3 and Comparative Example 4, rolling was performed with the same rolling amount d with the same roll r having the same radius r as in Example 1, and each evaluation slab was created.

(実施例7、8、9、比較例5、6)
実施例8の試験用鋼塊は、第二テーパ部の傾斜角θが実施例1の試験用鋼塊と同じとし、鋼塊の下底における厚みDが実施例1の試験用鋼塊とは異なるものとした。また、実施例7、9、比較例5、6の試験用鋼塊は、実施例1の試験用鋼塊とは第二テーパ部の傾斜角θが異なるものとした。
(Examples 7, 8, and 9 and Comparative Examples 5 and 6)
In the test steel ingot of Example 8, the inclination angle θ 1 of the second taper portion is the same as that of the test steel ingot of Example 1, and the thickness D at the bottom of the steel ingot is the same as the test steel ingot of Example 1. Were different. The test steel ingots of Examples 7 and 9 and Comparative Examples 5 and 6 were different from the test steel ingot of Example 1 in the inclination angle θ 1 of the second taper portion.

(実施例10、11、12、比較例7、8)
実施例10、11、12、比較例7、8の試験用鋼塊は、実施例1の試験用鋼塊とは第一テーパ部の高さHが異なるものとした。実施例10、11、12、比較例7は、実施例1と同じ半径rの分塊圧延ロールで同じ圧下量dで圧延し、それぞれの評価用スラブを作成した。一方、比較例8は、実施例1と異なる半径rの分塊圧延ロールで圧延し、評価用スラブを作成した。
(Examples 10, 11, and 12, Comparative Examples 7 and 8)
The test steel ingots of Examples 10, 11, 12 and Comparative Examples 7 and 8 were different from the test steel ingot of Example 1 in the height H of the first taper portion. In Examples 10, 11, 12 and Comparative Example 7, rolling was performed with the same rolling amount d with the same roll r having the same radius as in Example 1, and respective evaluation slabs were prepared. On the other hand, Comparative Example 8 was rolled with a lump rolling roll having a radius r different from that of Example 1 to create an evaluation slab.

(実施例13、14、15、比較例9、10)
実施例13、15、比較例9、10の試験用鋼塊は、実施例1の試験用鋼塊とは第一テーパ部の傾斜角θが異なるものとした。実施例14の試験用鋼塊は、第一テーパ部の傾斜角θを実施例1の試験用鋼塊と同じとしたが、鋼塊の下底における厚みD及びベース形状の下底における厚みD0が実施例1の試験用鋼塊とは異なるものとした。
(Examples 13, 14, 15 and Comparative Examples 9, 10)
The test steel ingots of Examples 13 and 15 and Comparative Examples 9 and 10 were different from the test steel ingot of Example 1 in the inclination angle θ 2 of the first taper portion. Test steel ingot of Example 14, but the inclination angle theta 2 of the first tapered portion is the same as the test steel ingot in Example 1, the thickness of the lower base of the thickness D and the base shape of the lower bottom of the steel ingot D0 was different from the test steel ingot of Example 1.

<スラブ形状評価>
スラブ形状を評価するためにボトムクロップの切断重量を測定した。スラブの総重量に対するボトムクロップの切断重量の比をボトムクロップ率とし、ボトムクロップ率が2%未満の場合、評価「A」とし、ボトムクロップ率が2%以上の場合、評価「B」とした。
<Slab shape evaluation>
In order to evaluate the slab shape, the cut weight of the bottom crop was measured. The ratio of the cut weight of the bottom crop to the total weight of the slab is the bottom crop rate. When the bottom crop rate is less than 2%, the evaluation is “A”, and when the bottom crop rate is 2% or more, the evaluation is “B”. .

<鋼塊品質評価>
鋳造後の鋼塊について、表面割れの有無及びザク欠陥の発生状況を以下のように評価した。表面割れが発生せず、かつ下記超音波探傷試験により欠陥が検出されなかった場合を鋼塊品質が良好であると判定し、鋼塊品質の評価結果を「A」とした。
<Ingot quality evaluation>
About the steel ingot after casting, the presence or absence of surface cracks and the occurrence state of zaku defects were evaluated as follows. When the surface crack did not occur and no defect was detected by the following ultrasonic flaw detection test, the steel ingot quality was judged to be good, and the evaluation result of the steel ingot quality was set to “A”.

(表面割れ)
鋳造後の鋼塊の表面を目視で観察し、開口する割れが認められた場合、鋼塊品質の評価結果を「B」とした。
(Surface crack)
The surface of the steel ingot after casting was visually observed, and when an open crack was observed, the evaluation result of the steel ingot quality was “B”.

(ザク欠陥の発生状況)
製品圧延後の鋼板について、JIS−G0801(2008)に準拠した超音波探傷試験により空洞欠陥(以下、これを「ザク欠陥」と呼ぶことがある)の有無を確認することによりザク欠陥残存評価を行った。通常、鋳造により製造された鋼塊内部にはザクが存在し、鋼塊の下部にもザクが形成される場合がある。本発明の構成のように鋳型下部をベース形状から変更した際にはザク欠陥の発生状況が悪化することが考えられるため、鋼塊の底面から30%までの高さの範囲について上記超音波探傷試験を実施した。ここでは、超音波探傷試験において軽欠陥が1つでも検出された場合をザク欠陥の発生状況が従来に比べて悪化したと判定し、鋼塊品質の評価結果を「C」とした。
(Zaku defect occurrence status)
About the steel sheet after product rolling, the presence of a cavity defect (hereinafter, this may be referred to as “zaku defect”) is confirmed by an ultrasonic flaw detection test based on JIS-G0801 (2008). went. Usually, there is a zaku inside a steel ingot produced by casting, and there is a case where a zaku is formed also in the lower part of the steel ingot. When the lower part of the mold is changed from the base shape as in the configuration of the present invention, it is conceivable that the state of occurrence of the zaku defect deteriorates. Therefore, the ultrasonic flaw detection is performed in the range of the height from the bottom of the steel ingot to 30%. The test was conducted. Here, when at least one light defect was detected in the ultrasonic flaw detection test, it was determined that the state of occurrence of the zaku defect was worse than before, and the evaluation result of the steel ingot quality was set to “C”.

<スラブ品質評価>
分塊圧延時に、連結部を起点として内側に折れ込み(2枚肌)が発生する場合がある。そのため、分塊圧延後のスラブの表面を目視で観察し、折れ込みの発生が認められない場合をスラブ品質が良好であるものとして評価「A」とし、折れ込みの発生が認められる場合を評価「B」とした。
<Slab quality evaluation>
During the partial rolling, folding (double skin) may occur on the inside starting from the connecting portion. Therefore, the surface of the slab after partial rolling is visually observed, and the case where the occurrence of folding is not recognized is evaluated as “A” as the quality of the slab is good, and the case where folding is observed is evaluated. “B”.

<鋳型再利用性評価>
鋳型について、鋳造後の再利用が可能か否かを評価した。鋳型の弱い部分に熱応力がかかると鋳型が割れる場合がある。そのため、鋼塊鋳造後の鋳型を目視で観察し、欠損が認められる場合を評価「B」とした。また、鋳型内へ溶湯を注入後、鋳型ごと吊り上げた鋼塊を鋳型から外すために鋼塊抜き台上に乗せた際、鋳型から鋼塊が抜けない場合を型抜き不可として評価「C」とした。鋼塊が鋳型から脱型でき、かつ鋳型の欠損が認められない場合、鋳型の再利用が可能と判定し、評価「A」とした。
<Evaluation of mold reusability>
The mold was evaluated whether it could be reused after casting. If thermal stress is applied to a weak part of the mold, the mold may break. Therefore, the mold after steel ingot casting was visually observed, and the case where defects were observed was evaluated as “B”. In addition, after injecting the molten metal into the mold, when the steel ingot lifted together with the mold was placed on the steel ingot removing table to remove it from the mold, the case where the steel ingot could not be removed from the mold was evaluated as “C”. did. When the steel ingot could be removed from the mold and no mold defect was observed, it was determined that the mold could be reused, and the evaluation was “A”.

<総合評価>
本試験では、スラブ形状評価、鋼塊品質評価、スラブ品質評価及び鋳型再利用性評価の評価結果が共に「A」のものを不都合なくボトムクロップの切断重量が大幅に低減できるものとして総合評価を「A」とし、それ以外のものの総合評価を「B」とした。これらの評価結果を表2に示す。
<Comprehensive evaluation>
In this test, a comprehensive evaluation was made assuming that the evaluation results of slab shape evaluation, steel ingot quality evaluation, slab quality evaluation, and mold reusability evaluation were all “A”, and that the cutting weight of the bottom crop could be greatly reduced without inconvenience. “A” was assigned, and “B” was given as the overall evaluation for other items. These evaluation results are shown in Table 2.

Figure 0006199218
Figure 0006199218

[測定結果]
実施例1〜15は、いずれも鋼塊品質、スラブ品質及び鋳型再利用性共に良好であり、ボトムクロップの切断重量が従来に比べて大幅に低減した。
[Measurement result]
In each of Examples 1 to 15, the steel ingot quality, slab quality, and mold reusability were all good, and the cut weight of the bottom crop was greatly reduced as compared with the conventional case.

これに対し、比較例1及び2は、鋼塊品質、スラブ品質及び鋳型再利用性が良好であったが、従来に比べてボトムクロップの切断重量の大幅な低減がなく生産性の向上が認められなかった。比較例1及び2は、いずれも上記式(1)を満たしていない。比較例2は、鋼塊の下底における厚みDに対する圧下量dが小さいため圧延時の鋼塊に対する圧下作用長さが小さく、そのため圧延する鋼塊の中心近傍に比べて表層部のメタルフローが大きくなり、大きな折れ込みが発生しボトムクロップの切断重量が大きくなったといえる。逆に、比較例1は、鋼塊の下底における厚みDに対する分塊圧延ロールの半径rが大きいため圧下作用長さが大きく、そのため鋼塊の中心近傍でもメタルが流動し、スラブの端部に厚み方向中央部が突出する凸形状が形成されボトムクロップの切断重量が大きくなったといえる。   In contrast, Comparative Examples 1 and 2 had good steel ingot quality, slab quality, and mold reusability, but there was no significant reduction in the cutting weight of the bottom crop compared to the conventional case, and an improvement in productivity was recognized. I couldn't. Neither Comparative Example 1 nor 2 satisfies the above formula (1). In Comparative Example 2, since the rolling amount d with respect to the thickness D at the bottom of the steel ingot is small, the rolling action length on the steel ingot at the time of rolling is small, so that the metal flow of the surface layer portion is smaller than the vicinity of the center of the steel ingot to be rolled. It can be said that it became larger, a large fold occurred, and the cutting weight of the bottom crop increased. On the contrary, the comparative example 1 has a large rolling action length because the radius r of the split rolling roll with respect to the thickness D at the bottom of the steel ingot is large, so that the metal flows near the center of the steel ingot, and the end of the slab Thus, it can be said that the convex shape in which the central portion in the thickness direction protrudes is formed, and the cutting weight of the bottom crop is increased.

比較例3は、鋼塊鋳造後の鋳型に欠けが認められた。比較例3の試験用鋼塊は連結部の曲率半径Rが7mmと小さすぎるため、連結部に対応する鋳型の部分が熱応力に弱くなり、鋳型が割れて欠けが発生したと考えられる。また、比較例4は、試験用鋼塊の表面に開口する割れが認められた。これは、試験用鋼塊の連結部の曲率半径Rが大きいためであり、連結部の曲率半径Rが75mmでは大きすぎることがわかる。   In Comparative Example 3, chipping was observed in the mold after ingot casting. Since the test steel ingot of Comparative Example 3 has a radius of curvature R of the connecting portion as too small as 7 mm, the portion of the mold corresponding to the connecting portion is weak against thermal stress, and the mold is considered to be cracked and chipped. Further, in Comparative Example 4, cracks opening on the surface of the test steel ingot were observed. This is because the radius of curvature R of the connecting portion of the test steel ingot is large, and it can be seen that the radius of curvature R of the connecting portion is too large at 75 mm.

比較例5は、作成した評価用スラブに2枚肌が認められた。これは、試験用鋼塊の第二テーパ部の傾斜角θが小さいために、圧延時に連結部を起点として折れ込みが発生したと考えられる。また、比較例6は、ザク欠陥の発生状況の悪化が認められた。これは、試験用鋼塊の第二テーパ部の傾斜角θが大きいためであり、傾斜角θが78°では大きすぎることがわかる。 In Comparative Example 5, two sheets of skin were observed on the prepared evaluation slab. This is because the inclination angle theta 1 of the second taper portion of the test steel ingot is small, considered Orekomi starting occurs the connecting portion during rolling. Further, in Comparative Example 6, it was recognized that the generation situation of the zaku defect was deteriorated. This is because the inclination angle θ 1 of the second taper portion of the test ingot is large, and it can be seen that the inclination angle θ 1 is too large at 78 °.

比較例7は、鋼塊鋳造後の鋳型に欠けが認められた。これは、第一テーパ部の高さHが小さすぎるために、熱応力に対して弱い部分が鋳型にできたものと考えられる。また、比較例8は、ザク欠陥の発生状況の悪化が認められた。これは、第一テーパ部の高さHが大きいためであり、高さHが450mmでは大きすぎることがわかる。   In Comparative Example 7, chipping was observed in the mold after ingot casting. This is probably because the height H of the first taper portion was too small, so that a portion weak against thermal stress was formed in the mold. Further, in Comparative Example 8, it was recognized that the state of occurrence of the zaku defect was deteriorated. This is because the height H of the first taper portion is large, and it can be seen that the height H is too large at 450 mm.

比較例9は、鋼塊鋳造後の鋳型に欠けが認められた。これは、第一テーパ部の傾斜角θが小さすぎるために、熱応力に弱い部分が鋳型にできたものと考えられる。また、比較例10は、試験用鋼塊を鋳型から抜くことができなかった。これにより、傾斜角θは、90°未満としなければ型抜きができないことがわかる。 In Comparative Example 9, chipping was observed in the mold after ingot casting. This is probably because the first taper portion has an inclination angle θ 2 that is too small, and thus a portion that is weak against thermal stress is formed in the mold. In Comparative Example 10, the test steel ingot could not be removed from the mold. Thus, it can be seen that the die cannot be removed unless the inclination angle θ 2 is less than 90 °.

以上説明したように、当該分塊圧延用鋼塊は分塊圧延して厚板用スラブを生成する際の生産性を低下させることなくボトムクロップロスを低減できるので、厚板用鋼を用いる建築物、橋梁、船舶、自動車、鉄道車両、海洋構造物等の部材として有用である。   As described above, since the steel block for rolling in a block can be rolled into pieces to reduce bottom crop loss without reducing productivity when producing a slab for plate, the construction using steel for plate It is useful as a member for objects, bridges, ships, automobiles, railway vehicles, marine structures and the like.

1 上底
2 下底
3 ベース形状
4 第一テーパ部
5 連結部
6 第二テーパ部
7 第一仮想面
8 第二仮想面
9 分塊圧延ロール
DESCRIPTION OF SYMBOLS 1 Upper base 2 Lower base 3 Base shape 4 1st taper part 5 Connection part 6 2nd taper part 7 1st virtual surface 8 2nd virtual surface 9 Split roll

Claims (1)

量が20t以上80t以下、厚みが200mm以上600mm以下の厚板用スラブを製造する方法であって、
分塊圧延用鋼塊を鋳造する工程と、
上記分塊圧延用鋼塊を、半径r(mm)の一対の分塊圧延ロールを用いて圧下量d(mm)で熱間圧延する工程と
を備え、
上記分塊圧延用鋼塊が、上下底が長方形で軸中心に対称な角錐台状のベース形状を有し、
上記長方形の一対の長辺側側面に、ベース形状を基準として厚みが小さく上底に向かって漸増する第一テーパ部、この第一テーパ部に連続する部分円柱凹面状の連結部、及びこの連結部に連続し、厚みがベース形状まで漸増する第二テーパ部を下底側から順に有し、
上記ベース形状の中心軸を通り上下底の長辺と垂直な断面において、上記ベース形状の下底と長辺側側面を延長した第一仮想面とが成す傾斜角θ3が70°以上89°以下であり、
上記下底における厚みD(mm)が、上記分塊圧延ロールの半径r(mm)及び圧下量d(mm)との間で下記式(1)、及びベース形状厚みD0(mm)との間で下記式(2)を満たし、
上記断面において、上記下底と第一テーパ部とが成す傾斜角θ2が80°以上90°未満、上記下底と第二テーパ部を延長した第二仮想面とが成す傾斜角θ1が45°以上75°以下、第一テーパ部の高さHが100mm以上400mm以下であり、
上記断面を基準とする連結部の曲率半径が10mm以上70mm以下であることを特徴とする厚板用スラブの製造方法
3×(r×d)0.5<D<5×(r×d)0.5 ・・・(1)
0.5<D/D0<0.8 ・・・(2)
Or mass is 20t 80t or less, the thickness is a method for manufacturing a 600mm below plank slabs least 200 mm,
A step of casting a steel ingot for split rolling;
Hot-rolling the ingot for ingot rolling using a pair of ingot rolling rolls having a radius of r (mm) at a reduction amount d (mm);
With
The ingot for ingot rolling has a base shape in the shape of a truncated pyramid that has a rectangular top and bottom and is symmetrical about the axis,
A first taper portion having a small thickness with respect to the base shape and gradually increasing toward the upper bottom on the side surfaces of the pair of long sides of the rectangle, a connecting portion having a partially cylindrical concave surface continuous with the first taper portion, and the connection The second taper part that is continuous with the part and gradually increases in thickness to the base shape, in order from the bottom side,
In a cross section passing through the central axis of the base shape and perpendicular to the long sides of the upper and lower bases, an inclination angle θ3 formed by the lower base of the base shape and the first virtual surface extending the side surface of the long side is 70 ° or more and 89 ° or less. And
The thickness D (mm) in the lower bottom is between the following formula (1) and the base shape thickness D0 (mm) between the radius r (mm) and the reduction amount d (mm) of the above-mentioned block rolling roll. Satisfies the following formula (2),
In the cross section, an inclination angle θ2 formed by the lower base and the first taper portion is 80 ° or more and less than 90 °, and an inclination angle θ1 formed by the lower virtual surface and the second virtual surface extending the second taper portion is 45 °. 75 ° or less and the height H of the first taper portion is 100 mm or more and 400 mm or less,
A method for manufacturing a slab for thick plates, wherein the radius of curvature of the connecting portion based on the cross section is 10 mm or more and 70 mm or less.
3 × (r × d) 0.5 <D <5 × (r × d) 0.5 (1)
0.5 <D / D0 <0.8 (2)
JP2014061824A 2014-03-25 2014-03-25 Manufacturing method of slab for thick plate Expired - Fee Related JP6199218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014061824A JP6199218B2 (en) 2014-03-25 2014-03-25 Manufacturing method of slab for thick plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014061824A JP6199218B2 (en) 2014-03-25 2014-03-25 Manufacturing method of slab for thick plate

Publications (2)

Publication Number Publication Date
JP2015182118A JP2015182118A (en) 2015-10-22
JP6199218B2 true JP6199218B2 (en) 2017-09-20

Family

ID=54349286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014061824A Expired - Fee Related JP6199218B2 (en) 2014-03-25 2014-03-25 Manufacturing method of slab for thick plate

Country Status (1)

Country Link
JP (1) JP6199218B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5393158A (en) * 1977-01-27 1978-08-15 Kawasaki Steel Co Fish tail growth preventive at blooming
JPS5543651U (en) * 1978-09-13 1980-03-21
JPS55136501A (en) * 1979-04-11 1980-10-24 Nisshin Steel Co Ltd Steel ingot for blooming

Also Published As

Publication number Publication date
JP2015182118A (en) 2015-10-22

Similar Documents

Publication Publication Date Title
KR101739674B1 (en) Continuous casting method for cast slab
JP5545419B1 (en) Method for continuous casting of steel and method for manufacturing strip steel
KR20160143721A (en) Continuous casting method for slab
KR20110113195A (en) Hot-rolled titanium slab melted by electronbeam melting furnace, method of melting and method of hot-rolling titan slab
JP5835531B2 (en) Continuous casting method for slabs for extra heavy steel plates
JP5085451B2 (en) Billet continuous casting method
JP6199218B2 (en) Manufacturing method of slab for thick plate
JP5962206B2 (en) Manufacturing method of round slab for pipe making of high Cr steel seamless steel pipe
JP5754417B2 (en) Continuous casting method for slabs
JP6156455B2 (en) Slab forging method
JP5195636B2 (en) Manufacturing method of continuous cast slab
JP5594164B2 (en) Manufacturing method of seamless steel pipe in high alloy or stainless steel
JP4717357B2 (en) High-speed continuous casting method for carbon steel
JP6000930B2 (en) Method for producing flat ingot for nickel steel plate without shrinkage defect
JP4325527B2 (en) Belt wheel type continuous casting machine, ring mold for belt wheel type continuous casting machine, rough drawing wire manufacturing apparatus and manufacturing method
JP3624856B2 (en) Method for improving yield of continuous cast steel slabs
JP2926169B2 (en) Heating method of continuous cast slab
JP4857788B2 (en) Continuous casting method of high Si steel
KR20100022286A (en) Method for manufacturing steel bloom including nickel with excellent hot rolling property
JPH0390259A (en) Continuous casting method
CN112828043A (en) Production method of large-thickness ultra-wide low-Si alloy steel plate
JP2024040078A (en) Ingot casting method
JP3900310B2 (en) Casting forging method
JP2008229635A (en) Steel ingot consisting of bottom having continuous circular face
Belyi Improving the cross section of continuous-cast billet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170823

R150 Certificate of patent or registration of utility model

Ref document number: 6199218

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees