JP6192675B2 - 騒音削減制限に準拠した航空機出発プロファイル生成 - Google Patents

騒音削減制限に準拠した航空機出発プロファイル生成 Download PDF

Info

Publication number
JP6192675B2
JP6192675B2 JP2015049089A JP2015049089A JP6192675B2 JP 6192675 B2 JP6192675 B2 JP 6192675B2 JP 2015049089 A JP2015049089 A JP 2015049089A JP 2015049089 A JP2015049089 A JP 2015049089A JP 6192675 B2 JP6192675 B2 JP 6192675B2
Authority
JP
Japan
Prior art keywords
aircraft
departure
profile
noise
criteria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015049089A
Other languages
English (en)
Other versions
JP2016003005A (ja
JP2016003005A5 (ja
Inventor
ダニエル・エル・マグレガー
ポール・ヘンリー・ベント
ダグラス・エー・ストール
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boeing Co
Original Assignee
Boeing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boeing Co filed Critical Boeing Co
Publication of JP2016003005A publication Critical patent/JP2016003005A/ja
Publication of JP2016003005A5 publication Critical patent/JP2016003005A5/ja
Application granted granted Critical
Publication of JP6192675B2 publication Critical patent/JP6192675B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0214Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D31/00Power plant control systems; Arrangement of power plant control systems in aircraft
    • B64D31/02Initiating means
    • B64D31/06Initiating means actuated automatically
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • B64F1/26Ground or aircraft-carrier-deck installations for reducing engine or jet noise; Protecting airports from jet erosion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0004Transmission of traffic-related information to or from an aircraft
    • G08G5/0013Transmission of traffic-related information to or from an aircraft with a ground station
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0017Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information
    • G08G5/0021Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information located in the aircraft
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0043Traffic management of multiple aircrafts from the ground
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C23/00Combined instruments indicating more than one navigational value, e.g. for aircraft; Combined measuring devices for measuring two or more variables of movement, e.g. distance, speed or acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C5/00Measuring height; Measuring distances transverse to line of sight; Levelling between separated points; Surveyors' levels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C5/00Measuring height; Measuring distances transverse to line of sight; Levelling between separated points; Surveyors' levels
    • G01C5/005Measuring height; Measuring distances transverse to line of sight; Levelling between separated points; Surveyors' levels altimeters for aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0005Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots with arrangements to save energy
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/04Control of altitude or depth
    • G05D1/06Rate of change of altitude or depth
    • G05D1/0607Rate of change of altitude or depth specially adapted for aircraft
    • G05D1/0653Rate of change of altitude or depth specially adapted for aircraft during a phase of take-off or landing
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0073Surveillance aids
    • G08G5/0086Surveillance aids for monitoring terrain
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/06Traffic control systems for aircraft, e.g. air-traffic control [ATC] for control when on the ground
    • G08G5/065Navigation or guidance aids, e.g. for taxiing or rolling

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Automation & Control Theory (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Game Theory and Decision Science (AREA)
  • Educational Administration (AREA)
  • Development Economics (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mechanical Engineering (AREA)
  • Traffic Control Systems (AREA)

Description

本開示は、航空機出発環境排出量手続きに関する。より具体的には、開示される実施形態は、出発段階中に騒音削減のために航空機性能及び飛行効率を活用するためのシステム及び方法に関する。
空港及びその付近で発生される騒音は、一般に、空港及び周囲の地域社会によって制限されて監視される。空港は、特定の期間にわたって全ての航空機に関して騒音を制限する、それぞれの離陸(すなわち、出発)毎に騒音を制限する、或いは、そのような取り組みの組み合わせを行う場合がある。出発プロファイルを決定するための既知のシステムは、プロファイルが他の航空機動作や燃料効率などの因子に対してどのように悪影響を及ぼし得るのかを意識することなく、騒音削減のみに焦点を合わせてきた。これらの出発プロファイルは、航空機のタイプ、周囲状態、ペイロードなどにかかわらず全ての飛行における「万能サイズ」であり、航空機が安全に出発して騒音レベル規制を満たすようにするべく推力、上昇、及び、速度に関する最悪の場合のシナリオだけを考慮に入れる。
騒音削減は、航空会社の飛行業務マニュアル(FOM)中に含まれる文書である航空会社固有の業務仕様(Ops Spec)によって扱われる場合もある。Ops Specは、国内線業務、フラグ業務、コミュータ業務を行うそれぞれの検定保有者毎に14 CFR §119.49によって求められる。Ops Specは、操作権限、禁止操作、離陸、進入着陸、巡航中、空港、及び、メンテナンスなどの題目に関する手引きを含む。Ops Specは、離陸操作のための手引き及び指示をパイロットに対して与える。また、多くの空港がそれら自体の騒音削減離陸手引きを発行する。
本開示の幾つかの実施形態は、現在状態入力と所望の出発プロファイルとを受けるように構成される飛行性能データ生成器であって、該飛行性能データ生成器が、所望の出発プロファイルと現在状態入力とに基づいて航空機のための出発性能データを計算するように更に構成される、飛行性能データ生成器と、1つ以上の外部基準を受けて、1つ以上の外部基準と計算された出発性能データに対応する少なくとも1つの値とを比較すると共に、比較の結果を示す比較出力を与えるように構成される比較モジュールとを備えるシステムを提供する。
幾つかの実施形態において、航空機のための出発プロファイルを生成するためのコンピュータシステムは、プロセッサと、メモリと、メモリに記憶される複数の命令を含む出発プロファイル生成プログラムとを備え、複数の命令は、現在状態入力と第1の出発プロファイルとを受け、現在状態入力と第1の出発プロファイルとに基づいて航空機のための第1の出発性能データを計算し、1つ以上の外部基準と第1の出発性能データとの間の第1の関係を決定し、第1の関係に対応する出力を与えるためにプロセッサにより実行される。
幾つかの実施形態において、監視位置における排出量制限に準拠する飛行出発プロファイルを生成するための方法は、所望の飛行出発プロファイルと1つ以上の現在周囲状態とを受けるステップと、現在周囲状態下で所望の飛行出発プロファイルに従う選択された航空機の飛行経路を表す飛行性能データを生成するステップと、選択された監視位置で検出される航空機の予期される環境排出量を決定するステップと、航空機の予期される環境排出量と排出量削減制限とを比較してそれらの間の関係を決定するステップと、その関係を通信するステップとを含む。
特徴、機能、及び、利点は、本開示の様々な実施形態において独立に達成されてもよく、或いは、更なる他の実施形態で組み合わされてもよく、それらの実施形態の更なる詳細は、以下の説明及び図面に関連して分かる。
複数の例示的な滑走路、航空機出発トラック、及び、騒音監視ステーションを示す、例示的な空港を上から見た図である。 本開示の態様に係る航空機出発プロファイルを生成するための例示的なシステムの概略図である。 本開示の態様に係る航空機出発プロファイルを生成するためのシステムの1つの実施形態により行われる動作を示すブロック図である。 例示的な航空機出発のための高度対距離を示すグラフである。 図4の例示的な出発のための推力対距離を示すグラフである。 図4の例示的な出発のための速度対距離を示すグラフである。 他の例示的な航空機出発のための高度対距離を示すグラフである。 図7の例示的な出発のための推力対距離を示すグラフである。 図7の例示的な出発のための速度対距離を示すグラフである。 本開示の態様に係る航空機出発プロファイルを生成するためのシステムの1つの実施形態により行われる動作の他の組を示すブロック図である。 本開示の態様に係る航空機出発プロファイルを生成するためのシステムの1つの実施形態により行われる動作の他の組を示すブロック図である。 本開示の態様に係る出発プロファイル生成システムで用いるのに適した例示的なデータ処理システムの概略図である。
環境排出量基準に準拠する航空機出発プロファイルを生成するためのシステム及び方法の様々な実施形態が以下で説明されて関連する図面に示される。別段に明記されなければ、プロファイル生成器及び/又はその様々な構成要素は、本明細書中に記載される、例示される、及び/又は、組み入れられる構造、構成要素、機能性、及び/又は、変形のうちの少なくとも1つを含んでもよいが、含む必要はない。また、本教示内容と関連して本明細書中に記載される、例示される、及び/又は、組み入れられる構造、構成要素、機能性、及び/又は、変形は、航空機関連情報を生成するための他のシステム及び方法に含められてもよいが、含められる必要はない。様々な実施形態の以下の説明は、本質的に単なる典型例にすぎず、開示、その用途、又は、使用を何ら限定しようとするものではない。また、以下で説明される実施形態により与えられる利点は本質的に例示であり、全ての実施形態が同じ利点又は同じ程度の利点を与えるとは限らない。
ここで、低騒音の効率的な飛行出発プロファイルをその当時の状態を使用して飛行毎に計算するための動的な地上システムと関連して、システム及び方法について説明する。
民間機専用空港、例えば図1に示されて全体的に2で表される例示的な空港などは、一般に、1つ以上の滑走路4を含み、それぞれの滑走路4は1つ以上の所定の出発トラック6を含んでもよい。各トラック6は、特定の目印及び/又は方位角によって規定される、所定の航空機が飛行する地面上にわたる所定の経路を示す。しかしながら、出発トラックは、一般に、トラックに沿う所定の航空機の高度、推力、及び、速度などの航空機出発の他の大きさに関する情報を含まない。これらの他の大きさは、一般に、推力低下高度、エンジン上昇パワー設定などの情報を含んでもよい出発プロファイルによって決定される。したがって、各トラック6は、任意の適した出発プロファイルに従う航空機によって辿られてもよい。
再び図1を参照すると、それぞれのトラックを辿る航空機の排出量を監視するために、騒音監視ステーション8などの排出量監視ステーションが一般に出発トラックのうちの1つ以上に沿って(又は、適切に隣り合う位置に)配置される。例えば、トラック6’に沿って出発する航空機は、騒音監視ステーション8’によって監視されてもよい。定められた騒音削減制限の違反は、適切な当局に通報されてもよい。一般に対応する航空会社に対して課されるそのような制限の違反に対する罰金は、かなり高くなり得る。したがって、この理由により、また、他の理由により、騒音削減制限の違反を避けることが望ましい。同時に、航空機が十分な裕度をもって制限を満たす過度な順守も望ましくない場合がある。これは、それが高い費用をもたらすと共に不必要だからである。
一般に、本開示の態様に係る出発プロファイル生成器は、所望の飛行プロファイルと、天候、滑走路状態、及び、航空機形態などの現在状態とを入力として受ける飛行性能データ生成モジュールを含んでもよい。所望のプロファイル及び状態に基づいて、モジュールは、高度対距離、速度対距離、及び、推力対距離などの航空機に関する飛行性能データ(パラメータとも称される)を生成する。このデータは、飛行性能データに基づいて既知の監視ステーションで予期され得る航空機からの環境排出量(例えば、騒音、炭素、温室効果ガスなど)を決定するシミュレーション・準拠モジュールによって受けられてもよい。その後、排出量が削減制限などの基準と比較され、排出量と基準との間の1つ以上の関係が決定される。その後、関係は、該関係を変えるべく所望の飛行プロファイルを修正できるようにユーザなどに通信される。例えば、騒音排出量が許容騒音削減制限を超える場合には、騒音を減らすために所望のプロファイルを修正できる。
本開示の態様は、コンピュータ方法、コンピュータシステム、又は、コンピュータプログラムプロダクトとして具現化されてもよい。したがって、本開示の態様は、完全ハードウェア実施形態、完全ソフトウェア実施形態(ファームウェア、常駐ソフトウェア、マイクロコードなどを含む)、又は、ソフトウェア態様とハードウェア態様とを組み合わせる実施形態の形態を成してもよく、これらの全ては、一般に、本明細書中では、「回路」、「モジュール」、「ユニット」、又は、「システム」と称される場合がある。また、本開示の態様は、コンピュータ可読プログラムコード/命令が具現化されたコンピュータ可読媒体(又は複数の媒体)に具現化されるコンピュータプログラムプロダクトの形態を成してもよい。
コンピュータ可読媒体の組み合わせが利用されてもよい。コンピュータ可読媒体がコンピュータ可読信号媒体及び/又はコンピュータ可読記憶媒体であってもよい。コンピュータ可読記憶媒体は、電子、磁気、光学、電磁、赤外線、及び/又は、半導体システム、装置、又は、デバイス、或いは、これらの任意の適した組み合わせを含んでもよい。コンピュータ可読記憶媒体のより具体的な例としては、以下、すなわち、1つ以上の配線を有する電気的接続、ポータブルコンピュータディスケット、ハードディスク、ランダムアクセスメモリ(RAM)、リードオンリーメモリ(ROM)、消去可能プログラマブルリードオンリーメモリ(EPROM又はフラッシュメモリ)、光ファイバ、ポータブルコンパクトディスクリードオンリーメモリ(CD-ROM)、光学式記憶デバイス、磁気記憶デバイス、及び/又は、これらの任意の適した組み合わせ及び/又は同様のものを挙げることができる。本開示との関連で、コンピュータ可読記憶媒体は、命令実行システム、装置、又は、デバイスによって或いはこれらと関連して使用するためのプログラムを含む或いは記憶することができる任意の適した有形媒体を含んでもよい。
コンピュータ可読信号媒体は、コンピュータ可読プログラムコードが例えばベースバンドの状態で或いは搬送波の一部として具現化された伝搬データ信号を含んでもよい。そのような伝搬信号は、電子-磁気、光、及び/又は、これらの任意の適した組み合わせを含むがこれらに限定されない任意の様々な形態を成してもよい。コンピュータ可読信号媒体は、コンピュータ可読記憶媒体ではなく且つ命令実行システム、装置、又は、デバイスによって或いはこれらと関連して使用するためのプログラムを通信できる、伝搬できる、又は、搬送できる任意のコンピュータ可読媒体を含んでもよい。
コンピュータ可読媒体に具現化されるプログラムコードは、無線、有線、光ファイバケーブル、RF、及び/又は、同様のもの、及び/又は、これらの任意の適した組み合わせを含むがこれらに限定されない任意の適した媒体を使用して送信されてもよい。
本発明の態様に関する動作を行うためのコンピュータプログラムコードは、Java(登録商標)、Smalltalk、C++、及び/又は、同様のものなどのオブジェクト指向プログラミング言語、及び、Cプログラミング言語などの従来の手続き型プログラミング言語を含むプログラミング言語のうちの1つ或いはそれらの任意の組み合わせによって書き込まれてもよい。プログラムコードは、ユーザのコンピュータで完全に、ユーザのコンピュータで部分的にスタンドアロンソフトウェアパッケージとして、ユーザのコンピュータで部分的に、遠隔コンピュータで部分的に、又は、遠隔コンピュータ或いはサーバで完全に、実行してもよい。後者のシナリオにおいて、遠隔コンピュータは、ローカルエリアネットワーク(LAN)又は広域ネットワーク(WAN)を含む任意のタイプのネットワークを介してユーザのコンピュータに接続されてもよく、及び/又は、接続が外部コンピュータに対して(例えば、インターネットサービスプロバイダを使用してインターネットにより)なされてもよい。
以下、本開示の態様に係る方法、装置、システム、及び/又は、コンピュータプログラムプロダクトのフローチャート図及び/又はブロック図を参照して本発明の態様について説明する。フローチャート及び/又はブロック図における各ブロック及び/又はブロックの組み合わせは、コンピュータプログラム命令によって実施されてもよい。コンピュータプログラム命令は、マシンを製造するために汎用コンピュータ、専用コンピュータ、又は、他のプログラマブルデータ処理装置のプロセッサに対して与えられ、それにより、コンピュータ又は他のプログラマブルデータ処理装置のプロセッサを介して実行するそれらの命令がフローチャート及び/又はブロック図の1又は複数のブロックで定められる機能/行為を実施するための手段をもたらすようになっていてもよい。
これらのコンピュータプログラム命令は、特定の態様で機能するようにコンピュータ、他のプログラマブルデータ処理装置、及び/又は、他のデバイスに命じることができるコンピュータ可読媒体に記憶され、それにより、フローチャート及び/又はブロック図の1又は複数のブロックで定められる機能/行為を実施する命令を含むコンピュータ可読媒体に記憶されたそれらの命令が製品を製造するようにすることも可能である。
コンピュータプログラム命令は、コンピュータ実施プロセスをもたらすべく一連の動作ステップがデバイスで実行されるようにするためにコンピュータ、他のプログラマブルデータ処理装置、及び/又は、他のデバイスにロードされ、それにより、コンピュータ又は他のプログラマブル装置で実行するそれらの命令がフローチャート及び/又はブロック図の1又は複数のブロックで定められる機能/行為を実施するためのプロセスを与えるようにすることも可能である。
図面中のフローチャート及び/又はブロック図は、本開示の態様に係るシステム、方法、及び、コンピュータプログラムプロダクトの想定し得る実施のアーキテクチャ、機能性、及び/又は、動作を例示するように意図される。これに関し、各ブロックは、特定の論理機能を実施するための1つ以上の実行可能な命令を備えるモジュール、セグメント、又は、コードの一部を表してもよい。幾つかの実施において、ブロック中で言及される機能は、図面中で言及される順序以外の順序で行われてもよい。例えば、連続して示される2つのブロックが実際にはほぼ同時に実行されてもよく、或いは、ブロックは、時として、関連する機能性に応じて逆の順序で実行されてもよい。各ブロック及び/又はブロックの組み合わせは、特定の機能又は行為を果たす専用ハードウェアベースのシステム(又は、専用ハードウェアとコンピュータ命令との組み合わせ)によって実施されてもよい。
本開示の態様に係るシステム及び方法は、それぞれの飛行毎に最適な離陸プロファイル又は出発プロファイルを決定するために航空会社で通信指令係により使用され得る。これらのシステム及び方法は、例えば空港インフラ又は空港規制の変更の影響を決定するときに、計画目的のために空港によって使用されてもよい。幾つかの実施形態において、システムは、現在状態下で特定の空港における特定の航空機のために出発プロファイルを作るように構成される。したがって、システムは、騒音規制及び他の規制(例えば、滑走路長さ、滑走路を通り過ぎる障害物など)を依然として満たしつつ燃料消費量を減らすことができる。
通信指令係又は航空会社従業員などのユーザは、現在状態と所望の出発プロファイルとをシステムへ入力してもよい。所望の出発プロファイルは、1つ以上の航空会社目標(燃料消費量の減少、排出量の減少、推力の減少、離陸速度、及び/又は、出発時のより早い高高度化)を達成するために航空会社によって決定される。現在状態は、航空機及びペイロードに特有の情報、周辺の天候状態、及び、空港に特有の情報を含んでもよい。これらの現在状態は、グラフィカルユーザインタフェース上のフィールドへ入力されてもよい。
幾つかの実施形態において、システムは、最適化された出発プロファイルの出発パラメータを計算するために所望の出発プロファイルと現在状態とを使用してもよい。この出発プロファイルが所望の出発プロファイルと同じであってもよい。出発プロファイルは、様々な場所における騒音レベル制限などの外部基準と比較される。外部基準が満たされる(場合により、ユーザにより規定される)と、最適化された出発プロファイルが最終出発プロファイルとして出力される。
幾つかの実施形態では、外部基準が満たされないと、システムは、所望の出発プロファイルに可能な限り近い調整された出発プロファイルを計算する。調整された出発プロファイルは、その後、準拠基準と比較される。調整された出発プロファイルが準拠している場合には、そのパラメータが外部基準に対して検査される。外部基準が満たされると、調整された出発プロファイルが最終出発プロファイルとして出力され、そうでなければ、調整された出発プロファイルが再び調整される。調整された出発プロファイルが準拠していないとき、或いは、調整が利用できない或いは実行不可能な場合には、通信指令係に知らされる。その後、通信指令係は、準拠した出発プロファイルが得られるまで、現在状態を調整することができる。幾つかの実施形態において、システムは、準拠した出発プロファイルを得ることができる現在状態の調整(例えば、更に低い離陸重量)を示唆してもよい。
本開示の態様に係るシステム及び方法は、任意の航空機又は航空隊混合(fleet mix)と共に使用できてもよい。空港は、航空隊混合のために生成される騒音や排出量などを決定するために、或いは、滑走路を加える、空港の空域を再設計する、又は、空港の制限を変更するなど空港が変更を行う場合の料金(例えば、離着陸料金)を決定するために、システムを使用できる。
具体的な実施例、主要な構成要素、及び、別の手段
以下の実施例は、準拠した航空機出発プロファイルを生成するための典型的なシステム及び方法の選択された態様について説明する。これらの実施例は、例示のために意図されており、本開示の全体の範囲を限定するものと解釈されるべきでない。それぞれの実施例は、1つ以上の別個の発明、及び/又は、文脈的又は関連する情報、機能、及び/又は、構造を含んでもよい。
この実施例は、例示的な飛行プロファイル生成システム10について説明する。この場合、図1を参照されたい。
この実施例において、飛行プロファイル生成システム10は、準拠モジュール14と通信する飛行性能データ生成器12を含む。飛行性能データ生成器12は、飛行経路を表す三次元データを生成するように構成される任意の適したハードウェア及び/又はソフトウェアを含んでもよく、また、航空機性能モデル又は飛行性能モデルと称されてもよい。このモジュールが製造業者によって提供されてもよい。例えば、航空機製造業者は、一般に、飛行性能モデルを航空会社取引先へ提供して分配する。例えば、ボーイングクライムアウトプログラム(BCOP)は、グラフィカルユーザインタフェースを含むと共に、ターミナル領域飛行手順を解析し、開発し、検証するように構成される。BCOPなどの飛行性能モデルは、その生成されるデータの基礎をスタンダードインストゥルメントディパーチャー(SID)及びエンジンアウト手順に置いてもよい。
飛行性能データ生成器12は、空港温度、標高、滑走路情報、初期航空機離陸重量、出発トラック、フラップ引き込みスケジュールなどの状態16(現在状態及び/又は現在状態入力とも称される)に関する入力データを収集する。また、飛行性能データ生成器12は、所望の出発プロファイルに対応する入力出発プロファイル18を受けてもよい。プロファイル18は、出発中に時間及び距離に応じて予期される航空機状態を計算するために状態16と共に評価される。言い換えると、飛行性能データ生成器12は、プロファイル18が状態16に照らして実行されると仮定して、航空機の予期される状態を時間及び/又は距離にわたって表す多次元データをもたらす。したがって、飛行性能データ生成器12は、所望の出発プロファイルと現在状態入力とに基づいて航空機のための出発性能データを計算するように構成されてもよい。言い換えると、飛行性能データ生成器12は、現在状態入力と所定の出発プロファイルとに基づいて航空機のための出発性能データを計算するように構成されてもよい。つまり、飛行性能データ生成器12は、現在の周囲の状態下で所望の飛行プロファイルを辿る選択された航空機の飛行経路を表す飛行性能データを生成するように構成されてもよい。
BCOPなどの飛行性能モデルは、主に、航空会社が出発動作中又は到着動作中に航空機エンジンアウト性能を決定するのを支援するように設計された。ここで、飛行性能生成器12は、現在状態又は予期される状態を使用して、特定の航空機の単一の出発のための出力を生成するために使用される。幾つかの実施例において、飛行性能生成器12は、例えばアプリケーションプログラミングインタフェース(API)又はソフトウェア開発キット(SDK)を介して他のモジュールと接続できるソフトウェアを含む。
準拠モジュール14(比較モジュールとも称される)は、飛行性能データ生成器12から出力データを受けて、このデータに基づいて1つ以上の値を計算すると共に、そのような1つ以上の値と1つ以上の基準とを比較するように構成される任意の適したデバイス又はソフトウェアを含んでもよい。言い換えると、準拠モジュール14は、1つ以上の外部基準と計算された出発性能データに対応する少なくとも1つの値とを比較して、比較の結果を示す比較出力を与えるように構成される。つまり、準拠モジュール14は、1つ以上の外部基準と性能データとの間の関係を決定してその関係を通信する(例えば、その関係に対応する出力を与える)ように構成される。
したがって、準拠モジュール14は、外部基準及び/又は外部基準入力と置き換え可能に称される基準入力20を受ける。基準入力20は、騒音削減制限に関すること、及び、1つ以上の騒音監視ステーションの地理的な位置を含んでもよい。準拠モジュール14は、騒音監視ステーションで検出される航空機からの予期される騒音排出量を計算する。飛行性能データ、既知の航空機騒音特性、及び、騒音監視ステーションに対する航空機の経路に基づいて、デシベルレベルが時間の関数として決定されてもよい。騒音削減制限は、ピーク騒音レベルに関して及び/又は経時的な累積騒音レベルに関して提示されてもよい。したがって、騒音レベルは、瞬時レベル及び累積レベルの両方を決定できるように所定の時間範囲にわたって各騒音監視ステーションで準拠モジュール14によりシミュレートされてもよい。
航空機は、一般に、連邦航空局(FAA)及び欧州航空安全局(EASA)などの監督機関によって動作が認証される。認証プロセスの1つの要素は騒音認証を含み、また、航空機は規制騒音要件を満たす必要がある。特に、この騒音認証からの提出書類の1つが騒音-出力-距離(NPD)マップと呼ばれるテーブルである。NPD中の騒音要素は、一般に、「ピークdBA」又は「LAmax」と呼ばれる許容航空騒音指標を含む。ピークdBAは、例えば、頭上を飛行する最中に記録される最も大きいデシベルレベルに関連し、人の耳が音を受ける程度に調整される。
ブレーキ解放からの航空機の距離、高度、エンジン推力、及び、緯度/経度位置(飛行性能データ生成器からの出力)は、航空機騒音モニタの地理的な位置及び仰角に対して決定される。航空機のエンジン推力(すなわち、出力)及び航空機から騒音モニタまでの距離は、騒音モニタにおける推定騒音レベルをNPDマップから読み出すためにテーブルルックアップで使用されてもよい。
ピークdBA又はLAmaxは騒音事象の大きさのみを考慮する。したがって、一部の空港は、騒音事象の大きさ及び持続時間の両方を考慮する単一事象騒音暴露レベル(SENEL)指標又は音響エネルギーレベル(SEL)指標を使用する。これらの場合、NPDテーブルルックアップの複数のサンプルは、騒音モニタ上を越える飛行を表すdBAレベルの時間履歴を作り上げるために行われる。
準拠モジュール14は、シミュレートされた排出量(例えば、騒音)と基準との間の比較を選択された位置で行い、それにより、関係を決定する。言い換えると、準拠モジュール14は、航空機の予期される環境排出量と排出量削減制限とを比較して、これらの間の関係を決定する。例えば、関係は、排出量が基準に違反しているという示唆を含んでもよい。例えば、関係は、排出量が基準を満たすという示唆を含んでもよい。例えば、関係は、特定の裕度分だけ排出量が基準を満たすという示唆を含んでもよい。例えば、騒音レベルが75dBAで表示されて、ピークdBA騒音制限が80 dBAであるとき、それに伴う裕度は5 dBAである。幾つかの実施例において、排出量は、複数の監視位置で及び/又は複数の時間又は時間範囲で、複数の基準と比較されてもよい。幾つかの実施例では、時刻に応じて基準が変化してもよい。幾つかの実施例では、空港からの距離に基づいて基準が変化してもよい。
排出量と基準との間の関係は、入力プロファイル18に対して変更がなされるべきかどうかをユーザが決定できるように準拠モジュール14によって与えられる。変更は、例えば1つ以上の基準が違反される場合に必要かもしれない。変更は、例えば、準拠の裕度が選択された裕度よりも大きい場合に必要又は望ましいかもしれない。状態の不確実性、スロットル設定間又はフラップ設定間の移行時間などの動作因子、及び、オペレーターエラーを考慮しつつ準拠を確保するためには最小裕度が望ましい場合がある。しかしながら、幾つかの実施例では、規制に準拠する正当な理由がなければ航空機が経済的費用に直面していないように、最大裕度が望ましい場合もある。
関係が準拠モジュール14により通信されることに応じて、ユーザは、排出量(例えば騒音)レベルが所望の関係に至らされるように入力出発プロファイルの1つ以上の態様を変えてもよい。例えば、騒音レベルが特定の騒音モニタで制限を超える場合には、その騒音モニタで検出される騒音を減少させるために、出発プロファイルに対して変更がなされてもよい。例えば、これは、推力を減少させること(又は、推力の増大を遅らせること)及び/又はモニタの近傍で高度を上げることを含んでもよい。
変更された入力プロファイルは、その後、変更されたプロファイルが所望の態様で基準を満たすかどうかを決定するシステムによって再処理されてもよい。プロファイルが所望の関係を満たす場合には、例えば物理的なプリントアウト上で、ディスプレイスクリーン上で、データファイル内で、及び/又は、同様のもので、又は、これらの任意の組み合わせで、出力モジュールが最終出力プロファイル22をユーザに出力してもよい。当初の入力ファイルが所望の態様で全ての基準を満たす状況例では、変更が必要とされない場合があり、また、入力プロファイル18が出力プロファイル22とほぼ同一な場合がある。他の実施例では、出力プロファイル22が当初の入力プロファイル18とは実質的に異なるように、入力プロファイル18が1回以上変更されて再処理され或いは繰り返されてもよい。
入力出発プロファイル18の1つ以上の態様を変更することは、この実施例でその随意的な性質を示すために図2に破線で示される推奨モジュール24によって部分的に支援され或いは推奨モジュール24によって完全に行われてもよい。推奨モジュール24は、(例えば、準拠モジュール14からの比較出力に基づいて)入力プロファイル18を基準20との所望の関係(又は、所望の関係に近い関係)に至らせる1つ以上の推奨された変更を決定する及び/又は出力するように構成される任意の適したハードウェア及び/又はソフトウェアを含んでもよい。例えば、騒音モニタでシミュレートされた騒音レベルがピークdBA制限に違反していることが分かった場合、推奨モジュール24は、出発プロファイルでスロットル減少がより早い時期に行われれば準拠する可能性が高くなるということを決定してもよい。例えば、スロットル減少は、航空機が1000フィートの高度に達するときに起こるようにスケジュールされてもよい。航空機が監視ステーション上を通り越した後にその状態が起こる場合、推奨モジュール24は、スロットル減少が更に低い高度(例えば900フィート)で、すなわち、騒音モニタに達する前に起こるべきであることを決定してもよい。
推奨モジュール24は、データ処理システムによって実行される様々な命令を含んでもよい(以下の実施例5を参照)。これらの命令は、実施例3及び実施例4で更に詳しく説明されるように、論理決定ツリー、手順、最適化ルーチン、及び/又は、同様のもの、或いは、これらの任意の組み合わせを含んでもよい。推奨モジュール24は、準拠モジュール14により決定される関係に照らして入力プロファイルを解析してもよく、また、ユーザプリファレンス26に基づいて1つ以上の推奨を行ってもよい。ユーザプリファレンスは、飛行プロファイルのいずれの態様を修正できるのか、どんな順序で修正を試みるべきか、それぞれの修正可能な態様がそれぞれの繰り返しでどの程度変えられるべきかなどに関する情報を含んでもよい。また、プリファレンス26は、設定、ユーザ設定、又は、コンフィギュレーション設定と称されてもよい。
推奨は、任意の適した形態で推奨モジュールにより与えられてもよい。例えば、推奨モジュール24は、解析のために完全修正入力プロファイルを与えてもよい。他の実施例において、モジュール24は、入力プロファイルに対して推奨された変更のみを与えてもよい。幾つかの実施例において、推奨は、飛行性能データ生成器に対して直接に通信されてもよい。他の実施例において、推奨は、更なる処理に関してユーザに同時に或いは連続的に与えられてもよい。幾つかの実施例において、推奨は、更なる処理の前の承認のため、又は、ユーザが単独で追及するべき推奨された行動方針として、例えば忠告モードで、専らユーザに対してのみ通信されてもよい。
幾つかの実施例において、推奨モジュール24は、更なる修正が望ましくない、あり得ない、或いは、実行不可能であると結論付けてもよい。この結論がプリファレンス26に基づいてもよい。これらの実施例において、出力プロファイル22は、図2に示されるように、飛行性能データ生成器及び準拠モジュールを再び通過せずに、推奨モジュールから与えられてもよい。
この実施例は、システム10の一実施形態である例示的な飛行プロファイル生成システム50について説明する。これについては図3から図9を参照されたい。
図3は、様々な構成要素間の関係を示すシステム50のブロック図である。この実施例では、システム50が騒音削減制限に関して記載される。しかしながら、システムは、他の排出量削減状況に適してもよい。システム50は、準拠モジュール54と作用的通信を行う飛行性能データ生成器52と、準拠モジュール及び飛行性能データ生成器の両方と作用的通信を行う推奨モジュール56とを含んでおり、それにより、3つのモジュールがループ状に構成される。
飛行性能データ生成器(FPDG)52は実施例1の生成器12とほぼ同様である。FPDG52は、入力飛行プロファイル58及び現在状態60を入力として受ける。入力飛行プロファイル58は、フラップ設定命令及びスロットル管理命令などの飛行の出発段階のための命令、離陸(TO)推力、TOフラップ、想定される温度設定、標準的な計器逸脱、及び/又は、同様のもの、或いは、これらの任意の組み合わせを含む、任意の適した飛行出発プロファイルを含んでもよい。現在状態60は、特定の航空機、空港、及び、解析されるべき出発に関して成すべき状態及び形態を含んでもよい。例えば、現在状態60は、以下の航空機関連状態、すなわち、航空機タイプ、エンジンモデル又はタイプ、TO重量のうちの1つ以上を含んでもよい。例えば、現在状態60は、以下の周辺天候関連状態、すなわち、温度、風速、風向、滑走路状態のうちの1つ以上を含んでもよい。例えば、現在状態60は、以下の空港関連状態、すなわち、空港レイアウト、選択された滑走路、選択されたトラックのうちの1つ以上を含んでもよい。
入力飛行プロファイル58及び現在状態60を受けると、これらの入力に基づき、FPDG52は、その後、航空機出発を表す飛行パラメータデータ62を生成する。データ62は、高度、速度、推力、燃料消費量、時間、及び/又は、ブレーキ解放からの距離などの航空機の出発の複数の大きさに関する情報を含んでもよい。図4から図6には、飛行パラメータデータ62の例示的なサブセットが示されており、この場合、ブレーキ解放からの距離70によって規定されるx軸上に航空機高度64、推力66、及び、速度68がそれぞれ示される。図7から図9には、(異なる飛行プロファイルに関する)飛行パラメータデータ62の他の例示的なサブセットが示されており、この場合、ブレーキ解放からの距離70’によって規定されるx軸上に航空機高度64’、推力66’、及び、速度68’が示される。以下で更に説明されるように、この情報は、出発トラックに沿う既知の監視ポイントに関する解析を容易にする。これは、監視ポイントがブレーキ解放から既知の特定の距離にあるからである。
飛行パラメータデータ62は、解析のために準拠モジュール54へ通信される。準拠モジュール54は騒音基準72の形態の入力も受ける。前述したように、騒音基準72は、監視ステーションの地理的な位置及び仰角、騒音指標、騒音レベル制限、時刻に基づく注釈、空港によって定められる許容誤差裕度、及び/又は、同様のもの、或いは、これらの任意の組み合わせを含んでもよい。準拠モジュール54は、それぞれの監視ステーションで予期される騒音レベルを決定して(例えば、前述したようなNPDマップを使用する)、該騒音レベルと基準とを比較する。この比較は、そのモニタにおける騒音レベルが違反している或いはある裕度だけ準拠しているという各監視ステーションに関する関係をもたらす。騒音レベルの全てが対象となる空港により定められる許容誤差裕度だけ準拠している場合には、入力飛行出発プロファイル58が最終飛行出発プロファイル74として出力されてもよく、この最終飛行出発プロファイル74は、最終プロファイルの通信指令係76に知らせることによって通信されてもよい。
騒音レベルが基準との所望の関係を有さない場合には、2つの可能性が生じる場合があり、それらの可能性はいずれも、飛行出発プロファイルの修正が望ましいことを示唆し得る。第1の可能性は、1つ以上の騒音レベルが適用可能な騒音制限に違反している場合があることある。これらの状況において、準拠モジュール54は、関係、並びに、対象となる監視ステーションに関するプロファイル情報及びデータを、推奨モジュール56へ通信する。補正が必要とされるため、飛行出発プロファイルの修正が推奨モジュール56内の補正モジュール78によって扱われる。補正モジュール78は、飛行出発プロファイルをそれが適用可能な制限に準拠するように至らせることができる変更を決定するように構成される任意の適したハードウェア及び/又はソフトウェアを含む。補正モジュール78の1つの実施形態については以下で更に詳しく説明する(実施例3参照)。
そのような変更は、一般に、更なる誘導がなければ決定されない。したがって、飛行出発プロファイル修正に関するユーザの優先事項及び好ましい設定を示すために一組のプリファレンス80が推奨モジュールに対して与えられる。例えば、これらのプリファレンスは、航空会社事業計画及び/又は経済上の優先事項を反映してもよい。例えば、所定の航空会社のユーザは、最大ペイロード、最小騒音、燃料効率、最小時間、巡航までの最小上昇、及び/又は、同様のもの、或いは、これらの任意の組み合わせのうちの1つ以上を優先させてもよい。同様に、飛行出発プロファイルの特定の調整及びカスタマイズが禁止されてもよく或いは選択可能な増分を有してもよい。例えば、ユーザは、ペイロードが0.5%増分で変えられることを好む場合がある。幾つかの実施例では、初期設定が定められてもよく、また、ユーザが1つ以上のそのような設定を無効にし或いは修正してもよい。したがって、推奨モジュール56及び補正モジュール78は、推奨変更をユーザの優先事項及び選択と合わせるように構成される。
騒音レベル及び制限が所望の関係を有さないときの第2の可能性は、騒音レベルが過剰に準拠していることである。言い換えると、実際の騒音レベルと適用可能な騒音削減制限との間に経済的に望ましいよりも大きな裕度が存在する。この状況において、ユーザは、利用できる裕度をうまく利用するように飛行プロファイルを調整したいと思う場合がある。これは補正ではなく調整であるため、また、関連するプリファレンス及び論理が補正モジュール78におけるそれとは異なる場合があるため、飛行出発プロファイルの修正は、推奨モジュール内の調整モジュール82によって扱われる。
調整モジュール82は、準拠の裕度を減らしつつ飛行出発プロファイルが準拠を保つことができるようにする変更を決定するように構成される任意の適したハードウェア及び/又はソフトウェアを含む。調整モジュール82の1つの実施形態については以下で詳しく説明する(実施例4参照)。これに関し、プリファレンス80は、飛行出発プロファイルの最適化に関する優先事項を含んでもよく、また、調整モジュールを効果的にON/OFFするバイナリ設定を含んでもよい。例えば、一部のユーザは、裕度にかかわらず、準拠が確かめられた時点でプロファイルを調整しないことを好む場合がある。他の実施例において、この同じ効果は、調整がそもそも引き起こされない十分に大きい許容誤差裕度を選択することによって実質的にもたらされてもよい。
飛行プロファイルがどのように修正されるべきかをいずれのサブモジュールが決定するかにかかわらず、入力飛行プロファイル58の修正バージョンがFPDG52へ通信されてもよく、また、そのサイクルが繰り返される。この繰り返しループは、騒音基準及びユーザプリファレンスが満たされるまで、解決策が実現不可能であることが決定されるまで、或いは、特定のユーザが規定する繰り返し数が生じてしまうまで、任意の回数繰り返されてもよい。
この実施例は、本開示の態様に係る飛行プロファイル生成システムで用いるのに適した例示的な補正モジュール100について説明する。これについては図10を参照されたい。
図10は、補正モジュール78などの補正モジュールの1つの実施形態によって行われるステップを示すフローチャートであり、プロセス全体又はプログラムの全てのステップを列挙しない場合がある。図10は、本開示の態様に係る飛行出発プロファイル補正と併せて行われてもよいプロセスの複数の動作を描く。様々なステップ及び動作が以下で説明されて図10に描かれるが、必ずしも全てのステップが行われる必要はなく、また、ある場合には、例えばユーザプリファレンス又は優先事項に応じて、ステップが図示の順序とは異なる順序で行われてもよい。
モジュール100は、飛行プロファイルで使用されている推力管理方法などの因子に応じて及び/又はいずれの監視位置が制限違反を有しているかに応じて、幾つかの論理経路を含んでもよい。これらの経路は、任意の論理的順序で行き来されてもよい。図10に示されるように、第1の決定ポイントは、ステップ102において推力管理方法を決定することを含んでもよい。推力管理は、高度に基づいてもよく(例えば、選択された高度で推力を変える)、或いは、航空機形態に基づいてもよい(例えば、選択されたフラップ設定で推力を変える)。
まず最初に、推力管理が高度に基づいていると仮定すると、モジュール100がステップ104における第2の決定ポイントへ移行してもよく、この場合、騒音モニタは、近接(例えば近傍)モニタ又は遠隔モニタのいずれかとして分類される。一般に、近接モニタとは、初期離陸域及び初期推力減少領域の範囲内に入る、空港により近いモニタのことである。遠隔モニタは、近接モニタよりも空港から遠くにあり、一般的には出発の推力回復上昇段階付近の領域にある。近接モニタの例示的な位置が例えば図4、5、6に破線Cで示される。同様に、遠隔モニタの例示的な位置が図7、8、9に破線Dで示される。
まず最初に、対象のモニタが近接モニタであると仮定すると、モジュール100は、近接騒音を減少させようとして、飛行出発プロファイルに対して一連の可能な変更を行う。最初に、ステップ106において、推力減少高度が変更される。図4から図6の実施例に戻って参照すると、出発プロファイルは、高度が1200フィートに達するときに推力が減少されることを示す。これは、ブレーキ解放から約18000フィートに対応する。この実施例では、騒音モニタが約17500フィートにある(破線Cにより示される)。したがって、推力減少は、航空機が監視ステーションを通過した後に起こる。そのため、ステップ106において、モジュール100は、推力減少高度を例えば1000フィートまで減少させる変更を提案する。この作用により、推力減少は、監視ステーションよりも前で起こり、それにより、そこで検出される騒音が減少される。この推奨を行った後、制御がシステム全体へ戻り、また、修正された飛行プロファイルがFPDG及び準拠モジュールによって再評価される。依然として違反している場合、モジュール100が再び呼び出されて、ステップ106に達する。この時点で、プログラムは、推力減少高度の更なる変更を提案してもよく、或いは、更なる変更が実現不可能である及び/又は望ましくないことを決定してもよい。
この実施例に記載されるステップのそれぞれは、ステップが評価されて、対策が講じられ(実現可能な場合)、修正が再チェックされるように、同様の態様で行われてもよい。制御がそのステップに戻る場合には、準拠に達するまで、選択された繰り返し数が行われるまで、或いは、対策の繰り返しが実行不可能である或いは得策ではないと決定されるまで、対策が再び講じられる(実現可能な場合)。その時点で、モジュールが次の番号のステップへ移行する。
ステップ106が非準拠を解決しなかったと仮定すると、モジュール100は、飛行出発プロファイルが全出力離陸を指示するかどうかをチェックする。例えば、時としてエンジンに想定温度設定が与えられ、或いは、エンジン摩耗を減らすためにエンジンの出力レベルが下げられる。いずれの場合にも、これは、最大よりも低い出力レベルをもたらす。エンジンがこれらの状態のうちの1つを有することが分かれば、ステップ108は、航空機をより高い高度に早期に到達させるために全出力離陸を推奨し、それにより、航空機は直ちに推力減少高度に達する。これにより、航空機が位置Cに達する前に推力レベルが降下し、それにより、騒音レベルが低下される。
ステップ108(及び、その任意の繰り返し)が適用できない或いは非準拠を解決しないと仮定すると、モジュール100は、飛行出発プロファイルが最大離陸フラップを指示するかどうかを決定する。指示しない場合には、ステップ110は、最大離陸フラップに変えることを推奨する。これは、この形態がより急激な上昇を引き起こすからであり、それにより、この場合も先と同様、航空機が直ちに推力減少高度に達し、近接モニタにおける騒音レベルが減少する。
ステップ110(及び、その任意の繰り返し)が適用できない或いは非準拠を解決しないと仮定すると、モジュール100は、ステップ112へ移行して、ペイロードとも称される最大離陸重量(MTOW)の減少を推奨する。重量の減少は、同じ推力レベルでより急激な離陸をもたらし、それにより、この場合も先と同様、航空機が直ちに推力減少高度に達する。ユーザ設定及び航空会社の方針に応じて、ペイロードの特定の割合がそれぞれの繰り返しで減少されてもよい。同様に、許容ペイロード減少の特定の最大量(オフロードとも称される)が定められてもよい。したがって、ステップ112は、繰り返し毎に0.5%など、特定の割合で繰り返してもよく、ペイロードが選択された最小レベル又は最大減少量に達するときに停止してもよい。また、準拠にとって最良のペイロードレベルを超えないように、ステップ112は、適切なレベルが決定されて推奨されたことを明らかにするために、ペイロードの小さい増大(例えば0.25%)を伴って最終回毎に繰り返されてもよい。
ステップ112及び任意の適用可能な繰り返しがうまくいかない場合、他の態様が調整されてもよい。しかしながら、この実施例では、近接モニタにおける騒音レベルに影響を及ぼすために飛行プロファイルの更なる態様を利用できないことが想定される。したがって、プロファイルが依然として違反している場合、モジュール100は、実現可能な解決策を想定し得ないことを報告する。この情報は、解決策を可能にするべくユーザが設定及びプリファレンスを再評価できるようにしてもよい。「解決策が無い」という示唆は、同様に、後述するそれぞれの一連のステップの終わりに通信される。
ステップ104に戻ると、対象のモニタが遠隔モニタである場合、ステップ114が実行される。ステップ114では、推力回復高度が調整される。一般に、低推力期間の後、上昇出力としても知られる推力を回復させることによって上昇段階に入る(図8参照)。推力減少高度に関する理由と同様の理由により、推力が回復されて上昇出力が加えられる高度を上げることが望ましい場合がある。これは、航空機が騒音モニタに達した後まで騒音を伴う更なる推力が遅らされるからである(図8の線D参照)。図7から図9に示される実施例では、推力が2500フィートの高度で回復される。これは、D(ブレーキ解放から約23000フィート)で監視ステーションに達する前に、ブレーキ解放から約20000フィートで推力の増大をもたらす。したがって、推力をその後に、すなわち、より高い高度で回復させることが望ましい。
ステップ114(及び、その任意の繰り返し)が実行不可能又は非準拠を解決しないと仮定すると、モジュール100がステップ116へ移行する。ステップ116において、モジュール100は、上昇の出力レベルが下げられるかどうかを決定する。上昇の出力レベルが下げられない場合、モジュール100は、ブレーキ解放から更に遠くで航空機を推力回復高度に到達させるために上昇出力を下げることを推奨する。
ステップ116(及び、その任意の繰り返し)が適用できない或いは非準拠を解決しないと仮定すると、モジュール100がステップ118へ移行する。ステップ118では、MTOWの減少が推奨される。このステップは、前述したステップ112とほぼ同様である。MTOWの減少は、より急速に高度増大をもたらす。これは航空機が推力回復高度に早期に(すなわち、遠隔モニタの手前で)達するようにし得るが、航空機は、モニタに達するときまでに高度がかなり高くなることができ、したがって、垂直距離により、騒音が減少される。
ステップ102に戻ると、推力管理が形態に基づくことが決定される場合、モジュール100は、ステップ120へ移行して、ステップ104の場合のようにモニタを分類する。モニタが近接モニタであると仮定すると、実行がステップ122へ移る。ステップ122において、モジュール100は、加速高度の位置を変えようと試み、それにより、航空機は、機首を下げ、スロットルを減少させると共に、加速を早期に開始する。これにより、モニタにおける騒音が減少する。
ステップ122(及び、その任意の繰り返し)が実行不可能又は非準拠を解決しないと仮定すると、モジュール100がステップ124へ移行する。ステップ124において、モジュール100は、全出力離陸が未だ指示されていない場合には、全出力離陸を推奨する。このステップは、前述したステップ108とほぼ同様であり、同様な効果を伴う。
ステップ124がうまくいかなかったと仮定すると、ステップ126は、離陸フラップ減少設定を利用できる場合にそれを試みることを含む。離陸フラップの減少は、推力減少フラップ設定への素早い到達をもたらす。これは、フラップを引き込むために要する時間が更に短くなり、それにより、モニタに達する前にエンジン推力(及び対応する騒音)の減少をもたらすことができるからである。
ステップ126がうまくいかなかった或いは利用できなかったと仮定すると、ステップ128は、上昇出力レベル低下設定を利用できる場合にそれを推奨することを含む。上昇出力レベル低下設定は、印加される推力を減少させる。したがって、推力に関連付けられる騒音が低減される。
ステップ128がうまくいかなかった或いは利用できなかったと仮定すると、ステップ130はMTOWを減少させることを含み、このステップは、航空機がより高い高度に素早く達することができるようにすると共に、ステップ112、118とほぼ同様である。
ステップ120に戻ると、対象のモニタが遠隔モニタである場合、モジュール100がステップ132へ移行する。ステップ132では、モジュール100が加速高度を変えることを推奨する。このステップは、ステップ122に類似するが、推奨が反対方向でなされる。早期に加速するのではなく、ステップ132は、その後に、すなわち、より高い高度で加速することを推奨する。これにより、航空機がより高い初期上昇高度に達し、それにより、航空機は、推力が回復されるときに、更に高い高度にあり及び/又は更に遠いダウンレンジにあり、その結果、モニタにおける騒音が減少する。
ステップ132(及び、その任意の繰り返し)がうまくいかない或いは実行不可能であると仮定すると、ステップ134は、全出力離陸が未だ指示されていない場合には、全出力離陸を推奨することを含む。この場合も先と同様、これにより、航空機は、出力を減少させる前により高い高度に達し、したがって、航空機は、推力が回復されるときに、より高い高度にある。
ステップ134がうまくいかない或いは実行不可能であると仮定すると、ステップ136は、MTOWの減少を推奨することを含む。このステップはステップ112、118、130とほぼ同様である。
前述した各ステップは、飛行出発プロファイルの変更をもたらしてもよい。幾つかの実施例では、これらの変更が累積的であってもよい。幾つかの実施例では、1つ以上の変更が他の変更を適用する前に取り消されてもよい。
この実施例は、本開示の態様に係る飛行プロファイル生成システムで用いるのに適した例示的な調整モジュール200について説明する。これについては図11を参照されたい。
図11は、調整モジュール82などの調整モジュールの1つの実施形態によって行われるステップを示すフローチャートであり、プロセス全体又はプログラムの全てのステップを列挙しない場合がある。図11は、本開示の態様に係る飛行出発プロファイル補正と併せて行われてもよいプロセスの複数の動作を描く。様々なステップ及び動作が以下で説明されて図11に描かれるが、必ずしも全てのステップが行われる必要はなく、また、ある場合には、例えばユーザプリファレンス又は優先事項に応じて、ステップが図示の順序とは異なる順序で行われてもよい。
ステップ202において、モジュール200は、ユーザが調整モジュールを有効にしたかどうかをチェックする。有効にしない場合、実行が全体のシステムへ戻り、また、裕度の最適化が行われない。一般に、裕度の最適化は、何処で過度の準拠が存在するかに応じて近接モニタ又は遠隔モニタにおける騒音レベルを増大させることを含む。騒音レベルを増大させることは、特に以下のステップのうちの1つ以上によって達成されてもよい。
ステップ204において、航空会社のユーザの経済的な優先事項を伴って行わなければならない設定及び/又はプリファレンスは、飛行出発プロファイルのいずれの態様が裕度をうまく利用するべくどの順序で調整されるべきかを決定するためにチェックされる。以下のステップは特定の順序で説明されるが、ユーザプリファレンスに応じて、特定のステップが異なる順序で行われてもよく或いは全く行われなくてもよい。
ステップ206において、モジュール200は、ペイロードを最大にすることが目標であるかどうかを決定する。そうである場合には、ステップ208がMTOWを引き上げることを含む。この動作は、実施例3で説明したMTOW減少に類似するが、重量を除去するのではなく重量を加える。所望の裕度に達するまで同様の繰り返しが行われてもよい。或いは、他の修正がMTOW増大と並行して行われてもよい。
ステップ210において、モジュール200は、近接騒音を減らすことが目標かどうかを決定する。これは、例えば、裕度が遠隔モニタに関して存在する場合に当てはまり得る。近接騒音を減らすことが目標である場合、ステップ212は、推力減少高度を下げて、近接モニタにおける騒音レベルを下げることを含む。この変更は、遠隔モニタにおける騒音を増大させる。これは、航空機が遠隔モニタに達するときに、航空機が更に低いからである。
ステップ214において、モジュール200は、エンジン摩耗を減らすことが目標であるべきかどうかを決定する。そうである場合、ステップ216は、離陸の出力レベルを下げること或いは想定温度設定を推奨することを含む。これらはいずれも、より低いエンジン出力をもたらし、したがって、推力減少高度までゆっくりと上昇する。そのため、推力減少が更に遠いダウンレンジで起こり、その結果、近接モニタにおいて、より高い騒音レベルがもたらされる。
ステップ218において、モジュール200は、時間を減少させることが目標であるべきかどうかを決定する。そうである場合、ステップ220は、推力減少高度を上げると共に推力回復高度を下げることを推奨することを含む。これらの措置により、航空機が、出発のより大きな部分に関して、より高い推力、より速い上昇の状態にあるため、航空機は、最も短い可能な時間で巡航高度に達する(例えば、初期離陸段階をより長い状態のままにして、最終上昇段階を早期に開始する)。言い換えると、航空機は、その最中に仰角ゲインが減少される加速段階に殆ど時間を費やさない。そのため、より急速に最終仰角に達する。
ステップ222において、モジュール200は、遠隔騒音を減少させることが目標であるべきかどうかを決定する。例えば、裕度が近接モニタで存在してもよい。遠隔騒音を減少させることが目標である場合、ステップ224は、推力減少高度を上げると共に推力回復高度も上げることを含む。これらの措置により、近接モニタにおける騒音が増大するが、航空機は、加速段階のより浅い上昇の前に、より高い仰角も得る。より高い高度に加えて、恐らくは遠隔モニタを越える更に遠いダウンレンジまで推力回復も遅らされる。
この実施例は、本開示の態様に係るデータ処理システム900について説明する。この実施例において、データ処理システム900は、前述した実施例で説明された飛行プロファイル生成システム及び方法を実施するのに適した例示的なデータ処理システムである。これについては図12を参照されたい。
この例示的な実施例において、データ処理システム900は通信フレームワーク902を含む。通信フレームワーク902は、プロセッサユニット904、メモリ906、持続性記憶装置908、通信ユニット910、入力/出力(I/O)ユニット912、及び、ディスプレイ914の間の通信をもたらす。メモリ906、持続性記憶装置908、通信ユニット910、入力/出力(I/O)ユニット912、及び、ディスプレイ914は、通信フレームワーク902を介してプロセッサユニット904によりアクセス可能なリソースの例である。
プロセッサユニット904は、メモリ906内へロードされてもよいソフトウェアのための命令を実行する役目を果たす。プロセッサユニット904は、特定の実装に応じて、多くのプロセッサ、マルチプロセッサコア、又は、何らかの他のタイプのプロセッサであってもよい。また、プロセッサユニット904は、主プロセッサが副プロセッサと共に単一のチップ上に存在する多くの異種プロセッサシステムを使用して実装されてもよい。他の例示的な実施例として、プロセッサユニット904は、同じタイプの複数のプロセッサを含む対称的なマルチプロセッサシステムであってもよい。
メモリ906及び持続性記憶装置908は記憶デバイス916の実施例である。記憶デバイスは、例えば、限定を伴うことなく、データ、機能的な形態を成すプログラムコード、及び、他の適した情報などの情報を一時的又は永久的に記憶できるハードウェアの任意の一部分であってもよい。
また、記憶デバイス916は、これらの実施例では、コンピュータ可読記憶デバイスと称されてもよい。メモリ906は、これらの実施例では、例えば、ランダムアクセスメモリ又は任意の他の適した揮発性或いは不揮発性の記憶デバイスであってもよい。持続性記憶装置908は、特定の実装に応じて、様々な形態を成してもよい。
例えば、持続性記憶装置908は、1つ以上の構成要素又はデバイスを含んでもよい。例えば、持続性記憶装置908は、ハードドライブ、フラッシュメモリ、書き換え可能光ディスク、書き換え可能磁気テープ、又は、先の何らかの組み合わせであってもよい。持続性記憶装置908により使用される媒体は除去可能であってもよい。例えば、除去可能なハードドライブが持続性記憶装置908のために使用されてもよい。
通信ユニット910は、これらの実施例では、他のデータ処理システム又はデバイスとの通信を行う。これらの実施例において、通信ユニット910は、ネットワークインタフェースカードである。これらの実施例において、通信ユニット910は、物理通信リンク又は無線通信リンクのうちのいずれか一方又は両方の使用によって通信を行ってもよい。
入力/出力(I/O)ユニット912は、データ処理システム900に接続されてもよい他のデバイスとのデータの入力及び出力を可能にする。例えば、入力/出力(I/O)ユニット912は、キーボード、マウス、及び/又は、何らかの他の適した入力デバイスによるユーザ入力のための接続をもたらしてもよい。また、入力/出力(I/O)ユニット912は出力をプリンタへ送ってもよい。ディスプレイ914は、情報をユーザに対して表示するための機構を与える。
オペレーティングシステム、アプリケーション、及び/又は、プログラムのための命令は、通信フレームワーク902を介してプロセッサユニット904と通信する記憶デバイス916に位置付けられる。これらの例示的な実施例において、命令は、機能的な形態を成して持続性記憶装置908にある。これらの命令は、実行のためにプロセッサユニット904によってメモリ906へロードされてもよい。異なる実施形態のプロセスは、メモリ906などのメモリ内に位置付けられてもよいコンピュータ実装命令を使用してプロセッサユニット904により実行されてもよい。
これらの命令は、プロセッサユニット904内のプロセッサにより読み取られて実行されてもよいプログラム命令、プログラムコード、コンピュータ使用可能プログラムコード、又は、コンピュータ可読プログラムコードと称される。異なる実施形態におけるプログラムコードは、メモリ906又は持続性記憶装置908などの異なる物理的な或いはコンピュータが読み取り可能な記憶媒体で具現化されてもよい。
プログラムコード918は、選択的に除去可能なコンピュータ可読媒体920に機能的な形態を成して位置付けられ、また、実行のためにプロセッサユニット904によりデータ処理システム900へロードされ或いは転送されてもよい。プログラムコード918及びコンピュータ可読媒体920は、これらの実施例では、コンピュータプログラムプロダクト922を形成する。1つの実施例において、コンピュータ可読媒体920は、コンピュータ可読記憶媒体924又はコンピュータ可読信号媒体926であってもよい。
コンピュータ可読記憶媒体924は、例えば、持続性記憶装置908の一部であるハードドライブなどの記憶デバイスへの転送のために持続性記憶装置908の一部であるドライブ又は他のデバイスへ挿入され或いは配置される光ディスク又は磁気ディスクを含んでもよい。また、コンピュータ可読記憶媒体924は、データ処理システム900に接続されるハードドライブ、サムドライブ、又は、フラッシュメモリなどの持続性記憶装置の形態を成してもよい。ある場合には、コンピュータ可読記憶媒体924がデータ処理システム900から除去できなくてもよい。
これらの実施例において、コンピュータ可読記憶媒体924は、プログラムコード918を伝搬する或いは送信する媒体ではなくプログラムコード918を記憶するために使用される物理的な或いは有形な記憶デバイスである。また、コンピュータ可読記憶媒体924は、コンピュータ可読有形記憶デバイス又はコンピュータ可読物理記憶デバイスとも称される。言い換えると、コンピュータ可読記憶媒体924は、人が触れることができる媒体である。
或いは、プログラムコード918は、コンピュータ可読信号媒体926を使用してデータ処理システム900へ転送されてもよい。コンピュータ可読信号媒体926は、例えば、プログラムコード918を含む伝搬されたデータ信号であってもよい。例えば、コンピュータ可読信号媒体926は、電磁信号、光信号、及び/又は、任意の他の適したタイプの信号であってもよい。これらの信号は、無線通信リンク、光ファイバケーブル、同軸ケーブル、配線、及び/又は、任意の他の適したタイプの通信リンクなどの通信リンクを介して送信されてもよい。言い換えると、通信リンク及び/又は接続は、例示的な実施例では、物理的である或いは無線であってもよい。
幾つかの例示的な実施形態において、プログラムコード918は、データ処理システム900内で用いるために、他のデバイス又はデータ処理システムからコンピュータ可読信号媒体926を通じて持続性記憶装置908へネットワークを介してダウンロードされてもよい。例えば、サーバデータ処理システム内のコンピュータ可読記憶媒体に記憶されるプログラムコードは、サーバからネットワークを介してデータ処理システム900へダウンロードされてもよい。プログラムコード918を与えるデータ処理システムは、プログラムコード918を記憶して送信することができるサーバコンピュータ、クライアントコンピュータ、又は、何らかの他のデバイスであってもよい。
データ処理システム900のために例示される異なる構成要素は、異なる実施形態が実施されてもよい態様に対して構造上の限定を与えるように意図されていない。異なる例示的な実施形態は、データ処理システム900のために例示される構成要素に加えて及び/又は該構成要素の代わりに構成要素を含むデータ処理システム内で実施されてもよい。図12に示される他の構成要素は、図示の例示的な実施例とは異なることができる。異なる実施形態は、プログラムコードを実行できる任意のハードウェアデバイス又はシステムを使用して実施されてもよい。1つの実施例として、データ処理システム900は、無機構成要素と一体化される有機構成要素を含んでもよく、及び/又は、人を排除する有機構成要素から完全に構成されてもよい。例えば、記憶デバイスが有機半導体から構成されてもよい。
他の例示的な実施例において、プロセッサユニット904は、特定の用途のために製造され或いは構成される回路を有するハードウェアユニットの形態を成してもよい。このタイプのハードウェアは、プログラムコードが動作を実行するように構成されるべく記憶デバイスからメモリへロードされる必要なく、動作を実行してもよい。
例えば、プロセッサユニット904がハードウェアユニットの形態を成す場合、プロセッサユニット904は、多くの動作を実行するように構成される回路システム、特定用途向け集積回路(ASIC)、プログラマブル論理デバイス、又は、何らかの他の適したタイプのハードウェアであってもよい。プログラマブル論理デバイスを用いると、デバイスは、多くの動作を実行するように構成される。デバイスは、その後に再構成されてもよく、或いは、多くの動作を実行するように恒久的に構成されてもよい。プログラマブル論理デバイスの例としては、例えば、プログラマブル論理アレイ、プログラマブルアレイ論理、フィールドプログラマブル論理アレイ、フィールドプログラマブルゲートアレイ、及び、他の適したハードウェアデバイスが挙げられる。このタイプの実装により、異なる実施形態のためのプロセスがハードウェアユニット内で実施されるため、プログラムコード918を省くことができる。
更なる他の例示的な実施例において、プロセッサユニット904は、コンピュータ内で見出されるプロセッサとハードウェアユニットとの組み合わせを使用して実施されてもよい。プロセッサユニット904は、プログラムコード918を実行するように構成される多くのハードウェアユニット及び多くのプロセッサを有してもよい。この描かれた実施例に関しては、プロセッサの一部が多くのハードウェアユニットに実装されてもよく、一方、他のプロセッサが多くのプロセッサに実装されてもよい。
他の実施例では、通信フレームワーク902を実施するためにバスシステムが使用されてもよく、また、該バスシステムは、システムバス又は入力/出力バスなどの1つ以上のバスから構成されてもよい。無論、バスシステムは、バスシステムに取り付けられる異なる構成要素又はデバイス間でデータの転送を行う任意の適したタイプのアーキテクチャを使用して実施されてもよい。
また、通信ユニット910は、データを送信する、データを受信する、或いは、データの送受信の両方を行う多くのデバイスを含んでもよい。通信ユニット910は、例えば、モデム又はネットワークアダプタ、2つのネットワークアダプタ、又は、これらの何らかの組み合わせであってもよい。また、メモリは、例えば、通信フレームワーク902に存在してもよいメモリコントローラハブ及びインタフェースで見出されるようなメモリ906又はキャッシュであってもよい。
本明細書中に記載されるフローチャート及びブロック図は、様々な例示的な実施形態に係るシステム、方法、及び、コンピュータプログラムプロダクトの想定し得る実施のアーキテクチャ、機能性、及び、動作を例示する。これに関し、フローチャート内又はブロック図内の各ブロックは、特定の1つ以上の論理機能を実施するための1つ以上の実行可能な命令を備えるモジュール、セグメント、又は、コードの一部を表してもよい。また、幾つかの別の実施では、ブロック内で言及される機能が図面で言及される順序とは異なる順序で行われてもよいことに留意すべきである。例えば、連続して示される2つのブロックの機能がほぼ同時に実行されてもよく、或いは、ブロックの機能は、時として、関連する機能性に応じて、逆の順序で実行されてもよい。
この節は、一連の番号が付けられた項として限定を伴うことなく与えられる、出力プロファイル生成システム及び方法の更なる態様及び特徴を記載する。これらの項のそれぞれは、1つ以上の他の項と及び/又はこの出願中の他の場所からの開示と任意の適した態様で組み合わせることができる。以下の項の一部は、他の項を明示的に参照し及び更に限定し、それにより、限定を伴うことなく幾つかの適した組み合わせの実施例を与える。
A0.現在状態入力と所望の出発プロファイルとを受けるように構成される飛行性能データ生成器であって、該飛行性能データ生成器が、所望の出発プロファイルと現在状態入力とに基づいて航空機のための出発性能データを計算するように更に構成される、飛行性能データ生成器と、1つ以上の外部基準を受けて、1つ以上の外部基準と計算された出発性能データに対応する少なくとも1つの値とを比較すると共に、比較の結果を示す比較出力を与えるように構成される比較モジュールとを備える、システム。
A1.比較出力に基づいて所望の出発プロファイルに対する1つ以上の推奨された変更を出力するように構成される推奨モジュールを更に備える、A0のシステム。
A2.1つ以上の外部基準を満たす推奨された出発プロファイルを出力することによって比較出力に対して応答するように構成される出力モジュールを更に備える、A0のシステム。
A3.現在状態入力は、選択された空港における現在の天候状態に対応する1つ以上の入力を含む、A0のシステム。
A4.現在状態入力は、航空機の形態に対応する1つ以上の入力を含む、A0のシステム。
A5.外部基準は、騒音監視位置における騒音制限に対応する1つ以上の基準を含む、A0のシステム。
B0.航空機のための出発プロファイルを生成するためのコンピュータシステムであって、コンピュータシステムは、プロセッサと、1つ以上の記憶デバイスと、1つ以上の記憶デバイスに記憶される複数の命令を含む出発プロファイル生成プログラムとを備え、複数の命令は、現在状態入力と第1の出発プロファイルとを受け、現在状態入力と第1の出発プロファイルとに基づいて航空機のための第1の出発性能データを計算し、1つ以上の外部基準と第1の出発性能データとの間の第1の関係を決定し、第1の関係に対応する出力を与えるためにプロセッサにより実行される、コンピュータシステム。
B1.1つ以上の外部基準が騒音削減制限を含む、B0のシステム。
B2.複数の命令は、所望の関係とは実質的に異なる第1の関係に応じて、第1の出発プロファイルを修正して、所望の関係を満たす第2の出発性能データを有する第2の出発プロファイルを形成するようにプロセッサにより更に実行される、B1のシステム。
B3.プロセッサは、第2の出発プロファイルを出力するための命令を更に実行する、B2のシステム。
B4.第1の関係を決定することは、データに対応する値を計算して、その値と1つ以上の基準とを比較することを含む、B1のシステム。
B5.所望の関係は、1つ以上の基準を満たす値を含む、B4のシステム。
B6.所望の関係は、選択された裕度以下の裕度分だけ1つ以上の基準を満たす値を含む、B5のシステム。
C0.監視位置における排出量制限に準拠する飛行出発プロファイルを生成するための方法であって、該方法は、所望の飛行出発プロファイルと1つ以上の現在周囲状態とを受けるステップと、現在周囲状態下で所望の飛行出発プロファイルに従う選択された航空機の飛行経路を表す飛行性能データを生成するステップと、選択された監視位置で検出される航空機の予期される環境排出量を決定するステップと、航空機の予期される環境排出量と排出量削減制限とを比較してそれらの間の関係を決定するステップと、その関係を通信するステップとを含む、方法。
C1.関係を通信するステップは、関係をユーザへ通信することを含む、C0の方法。
C2.排出量が騒音であり、排出量削減制限が騒音削減制限である、C0の方法。
C3.予期される環境排出量と排出量削減制限との間の関係に応じて所望の飛行出発プロファイルを修正するステップを更に含む、C0の方法。
C4.所望の飛行出発プロファイルを修正するステップは、ユーザプリファレンスに基づいてプロファイルの1つ以上の修正可能な態様を選択することを含む、C3の方法。
C5.所望の飛行出発プロファイルを修正するステップは、選択された裕度を越える裕度分だけ排出量削減制限に準拠するように環境排出量に応じて飛行出発プロファイルを修正することを含む、C3の方法。
C6.生成するステップ、決定するステップ、比較するステップ、及び、通信するステップは、現在の風の状態と現在の温度とを含む現在周囲状態を使用して特定の航空機出発のために行われる、C0の方法。
D0.現在周囲状態は、選択された空港における選択された滑走路を含む任意の他の項のシステム又は方法。
E0.現在状態入力は、航空機モデル、離陸重量、エンジンタイプ、エンジン推力定格、フラップ設定、天候状態、滑走路情報、及び、出発トラックのうちの1つ以上を含む任意の他の項のシステム又は方法。
F0.外部基準が監視位置及び/又は騒音レベル制限を含む任意の他の項のシステム又は方法。
G0.生成される出発パラメータは、所望の出発プロファイル、航空機高度、航空機速度、エンジン推力、燃料使用、及び/又は、出発開始後の時間を含む任意の他の項のシステム又は方法。
H0.準拠ユニットは、計算された出発パラメータにおける騒音レベルと選択された空港の騒音レベル規制とを比較する任意の他の項のシステム又は方法。
J0.計算された出発パラメータと関連付けられる騒音が外部騒音基準を満たさない場合に調整された出発プロファイルを計算するように構成される出発プロファイルユニットを更に備える任意の他の項のシステム。
J1.出発プロファイルユニットは、エンジン推力減少位置、上昇出力設定、燃料効率、及び/又は、出発の開始からの時間を計算するように構成される、J0のシステム。
J2.調整された出発プロファイルと準拠基準とを比較するように構成される準拠ユニットを更に備え、調整された出発プロファイルは、調整された出発プロファイルが準拠基準及び外部騒音基準を満たすときに最終出発プロファイルとして出力される、J0のシステム。
J3.準拠基準を満たす調整された出発プロファイルをもたらす可能な調整を現在状態に対して与えるように構成される解決デバイスを更に備える、J0のシステム。
K0.空港基準に違反することなく所望の出発プロファイルである或いはその所望の出発プロファイルに近い出発プロファイルを生成するために現在状態を使用する、システム。
結論
前述した開示は、独立した実用性を伴う複数の別個の発明を包含し得る。これらの発明のそれぞれをその好ましい形態で開示してきたが、本明細書中に開示されて図示されるその特定の実施形態は、多くの変形が可能であるため、限定的な意味で考慮されるべきでない。発明の主題は、本明細書中に開示される様々な要素、特徴、機能、及び/又は、特性の全ての新規で非自明な組み合わせ及び部分的組み合わせを含む。以下の特許請求の範囲は、新規で非自明であると見なされる特定の組み合わせ及び部分的組み合わせを特に指摘する。特徴、機能、要素、及び/又は、特性の組み合わせ及び部分的組み合わせに具現化される発明は、この出願又は関連する出願の優先権を主張して出願中で特許請求の範囲に記載される場合がある。そのような特許請求の範囲も、異なる発明に向けられるか或いは同じ発明に向けられるかどうかにかかわらず、また、範囲が当初の特許請求の範囲に対してより広い、より狭い、等しい、或いは、異なるかどうかにかかわらず、本開示の発明の主題の範囲内に含まれると見なされる。
2 空港
4 滑走路
6、6’ トラック
8、8’ 騒音監視ステーション
10 飛行プロファイル生成システム
12 飛行性能データ生成器
14 準拠モジュール/比較モジュール
16 状態
18 入力プロファイル
20 基準
22 出力プロファイル
24 推奨モジュール
26 ユーザプリファレンス/設定
50 飛行プロファイル生成システム
52 飛行性能データ生成器
54 準拠モジュール/比較モジュール
56 推奨モジュール
58 入力飛行プロファイル
60 現在状態
62 飛行パラメータデータ
64、64’ 航空機高度
66、66’ 推力
68、68’ 速度
70、70’ 距離
72 騒音基準
74 最終飛行出発プロファイル
76 通信指令係
78 補正モジュール
80 プリファレンス
82 調整モジュール
100 補正モジュール
102〜136 ステップ
200 調整モジュール
202〜224 ステップ
900 データ処理システム
902 通信フレームワーク
904 プロセッサユニット
906 メモリ
908 持続性記憶装置
910 通信ユニット
912 入力/出力ユニット
914 ディスプレイ
916 記憶デバイス
918 プログラムコード
920 コンピュータ可読媒体
922 コンピュータプログラムプロダクト
924 コンピュータ可読記憶媒体
926 コンピュータ可読信号媒体

Claims (11)

  1. 滑走路からの航空機の出発を制御するためのシステムであって、
    空港の選択された出発トラックに沿って配置された排出量監視ステーションでの1つまたは複数の排出量基準に少なくとも部分的に基づいて、前記航空機に対する最終出発プロファイルを生成するように構成されたプロファイル生成器であって、前記プロファイル生成器は、
    現在状態入力および前記航空機に関連付けられる初期出発プロファイルを受信し、前記初期出発プロファイル、前記選択された出発トラック、および前記現在状態入力に基づいて前記航空機に対する出発性能データを計算するように構成された飛行性能データ生成器であって、前記出発性能データは、前記航空機の投影された高度と前記出発トラックに沿った距離とを含む、飛行性能データ生成器と、
    前記1つまたは複数の排出量基準を受信し、前記1つまたは複数の排出量基準を、前記航空機に対する前記計算された出発性能データに対応する前記航空機の1つまたは複数の排出量と比較し、前記比較の結果を示す比較出力を提供するように構成された比較モジュールと、
    前記比較出力を受信し、前記1つまたは複数の排出量が前記1つまたは複数の排出量基準と実質的に異なることに応答して、前記航空機に対する最終出発プロファイルを生成するように構成された推奨モジュールであって、前記最終出発プロファイルは、前記監視ステーションでの前記1つまたは複数の排出量基準を超過することなく修正された出発プロファイルに対応する飛行経路に沿って前記航空機を制御するために使用可能である、推奨モジュールと、
    を備える、プロファイル生成器
    を備え、
    前記最終出発プロファイルは前記航空機上に電気的に格納され、前記航空機の制御システムは、前記航空機が前記滑走路から出発するときに前記最終出発プロファイルに従うように前記航空機の構成要素を制御するように構成され、
    前記最終出発プロファイルを生成するステップは、前記航空機の最大離陸重量を変更するステップを含む、
    システム。
  2. 前記現在状態入力が、選択された空港の現在天候状態に対応する1つまたは複数の入力を含む、請求項1に記載のシステム。
  3. 前記現在状態入力が、前記航空機の構成に対応する1つまたは複数の入力を含む、請求項1に記載のシステム。
  4. 前記1つまたは複数の排出量基準が騒音削減制限を含み、前記排出量監視ステーションは騒音監視ステーションである、請求項1に記載のシステム。
  5. 滑走路から出発する航空機のための出発プロファイルを生成するためのコンピュータシステムであって、
    プロセッサと、
    1つまたは複数の記憶装置と、
    現在状態入力および前記滑走路から出発していない前記航空機に関連付けられる第1の出発プロファイルを受信し、
    前記現在状態入力、選択された出発トラック、および前記第1の出発プロファイルに基づいて前記航空機に対する出発性能データを計算し、
    排出量監視ステーションでの1つまたは複数の排出量基準を、前記航空機に対する前記計算された出発性能データに対応する前記航空機の1つまたは複数の排出量と比較し、
    前記1つまたは複数の排出量が前記1つまたは複数の排出量基準と実質的に異なることに応答して、前記航空機に対する第2の出発プロファイルを生成する、
    ために、前記プロセッサにより実行される、前記1つまたは複数の記憶装置に格納された複数の命令を含む出発プロファイル生成プログラムと、
    を備え、
    前記第1の出発性能データは前記航空機の高度と前記出発トラックに沿った距離とを含み、
    前記第2の出発プロファイルは、前記排出量監視ステーションでの前記1つまたは複数の排出量基準を超過することなく前記第2の出発プロファイルに対応する飛行経路に沿って前記航空機を制御するために使用可能であり、
    前記第2の出発プロファイルは前記航空機上に電気的に格納され、および前記航空機の制御システムは、前記航空機が前記滑走路から出発するときに前記第2の出発プロファイルに従うように前記航空機の構成要素を制御するように構成され、
    前記第2の出発プロファイルは、前記滑走路から出発していない前記航空機の離陸重量を修正するステップを含む、
    コンピュータシステム。
  6. 前記1つまたは複数の排出量基準が騒音削減制限を含む、請求項5に記載のシステム。
  7. 前記複数の命令が、前記第2の出発プロファイルを前記航空機にデータファイルとして送信するために前記プロセッサによりさらに実行される、請求項5に記載のシステム。
  8. 前記プロセッサはさらに、前記第2の出発プロファイルを出力するための命令を実行する、請求項7に記載のシステム。
  9. 前記1つまたは複数の排出量における前記第2の出発プロファイル結果が、前記1つまたは複数の排出量基準を満たす、請求項5に記載のシステム。
  10. 前記1つまたは複数の排出量における前記第2の出発プロファイル結果が、選択された裕度以下の前記1つまたは複数の排出量基準を満たす、請求項5に記載のシステム。
  11. 前記最終出発プロファイルが前記航空機の修正された構成に基づいて生成される、請求項1に記載のシステム。
JP2015049089A 2014-06-12 2015-03-12 騒音削減制限に準拠した航空機出発プロファイル生成 Active JP6192675B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/303,323 US9483052B2 (en) 2014-06-12 2014-06-12 Aircraft departure profile generation compliant with noise abatement limits
US14/303,323 2014-06-12

Publications (3)

Publication Number Publication Date
JP2016003005A JP2016003005A (ja) 2016-01-12
JP2016003005A5 JP2016003005A5 (ja) 2017-06-29
JP6192675B2 true JP6192675B2 (ja) 2017-09-06

Family

ID=53496405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015049089A Active JP6192675B2 (ja) 2014-06-12 2015-03-12 騒音削減制限に準拠した航空機出発プロファイル生成

Country Status (6)

Country Link
US (1) US9483052B2 (ja)
EP (1) EP2955673A1 (ja)
JP (1) JP6192675B2 (ja)
CN (1) CN105278400B (ja)
AU (1) AU2015201224B2 (ja)
BR (1) BR102015011014B1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10293951B2 (en) * 2016-03-17 2019-05-21 United Technologies Corporation Takeoff power management system and method for gas turbine engines
US9696724B1 (en) * 2016-04-22 2017-07-04 Rockwell Collins, Inc. Takeoff automating system, device, and method
US10279918B2 (en) * 2016-08-31 2019-05-07 The Boeing Company Methods and apparatus to control thrust ramping of an aircraft engine
FR3064762B1 (fr) * 2017-04-04 2020-07-31 Thales Sa Gestion de la phase de descente d'un aeronef
CN108860631B (zh) * 2017-05-10 2021-11-02 中国航空工业集团公司西安飞行自动控制研究所 一种基于固定翼飞机的性能管理系统
US10671092B2 (en) * 2017-10-20 2020-06-02 The Boeing Company Airplane climb thrust optimization
US10515557B2 (en) * 2017-12-20 2019-12-24 Wing Aviation Llc Mitigating noise exposure to unmanned aerial vehicles
US11107359B1 (en) * 2018-01-19 2021-08-31 Architecture Technology Corporation Terminal area noise management system and method
US11269957B2 (en) 2019-03-28 2022-03-08 Tetra Tech, Inc. Method for creating a data input file for increasing the efficiency of the aviation environmental design tool (AEDT)
US11403957B2 (en) 2019-07-12 2022-08-02 Here Global B.V. Method and apparatus for routing an aerial vehicle based on a relative noise impact
US11733712B2 (en) 2020-07-03 2023-08-22 Honeywell International Inc. Systems and methods for generating displays for noise abatement departure procedures
CN113212770B (zh) * 2021-05-25 2023-05-05 象限空间(天津)科技有限公司 飞行器动力装置控制系统
CN118609431B (zh) * 2024-08-09 2024-10-08 四川省机场集团有限公司 一种基于噪声监测及声源分析的机场管理系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2894367B1 (fr) * 2005-12-07 2008-02-29 Thales Sa Procede de determination du profil horizontal d'un plan de vol respectant un profil de vol vertical impose
US7584028B2 (en) 2006-11-14 2009-09-01 The Boeing Company Methods and systems for implementing location based noise abatement procedures
US7714744B1 (en) * 2008-02-08 2010-05-11 Rockwell Collins, Inc. Systems and methods for generating alert signals in an airspace awareness and warning system
US20090204453A1 (en) 2008-02-13 2009-08-13 Mark Leonard Cooper Aircraft flight plan optimization for minimizing emissions
US8193948B1 (en) * 2009-09-30 2012-06-05 Rockwell Collins, Inc. System, module, and method for presenting runway advisory information to a pilot
EP2575121B1 (en) * 2011-09-30 2020-02-26 The Boeing Company Flight trajectory prediction with application of environmental conditions
US10102753B2 (en) * 2011-09-30 2018-10-16 The Boeing Company Systems and methods for processing flight information
US20130092791A1 (en) * 2011-10-18 2013-04-18 General Electric Company Method for a noise abatement procedure for an aircraft
GB201204925D0 (en) * 2012-01-24 2012-05-02 Airbus Operations Ltd System and method for providing an aircraft noise advisory during departure and arrival of an aircraft
US20130226373A1 (en) * 2012-02-27 2013-08-29 Ge Aviation Systems Llc Methods for in-flight adjusting of a flight plan
US8977413B2 (en) * 2012-03-07 2015-03-10 Ge Aviation Systems Llc Methods for derated thrust visualization

Also Published As

Publication number Publication date
BR102015011014A2 (pt) 2016-09-13
JP2016003005A (ja) 2016-01-12
AU2015201224B2 (en) 2019-09-12
AU2015201224A1 (en) 2016-01-07
CN105278400A (zh) 2016-01-27
US20150362920A1 (en) 2015-12-17
BR102015011014B1 (pt) 2023-01-10
US9483052B2 (en) 2016-11-01
CN105278400B (zh) 2018-03-30
EP2955673A1 (en) 2015-12-16

Similar Documents

Publication Publication Date Title
JP6192675B2 (ja) 騒音削減制限に準拠した航空機出発プロファイル生成
US20220020278A1 (en) Suggested Gate Pushback Time
JP6034130B2 (ja) 航空機パラメータを推定するための方法およびシステム
CA2916812C (en) Method and system for robust network planning optimization of airline flight operations
US9460629B2 (en) Flight trajectory optimization and visualization tool
US9208457B2 (en) Optimized flight plan management system
US20090204453A1 (en) Aircraft flight plan optimization for minimizing emissions
US20180239364A1 (en) Optimizing the trajectory of an aircraft
US9310204B2 (en) Route modeler for improving desired environmental and economic flight characteristics
US11620688B2 (en) Methods and systems for dynamically determining and adapting to cost impact during a flight
US8027786B2 (en) Method and apparatus for editing electronic flight plans
US8712744B1 (en) Simulation tool for air traffic communications security
CN107544536B (zh) 用于基于性能的到达以及排序和间距的方法和系统
Trow et al. The benefits of validating your aircraft noise model
AU2014280906B2 (en) Aircraft flight plan optimization for minimizing emissions

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170518

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170518

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170518

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170704

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170808

R150 Certificate of patent or registration of utility model

Ref document number: 6192675

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250