JP6193194B2 - 電気音響変換フィルムおよび電気音響変換器 - Google Patents

電気音響変換フィルムおよび電気音響変換器 Download PDF

Info

Publication number
JP6193194B2
JP6193194B2 JP2014187697A JP2014187697A JP6193194B2 JP 6193194 B2 JP6193194 B2 JP 6193194B2 JP 2014187697 A JP2014187697 A JP 2014187697A JP 2014187697 A JP2014187697 A JP 2014187697A JP 6193194 B2 JP6193194 B2 JP 6193194B2
Authority
JP
Japan
Prior art keywords
conversion film
piezoelectric
film
polymer
polymer composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014187697A
Other languages
English (en)
Other versions
JP2016063286A (ja
Inventor
井上 大輔
大輔 井上
昭人 福永
昭人 福永
三好 哲
哲 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2014187697A priority Critical patent/JP6193194B2/ja
Publication of JP2016063286A publication Critical patent/JP2016063286A/ja
Application granted granted Critical
Publication of JP6193194B2 publication Critical patent/JP6193194B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)

Description

本発明は、スピーカやマイクロフォンなどの音響デバイス等に用いられる電気音響変換フィルムに関する。
液晶ディスプレイや有機ELディスプレイなど、ディスプレイの薄型化に対応して、これらの薄型ディスプレイに用いられるスピーカにも軽量化・薄型化が要求されている。さらに、可撓性を有するフレキシブルディスプレイにおいて、軽量性や可撓性を損なうことなくフレキシブルディスプレイに一体化するために、可撓性も要求されている。このような軽量・薄型で可撓性を有するスピーカとして、印加電圧に応答して伸縮する性質を有するシート状の圧電フィルムを採用することが考えられている。
例えば、特許文献1には、圧電フィルムとして、ポリフッ化ビニリデン(PVDF:Poly VinyliDene Fluoride)の一軸延伸フィルムを高電圧で分極処理したものを用いることが記載されている。
このような圧電フィルムをスピーカとして採用するためには、フィルム面に沿った伸縮運動をフィルム面の振動に変換する必要がある。この伸縮運動から振動への変換は、圧電フィルムを湾曲させた状態で保持することにより達成され、これにより、圧電フィルムをスピーカとして機能させることが可能になる。
ところが、一軸延伸されたPVDFからなる圧電フィルムは、その圧電特性に面内異方性があるため、同じ曲率でも曲げる方向によって音質が大きく異なってしまう。
更に、PVDFはコーン紙等の一般的なスピーカ用振動板に比べ損失正接が小さいため、共振が強く出やすく、起伏の激しい周波数特性となる。従って、曲率の変化に伴い最低共振周波数が変化した際の音質の変化量も大きくなってしまう。
以上のように、PVDFからなる圧電フィルムでは、安定した音を再生することが困難であった。
そこで、本願出願人は、可撓性を有し、かつ、高音質な音を安定して再生することができるスピーカとして、特許文献2に開示される、常温で粘弾性を有する高分子材料からなる粘弾性マトリックス中に圧電体粒子を分散してなる高分子複合圧電体と、高分子複合圧電体の両面に形成された薄膜電極と、薄膜電極の表面に形成された保護層とを有する電気音響変換フィルムを提案した。
特開2008−294493号公報 特開2014−14063号公報
特許文献2に記載された電気音響変換フィルムは、圧電体層の材料を、常温で粘弾性を有する高分子材料とすることで、20Hz〜20kHzの振動に対しては硬く、数Hz以下の振動に対しては柔らかく振舞うことが可能で、更に20kHz以下の全ての周波数の振動に対して適度な損失正接を有する。そのため、可撓性および音響特性に優れ、しかも、変形されても安定した音声の出力が可能である。
しかしながら、本発明者らの検討によれば、マトリックス中に圧電体粒子を分散してなる高分子複合圧電体を用いる圧電フィルムについて、加熱と冷却を交互に繰り返す温度サイクル試験を行ったところ、温度サイクル試験後に、電圧と音の変換効率の低下や、電流のリーク、絶縁破壊が生じる、すなわち、耐電圧の低下が生じる場合があることがわかった。すなわち、高温あるいは低温の環境下で、性能低下が生じる恐れがあることがわかった。
また、種々の環境下で、可撓性試験を行ったところ、低湿度下では、圧電体層が硬化して圧電フィルムの可撓性が低下する場合があることがわかった。
本発明の目的は、このような従来技術の問題点を解決することにあり、高温から低温までの広い温度範囲や広い湿度範囲等の厳しい環境下においても、変換効率の低下、耐電圧の低下および可撓性の低下等を抑制できる電気音響変換フィルムおよび電気音響変換器を提供することにある。
この課題を解決するために、本発明者らは、高分子材料からなるマトリックス中に圧電体粒子を分散してなる高分子複合圧電体と、高分子複合圧電体の両面に形成された薄膜電極と、薄膜電極の表面に形成された保護膜とを有し、高分子複合圧電体は、SP値が12.5(cal/cm31/2未満、かつ、常温で液体の物質を、質量比で20ppm〜500ppm含有していることにより、温度や湿度等の厳しい環境下においても、変換効率の低下、耐電圧の低下および可撓性の低下等を抑制できることを見出し、本発明を完成させた。
すなわち、本発明は、以下の構成の電気音響変換フィルムおよび電気音響変換器を提供する。
(1) 高分子材料からなるマトリックス中に圧電体粒子を分散してなる高分子複合圧電体と、高分子複合圧電体の両面に形成された薄膜電極と、薄膜電極の表面に形成された保護層とを有し、
高分子複合圧電体は、SP値が12.5(cal/cm31/2未満、かつ、常温で液体の物質を、質量比で20ppm〜500ppm含有している電気音響変換フィルム。
(2) 物質の含有量が100ppm〜400ppmである(1)に記載の電気音響変換フィルム。
(3) マトリックスが常温で粘弾性を有する高分子材料である(1)または(2)に記載の電気音響変換フィルム。
(4) 高分子複合圧電体の厚さが5〜100μmである(1)〜(3)のいずれかに記載の電気音響変換フィルム。
(5) 物質が、メチルエチルケトン、ジメチルホルムアミド、シクロヘキサノン、アセトン、シクロヘキサン、アセトニトリル、1プロパノール、2プロパノール、2メトキシアルコール、ジアセトンアルコール、ジメチルアセトアミド、ベンジルアルコール、n-ヘキサン、トルエン、o-キシレン、酢酸エチル、酢酸ブチル、ジエチルエーテル、テトラヒドロフランからなる群から選択される少なくとも1つである(1)〜(4)のいずれかに記載の電気音響変換フィルム。
(6) 高分子材料の動的粘弾性測定による周波数1Hzでの損失正接Tanδが0.5以上となる極大値が0〜50℃の温度範囲に存在する(1)〜(5)のいずれかに記載の電気音響変換フィルム。
(7) 高分子材料が、シアノエチル基を有するものである(1)〜(6)のいずれかに記載の電気音響変換フィルム。
(8) 高分子材料が、シアノエチル化ポリビニルアルコールである(1)〜(7)のいずれかに記載の電気音響変換フィルム。
(9) (1)〜(8)のいずれかに記載の電気音響変換フィルムと、電気音響変換フィルムを支持する支持部材とを有する電気音響変換器。
このような本発明の電気音響変換フィルムおよび電気音響変換器によれば、温度や湿度が厳しい環境下においても、変換効率の低下、耐電圧の低下および可撓性の低下等を抑制することができる。
本発明の電気音響変換フィルムの一例を示す概念図である。 図2(A)〜図2(E)は、図1に示す電気音響変換フィルムの製造方法の一例を示す概念図である。 図3(A)〜図3(C)は、本発明の電気音響変換フィルムを利用する圧電スピーカの一例を説明するための概念図である。
以下、本発明の電気音響変換フィルムおよび電気音響変換器について、添付の図面に示される好適実施例を基に、詳細に説明する。
以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
なお、本明細書において、「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
図1に、本発明の電気音響変換フィルムの一例を概念的に示す。
図1に示す電気音響変換フィルム10(以下、変換フィルム10とする)は、基本的に、高分子複合圧電体からなる圧電体層12と、圧電体層12の一面に設けられる薄膜電極14および他面に設けられる薄膜電極16と、薄膜電極14の表面に設けられる保護層18および薄膜電極16の表面に設けられる保護層20と、を有して構成される。
このような変換フィルム10は、スピーカ、マイクロフォン、および、ギター等の楽器に用いられるピックアップなどの各種の音響デバイス(音響機器)において、電気信号に応じた振動による音の発生(再生)や、音による振動を電気信号に変換するために利用されるものである。
本発明の変換フィルム10において、圧電体層12は、前述のとおり、高分子複合圧電体からなるものである。
本発明において、圧電体層12を形成する高分子複合圧電体は、高分子材料からなるマトリックス24中に、圧電体粒子26を均一に分散したものであり、マトリックス24中に、SP値が12.5(cal/cm31/2未満、かつ、常温で液体の物質を、質量比で20ppm〜500ppm含有してる。
また、好ましくは、圧電体層12は、分極処理されている。
なお、本明細書において、「常温」とは、0〜50℃程度の温度域を指す。
ここで、圧電体層12を構成する高分子複合圧電体のマトリックス24(マトリックス兼バインダ)の材料として、常温で粘弾性を有する高分子材料を用いるのが好ましい。
本発明の変換フィルム10は、フレキシブルディスプレイ用のスピーカなど、フレキシブル性を有するスピーカ等に好適に用いられる。ここで、フレキシブル性を有するスピーカに用いられる高分子複合圧電体(圧電体層12)は、次の用件を具備したものであるのが好ましい。従って、以下の要件を具備する材料として、常温で粘弾性を有する高分子材料を用いるのが好ましい。
(i) 可撓性
例えば、携帯用として新聞や雑誌のように書類感覚で緩く撓めた状態で把持する場合、絶えず外部から、数Hz以下の比較的ゆっくりとした、大きな曲げ変形を受けることになる。この時、高分子複合圧電体が硬いと、その分大きな曲げ応力が発生し、高分子マトリックスと圧電体粒子との界面で亀裂が発生し、やがて破壊に繋がる恐れがある。従って、高分子複合圧電体には適度な柔らかさが求められる。また、歪みエネルギーを熱として外部へ拡散できれば応力を緩和することができる。従って、高分子複合圧電体の損失正接が適度に大きいことが求められる。
(ii) 音質
スピーカは、20Hz〜20kHzのオーディオ帯域の周波数で圧電体粒子を振動させ、その振動エネルギーによって振動板(高分子複合圧電体)全体が一体となって振動することで音が再生される。従って、振動エネルギーの伝達効率を高めるために高分子複合圧電体には適度な硬さが求められる。また、スピーカの周波数特性が平滑であれば、曲率の変化に伴い最低共振周波数fが変化した際の音質の変化量も小さくなる。従って、高分子複合圧電体の損失正接は適度に大きいことが求められる。
以上をまとめると、フレキシブル性を有するスピーカに用いる高分子複合圧電体は、20Hz〜20kHzの振動に対しては硬く、数Hz以下の振動に対しては柔らかく振る舞うことが求められる。また、高分子複合圧電体の損失正接は、20kHz以下の全ての周波数の振動に対して、適度に大きいことが求められる。
一般に、高分子固体は粘弾性緩和機構を有しており、温度上昇あるいは周波数の低下とともに大きなスケールの分子運動が貯蔵弾性率(ヤング率)の低下(緩和)あるいは損失弾性率の極大(吸収)として観測される。その中でも、非晶質領域の分子鎖のミクロブラウン運動によって引き起こされる緩和は、主分散と呼ばれ、非常に大きな緩和現象が見られる。この主分散が起きる温度がガラス転移点(Tg)であり、最も粘弾性緩和機構が顕著に現れる。
高分子複合圧電体(圧電体層12)において、ガラス転移点が常温にある高分子材料、言い換えると、常温で粘弾性を有する高分子材料をマトリックスに用いることで、20Hz〜20kHzの振動に対しては硬く、数Hz以下の遅い振動に対しては柔らかく振舞う高分子複合圧電体が実現する。特に、この振舞いが好適に発現する等の点で、周波数1Hzでのガラス転移温度が常温、すなわち、0〜50℃にある高分子材料を、高分子複合圧電体のマトリックスに用いるのが好ましい。
常温で粘弾性を有する高分子材料としては、公知の各種のものが利用可能である。好ましくは、常温、すなわち0〜50℃において、動的粘弾性試験による周波数1Hzにおける損失正接Tanδの極大値が、0.5以上有る高分子材料を用いる。
これにより、高分子複合圧電体が外力によってゆっくりと曲げられた際に、最大曲げモーメント部における高分子マトリックス/圧電体粒子界面の応力集中が緩和され、高い可撓性が期待できる。
また、高分子材料は、動的粘弾性測定による周波数1Hzでの貯蔵弾性率(E’)が、0℃において100MPa以上、50℃において10MPa以下、であることが好ましい。
これにより、高分子複合圧電体が外力によってゆっくりと曲げられた際に発生する曲げモーメントが低減できると同時に、20Hz〜20kHzの音響振動に対しては硬く振る舞うことができる。
また、高分子材料は、比誘電率が25℃において10以上有ると、より好適である。これにより、高分子複合圧電体に電圧を印加した際に、高分子マトリックス中の圧電体粒子にはより高い電界が掛かるため、大きな変形量が期待できる。
しかしながら、その反面、良好な耐湿性の確保等を考慮すると、高分子材料は、比誘電率が25℃において10以下であるのも、好適である。
このような条件を満たす高分子材料としては、シアノエチル化ポリビニルアルコール(シアノエチル化PVA)、ポリ酢酸ビニル、ポリビニリデンクロライドコアクリロニトリル、ポリスチレン−ビニルポリイソプレンブロック共重合体、ポリビニルメチルケトン、および、ポリブチルメタクリレート等が例示される。また、これらの高分子材料としては、ハイブラー5127(クラレ社製)などの市販品も、好適に利用可能である。なかでも、シアノエチル基を有する材料を用いることが好ましく、シアノエチル化PVAを用いるのが特に好ましい。
なお、これらの高分子材料は、1種のみを用いてもよく、複数種を併用(混合)して用いてもよい。
このような常温で粘弾性を有する高分子材料を用いるマトリックス24は、必要に応じて、複数の高分子材料を併用してもよい。
すなわち、マトリックス24には、誘電特性や機械特性の調整等を目的として、シアノエチル化PVA等の粘弾性材料に加え、必要に応じて、その他の誘電性高分子材料を添加しても良い。
添加可能な誘電性高分子材料としては、一例として、ポリフッ化ビニリデン、フッ化ビニリデン−テトラフルオロエチレン共重合体、フッ化ビニリデン−トリフルオロエチレン共重合体、ポリフッ化ビニリデン−トリフルオロエチレン共重合体及びポリフッ化ビニリデン−テトラフルオロエチレン共重合体等のフッ素系高分子、シアン化ビニリデン−酢酸ビニル共重合体、シアノエチルセルロース、シアノエチルヒドロキシサッカロース、シアノエチルヒドロキシセルロース、シアノエチルヒドロキシプルラン、シアノエチルメタクリレート、シアノエチルアクリレート、シアノエチルヒドロキシエチルセルロース、シアノエチルアミロース、シアノエチルヒドロキシプロピルセルロース、シアノエチルジヒドロキシプロピルセルロース、シアノエチルヒドロキシプロピルアミロース、シアノエチルポリアクリルアミド、シアノエチルポリアクリレート、シアノエチルプルラン、シアノエチルポリヒドロキシメチレン、シアノエチルグリシドールプルラン、シアノエチルサッカロース及びシアノエチルソルビトール等のシアノ基あるいはシアノエチル基を有するポリマー、ニトリルゴムやクロロプレンゴム等の合成ゴム等が例示される。
中でも、シアノエチル基を有する高分子材料は、好適に利用される。
また、圧電体層12のマトリックス24において、シアノエチル化PVA等の常温で粘弾性を有する材料に加えて添加される誘電性ポリマーは、1種に限定はされず、複数種を添加してもよい。
また、誘電性ポリマー以外にも、ガラス転移点Tgを調整する目的で、塩化ビニル樹脂、ポリエチレン、ポリスチレン、メタクリル樹脂、ポリブテン、イソブチレン、等の熱可塑性樹脂や、フェノール樹脂、尿素樹脂、メラミン樹脂、アルキド樹脂、マイカ、等の熱硬化性樹脂を添加しても良い。
更に、粘着性を向上する目的で、ロジンエステル、ロジン、テルペン、テルペンフェノール、石油樹脂、等の粘着付与剤を添加しても良い。
圧電体層12のマトリックス24において、シアノエチル化PVA等の粘弾性材料以外のポリマーを添加する際の添加量には、特に限定は無いが、マトリックス24に占める割合で30重量%以下とするのが好ましい。
これにより、マトリックス24における粘弾性緩和機構を損なうことなく、添加する高分子材料の特性を発現できるため、高誘電率化、耐熱性の向上、圧電体粒子26や電極層との密着性向上等の点で好ましい結果を得ることができる。
なお、本発明においては、マトリックス24の材料は、常温で粘弾性を有する高分子材料に限定はされず、上記の誘電性ポリマー等を用いることもできる。
圧電体粒子26は、ペロブスカイト型或いはウルツ鉱型の結晶構造を有するセラミックス粒子からなるものである。
圧電体粒子26を構成するセラミックス粒子としては、例えば、チタン酸ジルコン酸鉛(PZT)、チタン酸ジルコン酸ランタン酸鉛(PLZT)、チタン酸バリウム(BaTiO3)、酸化亜鉛(ZnO)、および、チタン酸バリウムとビスマスフェライト(BiFe3)との固溶体(BFBT)等が例示される。
このような圧電体粒子26の粒径は、変換フィルム10のサイズや用途に応じて、適宜、選択すれば良いが、本発明者の検討によれば、1〜10μmが好ましい。
圧電体粒子26の粒径を上記範囲とすることにより、高い圧電特性とフレキシビリティとを両立できる等の点で好ましい結果を得ることができる。
なお、図1においては、圧電体層12中の圧電体粒子26は、マトリックス24中に、不規則に分散されているが、規則性を持って、均一に分散されていてもよい。
また、本発明の変換フィルム10において、圧電体層12中におけるマトリックス24と圧電体粒子26との量比は、変換フィルム10の面方向の大きさや厚さ、変換フィルム10の用途、変換フィルム10に要求される特性等に応じて、適宜、設定すればよい。
ここで、本発明者の検討によれば、圧電体層12中における圧電体粒子26の体積分率は、30〜70%が好ましく、特に、50%以上とするのが好ましく、従って、50〜70%とするのが、より好ましい。
マトリックス24と圧電体粒子26との量比を上記範囲とすることにより、高い圧電特性とフレキシビリティとを両立できる等の点で好ましい結果を得ることができる。
ここで、本発明の変換フィルム10においては、マトリックス中に圧電体粒子を分散してなる高分子複合圧電体である圧電体層12は、SP値(溶解度パラメータ)が12.5(cal/cm31/2未満、かつ、常温で液体の物質を、質量比で20ppm〜500ppm含有する。
SP値が12.5(cal/cm31/2未満、かつ、常温で液体の物質としては、具体的には、メチルエチルケトン、ジメチルホルムアミド、シクロヘキサノン、アセトン、シクロヘキサン、アセトニトリル、1プロパノール、2プロパノール、2メトキシアルコール、ジアセトンアルコール、ジメチルアセトアミド、ベンジルアルコール、n-ヘキサン、トルエン、o-キシレン、酢酸エチル、酢酸ブチル、ジエチルエーテル、テトラヒドロフラン等の有機化合物が挙げられる。
上記物質は、一般に、有機溶媒として用いられるものである。すなわち、本発明は、圧電体層12が、SP値12.5(cal/cm31/2未満で、かつ、常温で液体の有機溶媒を、質量比で20ppm〜500ppm含有するというものである。
前述のとおり、圧電体層を、常温で粘弾性を有する高分子材料からなるマトリックス中に圧電体粒子を分散してなる高分子複合圧電体とすることで、可撓性および音響特性に優れ、しかも、変形されても安定した音声の出力が可能な変換フィルムとすることができる。
しかしながら、本発明者らの検討によれば、マトリックス中に圧電体粒子を分散してなる高分子複合圧電体を用いる圧電フィルムについて、加熱と冷却とを交互に繰り返す温度サイクル試験を行ったところ、温度サイクル試験後に、電圧と音の変換効率の低下や、電流のリーク、絶縁破壊が生じる、すなわち、耐電圧の低下が生じる場合があることがわかった。
また、種々の環境下で、可撓性試験を行ったところ、低湿度下では、圧電体層(マトリックス)が乾燥して硬化し、圧電フィルムの可撓性が低下する場合があることがわかった。
これに対して本発明の変換フィルム10は、高分子複合圧電体(圧電体層12)が、SP値が12.5(cal/cm31/2未満で、かつ、常温で液体の物質を、質量比で20ppm〜500ppm含有するという構成を有する。
高分子複合圧電体が上記物質を含有することにより、低湿度下であっても高分子複合圧電体が乾燥して硬化するのを防止できる。その結果、低湿度下で可撓性が低下するのを防止できる。このような効果を発現するためには、高分子複合圧電体は、上記物質を20ppm以上含有する必要がある。
ここで、高分子複合圧電体が、SP値が12.5(cal/cm31/2以上で、かつ、常温で液体の物質を含有する場合であっても、高分子複合圧電体の乾燥による硬化を防止することはできる。しかしながら、SP値が12.5(cal/cm31/2以上の物質を含有させた場合には、物質が高分子複合圧電体中に均一に分散せず、凝集してしまうと推定される。そのため、高温に曝されて、圧電体内部の物質が蒸発した際に、比較的大きな空隙が生じて、圧電体粒子とマトリックスとの界面が剥離してしまう。その結果、圧電体粒子の振動がマトリックスに伝達しなくなるため、電圧と音の変換効率が低下したり、電流のリークや絶縁破壊が生じたりしてしまう。
これに対して、本発明においては、高分子複合圧電体層中に含有させる物質のSP値を12.5(cal/cm31/2未満とすることで、物質を高分子複合圧電体中に均一に分散させることができるので、高温に曝されて高分子複合圧電体内部の物質が蒸発した際に、大きな空隙が生じるのを抑制して、圧電体粒子とマトリックスとの界面が剥離するのを防止することができる。従って、変換効率の低下や耐電圧の低下を抑制することができる。
また、上記物質の含有量が多すぎる場合にも、高分子複合圧電体内部の物質が蒸発した際に、空隙が生じやすくなるため、圧電体粒子とマトリックスとの界面が剥離して、変換効率の低下や耐電圧の低下が生じてしまう。
従って、本発明においては、上記物質の含有量を500ppm以下とすることで、高分子複合圧電体内部の物質が蒸発した際に、大きな空隙が生じるのを抑制して、圧電体粒子とマトリックスとの界面が剥離するのを防止することができる。従って、変換効率の低下や耐電圧の低下を抑制することができる。
なお、可撓性低下の防止の観点、ならびに、変換効率低下の防止および耐電圧低下の防止の観点から、高分子複合圧電体中の、圧電体層SP値12.5(cal/cm31/2未満で、かつ、常温で液体の物質の含有量は、100ppm〜400ppmであるのが好ましい。
また、変換効率低下および耐電圧低下の防止の観点から、上記物質のSP値は、9.0〜12.3(cal/cm31/2が好ましく、9.3〜12.1(cal/cm31/2がより好ましい。
ここで、高分子複合圧電体中の上記物質の含有量は、ガスクロマトグラフィで測定される。その際、温度50℃、湿度10%RHの環境下にサンプルを24時間放置した時点での値を上記物質の含有量とする。
高分子複合圧電体内に上記物質を所定の濃度で含有させる方法には特に限定はなく、例えば、高分子複合圧電体となる塗料を調製する際に、上記物質を所定量、添加すればよい。
好ましくは、上記物質を、調製する塗料の溶媒として用いて、塗料を塗布した後の乾燥条件を調整して、高分子複合圧電体内の上記物質の含有量を制御する。その際の乾燥条件は、上記物質の種類、所望の含有量、マトリックスの種類、圧電体層の厚さ等に応じて適宜、設定すればよい。
また、本発明の変換フィルム10において、圧電体層12の厚さには、特に限定はなく、変換フィルム10のサイズ、変換フィルム10の用途、変換フィルム10に要求される特性等に応じて、適宜、設定すればよい。
ここで、本発明者の検討によれば、圧電体層12の厚さは5〜100μmが好ましく、5〜50μmがより好ましく、5〜30μmが特に好ましい。
圧電体層12の厚さを上記範囲とすることで、上述のように乾燥によって上記物質の含有量を制御する際に、より容易に調整することができる。また、圧電体層12中での上記物質の濃度をより均一にすることができる。
また、圧電体層12の厚さを、上記範囲とすることにより、剛性の確保と適度な柔軟性との両立等の点でも好ましい結果を得ることができる。
なお、圧電体層12は、分極処理(ポーリング)されているのが好ましいのは、前述のとおりである。分極処理に関しては、後に詳述する。
図1に示すように、本発明の変換フィルム10は、圧電体層12を薄膜電極14および16で挟持し、この積層体を保護層18および20で挟持してなる構成を有する。
変換フィルム10において、保護層18および20は、高分子複合圧電体に適度な剛性と機械的強度を付与する役目を担っている。すなわち、本発明の変換フィルム10において、マトリックス24と圧電体粒子26とからなる高分子複合圧電体(圧電体層12)は、ゆっくりとした曲げ変形に対しては、非常に優れた可撓性を示す一方で、用途によっては、剛性や機械的強度が不足する場合がある。変換フィルム10は、それを補うために保護層18および20が設けられる。
保護層18および20には、特に限定はなく、各種のシート状物が利用可能であり、一例として、各種の樹脂フィルム(プラスチックフィルム)が好適に例示される。中でも、優れた機械的特性および耐熱性を有するなどの理由により、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ポリスチレン(PS)、ポリカーボネート(PC)、ポリフェニレンサルファイト(PPS)、ポリメチルメタクリレート(PMMA)、ポリエーテルイミド(PEI)、ポリイミド(PI)、ポリエチレンナフタレート(PEN)、トリアセチルセルロース(TAC)、および、環状オレフィン系樹脂が好適に利用される。
保護層18および20の厚さにも、特に、限定は無い。また、保護層18および20の厚さは、基本的に同じであるが、異なってもよい。
ここで、保護層18および20の剛性が高過ぎると、圧電体層12の伸縮を拘束するばかりか、可撓性も損なわれるため、機械的強度やシート状物としての良好なハンドリング性が要求される場合を除けば、保護層18および20は、薄いほど有利である。
ここで、本発明者の検討によれば、保護層18および20の厚さが、圧電体層12の厚さの2倍以下であれば、剛性の確保と適度な柔軟性との両立等の点で好ましい結果を得ることができる。
例えば、圧電体層12の厚さが50μmで保護層18および20がPETからなる場合、保護層18および20の厚さは、100μm以下が好ましく、50μm以下がより好ましく、中でも25μm以下とするのが好ましい
また、前述のとおり、本発明に利用される高分子材料は、比誘電率が低く、耐湿性に優れるため、耐湿用の保護層を形成する必要がない。そのため、保護層を薄く、あるいは、無くすこともでき、柔軟性を向上させることができる。
本発明の変換フィルム10において、圧電体層12と保護層18との間には薄膜電極14が、圧電体層12と保護層20との間には薄膜電極16が、それぞれ形成される。
薄膜電極14および16は、変換フィルム10に電圧を印加するために設けられる。
本発明において、薄膜電極14および16の形成材料には、特に、限定はなく、各種の導電体が利用可能である。具体的には、炭素、パラジウム、鉄、錫、アルミニウム、ニッケル、白金、金、銀、銅、クロムおよびモリブデン等や、これらの合金、酸化インジウムスズ等が例示される。中でも、銅、アルミニウム、金、銀、白金、および、酸化インジウムスズのいずれかは、好適に例示される。
また、薄膜電極14および16の形成方法にも、特に限定はなく、真空蒸着やスパッタリング等の気相堆積法(真空成膜法)やめっきによる成膜や、上記材料で形成された箔を貼着する方法等、公知の方法が、各種、利用可能である。
中でも特に、変換フィルム10の可撓性が確保できる等の理由で、真空蒸着によって成膜された銅やアルミニウムの薄膜は、薄膜電極14および16として、好適に利用される。その中でも特に、真空蒸着による銅の薄膜は、好適に利用される。
薄膜電極14および16の厚さには、特に、限定は無い。また、薄膜電極14および16の厚さは、基本的に同じであるが、異なってもよい。
ここで、前述の保護層18および20と同様に、薄膜電極14および16の剛性が高過ぎると、圧電体層12の伸縮を拘束するばかりか、可撓性も損なわれるため、薄膜電極14および16は、電気抵抗が高くなり過ぎない範囲であれば、薄いほど有利である。
ここで、本発明者の検討によれば、薄膜電極14および16の厚さとヤング率との積が、保護層18および20の厚さとヤング率との積を下回れば、可撓性を大きく損なうことがないため、好適である。
例えば、保護層18および20がPET(ヤング率:約6.2GPa)で、薄膜電極14および16が銅(ヤング率:約130GPa)からなる組み合わせの場合、保護層18および20の厚さが25μmだとすると、薄膜電極14および16の厚さは、1.2μm以下が好ましく、0.3μm以下がより好ましく、中でも0.1μm以下とするのが好ましい。
また、薄膜電極14および/または薄膜電極16は、必ずしも、圧電体層12(保護層18および/または20)の全面に対応して形成される必要はない。
すなわち、薄膜電極14および薄膜電極16の少なくとも一方が、例えば圧電体層12よりも小さく、変換フィルム10の周辺部において、圧電体層12と保護膜とが、直接、接触するような構成でもよい。
あるいは、薄膜電極14および/または薄膜電極16が全面に形成された保護層18および/または20が、圧電体層12の全面に対応して形成される必要はない。この場合、圧電体層12と直接に接触する(第2の)保護層を別途、保護層18および/または20の表面側に設けるような構成としてもよい。
前述のように、本発明の変換フィルム10は、マトリックス24に圧電体粒子26を分散してなり、SP値が12.5(cal/cm31/2未満の物質を含有する圧電体層12(高分子複合圧電体)を、薄膜電極14および16で挟持し、さらに、この積層体を、保護層18および20を挟持してなる構成を有する。
このような本発明の変換フィルム10は、動的粘弾性測定による周波数1Hzでの損失正接(Tanδ)が0.5以上となる極大値が常温に存在するのが好ましい。
これにより、変換フィルム10が外部から数Hz以下の比較的ゆっくりとした、大きな曲げ変形を受けたとしても、歪みエネルギーを効果的に熱として外部へ拡散できるため、高分子マトリックスと圧電体粒子との界面で亀裂が発生するのを防ぐことができる。
また、本発明の変換フィルム10は、動的粘弾性測定による周波数1Hzでの貯蔵弾性率(E’)が、0℃において10〜30GPa、50℃において1〜10GPaであるのが好ましい。
これにより、常温で変換フィルム10が貯蔵弾性率(E’)に大きな周波数分散を有することができる。すなわち、20Hz〜20kHzの振動に対しては硬く、数Hz以下の振動に対しては柔らかく振る舞うことができる。
また、本発明の変換フィルム10は、厚さと動的粘弾性測定による周波数1Hzでの貯蔵弾性率(E’)との積が、0℃において1.0×106〜2.0×106(1.0E+06〜2.0E+06)N/m、50℃において1.0×105〜1.0×106(1.0E+05〜1.0E+06)N/mであるのが好ましい。
これにより、変換フィルム10が可撓性および音響特性を損なわない範囲で、適度な剛性と機械的強度を備えることができる。
さらに、本発明の変換フィルム10は、動的粘弾性測定から得られたマスターカーブにおいて、25℃、周波数1kHzにおける損失正接(Tanδ)が0.05以上であるのが好ましい。
これにより、変換フィルム10を用いたスピーカの周波数特性が平滑になり、スピーカの曲率の変化に伴い最低共振周波数fが変化した際の音質の変化量も小さくできる。
次に、本発明の電気音響変換フィルムの製造方法の一例を、図2(A)〜図2(E)を参照して説明する。
まず、図2(A)に示すように、保護層18の上に薄膜電極14が形成されたシート状物10aを準備する。
このシート状物10aは、保護層18の表面に、真空蒸着、スパッタリング、めっき等によって薄膜電極14として銅薄膜等を形成して、作製すればよい。
保護層18が非常に薄く、ハンドリング性が悪い時などは、必要に応じて、セパレータ(仮支持体)付きの保護層18を用いても良い。尚、セパレータとしては、厚さ25〜100μmのPET等を用いることができる。なお、セパレータは、薄膜電極および保護層の熱圧着後に、取り除けばよい。
あるいは、保護層18の上に銅薄膜等が形成された、市販品をシート状物10aとして利用してもよい。
一方で、有機溶媒に、シアノエチル化PVA等のマトリックスの材料となる高分子材料を溶解し、さらに、PZT粒子等の圧電体粒子26、および、常温で液体の、SP値12.5(cal/cm31/2未満の物質を添加し、攪拌して分散してなる塗料を調製する。
なお、有機溶媒としては特に限定はなく、各種の有機溶媒が利用可能であるが、前述のとおり、有機溶媒として上記物質を用いることが好ましい。
前述のシート状物10aを準備し、かつ、塗料を調製したら、この塗料をシート状物10aにキャスティング(塗布)して、有機溶媒を蒸発して乾燥する。これにより、図2(B)に示すように、保護層18の上に薄膜電極14を有し、薄膜電極14の上に圧電体層12を形成してなる積層体10bを作製する。
ここで、前述のとおり、塗料の乾燥条件を調整して、質量比で20ppm〜500ppmの上記物質(有機溶媒)を、圧電体層12中に残存させる。
この塗料のキャスティング方法には、特に、限定はなく、スライドコータやドクターナイフ等の公知の方法(塗布装置)が、全て、利用可能である。
なお、前述のように、本発明の変換フィルム10において、マトリックス24には、シアノエチル化PVA等の粘弾性材料以外にも、PVDF等の高分子圧電材料を添加しても良い。
マトリックス24に、これらの高分子圧電材料を添加する際には、上記塗料に添加する高分子圧電材料を溶解すればよい。
保護層18の上に薄膜電極14を有し、薄膜電極14の上に圧電体層12を形成してなる積層体10bを作製したら、好ましくは、圧電体層12の分極処理(ポーリング)を行う。
圧電体層12の分極処理の方法には、特に限定はなく、公知の方法が利用可能である。好ましい分極処理の方法として、図2(C)および図2(D)に示す方法が例示される。
この方法では、図2(C)および図2(D)に示すように、積層体10bの圧電体層12の上面12aの上に、間隔gを例えば1mm開けて、この上面12aに沿って移動可能な棒状あるいはワイヤー状のコロナ電極30を設ける。そして、このコロナ電極30と薄膜電極14とを直流電源32に接続する。
さらに、積層体10bを加熱保持する加熱手段、例えば、ホットプレートを用意する。
その上で、圧電体層12を、加熱手段によって、例えば、温度100℃に加熱保持した状態で、直流電源32から薄膜電極14とコロナ電極30との間に、数kV、例えば、6kVの直流電圧を印加してコロナ放電を生じさせる。さらに、間隔gを維持した状態で、圧電体層12の上面12aに沿って、コロナ電極30を移動(走査)して、圧電体層12の分極処理を行う。
このようなコロナ放電を利用する分極処理(以下、便宜的に、コロナポーリング処理とも言う)において、コロナ電極30の移動は、公知の棒状物の移動手段を用いればよい。
また、コロナポーリング処理では、コロナ電極30を移動する方法にも、限定はされない。すなわち、コロナ電極30を固定し、積層体10bを移動させる移動機構を設け、この積層体10bを移動させて分極処理をしてもよい。この積層体10bの移動も、公知のシート状物の移動手段を用いればよい。
さらに、コロナ電極30の数は、1本に限定はされず、複数本のコロナ電極30を用いて、コロナポーリング処理を行ってもよい。
また、分極処理は、コロナポーリング処理に限定はされず、分極処理を行う対象に、直接、直流電界を印加する、通常の電界ポーリングも利用可能である。但し、この通常の電界ポーリングを行う場合には、分極処理の前に、薄膜電極16を形成する必要が有る。
なお、この分極処理の前に、圧電体層12の表面を加熱ローラ等を用いて平滑化する、カレンダー処理を施してもよい。このカレンダー処理を施すことで、後述する熱圧着工程がスムーズに行える。
このようにして積層体10bの圧電体層12の分極処理を行う一方で、保護層20の上に薄膜電極16が形成されたシート状物10cを準備する。このシート状物10cは、保護層20の表面に、真空蒸着、スパッタリング、めっき等によって薄膜電極16として銅薄膜等を形成して、作製すればよい。
次いで、図2(E)に示すように、薄膜電極16を圧電体層12に向けて、シート状物10cを、圧電体層12の分極処理を終了した積層体10bに積層する。
さらに、この積層体10bとシート状物10cとの積層体を、保護層20と保護層18とを挟持するようにして、加熱プレス装置や加熱ローラ対等で熱圧着して、図1に示すような本発明の変換フィルムを作製する。
次に、変換フィルム10を用いる本発明の電気音響変換器について説明する。
図3(B)は、本発明の電気音響変換器の一例を示す上面図であり、図3(A)は、図3(B)のa−a線断面図である。
図3(A)および図3(B)に示す電気音響変換器40は、前述の本発明の変換フィルム10を電気信号を振動エネルギーに変換するスピーカ用振動板として用いる、平板型の圧電スピーカである。
なお、圧電スピーカ40は、マイクロフォンやセンサーとして使用することも可能である。
図示例の圧電スピーカ40は、基本的に、変換フィルム10(圧電フィルム)と、ケース42と、粘弾性支持体46と、枠体48とを有して構成される。
ケース42は、プラスチック等で形成される、一面が開放する薄い正四角筒状の筐体である。なお、本発明の変換フィルムを利用する圧電スピーカにおいて、ケース42(すなわち圧電スピーカ)は、四角筒状に限定はされず、円筒状や底面が長方形の四角筒状等の各種の形状の筐体が利用可能である。
また、枠体48は、中央に貫通孔を有する、ケース42の上端面(開放面側)と同様の形状を有する板材である。
さらに、粘弾性支持体46は、適度な粘性と弾性を有し、変換フィルム10を支持すると共に、変換フィルムのどの場所でも一定の機械的バイアスを与えることによって、変換フィルムの伸縮運動を無駄なく前後運動(フィルムの面に垂直な方向の運動)に変換させるためのものである。一例として、羊毛のフェルト、レーヨンやPETを含んだ羊毛のフェルトなどの不織布、グラスウール、或いはポリウレタンなどの発泡材料(発泡プラスチック)、紙を複数枚重ねたもの、塗料等が例示される。
図示例において、粘弾性支持体46は、ケース42の底面よりも、若干、大きい底面形状を有する四角柱状である。
粘弾性支持体46の比重には、特に限定はなく、粘弾性支持体の種類に応じて、適宜、選択すればよい。一例として、粘弾性支持体としてフェルトを用いた場合には、比重は、50〜500kg/m3が好ましく、100〜300kg/m3がより好ましい。また、粘弾性支持体としてグラスウールを用いた場合には、比重は、10〜100kg/m3が好ましい。
圧電スピーカ40においては、このケース42の中に粘弾性支持体46を収容して、変換フィルム10によってケース42および粘弾性支持体46を覆い、変換フィルム10の周辺を枠体48によってケース42の上端面に押圧した状態で、枠体48をケース42に固定して、構成される。
なお、ケース42への枠体の固定方法には、特に限定はなく、ビスやボルトナットを用いる方法、固定用の治具を用いる方法等、公知の方法が、各種、利用可能である。
ここで、この圧電スピーカ40においては、粘弾性支持体46は、高さ(厚さ)がケース42の内面の高さよりも厚い、四角柱状である。すなわち、図3(C)に模式的に示すように、変換フィルム10および枠体48が固定される前の状態では、粘弾性支持体46は、ケース42の上面よりも突出した状態となっている。
そのため、圧電スピーカ40では、粘弾性支持体46の周辺部に近くなるほど、粘弾性支持体46が変換フィルム10によって下方に押圧されて厚さが薄くなった状態で、保持される。すなわち、変換フィルム10の主面が湾曲した状態で保持される。
また、この際においては、変換フィルム10の面方向において、粘弾性支持体46の全面を押圧して、全面的に厚さが薄くなるようにするのが好ましい。すなわち、変換フィルム10の全面が粘弾性支持体46により押圧されて支持されるのが好ましい。
なお、本発明の変換フィルム10を利用する圧電スピーカ40において、変換フィルム10による粘弾性支持体46の押圧力には、特に限定はないが面圧が低い位置における面圧で0.02〜0.2MPa程度とするのが好ましい。
圧電スピーカ40に組み込んだ変換フィルム10の高低差、図示例では、枠体48の底面に対して最も近い所と最も遠い所との距離にも、特に限定はないが、薄型の平面スピーカが得られる、変換フィルム10の十分な上下運動が可能になる等の点で、1〜50mm、特に5〜20mm程度とするのが好ましい。
加えて、粘弾性支持体46の厚さにも、特に限定は無いが、押圧される前の厚さが、1〜100mm、特に10〜50mmであるのが好ましい。
このような圧電スピーカ40において、圧電体層12への電圧印加によって、変換フィルム10が面内方向に伸長すると、この伸長分を吸収するために、変換フィルム10は、上方(音の放射方向)に移動する。
逆に、圧電体層12への電圧印加によって、変換フィルム10が面内方向に収縮すると、この収縮分を吸収するために、変換フィルム10は、下方(ケース42側)に移動する。
圧電スピーカ40は、この変換フィルム10の伸縮の繰り返しによる振動によって、音を発生する。
圧電スピーカ40において、粘弾性支持体46は枠体48に近づくほど厚さ方向に圧縮された状態になるが、静的粘弾性効果(応力緩和)によって、変換フィルム10のどの場所でも機械的バイアスを一定に保つことができる。これにより、変換フィルム10の伸縮運動が無駄なく前後運動へと変換されるため、薄型、かつ、十分な音量が得られ、音響特性に優れる平面状の圧電スピーカ40を得ることができる。
ここで、図示例の圧電スピーカ40は、枠体48によって、変換フィルム10の周辺全域をケース42(すなわち、粘弾性支持体46)に押し付けているが、本発明は、これに限定されない。
すなわち、本発明の変換フィルム10を利用する電気音響変換器は、枠体48を有さずに、例えばケース42の4箇所の角において、ビスやボルトナット、治具などによって、変換フィルム10をケース42の上面に押圧/固定してなる構成も利用可能である。
また、ケース42と変換フィルム10との間には、Oリング等を介在させてもよい。このような構成を有することにより、ダンパ効果を持たせることができ、変換フィルム10の振動がケース42に伝達されることを防止して、より優れた音響特性を得ることができる。
また、変換フィルム10を利用する電気音響変換器は、粘弾性支持体46を収容するケース42に代えて、粘弾性支持体46を載置する支持板を有する構成としてもよい。
すなわち、剛性を有する支持板の上に粘弾性支持体46を載置し、粘弾性支持体46を覆って変換フィルム10を載せ、先と同様の枠体48を変換フィルム10の周辺部に載置して、ビス等によって枠体48を支持板に固定することにより、枠体48と一緒に変換フィルム10で粘弾性支持体46を押圧して、変換フィルム10を湾曲させる構成も、利用可能である。
また、このようなケース42を有さない構成でも、枠体48を用いずに、ビス等によって粘弾性支持体46を押圧して薄くした状態として、変換フィルム10を保持してもよい。
なお、支持板の材質として、ポリスチレンや発泡PET、或いはカーボンファイバーなどの各種振動板を用いることで、変換フィルム10の振動を更に増幅する構成としてもよい。
さらに、変換フィルム10を利用する電気音響変換器は、周辺を押圧する構成にも限定はされず、例えば、粘弾性支持体46と変換フィルム10の積層体の周辺以外の箇所を、何らかの手段によって押圧して、変換フィルム10の少なくとも一部を湾曲させた状態で保持してなる構成も利用可能である。
あるいは、変換フィルム10に樹脂フィルムを貼り付けて張力を付与する(保持する)構成としてもよい。樹脂フィルムで保持する構成とし、湾曲させた状態で保持できるようにすることでフレキシブルなスピーカとすることができる。
あるいは、変換フィルム10を湾曲したフレームに張り上げた構成としてもよい。
また、本発明の電気音響変換器は、粘弾性支持体46を利用する構成にも限定はされない。
例えば、ケースとして、ケース42と同様の形状で気密性を有する物を用い、ケースの開放端を変換フィルム10で覆って閉塞し、ケース内に気体を導入して変換フィルム10に圧力を掛けて、凸状に膨らました状態で、保持する構成としてもよい。
なお、内部に圧力を掛ける構成では、空気ばねの影響で歪み成分が増大し、音質が低下するおそれがある。一方、グラスウールやフェルト等の粘弾性支持体で変換フィルム10を支持する構成の場合は、粘性を付与することになるため、歪み成分が増大することなく好適である。
また、ケース内に充填するのは気体以外でも良く、磁性流体や塗料でも適度な粘性を付与できれば使用可能である。
また、粘弾性支持体を利用する構成と内部に圧力をかける構成とを組み合わせてもよい。
本発明の電気音響変換フィルムおよび電気音響変換器は、有機ELディスプレイ等のフレキシブルディスプレイと組み合わせてスピーカとして好適に利用することができる。また、本発明の電気音響変換フィルムおよび電気音響変換器は薄型であるので、液晶表示装置、電子ペーパ、プロジェクター用のスクリーン等の薄型の表示装置と好適に組み合わせることができる。
このような構成により、変換フィルムの意匠性や娯楽性を向上できる。また、スピーカとしての変換フィルムと、スクリーンやディスプレイとを一体化することにより、画像が表示される方向から音を再生することができ、臨場感を向上させることができる。
また、プロジェクター用スクリーンは、フレキシブルであるので曲率を持たせることができる。画像表示面に曲率を持たせることで、観察者から画面までの距離を、画面の中央と端部とで略一様にすることができ、臨場感を向上させることができる。
なお、このように画像表示面に曲率を持たせた場合には、投射した画像に歪みが生じる。従って、画像表示面の曲率に合わせて歪みを低減するように、投射する画像のデータに画像処理を施すのが好ましい。
また、前述のとおり、本発明の変換フィルム10は、圧電体層12が、振動エネルギーを電気信号に変換する性能も有する。
そのため、本発明の変換フィルム10は、これを利用して、マイクロフォンや楽器用センサー(ピックアップ)にも、好適に利用可能である。例えば、本発明の変換フィルム10は可撓性を有するので、複雑な曲面を有する人の咽喉部に貼り付けることが可能であり、声帯付近に貼り付けるだけで、声帯マイクロフォンとして作用する。
以上、本発明の電気音響変換フィルムおよび電気音響変換器について詳細に説明したが、本発明は上述の例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行ってもよいのは、もちろんである。
以下、本発明の具体的実施例を挙げ、本発明についてより詳細に説明する。
[実施例1]
前述の図2に示す方法によって、図1に示す本発明の変換フィルム10を作製した。
まず、下記の組成比で、シアノエチル化PVA(CR−V 信越化学工業社製)をメチルエチルケトン(MEK)に溶解した。その後、この溶液に、PZT粒子を下記の組成比で添加して、プロペラミキサー(回転数2000rpm)で分散させて、圧電体層12を形成するための塗料を調製した。
・PZT粒子・・・・・・・・・・・300質量部
・シアノエチル化PVA・・・・・・・30質量部
・MEK・・・・・・・・・・・・・・70質量部
なお、PZT粒子は、市販のPZT原料粉を1000〜1200℃で焼結した後、これを平均粒径5μmになるように解砕および分級処理したものを用いた。
一方、厚さ4μmのPETフィルムに、厚さ0.1μmの銅薄膜を真空蒸着してなるシート状物10aおよび10cを用意した。すなわち、本例においては、薄膜電極14および16は、厚さ0.1mの銅蒸着薄膜であり、保護層18および20は厚さ4μmのPETフィルムとなる。
このシート状物10aの薄膜電極14(銅蒸着薄膜)の上に、スライドコーターを用いて、先に調製した圧電体層12を形成するための塗料を塗布した。なお、塗料は、乾燥後の塗膜の膜厚が40μmになるように、塗布した。
次いで、シート状物10aの上に塗料を塗布した物を、100℃のホットプレート上で30分間、加熱乾燥することでMEKの一部を蒸発させた。これにより、PET製の保護層18の上に銅製の薄膜電極14を有し、その上に、厚さが40μmの圧電体層12(圧電層)を形成してなる積層体10bを作製した。
この積層体10bの圧電体層12を、図2(C)および(D)に示す前述のコロナポーリングによって、分極処理した。なお、分極処理は、圧電体層12の温度を100℃として、薄膜電極14とコロナ電極30との間に6kVの直流電圧を印加してコロナ放電を生じさせて、行った。
分極処理を行った積層体10bの上に、薄膜電極16(銅薄膜側)を圧電体層12に向けてシート状物10cを積層した。
次いで、積層体10bとシート状物10cとの積層体を、ラミネータ装置を用いて120℃で熱圧着することで、圧電体層12と薄膜電極14および16とを接着して、変換フィルム10を作製した。
ここで、溶媒として用いたMEKは、SP値(溶解度パラメータ)が9.3(cal/cm31/2で、かつ、常温で液体である。すなわち、実施例1におけるSP値が12.5(cal/cm31/2未満で、かつ、常温で液体の物質は、MEKである。
作製した変換フィルム10から圧電体層12のサンプルを5cm角に一部切り出して、MEK(上記物質)の含有量を測定した。測定はガスクロマトグラフ装置(Agilent社製 7890A GC-System)を用い、カラムはRESTEK Stabilwax 0.53mmφ×30m film 1.0μmを用いた。まず、サンプルをバイアル瓶に封入後、160℃に30分間加熱し、その後MEKを定量化した。温度50℃、湿度10%RHの環境下に24時間サンプルを放置した後、MEK(上記物質)の含有量を測定した。
測定の結果、MEKの含有量は、30ppmであった。
[実施例2〜7]
圧電体層12となる塗布物の乾燥条件を下記表1に示す条件にそれぞれ変更した以外は、実施例1と同様にして変換フィルム10を作製した。
[実施例8〜9]
圧電体層12の厚さ、および、乾燥条件を下記表1に示す条件にそれぞれ変更した以外は、実施例1と同様にして変換フィルム10を作製した。
[実施例10〜14]
溶媒をDMF(ジメチルホルムアミド SP値:12.1(cal/cm31/2)に変更し、圧電体層12の厚さ、および、乾燥条件を下記表1に示す条件にそれぞれ変更した以外は、実施例1と同様にして変換フィルム10を作製した。
[実施例15]
溶媒をシクロヘキサノン(SP値:9.9(cal/cm31/2)に変更し、乾燥条件を下記表1に示す条件に変更した以外は、実施例1と同様にして変換フィルム10を作製した。
[実施例16]
溶媒をアセトン(SP値:9.9(cal/cm31/2)に変更し、乾燥条件を下記表1に示す条件に変更した以外は、実施例1と同様にして変換フィルム10を作製した。
[比較例1〜2]
乾燥条件を下記表1に示す条件にそれぞれ変更した以外は、実施例1と同様にして変換フィルムを作製した。
[比較例3〜4]
乾燥条件を下記表1に示す条件にそれぞれ変更した以外は、実施例10と同様にして変換フィルムを作製した。
[比較例5〜6]
乾燥条件を下記表1に示す条件にそれぞれ変更した以外は、実施例15と同様にして変換フィルムを作製した。
[比較例7〜8]
乾燥条件を下記表1に示す条件にそれぞれ変更した以外は、実施例16と同様にして変換フィルムを作製した。
[比較例9]
溶媒をフルフリルアルコール(SP値:12.5(cal/cm31/2)に変更し、乾燥条件を下記表1に示す条件に変更した以外は、実施例1と同様にして変換フィルムを作製した。
[比較例10]
溶媒をMEK+エチレングリコール(SP値:14.6(cal/cm31/2)に変更し、乾燥条件を下記表1に示す条件に変更した以外は、実施例1と同様にして変換フィルムを作製した。
なお、エチレングリコールはMEKよりも沸点が高いため、塗料の乾燥後の圧電体層にはエチレングリコールのみが残存した。
[参考例1]
圧電体層として、圧電体粒子を含まないPVDFを用いて、乾燥条件を下記表1に示す条件に変更した以外は、実施例1と同様にして変換フィルムを作製した。
なお、PVDFからなる圧電体層は、下記の組成比のPVDFとMEKを含む塗料を調製した以外は、実施例1と同様の方法で形成した。
・PVDF・・・・・・・・・・・・・100質量部
・MEK・・・・・・・・・・・・・・300質量部
[参考例2〜3]
乾燥条件を下記表1に示す条件にそれぞれ変更した以外は、参考例1と同様にして変換フィルムを作製した。
[評価]
〔温度サイクル試験〕
まず、作製した変換フィルムの変換効率および耐電圧を測定した。
変換効率は、作製した変換フィルムを圧電スピーカに組み込んでスピーカ性能で評価した。
まず、作製した変換フィルムから、φ150mmの円形試験片を作製した。この試験片を、内径138mm、深さ9mmのプラスチック製の丸形のケースの開口面を覆うように固定して、ケース内部の圧力を、1.02気圧に維持した。これにより、変換フィルムをコンタクトレンズのように凸型に撓ませた。
このようにして作製した薄型の圧電スピーカの音圧レベル−周波数特性を、定電流型パワーアンプを用いたサイン波スイープ測定によって測定した。なお、計測用マイクロフォンは、圧電スピーカの中心の真上10cmの位置に配置した。
耐電圧は、変換フィルムに対し交流電圧を印加していき、音が鳴らなくなった時点の実効電圧とした。
次に、変換フィルムに対して、温度サイクル試験を実施した。なお、温度サイクル試験はJIS C60068-2-14に則って行った。温度85℃でさらし時間10分間加熱後、温度−33℃でさらし時間10分間冷却した。この加熱・冷却を5回繰り返した後、上記と同様にして変換効率および耐電圧を測定した。
作製直後(温度サイクル試験前)の変換効率に対する、加熱・冷却後(温度サイクル試験後)の変換効率の比率を求めて以下のように評価した。
A:95%以上である。
B:90%以上95%未満である。
C:90%未満である。
同様に、作製直後(温度サイクル試験前)の耐電圧に対する、加熱・冷却後(温度サイクル試験後)の耐電圧の比率を求めて以下のように評価した。
A:90%以上である。
B:70%以上90%未満である。
C:70%未満である。
〔低湿下での可撓性試験〕
作製した変換フィルムから、1cm×15cmの短冊状試験片を作製した。
これを湿度10%RH、温度25℃の環境下に6時間放置した後、この環境下で、所定の曲率半径(r=5cm、r=2.5cmおよびr=0.5cm)になるように丸めては元の状態に戻すことを10回繰り返した後、電気特性(静電容量および誘電損失)ならびに外観の変化を調べた。
電気特性および外観に変化が見られない場合はA、電気特性に変化は見られないものの折り目等の跡が残った場合はB、電気特性に変化が見られた場合はCとした。
評価の結果、ならびに、溶媒の含有量を表1に示す。
Figure 0006193194
表1より、高分子複合圧電体中に、SP値が12.5(cal/cm31/2未満、かつ、常温で液体の物質を、質量比で20ppm〜500ppm含有している実施例1〜16は、比較例1〜10に比べて、激しい温度変化があっても変換効率の低下や耐電圧の低下が少なく、また、低湿度下においても可撓性の低下を抑制できることがわかる。
また、実施例1〜4と実施例5〜7との対比、ならびに、実施例10と実施例11との対比から上記物質の含有量は100ppm〜400ppmが好ましいことがわかる。
また、比較例1、3、5、7から、上記物質の含有量が20ppm未満の場合には、低湿度下での可撓性が低下することが分かる。また、比較例2、4、6、8から、上記物質の含有量が500ppm超の場合には、温度変化があった際に、変換効率や耐電圧が低下することが分かる。
また、比較例9、10から、SP値が12.5(cal/cm31/2以上の物質を含有する場合には、含有量が上記範囲内であっても、温度変化があった際に、変換効率や耐電圧が低下することが分かる。
なお、参考例1〜3から、低湿度下における可撓性の低下や、温度変化による変換効率、耐電圧の低下は、高分子材料からなるマトリックス中に圧電体粒子を分散してなる高分子複合圧電体に特有の課題であることがわかる。
以上の結果より、本発明の効果は、明らかである。
10 電気音響変換フィルム
12 圧電体層
14,16 薄膜電極
18,20 保護層
24 マトリックス
26 圧電体粒子
30 コロナ電極
32 直流電源
40 圧電スピーカ
42 ケース
46 粘弾性支持体
48 枠体

Claims (9)

  1. 高分子材料からなるマトリックス中に圧電体粒子を分散してなる高分子複合圧電体と、前記高分子複合圧電体の両面に形成された薄膜電極と、前記薄膜電極の表面に形成された保護層とを有し、
    前記高分子複合圧電体は、SP値が12.5(cal/cm31/2未満、かつ、常温で液体の物質を、質量比で20ppm〜500ppm含有していることを特徴とする電気音響変換フィルム。
  2. 前記物質の含有量が100ppm〜400ppmである請求項1に記載の電気音響変換フィルム。
  3. 前記マトリックスが常温で粘弾性を有する高分子材料である請求項1または2に記載の電気音響変換フィルム。
  4. 前記高分子複合圧電体の厚さが5〜100μmである請求項1〜3のいずれか1項に記載の電気音響変換フィルム。
  5. 前記物質が、メチルエチルケトン、ジメチルホルムアミド、シクロヘキサノン、アセトン、シクロヘキサン、アセトニトリル、1プロパノール、2プロパノール、2メトキシアルコール、ジアセトンアルコール、ジメチルアセトアミド、ベンジルアルコール、n-ヘキサン、トルエン、o-キシレン、酢酸エチル、酢酸ブチル、ジエチルエーテル、テトラヒドロフランからなる群から選択される少なくとも1つである請求項1〜4のいずれか1項に記載の電気音響変換フィルム。
  6. 前記高分子材料の動的粘弾性測定による周波数1Hzでの損失正接Tanδが0.5以上となる極大値が0〜50℃の温度範囲に存在する請求項1〜5のいずれか1項に記載の電気音響変換フィルム。
  7. 前記高分子材料が、シアノエチル基を有するものである請求項1〜6のいずれか1項に記載の電気音響変換フィルム。
  8. 前記高分子材料が、シアノエチル化ポリビニルアルコールである請求項1〜7のいずれか1項に記載の電気音響変換フィルム。
  9. 請求項1〜8のいずれか1項に記載の電気音響変換フィルムと、前記電気音響変換フィルムを支持する支持部材とを有する電気音響変換器。
JP2014187697A 2014-09-16 2014-09-16 電気音響変換フィルムおよび電気音響変換器 Active JP6193194B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014187697A JP6193194B2 (ja) 2014-09-16 2014-09-16 電気音響変換フィルムおよび電気音響変換器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014187697A JP6193194B2 (ja) 2014-09-16 2014-09-16 電気音響変換フィルムおよび電気音響変換器

Publications (2)

Publication Number Publication Date
JP2016063286A JP2016063286A (ja) 2016-04-25
JP6193194B2 true JP6193194B2 (ja) 2017-09-06

Family

ID=55798254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014187697A Active JP6193194B2 (ja) 2014-09-16 2014-09-16 電気音響変換フィルムおよび電気音響変換器

Country Status (1)

Country Link
JP (1) JP6193194B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3993443A4 (en) * 2019-06-28 2023-06-14 FUJIFILM Corporation PIEZOELECTRICAL POLYMER COMPOSITE AND PIEZOELECTRICAL FILM

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020048794A (ja) * 2018-09-26 2020-04-02 富士フイルム株式会社 音響波プローブ用組成物、この組成物を用いた音響レンズ、音響波プローブ、音響波測定装置、超音波診断装置、光音響波測定装置及び超音波内視鏡
CN114026708A (zh) * 2019-06-28 2022-02-08 富士胶片株式会社 高分子复合压电体及压电薄膜
CN111711899B (zh) * 2020-06-22 2021-06-22 武汉华星光电技术有限公司 显示面板

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5156940B2 (ja) * 2006-06-08 2013-03-06 国立大学法人福井大学 高分子アクチュエータおよびその製造方法
WO2011001910A1 (ja) * 2009-06-30 2011-01-06 東海ゴム工業株式会社 柔軟導電材料およびトランスデューサ
KR101628584B1 (ko) * 2011-09-30 2016-06-08 후지필름 가부시키가이샤 전기 음향 변환 필름, 플렉시블 디스플레이, 성대 마이크로폰 및 악기용 센서

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3993443A4 (en) * 2019-06-28 2023-06-14 FUJIFILM Corporation PIEZOELECTRICAL POLYMER COMPOSITE AND PIEZOELECTRICAL FILM

Also Published As

Publication number Publication date
JP2016063286A (ja) 2016-04-25

Similar Documents

Publication Publication Date Title
US11540074B2 (en) Electroacoustic transduction film and manufacturing method thereof, electroacoustic transducer, flexible display, vocal cord microphone, sensor for musical instrument
JP6297204B2 (ja) 高分子複合圧電体、電気音響変換フィルムおよび電気音響変換器
JP5970033B2 (ja) 電気音響変換フィルム、電気音響変換器、フレキシブルディスプレイ、声帯マイクロフォンおよび楽器用センサー
JP6196400B2 (ja) 電気音響変換フィルム
JP6071932B2 (ja) 電気音響変換フィルム
US10770647B2 (en) Electroacoustic conversion film web, electroacoustic conversion film, and method of manufacturing an electroacoustic conversion film web
JP5993772B2 (ja) 電気音響変換フィルム、フレキシブルディスプレイ、声帯マイクロフォンおよび楽器用センサー
WO2014157684A1 (ja) スピーカシステム
JP6505845B2 (ja) 電気音響変換フィルム
WO2020261822A1 (ja) 圧電フィルム
WO2016017632A1 (ja) 電気音響変換フィルムおよび電気音響変換器
JP6193194B2 (ja) 電気音響変換フィルムおよび電気音響変換器
WO2016136522A1 (ja) 構造体および電気音響変換器
US10264362B2 (en) Electroacoustic transducer and electroacoustic transduction system
JP6450014B2 (ja) 電気音響変換フィルム、電気音響変換フィルムの製造方法および電気音響変換器
WO2020261837A1 (ja) 圧電フィルム
JP6297223B2 (ja) 電気音響変換フィルムおよび電気音響変換器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170809

R150 Certificate of patent or registration of utility model

Ref document number: 6193194

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250