JP6198005B2 - Method for producing cellulose fiber / resin composite composition, composite composition, resin composition for molding, and resin molded product - Google Patents

Method for producing cellulose fiber / resin composite composition, composite composition, resin composition for molding, and resin molded product Download PDF

Info

Publication number
JP6198005B2
JP6198005B2 JP2014063052A JP2014063052A JP6198005B2 JP 6198005 B2 JP6198005 B2 JP 6198005B2 JP 2014063052 A JP2014063052 A JP 2014063052A JP 2014063052 A JP2014063052 A JP 2014063052A JP 6198005 B2 JP6198005 B2 JP 6198005B2
Authority
JP
Japan
Prior art keywords
resin
cellulose
cellulose fiber
composition
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014063052A
Other languages
Japanese (ja)
Other versions
JP2015183153A (en
Inventor
浩之 井岡
浩之 井岡
雅之 瀧下
雅之 瀧下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arakawa Chemical Industries Ltd
Original Assignee
Arakawa Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arakawa Chemical Industries Ltd filed Critical Arakawa Chemical Industries Ltd
Priority to JP2014063052A priority Critical patent/JP6198005B2/en
Publication of JP2015183153A publication Critical patent/JP2015183153A/en
Application granted granted Critical
Publication of JP6198005B2 publication Critical patent/JP6198005B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明はセルロース繊維/樹脂複合組成物の製造方法、該複合組成物、成形用樹脂組成物及び樹脂成形物に関する。   The present invention relates to a method for producing a cellulose fiber / resin composite composition, the composite composition, a molding resin composition, and a resin molded product.

近年、資源・環境問題の高まりから、バイオマスを利用した材料開発が活発化している。セルロースは、その高弾性率、高強度、軽量という特徴を活かし、樹脂の補強剤として使用する試みがされている(特許文献1)。特に、セルロース繊維の集合体をナノレベルまで微細化し、比表面積を大きくすることで優れた補強効果が発現することが注目されている。しかしながら、セルロース繊維は水酸基を多く持つため、親水性が高く、一般的に疎水性樹脂との相溶性が悪い。そのため、樹脂中で均一分散した複合体を得にくく、十分な機械的強度も発揮できない。また、セルロース繊維をフィラーとして、樹脂と複合化する際には、乾燥状態で添加することが一般的であり、特に高度にフィブリル化されたセルロース繊維は乾燥中に凝集しやすく、これをフィラーとして樹脂と複合化させた際に複合体中に凝集物が残留する問題がある。   In recent years, the development of materials using biomass has become active due to growing resource and environmental problems. An attempt has been made to use cellulose as a resin reinforcing agent by taking advantage of its high elastic modulus, high strength, and light weight (Patent Document 1). In particular, it has been noticed that an excellent reinforcing effect is exhibited by refining an aggregate of cellulose fibers to the nano level and increasing the specific surface area. However, since cellulose fibers have many hydroxyl groups, they are highly hydrophilic and generally poorly compatible with hydrophobic resins. Therefore, it is difficult to obtain a composite that is uniformly dispersed in the resin, and sufficient mechanical strength cannot be exhibited. In addition, when a cellulose fiber is used as a filler, it is generally added in a dry state when it is combined with a resin. Particularly, highly fibrillated cellulose fibers are likely to aggregate during drying, and this is used as a filler. There is a problem that aggregates remain in the composite when combined with the resin.

セルロースの樹脂との複合化における分散性を改善することを目的に、セルロースの改質技術が検討されている。例えば、特許文献2では、ミクロフィブリルセルロースを表面改質し、有機溶媒に分散させる方法が開示されている。また、特許文献3では、ミクロフィブリルセルロースに無水酢酸等のカルボン酸無水物を反応させ、ミクロフィブリル化セルロースの表面に存在する水酸基の25%以上をエステル化する方法が、特許文献4では、ミクロフィブリルセルロースをアルキル無水コハク酸又はアルケニル無水コハク酸で変性する方法がそれぞれ開示されている。   For the purpose of improving the dispersibility in complexing cellulose with a resin, a cellulose modification technique has been studied. For example, Patent Document 2 discloses a method in which microfibril cellulose is surface-modified and dispersed in an organic solvent. Patent Document 3 discloses a method in which microfibril cellulose is reacted with a carboxylic acid anhydride such as acetic anhydride to esterify 25% or more of the hydroxyl groups present on the surface of microfibrillated cellulose. Methods for modifying fibril cellulose with alkyl succinic anhydride or alkenyl succinic anhydride are disclosed respectively.

更に、前記のような改質処理をしないセルロース繊維を使用する例として、特許文献5では、ミクロフィブリルセルロースの凝集を抑制するため、ミクロフィブリルセルロースを真空下で凍結乾燥した後、高温で溶融させた熱可塑性樹脂と複合する方法が開示されている。しかし、凍結乾燥法は生産性が悪く、大量スケールでの処理には適さない。   Furthermore, as an example of using cellulose fibers that are not modified as described above, in Patent Document 5, in order to suppress the aggregation of microfibril cellulose, the microfibril cellulose is freeze-dried under vacuum and then melted at a high temperature. A method of combining with a thermoplastic resin is disclosed. However, the freeze-drying method has poor productivity and is not suitable for processing on a large scale.

また、非特許文献1では、水中で界面活性剤と混合したセルロースナノファイバーを凍結乾燥後、トルエン中に分散させた懸濁液に、ポリプロピレンのトルエン溶液を加えて、トルエンを揮発させた後、二軸混練機で溶融混練させて、複合材料を製造する技術が開示されており、該処理を施したセルロースナノファイバーは、トルエン中で良好な分散性を示したが、界面活性剤の添加による複合材料の強度補強効果が見られなかったと記載されている。   In Non-Patent Document 1, after freeze-drying cellulose nanofibers mixed with a surfactant in water, a toluene solution of polypropylene is added to a suspension dispersed in toluene, and the toluene is volatilized. A technique for producing a composite material by melt-kneading with a biaxial kneader has been disclosed, and the cellulose nanofibers subjected to the treatment showed good dispersibility in toluene, but by adding a surfactant It is described that the strength reinforcing effect of the composite material was not observed.

特開2008−266630号公報JP 2008-266630 A 特表2002−524618号公報JP-T-2002-524618 特表平11−513425号公報Japanese National Patent Publication No. 11-513425 特開2012−324563号公報JP 2012-324563 A 特開2009−107156号公報JP 2009-107156 A

岩本伸一朗 ポリプロピレン複合材料におけるセルロースおよびリグのセルロースナノファイバー分散方法の検討、Cellulose Commun.(Vol.21、No.1、2014)、21−24Shinichiro Iwamoto Examination of cellulose nanofiber dispersion method of cellulose and rig in polypropylene composite material, Cellulose Commun. (Vol. 21, No. 1, 2014), 21-24

本発明は、親水性の高いセルロース系材料をポリオレフィン系樹脂のような疎水性樹脂中で良好に分散させることができるセルロース繊維/樹脂複合組成物の製造方法を提供すると共に、該製造方法により得られるセルロース繊維/樹脂複合組成物を含む機械的強度に優れた樹脂成形物を提供することを目的とする。   The present invention provides a method for producing a cellulose fiber / resin composite composition that can satisfactorily disperse a highly hydrophilic cellulosic material in a hydrophobic resin such as a polyolefin resin, and is obtained by the production method. It aims at providing the resin molding excellent in the mechanical strength containing the cellulose fiber / resin composite composition obtained.

本発明者は、疎水性熱可塑性樹脂と複合化されるセルロースの乾燥時に、セルロース同士の水素結合を抑制することでセルロース凝集物の生成が抑えられ、セルロースが溶媒に分散した状態で該樹脂により被覆できるとの着想の下、鋭意検討を行った。その結果、セルロースの被覆材としてポリオレフィン樹脂を用い、セルロースと該樹脂を特定の溶媒中で均一に混和し得るよう加熱した後、冷却することにより、セルロース表面に該樹脂が析出するとの知見を得た。   The inventor suppresses the formation of cellulose aggregates by suppressing hydrogen bonding between celluloses when drying the cellulose compounded with the hydrophobic thermoplastic resin, and the resin is dispersed in a solvent by the resin. With the idea of being able to cover it, we conducted an extensive study. As a result, polyolefin resin was used as a coating material for cellulose, and after heating so that cellulose and the resin could be uniformly mixed in a specific solvent, cooling was performed, the knowledge that the resin was deposited on the cellulose surface was obtained. It was.

本発明は、該知見に基づき、更に鋭意検討を重ねて完成したものである。すなわち、セルロース繊維(A)を疎水性有機溶媒(C)中で分散させた懸濁液に、ポリオレフィン樹脂(B)を添加後、セルロース繊維(A)が均一分散、かつポリオレフィン系樹脂(B)が溶解状態となるよう加熱し、系内を冷却してポリオレフィン系樹脂(B)を含む内容物を析出させることを特徴とするセルロース繊維/樹脂複合組成物の製造方法;該製造方法に得られるセルロース繊維/樹脂複合組成物;該複合組成物を配合してなる成形用樹脂組成物;ならびに該複合組成物又は該成形用樹脂組成物から得られる樹脂成形物に係る。   The present invention has been completed based on this finding and further earnest studies. That is, after adding the polyolefin resin (B) to the suspension in which the cellulose fibers (A) are dispersed in the hydrophobic organic solvent (C), the cellulose fibers (A) are uniformly dispersed and the polyolefin resin (B). A cellulose fiber / resin composite composition characterized by heating to a dissolved state and cooling the system to precipitate a content containing a polyolefin resin (B); obtained by the production method The present invention relates to a cellulose fiber / resin composite composition; a molding resin composition comprising the composite composition; and a resin molded product obtained from the composite composition or the molding resin composition.

本発明によれば、疎水性有機溶媒(C)中でポリオレフィン系樹脂(B)を加熱溶解することにより、低粘度のポリオレフィン系樹脂(B)がセルロース繊維(A)のフィブリル間に浸透しやすくなる。この状態でポリオレフィン系樹脂(B)を冷却析出させることにより、乾燥してもセルロース間の凝集を抑制したセルロース繊維/樹脂複合組成物が得られる。従って、本発明のセルロース繊維/樹脂複合組成物を含有してなる成形物はセルロース繊維(A)が樹脂中で均一分散しており、優れた機械的強度を発現できる。また、本発明によれば、ポリオレフィン系樹脂(B)の融点よりも低温で処理できるため、セルロース繊維(A)の着色・分解を抑制することができる。なお、本発明では、先行技術文献に記載の凍結乾燥処理や界面活性剤などの添加が無くとも、目的とするセルロース/樹脂複合組成物を得ることができる。   According to the present invention, the polyolefin resin (B) is easily dissolved between the fibrils of the cellulose fiber (A) by heating and dissolving the polyolefin resin (B) in the hydrophobic organic solvent (C). Become. By cooling and precipitating the polyolefin resin (B) in this state, a cellulose fiber / resin composite composition in which aggregation between celluloses is suppressed even when dried is obtained. Therefore, in the molded product containing the cellulose fiber / resin composite composition of the present invention, the cellulose fibers (A) are uniformly dispersed in the resin, and can exhibit excellent mechanical strength. Moreover, according to this invention, since it can process at low temperature rather than melting | fusing point of polyolefin resin (B), coloring and decomposition | disassembly of a cellulose fiber (A) can be suppressed. In the present invention, the desired cellulose / resin composite composition can be obtained without the addition of a freeze-drying treatment or a surfactant described in the prior art document.

以下、本発明のセルロース繊維/樹脂複合組成物の製造方法、該製造方法により得られるセルロース繊維/樹脂複合組成物、該複合組成物を配合してなる成形用樹脂組成物、ならびに樹脂成形物について説明する。   Hereinafter, a method for producing a cellulose fiber / resin composite composition of the present invention, a cellulose fiber / resin composite composition obtained by the production method, a molding resin composition comprising the composite composition, and a resin molded product explain.

(セルロース繊維)
本発明に用いるセルロース繊維(A)(以下、成分(A)という)としては、特に限定されず各種公知のものを使用できる。具体的には、植物由来パルプ、木材、コットン、麻、竹、ケナフ、ヘンプ、海草などの植物繊維から分離した繊維、海産動物であるホヤが産生する動物繊維から分離した繊維、あるいは酢酸菌より産生されたバクテリアセルロース、古紙などから得られるセルロースが挙げられる。これらの中でも植物繊維から分離した繊維が好ましく、パルプ又はコットンがより好ましい。
(Cellulose fiber)
It does not specifically limit as a cellulose fiber (A) (henceforth a component (A)) used for this invention, Various well-known things can be used. Specifically, from fibers derived from plant fibers such as plant-derived pulp, wood, cotton, hemp, bamboo, kenaf, hemp, seaweed, fibers separated from animal fibers produced by sea squirts, or acetic acid bacteria Examples include bacterial cellulose produced and cellulose obtained from waste paper. Among these, fibers separated from plant fibers are preferable, and pulp or cotton is more preferable.

(セルロース繊維の形態)
前記成分(A)としては、微細セルロースを使用しても良い。微細化方法については、成分(A)が繊維形態を保持している限り、格別限定されず、例えば、グラインダー、高圧ホモジナイザー、高圧衝突型粉砕機、ディスク型リファイナー、コニカルリファイナー、超音波ホモジナイザーなどの機械的作用により成分(A)を細かくする方法や、TEMPO酸化、オゾン酸化、酵素処理などの化学処理後、機械的処理を行う方法などを利用できる。
(Form of cellulose fiber)
As the component (A), fine cellulose may be used. As long as the component (A) retains the fiber form, there is no particular limitation on the miniaturization method. A method of making the component (A) fine by mechanical action, a method of performing mechanical treatment after chemical treatment such as TEMPO oxidation, ozone oxidation, enzyme treatment, and the like can be used.

上記処理で得られた成分(A)としては、平均繊維径が1.0μm以下のものが好ましく、0.3μm以下のものがより好ましい。市販品としては、『セリッシュKY100G』((株)ダイセル製)、『ビンフィスWMa−10005』((株)スギノマシン製)などが入手できる。該粒子径が1.0μm以下である成分(A)を用いると、良好な機械的強度を示す成形材料を得やすい。   The component (A) obtained by the above treatment preferably has an average fiber diameter of 1.0 μm or less, and more preferably 0.3 μm or less. Examples of commercially available products include “Serisch KY100G” (manufactured by Daicel Corporation) and “Binfisu WMa-10005” (manufactured by Sugino Machine Co., Ltd.). When the component (A) having a particle size of 1.0 μm or less is used, it is easy to obtain a molding material exhibiting good mechanical strength.

使用する成分(A)としては、該水酸基の一部を予め公知のエステル化剤とエステル化させたものでも何ら差支えない。なお、該エステル化反応では、成分(A)に上記の微細化処理を施した繊維とエステル化剤を反応させても良い。エステル化剤としては、カルボン酸類、酸無水物や酸ハロゲン化物が挙げられ、具体的には、酢酸、プロピオン酸、酪酸、アクリル酸、メタクリル酸などの脂肪族カルボン酸;安息香酸、ナフタレンカルボン酸類、ロジン系化合物などの芳香族カルボン酸;およびそれらの誘導体が挙げられる。これらの中でも、低価格かつ入手容易な点から無水酢酸を、また、最終成形材料の機械的強度を高める点からロジン系化合物の酸無水物を使用することが好ましい。   As the component (A) to be used, a part of the hydroxyl group previously esterified with a known esterifying agent may be used. In addition, in this esterification reaction, you may make the component (A) react the fiber which gave said refinement | miniaturization process, and an esterifying agent. Examples of the esterifying agent include carboxylic acids, acid anhydrides and acid halides. Specific examples include aliphatic carboxylic acids such as acetic acid, propionic acid, butyric acid, acrylic acid and methacrylic acid; benzoic acid and naphthalenecarboxylic acids. And aromatic carboxylic acids such as rosin compounds; and derivatives thereof. Among these, it is preferable to use acetic anhydride from the viewpoint of low cost and availability, and to use an acid anhydride of a rosin compound from the viewpoint of increasing the mechanical strength of the final molding material.

前記ロジン系化合物としては、ガムロジン、ウッドロジン、トール油ロジン等の天然ロジン、天然ロジンを蒸留して得られる蒸留ロジン、天然ロジンを水素化して得られる水添ロジン、天然ロジンを重合して得られる重合ロジン、天然ロジンを不均化して得られる不均化ロジン、天然ロジンを不飽和カルボン酸で変性して得られる不飽和カルボン酸変性ロジン等が挙げられる。不飽和カルボン酸変性ロジンとしては、マレイン化ロジン、フマル化ロジン、アクリル化ロジン等が挙げられる。なお、ロジン系化合物としては、蒸留、水素化、重合、不均化、不飽和カルボン酸変性等の各操作の2つ以上を組み合わせて得られるロジン系化合物を用いることもできる。これらのロジン系化合物は1種を単独で用いてもよく、2種以上を混合して用いてもよい。   The rosin compound is obtained by polymerizing natural rosin such as gum rosin, wood rosin, tall oil rosin, distilled rosin obtained by distilling natural rosin, hydrogenated rosin obtained by hydrogenating natural rosin, and natural rosin. Examples thereof include polymerized rosin, disproportionated rosin obtained by disproportionating natural rosin, and unsaturated carboxylic acid-modified rosin obtained by modifying natural rosin with unsaturated carboxylic acid. Examples of the unsaturated carboxylic acid-modified rosin include maleated rosin, fumarized rosin, and acrylated rosin. As the rosin compound, a rosin compound obtained by combining two or more operations such as distillation, hydrogenation, polymerization, disproportionation, and unsaturated carboxylic acid modification can also be used. These rosin compounds may be used alone or in a combination of two or more.

ロジン系化合物の酸無水物の製造法としては、特に限定されず、各種公知の方法を採用することができ、脱水剤を用いて前記ロジン系化合物を脱水縮合する方法、又は無水酢酸などの低級カルボン酸無水物中で前記ロジン系化合物を反応させる方法などが良く知られている。   The method for producing the acid anhydride of the rosin compound is not particularly limited, and various known methods can be employed. A method of dehydrating and condensing the rosin compound using a dehydrating agent, or a lower method such as acetic anhydride. A method of reacting the rosin compound in a carboxylic acid anhydride is well known.

(セルロースのエステル化)
セルロース繊維の分解を抑制しつつ、エステル化剤をセルロース繊維の水酸基と反応させる方法としては、特に限定されず、公知の方法を採用することができる。該エステル化は、例えば、所定の反応容器中で、成分(A)、エステル化剤および前記成分と反応しない有機溶剤からなるスラリー液を、25℃〜200℃、好ましくは50〜190℃で反応させればよい。該有機溶剤としては、反応後十分に除去できるものが好ましい。使用可能な有機溶剤としては、例えば、ヘキサン、ヘプタン等の飽和脂肪族系溶剤、トルエン、キシレン、ピリジン等の芳香族系溶剤、アセトン、メチルエチルケトン等のケトン系溶剤、テトラヒドロフラン、ジエチルエーテル等のエーテル系溶剤、ジメチルスルホキシド等のスルホン系溶剤、ジメチルホルムアミド等のアミド系溶剤等が挙げられる。
(Esterification of cellulose)
The method of reacting the esterifying agent with the hydroxyl group of the cellulose fiber while suppressing the decomposition of the cellulose fiber is not particularly limited, and a known method can be adopted. The esterification is performed, for example, by reacting a slurry liquid composed of component (A), an esterifying agent and an organic solvent that does not react with the above components in a predetermined reaction vessel at 25 to 200 ° C., preferably 50 to 190 ° C. You can do it. The organic solvent is preferably one that can be sufficiently removed after the reaction. Usable organic solvents include, for example, saturated aliphatic solvents such as hexane and heptane, aromatic solvents such as toluene, xylene and pyridine, ketone solvents such as acetone and methyl ethyl ketone, and ether solvents such as tetrahydrofuran and diethyl ether. Examples thereof include a solvent, a sulfone solvent such as dimethyl sulfoxide, and an amide solvent such as dimethylformamide.

前記成分(A)と複合化させる成分(B)としては、ポリプロピレン、低密度ポリエチレン、高密度ポリエチレン、超低密度ポリエチレン、直鎖状低密度ポリエチレン等のポリエチレン樹脂、ポリプロピレン、ポリ−1−ブテン、ポリイソブチレン、ポリペンテンの他、エチレン−酢酸ビニル共重合体、エチレン−メチルメタアクリレート共重合体、エチレン−エチルアクリレート共重合体等のエチレン系共重合体などが挙げられ、これらの内でも、汎用性及び価格の面から、ポリプロピレン、ポリエチレン樹脂を用いることが好ましい。   Examples of the component (B) to be combined with the component (A) include polypropylene resins such as polypropylene, low density polyethylene, high density polyethylene, ultra low density polyethylene, and linear low density polyethylene, polypropylene, poly-1-butene, In addition to polyisobutylene and polypentene, ethylene-based copolymers such as ethylene-vinyl acetate copolymer, ethylene-methyl methacrylate copolymer, ethylene-ethyl acrylate copolymer, etc. are mentioned. And from the surface of a price, it is preferable to use a polypropylene and a polyethylene resin.

本発明の製造方法では、成分(A)を成分(C)中で分散させた懸濁液に、成分(B)を添加後、成分(A)の均一分散を維持したまま、且つ成分(B)を溶解させるように加熱した後、系内を冷却しながら、成分(B)を含む内容物を析出させることが特徴とされる。   In the production method of the present invention, after adding the component (B) to the suspension in which the component (A) is dispersed in the component (C), the uniform dispersion of the component (A) is maintained and the component (B) ), And the contents containing the component (B) are precipitated while cooling the system.

なお、成分(A)は、通常含水状態であり、疎水性有機溶媒中では成分(A)が凝集してしまうため、予め有機溶媒に置換する必要がある。該置換方法としては、特に限定されないが、成分(A)中の水分を除去した後、水と混和しない疎水性有機溶媒に置換することが好ましく、例えば、「2段置換法」が有効である。2段置換法では、まず含水状態の成分(A)に、アセトン、メチルエチルケトン、イソプロピルアルコール、テトラヒドロフラン、N−メチル−2−ピロリドンのような親水性有機溶媒を加えて分散させた後、吸引濾過して、成分(A)中の水分及び前記有機溶媒を除去する。該操作回数は格別限定されず、所望の水分除去率となるよう複数回行ってもよい。次にシクロヘキサン、トルエン、キシレンのような疎水性有機溶媒を加えて分散させた後、吸引濾過することで、疎水性有機溶媒へ置換できる。該操作回数も格別限定されず、複数回行っても良い。更に、他の方法として、親水性有機溶媒及び疎水性有機溶媒を併用添加して、共沸脱水する方法も挙げられる。   In addition, since a component (A) is a water-containing state normally and a component (A) will aggregate in a hydrophobic organic solvent, it needs to substitute by an organic solvent previously. The substitution method is not particularly limited, but it is preferable to replace the hydrophobic organic solvent immiscible with water after removing water in the component (A). For example, the “two-stage substitution method” is effective. . In the two-stage substitution method, first, a hydrophilic organic solvent such as acetone, methyl ethyl ketone, isopropyl alcohol, tetrahydrofuran, N-methyl-2-pyrrolidone is added to the water-containing component (A) and dispersed, followed by suction filtration. Then, the water and the organic solvent in the component (A) are removed. The number of operations is not particularly limited, and the operation may be performed a plurality of times so as to obtain a desired moisture removal rate. Next, a hydrophobic organic solvent such as cyclohexane, toluene or xylene is added and dispersed, and then suction filtration is performed to replace the hydrophobic organic solvent. The number of operations is not particularly limited, and may be performed a plurality of times. Furthermore, as another method, a method of adding a hydrophilic organic solvent and a hydrophobic organic solvent in combination and performing azeotropic dehydration can also be mentioned.

成分(C)としては、例えば、酢酸メチル、酢酸エチル、塩化メチレン、クロロホルム、トルエン、キシレン、n−ヘキサン、シクロヘキサンなどが挙げられる。これらの中でも、作業の安全面から、比較的高沸点の溶媒を用いるのが好ましく、トルエン、キシレンがより好ましい。なお、成分(C)には、前記成分(A)の有機溶剤置換で使用する疎水性有機溶媒と同一のものを用いても良い。   Examples of the component (C) include methyl acetate, ethyl acetate, methylene chloride, chloroform, toluene, xylene, n-hexane, cyclohexane and the like. Among these, from the viewpoint of work safety, it is preferable to use a solvent having a relatively high boiling point, and toluene and xylene are more preferable. In addition, you may use the same thing as the hydrophobic organic solvent used by the organic solvent substitution of the said component (A) for a component (C).

本発明に係る製造方法では、例えば、冷却管、温度計を備えた反応装置に、予め有機溶媒置換させた成分(A)および成分(C)を仕込む。成分(C)の仕込み量は、成分(A)が濃度0.1〜5重量%の懸濁液となるように適宜に決定できる。ついで、該懸濁液を200〜300rpm程度で撹拌しながら、成分(B)を添加する。なお、成分(B)は、固体状(粉末状、ペレット状等)のまま添加しても良いし、成分(C)に分散させて添加しても良く、さらに、成分(B)の添加量が多い場合には、系内の濃度を調整するために、成分(C)を適宜追加しても良い。前記いずれの場合でも、成分(A)、(B)および(C)を含有する系内の固形分濃度が、通常0.1〜85重量%、好ましくは1〜50重量%となるよう、各成分の使用割合を調整すればよい。成分(A)が均一分散、かつ成分(B)が溶解状態となるような所定の加熱温度で1〜120分間程度、撹拌した後、懸濁液を20〜60℃以下まで冷却し、成分(B)を含む内容物を析出させる。該析出物及び成分(C)を濾別あるいはデカンテーションにより析出物を回収した後、析出物を減圧乾燥あるいは風乾することでセルロース繊維/樹脂複合組成物を得ることができる。なお、「成分(B)を含む内容物」とは、成分(A)に成分(B)が被覆されたものであることが望ましいが、成分(B)のみからなる析出物を一部含んでいても良いし、少量の成分(C)を含んでいてもよい。また、本発明に係る製造方法は、必要に応じて、0.1〜5.0MPaの加圧下で処理しても良い。   In the production method according to the present invention, for example, the component (A) and the component (C) that have been substituted with an organic solvent in advance are charged into a reactor equipped with a cooling pipe and a thermometer. The amount of component (C) charged can be appropriately determined so that component (A) is a suspension having a concentration of 0.1 to 5% by weight. Next, component (B) is added while stirring the suspension at about 200 to 300 rpm. The component (B) may be added as a solid (powder, pellet, etc.), may be added dispersed in the component (C), and the amount of component (B) added If there is a large amount, component (C) may be added as appropriate in order to adjust the concentration in the system. In any of the above cases, the solid content concentration in the system containing the components (A), (B) and (C) is usually 0.1 to 85% by weight, preferably 1 to 50% by weight. What is necessary is just to adjust the usage-amount of an ingredient. After stirring for a period of about 1 to 120 minutes at a predetermined heating temperature such that component (A) is uniformly dispersed and component (B) is in a dissolved state, the suspension is cooled to 20 to 60 ° C. or less, and component ( Precipitate the contents containing B). After the precipitate and component (C) are separated by filtration or decantation, the cellulose fiber / resin composite composition can be obtained by drying the precipitate under reduced pressure or air drying. The “contents containing component (B)” is preferably a component (A) coated with component (B), but partially contains a precipitate consisting only of component (B). Or a small amount of component (C) may be contained. Moreover, you may process the manufacturing method concerning this invention under the pressurization of 0.1-5.0 MPa as needed.

前記製造方法で使用する成分(A)と成分(B)の使用割合は、得られるセルロース繊維/樹脂複合組成物の使用態様に応じて任意に決定でき、必ずしも一義的に定めることはできない。すなわち、該複合組成物における成分(A)の含有量が比較的多い場合は、該複合組成物を所望のマトリックス樹脂に直接混練することができ、また該複合組成物における成分(B)の含有量が比較的多い場合は、該複合組成物をそのままマスターバッチとして適用でき、更にはそのまま成形材料として用いることができるなどの使用態様に応じて適宜に決定され、具体的には、各成分の固形分比〔(A)/(B)〕=99.9/0.1〜0.1/99.9、より好ましくは1/99〜99/1、特に好ましくは、5/95〜95/5とされる。0.1/99.9未満では、十分な強度効果が得られず、99.9/0.1以上では、分散性が低下する傾向がある。   The usage ratio of the component (A) and the component (B) used in the production method can be arbitrarily determined according to the usage mode of the obtained cellulose fiber / resin composite composition, and cannot be uniquely determined. That is, when the content of the component (A) in the composite composition is relatively large, the composite composition can be directly kneaded into a desired matrix resin, and the content of the component (B) in the composite composition When the amount is relatively large, the composite composition can be applied as a master batch as it is, and further determined as appropriate according to the usage mode such as being able to be used as a molding material as it is. Solid content ratio [(A) / (B)] = 99.9 / 0.1 to 0.1 / 99.9, more preferably 1/99 to 99/1, particularly preferably 5/95 to 95 / 5. If it is less than 0.1 / 99.9, sufficient strength effect cannot be obtained, and if it is 99.9 / 0.1 or more, the dispersibility tends to decrease.

前記の系内加熱温度については、成分(B)の種類に依存するため、必ずしも一義的に定めることができないが、成分(A)の着色/分解、及び成分(B)の成分(C)に対する溶解性の点から、通常は、80〜200℃程度にすることが好ましい。   The heating temperature in the system depends on the type of the component (B) and cannot be determined uniquely. However, the coloring / decomposition of the component (A) and the component (B) with respect to the component (C) are not necessarily determined. From the viewpoint of solubility, it is usually preferable that the temperature is about 80 to 200 ° C.

(成形用樹脂組成物の調製)
本発明により製造されたセルロース繊維/樹脂複合組成物に関しては、前記成分(B)の含有率が比較的高い場合には、そのまま射出成形、押出し成形やトランスファー成形などの成形材料として用いることができ、また、該組成物をマスターバッチとして利用し、マトリックス樹脂と配合した成形用樹脂組成物を調製することもできる。成形用樹脂組成物の調製に用いるマトリックス樹脂としては、前記複合組成物の調製に用いた成分(B)と同一の樹脂を使用した方が、得られる成形物の機械的強度や均質性を向上させる点で好ましい。
(Preparation of molding resin composition)
Regarding the cellulose fiber / resin composite composition produced according to the present invention, when the content of the component (B) is relatively high, it can be used as it is as a molding material such as injection molding, extrusion molding or transfer molding. In addition, a molding resin composition blended with a matrix resin can be prepared by using the composition as a master batch. As the matrix resin used for the preparation of the molding resin composition, it is better to use the same resin as the component (B) used for the preparation of the composite composition, thereby improving the mechanical strength and homogeneity of the resulting molding. This is preferable.

前記組成物をマスターバッチとして利用し、マトリックス樹脂に配合する際は、公知の溶融混練法を用いることができる。具体例としては、二軸押出機、ヘンシェルミキサー、バンバリーミキサー、単軸スクリュー押出機、多軸スクリュー押出機、コニーダなどが挙げられる。   When the composition is used as a master batch and blended into a matrix resin, a known melt-kneading method can be used. Specific examples include a twin screw extruder, a Henschel mixer, a Banbury mixer, a single screw extruder, a multi-screw extruder, and a kneader.

なお、本発明の成形用樹脂組成物においては、本発明の効果を著しく損なわない範囲内で、各種目的に応じて任意の添加剤を配合することもできる。添加剤の種類としては、無機充填剤,酸化鉄等の顔料;ステアリン酸、ベヘニン酸、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸マグネシウム、エチレンビスステアロアミド等の滑剤・離型剤;パラフィン系プロセスオイル、ナフテン系プロセスオイル、芳香族系プロセスオイル、パラフィン、有機ポリシロキサン,ミネラルオイル等の軟化剤・可塑剤;ヒンダードフェノール系酸化防止剤、燐系熱安定剤等の酸化防止剤;ヒンダードアミン系光安定剤、ベンゾトリアゾール系紫外線吸収剤;帯電防止剤;有機繊維、ガラス繊維、炭素繊維、金属ウィスカ等の補強剤;着色剤、その他添加剤あるいはこれらの混合物等が挙げられる。   In addition, in the resin composition for shaping | molding of this invention, arbitrary additives can also be mix | blended according to various objectives within the range which does not impair the effect of this invention remarkably. Additives include inorganic fillers, pigments such as iron oxides; lubricants and mold release agents such as stearic acid, behenic acid, zinc stearate, calcium stearate, magnesium stearate, ethylene bisstearamide; paraffin-based process Softeners and plasticizers such as oils, naphthenic process oils, aromatic process oils, paraffins, organic polysiloxanes and mineral oils; antioxidants such as hindered phenolic antioxidants and phosphorus thermal stabilizers; hindered amines Examples thereof include light stabilizers, benzotriazole-based ultraviolet absorbers; antistatic agents; reinforcing agents such as organic fibers, glass fibers, carbon fibers, and metal whiskers; colorants, other additives, and mixtures thereof.

(樹脂成形物の調製)
本発明の樹脂成形物は、前記成形用樹脂組成物を公知の成形方法で成形させることにより得られる。成形条件としては、一義的には定義できないが、目的とする成形物の変形及び着色を考慮して温度、圧力を適宜調整すれば良い。前記成形方法の具体例としては、射出成形、押出し成形、トランスファー成形、ブロー成形、熱プレス成形、カレンダ成形、コーテイング成形、キャスト成形、ディッピング成形、真空成形、トランスファー成形などが挙げられる。
(Preparation of resin molding)
The resin molded product of the present invention can be obtained by molding the molding resin composition by a known molding method. The molding conditions cannot be uniquely defined, but the temperature and pressure may be appropriately adjusted in consideration of the deformation and coloring of the target molded product. Specific examples of the molding method include injection molding, extrusion molding, transfer molding, blow molding, hot press molding, calendar molding, coating molding, cast molding, dipping molding, vacuum molding, transfer molding, and the like.

前記方法により得られる樹脂成形物は、電子・電気機器、家電製品、容器、自動車内装材などの用途に展開できる。より具体的には、家電製品や電子・電気機器などの筐体、ラッピングフィルム、CD−ROMやDVDなどの収納ケース、食器類、食品トレイ、飲料ボトル、薬品ラップ材などの用途が挙げられる。   The resin molded product obtained by the above method can be developed for applications such as electronic / electrical equipment, home appliances, containers, and automobile interior materials. More specifically, there are applications such as housings for home appliances, electronic / electrical devices, wrapping films, storage cases such as CD-ROMs and DVDs, tableware, food trays, beverage bottles, and chemical wrap materials.

以下、実施例および比較例を挙げて本発明を更に詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated further in detail, this invention is not limited to these.

(セルロースの置換度)
セルロースの置換度は、セルロースの繰返し単位である無水グルコース中の3個の水酸基がロジンまたは酢酸とエステル結合している程度(以下、DSという)から求められる。DSは熱分解GC/MS分析により算出した。なお、測定は水酸化テトラメチルアンモニウムを加え15分放置した後、下記装置を用いて、熱分解温度450℃で行った。
(熱分解GC/MS分析装置:
熱分解装置:PY−2020D(FRONTIER LAB製)
GC/MS:HP6890/5973(アジレント・テクノロジー(株)製)
カラム:UA−5(FRONTIER LAB製))
熱分解GC/MS分析より定量されたロジン化合物の含有量から式1を用いて、DSを求める。

(式1) DS=(A/M)/{(100−A)/162}
(A:定量されたロジン化合物の含有量(重量%)、M:ロジンの分子量(299)または酢酸の分子量(60)、162:グルコースの分子量)
(Substitution degree of cellulose)
The degree of substitution of cellulose is determined from the degree to which three hydroxyl groups in anhydrous glucose, which is a repeating unit of cellulose, are ester-bonded to rosin or acetic acid (hereinafter referred to as DS). DS was calculated by pyrolysis GC / MS analysis. The measurement was performed after adding tetramethylammonium hydroxide and allowing to stand for 15 minutes, and then using the following apparatus at a thermal decomposition temperature of 450 ° C.
(Pyrolysis GC / MS analyzer:
Thermal decomposition apparatus: PY-2020D (manufactured by FRONTIER LAB)
GC / MS: HP6890 / 5973 (manufactured by Agilent Technologies)
Column: UA-5 (manufactured by FRONTIER LAB)
DS is calculated | required using Formula 1 from content of the rosin compound quantified by pyrolysis GC / MS analysis.

(Formula 1) DS = (A / M) / {(100-A) / 162}
(A: content of rosin compound determined (% by weight), M: molecular weight of rosin (299) or molecular weight of acetic acid (60), 162: molecular weight of glucose)

実施例1
<セルロース分散液の溶媒置換>
微細セルロース(1)((株)ダイセル製「セリッシュKY100G」、平均繊維径0.3μm、固形分濃度10%)200g(固形分20g+水分180g)にアセトン2000gを加えて、撹拌・ろ過する作業を繰り返し2回行った。続けてキシレン2000gを加えて、撹拌・ろ過する作業を3回繰り返した後、セルロース濃度として1%となるように、再度キシレンを加えて、微細セルロース(1)/キシレン分散液を得た。
Example 1
<Solvent substitution of cellulose dispersion>
Work of adding 2000 g of acetone to 200 g (solid content 20 g + water 180 g), stirring and filtering fine cellulose (1) (“Cerish KY100G” manufactured by Daicel Corporation, average fiber diameter 0.3 μm, solid content concentration 10%) Repeated twice. Subsequently, 2000 g of xylene was added, and the operation of stirring and filtering was repeated three times. Then, xylene was added again so that the cellulose concentration became 1% to obtain a fine cellulose (1) / xylene dispersion.

<樹脂によるセルロースの被覆処理>
前記で得られた濃度1%の微細セルロース(1)/キシレン分散液1800g(固形分18g)を冷却管を備えたコルベンに入れ、300rpmにて撹拌しながらポリプロピレン(日本ポリプロ(株)製「ノバテックPP−BC2E」)0.95gを加えた。この懸濁液を120℃まで昇温し、ポリプロピレンをキシレンに溶解させた。120℃で10分間保温後、懸濁液を30℃以下まで急冷し、ポリプロピレン由来成分を析出させた。冷却後、懸濁液をろ過し、析出物を減圧乾燥することにより、乾燥重量18.7g(収率98.7%)のマスターバッチ1(樹脂5%含有)を得た。
<Coating of cellulose with resin>
1800 g of fine cellulose (1) / xylene dispersion obtained above (1 g) (solid content 18 g) was placed in a Kolben equipped with a cooling tube and stirred at 300 rpm with polypropylene ("Novatec" manufactured by Nippon Polypro Co., Ltd.). PP-BC2E ") 0.95 g was added. This suspension was heated to 120 ° C., and polypropylene was dissolved in xylene. After incubating at 120 ° C. for 10 minutes, the suspension was rapidly cooled to 30 ° C. or lower to precipitate a polypropylene-derived component. After cooling, the suspension was filtered, and the precipitate was dried under reduced pressure to obtain a master batch 1 (containing 5% resin) having a dry weight of 18.7 g (yield 98.7%).

実施例2
前記ポリプロピレンの量を7.71gにした以外は実施例1と同様の手順で樹脂被覆処理を行い、マスターバッチ2(樹脂30%含有)を得た。乾燥重量は24.4g(収率95.0%)であった。
Example 2
Resin coating treatment was performed in the same procedure as in Example 1 except that the amount of the polypropylene was 7.71 g, to obtain a master batch 2 (containing 30% resin). The dry weight was 24.4 g (yield 95.0%).

実施例3
前記ポリプロピレンの量を42.0gにした以外は実施例1と同様の手順で樹脂被覆処理を行い、マスターバッチ3(樹脂70%含有)を得た。乾燥重量は57.8g(収率96.4%)であった。
Example 3
Resin coating treatment was performed in the same procedure as in Example 1 except that the amount of the polypropylene was changed to 42.0 g to obtain a master batch 3 (containing 70% resin). The dry weight was 57.8 g (yield 96.4%).

実施例4
前記ポリプロピレンの量を342.0gにした以外は実施例1と同様の手順で樹脂被覆処理を行い、マスターバッチ4(樹脂95%含有)を得た。乾燥重量は346.1g(収率96.1%)であった。
Example 4
Resin coating treatment was performed in the same procedure as in Example 1 except that the amount of polypropylene was changed to 342.0 g to obtain a master batch 4 (containing 95% resin). The dry weight was 346.1 g (yield 96.1%).

実施例5
前記ポリプロピレンの量を0.02gにした以外は実施例1と同様の手順で樹脂被覆処理を行い、マスターバッチ5(樹脂0.1%含有)を得た。乾燥重量は17.8g(収率98.6%)であった。
Example 5
Resin coating treatment was performed in the same procedure as in Example 1 except that the amount of polypropylene was changed to 0.02 g to obtain a master batch 5 (containing 0.1% resin). The dry weight was 17.8 g (yield 98.6%).

実施例6
<セルロース分散液の溶媒置換>
前記微細セルロース(1)200g(固形分20g+水分180g)にアセトン2000gを加えて、撹拌・ろ過する作業を繰り返し2回行った。続けてキシレン2000gを加えて、撹拌・ろ過する作業を3回繰り返した後、セルロース濃度として1%となるように、再度キシレンを加えて、微細セルロース(1)/キシレン分散液を得た。
Example 6
<Solvent substitution of cellulose dispersion>
The operation of adding 2000 g of acetone to 200 g of the fine cellulose (1) (solid content 20 g + water 180 g) and stirring and filtering was repeated twice. Subsequently, 2000 g of xylene was added, and the operation of stirring and filtering was repeated three times. Then, xylene was added again so that the cellulose concentration became 1% to obtain a fine cellulose (1) / xylene dispersion.

<ロジン酸無水物によるセルロースの変性>
前記で得られた1%微細セルロース(1)/キシレン分散液1900g(固形分19g)を冷却管を備えたコルベンに入れ、300rpmにて撹拌しながら、定法により合成したロジン酸無水物(荒川化学工業(株)製)を216g加え、140℃まで昇温し、3時間反応させた。反応後、ろ過して、キシレンでの5回洗浄により残留ロジン分を除去した後、セルロース濃度として1%となるように再度キシレンを加えて、ロジン変性微細化セルロース/キシレン分散液を得た。得られたロジン変性微細セルロースのDSは0.14であった。
<Modification of cellulose with rosin acid anhydride>
The 1% fine cellulose (1) / xylene dispersion 1900 g (solid content 19 g) obtained above was placed in a Kolben equipped with a cooling tube, and rosin acid anhydride (Arakawa Chemical Co., Ltd.) synthesized by a conventional method while stirring at 300 rpm. 216 g (manufactured by Kogyo Co., Ltd.) was added, and the temperature was raised to 140 ° C. and reacted for 3 hours. After the reaction, the mixture was filtered and the residual rosin content was removed by washing with xylene five times, and then xylene was added again to obtain a cellulose concentration of 1% to obtain a rosin-modified finely divided cellulose / xylene dispersion. The obtained rosin-modified fine cellulose had a DS of 0.14.

<樹脂によるセルロースの被覆処理>
前記のロジン変性微細セルロース/キシレン分散液1800g(セルロース固形分で18g)を冷却管を備えたコルベンに入れ、300rpmにて撹拌しながらポリプロピレン(日本ポリプロ(株)製「ノバテックPP−BC2E」)を7.71g加えた。この懸濁液を120℃まで昇温し、ポリプロピレンをキシレン中に溶解させた。120℃で10分間保温後、懸濁液を30℃以下まで急冷し、ポリプロピレン由来成分を析出させた。冷却後、懸濁液をろ過し、析出物を減圧乾燥することにより、乾燥重量30.9g(収率96.0%)のマスターバッチ6(樹脂30%含有)を得た。
<Coating of cellulose with resin>
1800 g of the rosin-modified fine cellulose / xylene dispersion (18 g in terms of cellulose solid content) was placed in a Kolben equipped with a cooling tube, and polypropylene (“Novatech PP-BC2E” manufactured by Nippon Polypro Co., Ltd.) was stirred while stirring at 300 rpm. 7.71 g was added. This suspension was heated to 120 ° C., and polypropylene was dissolved in xylene. After incubating at 120 ° C. for 10 minutes, the suspension was rapidly cooled to 30 ° C. or lower to precipitate a polypropylene-derived component. After cooling, the suspension was filtered, and the precipitate was dried under reduced pressure to obtain a master batch 6 (containing 30% resin) having a dry weight of 30.9 g (yield 96.0%).

実施例7
前記ポリプロピレンの量を42.0gにした以外は、実施例6と同様の手順で樹脂被覆処理を行い、マスターバッチ7(樹脂70%含有)を得た。乾燥重量は72.2g(収率96.2%)であった。
Example 7
Except that the amount of polypropylene was changed to 42.0 g, a resin coating treatment was performed in the same procedure as in Example 6 to obtain a master batch 7 (containing 70% resin). The dry weight was 72.2 g (yield 96.2%).

実施例8
ロジン酸無水物の代わりに無水酢酸10gを加えた以外は、実施例6と同様の手順で、アセチル変性微細セルロースを得た。得られたアセチル変性微細セルロースのDSは0.14であった。アセチル変性微細セルロースへの樹脂被覆処理は、実施例6と同様の手順で行い、マスターバッチ8(樹脂30%含有)を得た。乾燥重量は25.7g(収率96.5%)であった。
Example 8
Acetyl-modified fine cellulose was obtained in the same procedure as in Example 6 except that 10 g of acetic anhydride was added instead of rosin acid anhydride. The acetyl-modified fine cellulose obtained had a DS of 0.14. Resin coating treatment on acetyl-modified fine cellulose was performed in the same procedure as in Example 6 to obtain a master batch 8 (containing 30% resin). The dry weight was 25.7 g (yield 96.5%).

実施例9
前記ポリプロピレンをポリエチレン樹脂(日本ポリエチレン(株)製「ノバテックUS8909」)に変更した以外は、実施例1と同様の手順で樹脂被覆処理を行い、マスターバッチ9(樹脂5%含有)を得た。乾燥重量は18.4g(収率97.1%)であった。
Example 9
Resin coating treatment was performed in the same procedure as in Example 1 except that the polypropylene was changed to a polyethylene resin (“Novatech US8909” manufactured by Nippon Polyethylene Co., Ltd.) to obtain a master batch 9 (containing 5% resin). The dry weight was 18.4 g (yield 97.1%).

実施例10
前記ポリプロピレンをポリエチレン樹脂(日本ポリエチレン(株)製「ノバテックUS8909」)に変更した以外は、実施例2と同様の手順で樹脂被覆処理を行い、マスターバッチ10(樹脂30%含有)を得た。乾燥重量は24.8g(収率96.4%)であった。
Example 10
Resin coating treatment was performed in the same procedure as in Example 2 except that the polypropylene was changed to a polyethylene resin (“Novatech US8909” manufactured by Nippon Polyethylene Co., Ltd.) to obtain a master batch 10 (containing 30% resin). The dry weight was 24.8 g (yield 96.4%).

実施例11
前記ポリプロピレンをポリエチレン樹脂(日本ポリエチレン(株)製「ノバテックUS8909」)に変更した以外は、実施例3と同様の手順で樹脂被覆処理を行い、マスターバッチ11(樹脂70%含有)を得た。乾燥重量は56.9g(収率94.9%)であった。
Example 11
Resin coating treatment was performed in the same procedure as in Example 3 except that the polypropylene was changed to a polyethylene resin (“Novatech US8909” manufactured by Nippon Polyethylene Co., Ltd.) to obtain a master batch 11 (containing 70% resin). The dry weight was 56.9 g (yield 94.9%).

実施例12
微細セルロース(2)((株)スギノマシン製「ビンフィスWMa−10005」、平均繊維径0.02μm)に変更した以外は、実施例1と同様の手順で樹脂被覆処理を行い、マスターバッチ12(樹脂5%含有)を得た。乾燥重量は17.6g(収率93.1%)であった。
Example 12
Resin coating treatment was performed in the same procedure as in Example 1 except that it was changed to fine cellulose (2) (“Binfisu WMa-10005” manufactured by Sugino Machine Co., Ltd., average fiber diameter: 0.02 μm). (5% resin) was obtained. The dry weight was 17.6 g (yield 93.1%).

実施例13
前記の微細セルロース(2)に変更した以外は、実施例2と同様の手順で樹脂被覆処理を行い、マスターバッチ13(樹脂30%含有)を得た。乾燥重量は24.6g(収率95.7%)であった。
Example 13
Except having changed into the said fine cellulose (2), the resin coating process was performed in the procedure similar to Example 2, and the masterbatch 13 (30% of resin containing) was obtained. The dry weight was 24.6 g (yield 95.7%).

実施例14
前記の微細セルロース(2)に変更した以外は、実施例3と同様の手順で樹脂被覆処理を行い、マスターバッチ14(樹脂70%含有)を得た。乾燥重量は56.0g(収率93.3%)であった。
Example 14
Except having changed to the said fine cellulose (2), the resin coating process was performed in the procedure similar to Example 3, and the masterbatch 14 (70% resin containing) was obtained. The dry weight was 56.0 g (yield 93.3%).

実施例15
広葉樹漂白クラフトパルプ(LBKP、平均繊維径20μm)に変更した以外は、実施例1と同様の手順で樹脂被覆処理を行い、マスターバッチ15(樹脂5%含有)を得た。乾燥重量は18.4g(収率96.9%)であった。
Example 15
Except having changed to hardwood bleached kraft pulp (LBKP, average fiber diameter of 20 μm), resin coating treatment was performed in the same procedure as in Example 1 to obtain a master batch 15 (containing 5% resin). The dry weight was 18.4 g (yield 96.9%).

実施例16
前記の広葉樹漂白クラフトパルプに変更した以外は、実施例2と同様の手順で樹脂被覆処理を行い、マスターバッチ16(樹脂30%含有)を得た。乾燥重量は24.7g(収率95.9%)であった。
Example 16
Except having changed into the said hardwood bleached kraft pulp, the resin coating process was performed in the procedure similar to Example 2, and the masterbatch 16 (resin 30% containing) was obtained. The dry weight was 24.7 g (yield 95.9%).

実施例17
前記の広葉樹漂白クラフトパルプに変更した以外は、実施例3と同様の手順で樹脂被覆処理を行い、マスターバッチ17(樹脂70%含有)を得た。乾燥重量は56.4g(収率94.0%)であった。
Example 17
Except having changed into the said hardwood bleached kraft pulp, the resin coating process was performed in the procedure similar to Example 3, and the masterbatch 17 (resin 70% containing) was obtained. The dry weight was 56.4 g (yield 94.0%).

比較例1
前記ポリプロピレンを加えない以外は、実施例1と同様の手順で行い、マスターバッチ18(樹脂0%含有)を得た。乾燥重量は17.8g(収率98.9%)であった。
Comparative Example 1
A master batch 18 (containing 0% resin) was obtained in the same manner as in Example 1 except that the polypropylene was not added. The dry weight was 17.8 g (yield 98.9%).

比較例2
前記ポリプロピレンを加えない以外は、実施例12と同様の手順で行い、マスターバッチ19(樹脂0%含有)を得た。乾燥重量は17.5g(97.3%)であった。
Comparative Example 2
A master batch 19 (containing 0% resin) was obtained in the same manner as in Example 12 except that the polypropylene was not added. The dry weight was 17.5 g (97.3%).

比較例3
前記ポリプロピレンを加えない以外は、実施例15と同様の手順で行い、マスターバッチ20(樹脂0%含有)を得た。乾燥重量は17.8g(98.8%)であった。
Comparative Example 3
A master batch 20 (containing 0% resin) was obtained in the same manner as in Example 15 except that the polypropylene was not added. The dry weight was 17.8 g (98.8%).

※Ro処理:ロジン酸無水物で変性した成分(A)
Ac処理:無水酢酸で変性した成分(A)
PP:ポリプロピレン(日本ポリプロ(株)製「ノバテックPP−BC2E」)
PE:ポリエチレン樹脂(日本ポリエチレン(株)製「ノバテックUS8909」)
* Ro treatment: Component modified with rosin acid anhydride (A)
Ac treatment: component modified with acetic anhydride (A)
PP: Polypropylene ("Novatec PP-BC2E" manufactured by Nippon Polypro Co., Ltd.)
PE: Polyethylene resin ("Novatec US8909" manufactured by Nippon Polyethylene Co., Ltd.)

(分散性評価用シートの作成方法)
実施例1〜17および比較例1〜3で製造したマスターバッチ及びマトリックス樹脂を混練機(DMS社製 小型混練機 Xplore MC15M)にて200℃、5分間混練し、ペレットを調製した。なお、最終成形物中のセルロース繊維比率が全て5重量%となるように、マスターバッチ及びマトリックス樹脂を表2〜5に示す種類及び配合量(重量部)にて混合した。
得られたペレット1gを200℃、5MPaにて1分間加熱プレスした後、冷却することにより分散性評価用シートを作成した(評価例1〜17、比較評価例1〜4)。
(Method for creating a dispersion evaluation sheet)
The masterbatch and matrix resin produced in Examples 1 to 17 and Comparative Examples 1 to 3 were kneaded at 200 ° C. for 5 minutes in a kneader (DMS, small kneader Xplore MC15M) to prepare pellets. In addition, the masterbatch and matrix resin were mixed by the kind and compounding quantity (part by weight) which are shown in Tables 2-5 so that all the cellulose fiber ratios in a final molded product might be 5 weight%.
1 g of the obtained pellets were heated and pressed at 200 ° C. and 5 MPa for 1 minute, and then cooled to prepare dispersibility evaluation sheets (Evaluation Examples 1 to 17 and Comparative Evaluation Examples 1 to 4).

(分散性評価)
上記分散性評価シートの目視観察により、シート中のセルロース凝集物(幅500μmを超える粒子)の数を計測した。なお、評価結果については、マスターバッチ及びマトリックス樹脂の種類毎に、表2〜表5に示した。
(Dispersibility evaluation)
By visual observation of the dispersibility evaluation sheet, the number of cellulose aggregates (particles having a width exceeding 500 μm) in the sheet was measured. In addition, about the evaluation result, it showed in Table 2-Table 5 for every kind of masterbatch and matrix resin.

(強度評価方法)
実施例1〜17および比較例1〜3で製造したセルロース繊維/樹脂マスターバッチ及びマトリックス樹脂を、最終成形物中のセルロース繊維比率が全て5重量%となるように混合し、前記混練機にて200℃、5分間混練し、射出成形機(DMS社製 小型射出成形機 Xplore IM12M)にて金型温度40℃、圧力0.1MPaで、ダンベル型小型試験片(JIS K7161 1BA型)を作製した。引張強さは、JIS K7161に準じて測定した。なお、評価結果については、前記のように分けて、表2〜5に示した。
(Strength evaluation method)
The cellulose fiber / resin master batch and matrix resin produced in Examples 1 to 17 and Comparative Examples 1 to 3 were mixed so that the cellulose fiber ratio in the final molded product was all 5% by weight, and in the kneader The mixture was kneaded at 200 ° C. for 5 minutes, and a dumbbell-type small test piece (JIS K7161 1BA type) was produced at a mold temperature of 40 ° C. and a pressure of 0.1 MPa using an injection molding machine (compact injection molding machine Xplore IM12M manufactured by DMS). . The tensile strength was measured according to JIS K7161. The evaluation results are shown in Tables 2 to 5 separately as described above.

※マスターバッチ:セリッシュKY100G/PP、マトリックス樹脂:PP * Masterbatch: Serisch KY100G / PP, Matrix resin: PP

表2に示すように、比較評価例1と比較して、評価例1〜8で得られたシートでは、良好な分散性を示し、かつマトリックス樹脂を用いて成形した組成物においても優れた機械的強度を示すことがわかった。   As shown in Table 2, compared with Comparative Evaluation Example 1, the sheets obtained in Evaluation Examples 1 to 8 showed good dispersibility and were excellent in a composition molded using a matrix resin. It was found that it showed the desired strength.

※マスターバッチ:セリッシュKY100G/PE、マトリックス樹脂:PE * Masterbatch: Serisch KY100G / PE, Matrix resin: PE

表3に示すように、比較評価例4と比較して、評価例9〜11で得られたシートでは、良好な分散性を示し、かつマトリックス樹脂を用いて成形した組成物においても優れた機械的強度を示すことがわかった。   As shown in Table 3, compared with Comparative Evaluation Example 4, the sheets obtained in Evaluation Examples 9 to 11 showed good dispersibility and were excellent in a composition molded using a matrix resin. It was found that it showed the desired strength.

※マスターバッチ:ビンフィスWMa/PP、マトリックス樹脂:PP * Masterbatch: Binfisu WMa / PP, Matrix resin: PP

表4に示すように、比較評価例2と比較して、評価例12〜14で得られたシートでは、良好な分散性を示し、かつマトリックス樹脂を用いて成形した組成物においても優れた機械的強度を示すことがわかった。   As shown in Table 4, compared with Comparative Evaluation Example 2, the sheets obtained in Evaluation Examples 12 to 14 showed good dispersibility and were excellent in a composition molded using a matrix resin. It was found that it showed the desired strength.

※マスターバッチ:LBKP/PP、マトリックス樹脂:PP * Masterbatch: LBKP / PP, Matrix resin: PP

表5に示すように、比較評価例3と比較して、評価例15〜17で得られたシートでは、良好な分散性を示し、かつマトリックス樹脂を用いて成形した組成物においても優れた機械的強度を示すことがわかった。
As shown in Table 5, compared with Comparative Evaluation Example 3, the sheets obtained in Evaluation Examples 15 to 17 showed good dispersibility and were excellent in a composition molded using a matrix resin. It was found that it showed the desired strength.

Claims (7)

セルロース繊維(A)を疎水性有機溶媒(C)中で分散させた懸濁液に、ポリオレフィン樹脂(B)を添加後、セルロース繊維(A)が均一分散、かつポリオレフィン系樹脂(B)が溶解状態となるよう加熱し、系内を冷却してポリオレフィン系樹脂(B)を含む内容物を析出させることを特徴とするセルロース繊維/ 樹脂複合組成物の製造方法。 After adding the polyolefin resin (B) to the suspension in which the cellulose fiber (A) is dispersed in the hydrophobic organic solvent (C), the cellulose fiber (A) is uniformly dispersed and the polyolefin resin (B) is dissolved. A method for producing a cellulose fiber / resin composite composition, characterized by heating to a state and cooling the system to precipitate a content containing a polyolefin resin (B). セルロース繊維(A)が、平均繊維径1.0μm以下である微細セルロース又はセルロース繊維(A)若しくは該微細セルロースの酸無水物変性物である請求項1に記載の製造方法。 The production method according to claim 1, wherein the cellulose fiber (A) is a fine cellulose having an average fiber diameter of 1.0 µm or less, a cellulose fiber (A), or an acid anhydride modified product of the fine cellulose . 前記セルロース繊維(A)の酸無水物変性物が、無水酢酸又はロジン系化合物の酸無水物でエステル化されたものである請求項2に記載の製造方法。 The manufacturing method according to claim 2, wherein the acid anhydride-modified product of the cellulose fiber (A) is esterified with acetic anhydride or an acid anhydride of a rosin compound. 製造に用いるセルロース繊維(A)とポリオレフィン系樹脂(B)の固形分割合((A)/(B))が1/99〜99/1である請求項1〜3のいずれかに記載の製造方法。 The solid content ratio ((A) / (B)) of the cellulose fiber (A) and the polyolefin resin (B) used for the production is 1/99 to 99/1. Method. 請求項1〜4のいずれかに記載の方法で製造したセルロース繊維/ 樹脂複合組成物であって、前記セルロース繊維(A)が酸無水物変性物であることを特徴とするセルロース繊維/樹脂複合組成物。 A cellulose fiber / resin composite composition produced by the method according to claim 1 , wherein the cellulose fiber (A) is an acid anhydride-modified product. Composition. 請求項5に記載のセルロース繊維/樹脂複合組成物を配合して得られる成形用樹脂組成物。 A molding resin composition obtained by blending the cellulose fiber / resin composite composition according to claim 5. 請求項5、6のいずれかに記載のセルロース繊維/樹脂複合組成物又は成形用樹脂組成物から得られる樹脂成形物。
A resin molded product obtained from the cellulose fiber / resin composite composition or the molding resin composition according to claim 5.
JP2014063052A 2014-03-26 2014-03-26 Method for producing cellulose fiber / resin composite composition, composite composition, resin composition for molding, and resin molded product Active JP6198005B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014063052A JP6198005B2 (en) 2014-03-26 2014-03-26 Method for producing cellulose fiber / resin composite composition, composite composition, resin composition for molding, and resin molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014063052A JP6198005B2 (en) 2014-03-26 2014-03-26 Method for producing cellulose fiber / resin composite composition, composite composition, resin composition for molding, and resin molded product

Publications (2)

Publication Number Publication Date
JP2015183153A JP2015183153A (en) 2015-10-22
JP6198005B2 true JP6198005B2 (en) 2017-09-20

Family

ID=54350065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014063052A Active JP6198005B2 (en) 2014-03-26 2014-03-26 Method for producing cellulose fiber / resin composite composition, composite composition, resin composition for molding, and resin molded product

Country Status (1)

Country Link
JP (1) JP6198005B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6640623B2 (en) * 2016-03-18 2020-02-05 国立大学法人京都大学 Masterbatch containing acylated modified microfibrillated plant fibers
DK3441425T3 (en) 2016-12-05 2021-05-31 Furukawa Electric Co Ltd Cellulose-aluminum-dispersed polyethylene resin composite, pellet and shaped element using the same and process for producing the same
EP3447085B1 (en) * 2016-12-28 2021-09-01 Asahi Kasei Kabushiki Kaisha Cellulose-containing resin composition and cellulosic ingredient
JP6479904B2 (en) * 2016-12-28 2019-03-06 旭化成株式会社 Cellulose preparation
WO2018180469A1 (en) * 2017-03-29 2018-10-04 古河電気工業株式会社 Polyolefin resin composite and method for producing same
WO2019039571A1 (en) * 2017-08-23 2019-02-28 古河電気工業株式会社 Polyolefin resin composite containing dispersed cellulose fibers
JP6961703B2 (en) 2017-08-23 2021-11-05 古河電気工業株式会社 Cellulose fiber-dispersed polyethylene resin composite material, molded body and pellet using this, manufacturing method of these, and recycling method of polyethylene fiber-attached polyethylene thin film piece
WO2019038869A1 (en) 2017-08-23 2019-02-28 古河電気工業株式会社 Cellulose fiber dispersion polyethylene resin composite, molded body and pellets using same, manufacturing method for these, and recycling method for polyethylene thin film fragments with adhered cellulose fibers
EP3674362A4 (en) 2017-08-23 2021-05-19 Furukawa Electric Co., Ltd. Cellulose fiber-dispersed polyolefin resin composite material, pellet and molded article using same, and method for producing cellulose fiber-dispersed polyolefin resin composite material
WO2019066069A1 (en) 2017-09-29 2019-04-04 古河電気工業株式会社 Molded article
JP7203743B2 (en) 2017-09-29 2023-01-13 古河電気工業株式会社 Molding
EP3689974A4 (en) 2017-09-29 2021-07-07 Furukawa Electric Co., Ltd. Molded article
JPWO2019088140A1 (en) 2017-10-31 2020-09-24 古河電気工業株式会社 Molding
JP7220512B2 (en) * 2018-02-06 2023-02-10 大王製紙株式会社 Resin composition and its manufacturing method
JP7199812B2 (en) * 2018-02-19 2023-01-06 出光ファインコンポジット株式会社 Cellulose fiber dispersant, resin composition, method for producing resin composition, and molded article
JPWO2020116518A1 (en) * 2018-12-05 2021-10-28 古河電気工業株式会社 Cellulose Fiber Dispersed Resin Composites, Molds, and Composites

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001288275A (en) * 2000-03-31 2001-10-16 Kazuaki Masago Method for highly dispersing filler in synthetic resin and its composite material
JP5675066B2 (en) * 2009-06-26 2015-02-25 株式会社ダイセル Fine cellulose fiber-containing resin composition and method for producing the same
JP5660333B2 (en) * 2010-01-28 2015-01-28 日産化学工業株式会社 Method for producing composition containing cellulose and polylactic acid

Also Published As

Publication number Publication date
JP2015183153A (en) 2015-10-22

Similar Documents

Publication Publication Date Title
JP6198005B2 (en) Method for producing cellulose fiber / resin composite composition, composite composition, resin composition for molding, and resin molded product
KR102158129B1 (en) Cellulose-containing resin composition and cellulosic ingredient
Sato et al. Surface modification of cellulose nanofibers with alkenyl succinic anhydride for high-density polyethylene reinforcement
Iwamoto et al. Mechanical properties of polypropylene composites reinforced by surface-coated microfibrillated cellulose
JP5940933B2 (en) Resin composition
WO2011071156A1 (en) Composite material
TWI593709B (en) Manufacturing method of modified cellulose nanofiber
JP2015108094A (en) Method for manufacturing dispersion of fine cellulose fiber composite
JP2013151661A (en) Molded article made from polyester resin composition
JP2018111768A (en) Fiber material and method for producing fiber material, and composite material and method for producing composite material
Indriyati et al. Development of bacterial cellulose/chitosan films: structural, physicochemical and antimicrobial properties
Martins et al. How the compatibility between polyethylene and thermoplastic starch can be improved by adding organic acids?
JP6486428B2 (en) Method for producing a resin composition reinforced with cellulose
JP6422540B1 (en) Method for producing cellulose reinforced resin composition
Pérez-Guerrero et al. Effect of modified Eucalyptus nitens lignin on the morphology and thermo-mechanical properties of recycled polystyrene
JP6479904B2 (en) Cellulose preparation
Ismail et al. Processability and miscibility of linear low-density polyethylene/poly (vinyl alcohol) blends: In situ compatibilization with maleic acid
CA2549844C (en) Solid phase dispersion and processing of micro-and nano-cellulosic fibres in plastic phase to manufacture bio-nanocomposite products of commercial interest
JP2018111769A (en) Swollen fiber material and method for producing swollen fiber material, and composite material and method for producing composite material
Nagalakshmaiah Melt processing of cellulose nanocrystals: thermal, mechanical and rheological properties of polymer nanocomposites
Abdelwahab et al. Effect of maleated polypropylene emulsion on the mechanical and thermal properties of lignin-polypropylene blends
JP2009127054A (en) Ionomer of poly-1-olefin wax
WO2019012724A1 (en) Resin composition and resin molded article
Souza et al. Preparation and properties of cellulose nanocrystals derived from corn cobs: application as a reinforcing material for “green nanocomposite” films
WO2023277145A1 (en) Polysaccharide nanofiber-blended polysaccharide composition production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170808

R150 Certificate of patent or registration of utility model

Ref document number: 6198005

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250