JP6192162B2 - Tree planting material and its manufacturing method - Google Patents

Tree planting material and its manufacturing method Download PDF

Info

Publication number
JP6192162B2
JP6192162B2 JP2013181883A JP2013181883A JP6192162B2 JP 6192162 B2 JP6192162 B2 JP 6192162B2 JP 2013181883 A JP2013181883 A JP 2013181883A JP 2013181883 A JP2013181883 A JP 2013181883A JP 6192162 B2 JP6192162 B2 JP 6192162B2
Authority
JP
Japan
Prior art keywords
greening
strain
fungi
plant
charcoal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013181883A
Other languages
Japanese (ja)
Other versions
JP2015047130A5 (en
JP2015047130A (en
Inventor
英治 奥田
英治 奥田
裕紀 阪倉
裕紀 阪倉
牧 孝昭
孝昭 牧
年保 猿田
年保 猿田
敏浩 栗栖
敏浩 栗栖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Original Assignee
Kansai Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc filed Critical Kansai Electric Power Co Inc
Priority to JP2013181883A priority Critical patent/JP6192162B2/en
Publication of JP2015047130A publication Critical patent/JP2015047130A/en
Publication of JP2015047130A5 publication Critical patent/JP2015047130A5/ja
Application granted granted Critical
Publication of JP6192162B2 publication Critical patent/JP6192162B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、植物と共生する微生物を利用した緑化資材、及びその製造方法に関する。   The present invention relates to a greening material using microorganisms symbiotic with plants and a method for producing the same.

従来、外生菌根菌をはじめとする共生微生物を宿主植物に共生させることにより、宿主植物の成長促進や、環境ストレスに対する抵抗性の向上、果実の品質向上などの効果が得られることが知られている(例えば特許文献1を参照)。しかし、こうした共生微生物を土壌に直接施用した場合、土壌特性の違いなどにより、安定した効果を得るのが困難であった。また、前記のような共生微生物が土壌中で植物と共生関係を結ぶためには或る程度の菌密度が必要であるが、通常、施用した共生微生物よりも、土壌中に元来生息している他の微生物の方の菌密度が遙かに高いため、共生微生物の機能を十分に発揮させることは難しかった。そのため、こうした共生微生物の働きを利用した緑化資材の開発に当たっては、該共生微生物の増殖及び安定保持に適した素材を見出し、該素材に共生微生物を高密度に保持させることが必要となる。   Conventionally, symbiotic microorganisms such as ectomycorrhizal fungi are allowed to coexist in the host plant, and it is known that effects such as promoting the growth of the host plant, improving resistance to environmental stress, and improving fruit quality can be obtained. (See, for example, Patent Document 1). However, when such symbiotic microorganisms are applied directly to soil, it is difficult to obtain a stable effect due to differences in soil characteristics. In addition, in order for symbiotic microorganisms such as those described above to have a symbiotic relationship with plants in the soil, a certain degree of bacterial density is required, but usually they originally live in the soil rather than the applied symbiotic microorganisms. Since the density of the other microorganisms is much higher, it was difficult to fully exert the functions of the symbiotic microorganisms. For this reason, in developing a greening material utilizing the action of such symbiotic microorganisms, it is necessary to find a material suitable for the growth and stable maintenance of the symbiotic microorganism and to hold the symbiotic microorganisms at a high density in the material.

ところで、木炭や竹炭などの植物炭化物が園芸及び農業分野において土壌改良材等として古くから利用されている。しかしながら、こうした植物炭化物上では、外生菌根菌やアーバスキュラー菌根菌などの共生微生物を高密度に増殖させるのは困難であり、該共生微生物を植物炭化物に保持させて緑化資材を構成しても、その効果を十分に発揮させることができなかった。   By the way, plant charcoal such as charcoal and bamboo charcoal has been used for a long time as a soil conditioner in horticulture and agriculture. However, it is difficult to grow symbiotic microorganisms such as ectomycorrhizal fungi and arbuscular mycorrhizal fungi at high density on such plant charcoal, and the plant charcoal retains the symbiotic microorganisms to constitute a greening material. However, the effect could not be fully exhibited.

特開2007-74986号公報JP 2007-74986 JP 特開2012-80829号公報JP 2012-80829 A

そこで、本発明者は既に、植物炭化物のpHを適当な値に調整した上で共生微生物を保持させることによって上記課題を解決できることを見出し、新たな緑化資材を開発した(特許文献2を参照)。該緑化資材は、植物炭化物に酸性の液体を添加することによりpH5.0〜8.0としたものに、外生菌根菌及び/又はアーバスキュラー菌根菌を保持させて成るものである。このように植物炭化物に酸性の液体を添加してpH5.0〜8.0とすることにより、通常、化学的特性が弱アルカリ性〜アルカリ性である植物炭化物を、弱酸性〜中性の条件を好む外生菌根菌やアーバスキュラー菌根菌を保持させるための素材として適したものとすることができる。   Therefore, the present inventor has already found that the above problem can be solved by maintaining the symbiotic microorganisms after adjusting the pH of the plant carbide to an appropriate value, and has developed a new planting material (see Patent Document 2). . The planting material is obtained by holding ectomycorrhizal fungi and / or arbuscular mycorrhizal fungi in a plant having a pH of 5.0 to 8.0 by adding an acidic liquid. In this way, by adding an acidic liquid to the plant carbide so as to have a pH of 5.0 to 8.0, usually, the plant charcoal whose chemical characteristics are weakly alkaline to alkaline is favored under weakly acidic to neutral conditions. It can be made suitable as a material for retaining ectomycorrhizal fungi and arbuscular mycorrhizal fungi.

しかしながら、前記緑化資材は菌根菌の保持密度や土壌に使用した際の効果の面において未だ改善の余地があった。   However, the greening material still has room for improvement in terms of mycorrhizal fungus retention density and effects when used on soil.

本発明者は、鋭意検討を重ねた結果、植物炭化物に酸性液体を添加して適当なpHに調整したものに、特定の菌株の外生菌根菌及び/又はアーバスキュラー菌根菌を保持させることで、従来よりも優れた効果が得られることを見出し、本発明を完成した。   As a result of intensive studies, the inventor causes an ectomycorrhizal fungus and / or arbuscular mycorrhizal fungus of a specific strain to be retained in a plant charcoal added with an acidic liquid and adjusted to an appropriate pH. Thus, the present inventors have found that an effect superior to that of the prior art can be obtained and completed the present invention.

本発明に係る緑化資材は、植物炭化物に酸性の液体を添加することによりpH5.0〜8.0としたものに、外生菌根菌及び/又はアーバスキュラー菌根菌の菌糸体を保持させて成るものであって、
前記外生菌根菌又は前記アーバスキュラー菌根菌が、イグチ科チチアワタケ1140−TK44菌株(NITE AP−01658)、キシメジ科シャカシメジ273−TS49菌株(NITE AP−01659)、又はグロマス(Glomus)属KANSO−19菌株のいずれか一株又は複数株であることを特徴としている。
The planting material according to the present invention maintains the mycelium of ectomycorrhizal fungi and / or arbuscular mycorrhizal fungi in a plant having a pH of 5.0 to 8.0 by adding an acidic liquid to the charcoal. Which consists of
The ectomycorrhizal fungus or the arbuscular mycorrhizal fungus may be selected from the group consisting of the Ichiuchi family Chichiawatake 1140-TK44 strain (NITE AP-01658), the xylem family Shakashimeji 273-TS49 strain (NITE AP-01659), or the genus Glomus genus KANSO. It is any one strain or multiple strains of -19 strains.

上記本発明に係る緑化資材によれば、従来の緑化資材よりも菌根菌を高密度に保持させることができ、更に土壌に使用した際もより優れた効果を安定して発揮させることが可能となる。   According to the greening material according to the present invention, it is possible to retain mycorrhizal fungi at a higher density than conventional greening materials, and it is possible to stably exhibit superior effects when used in soil. It becomes.

実施例1における菌体増殖の評価結果を示すグラフ。The graph which shows the evaluation result of the microbial cell growth in Example 1. FIG. 実施例2における各pHでのチチアワタケの菌体増殖の評価結果を示すグラフ。The graph which shows the evaluation result of the fungal body growth of the mushroom at each pH in Example 2. FIG. 同実施例における各pHでのシャカシメジの菌体増殖の評価結果を示すグラフ。The graph which shows the evaluation result of the cell growth of Shakashimeji at each pH in the Example. 実施例3における菌体増殖の評価結果を示すグラフ。The graph which shows the evaluation result of the microbial cell proliferation in Example 3. FIG. 実施例4における各pHでのアーバスキュラー菌根菌の菌体増殖の評価結果を示すグラフ。The graph which shows the evaluation result of the microbial cell growth of arbuscular mycorrhizal fungi in each pH in Example 4. 実施例5におけるチチアワタケ資材による植物育成効果の評価結果を示すグラフ。The graph which shows the evaluation result of the plant nurturing | growth effect by the Chichiawatake material in Example 5. 実施例6におけるシャカシメジ資材による植物育成効果の評価結果を示すグラフ。The graph which shows the evaluation result of the plant breeding effect by Shakashimeji material in Example 6. 実施例7におけるアーバスキュラー菌根菌資材による植物育成効果の評価結果を示すグラフ。The graph which shows the evaluation result of the plant breeding effect by the arbuscular mycorrhizal fungi material in Example 7. 実施例8における根系再生効果の評価結果を示すグラフであって、(a)は土壌1L当たりの細根量を示し、(b)は菌根形成率を示す。It is a graph which shows the evaluation result of the root system reproduction | regeneration effect in Example 8, Comprising: (a) shows the amount of fine roots per 1L of soil, (b) shows mycorrhiza formation rate. 実施例9における根系再生効果の評価結果を示すグラフであって、(a)は土壌1L当たりの細根量を示し、(b)は菌根形成率を示す。It is a graph which shows the evaluation result of the root system regeneration effect in Example 9, Comprising: (a) shows the amount of fine roots per 1L of soil, (b) shows mycorrhiza formation rate.

本発明に係る緑化資材は、植物炭化物に酸性の液体を添加することによりpH5.0〜8.0(より望ましくはpH6.0〜7.0)としたものに、外生菌根菌及び/又はアーバスキュラー菌根菌を保持させて成るものであって、前記外生菌根菌又は前記アーバスキュラー菌根菌が、イグチ科チチアワタケ1140−TK44菌株(寄託機関:独立行政法人 製品評価技術基盤機構 特許微生物寄託センター、受領番号:NITE AP−01658、受領日:2013年7月19日)、キシメジ科シャカシメジ273−TS49菌株(寄託機関:独立行政法人 製品評価技術基盤機構 特許微生物寄託センター、受領番号:NITE AP−01659、受領日:2013年7月19日)、及びグロマス(Glomus)属KANSO−19菌株のいずれか一株又は複数株であることを特徴としている。   The greening material according to the present invention has an ectomycorrhizal fungus and / or a pH of 5.0 to 8.0 (more preferably pH 6.0 to 7.0) by adding an acidic liquid to the plant carbide. Or arbuscular mycorrhizal fungi, wherein the ectomycorrhizal fungus or the arbuscular mycorrhizal fungus is the Ichiuchi family Chichiawatake 1140-TK44 strain (deposit agency: National Institute of Technology and Evaluation) Patent Microbiology Deposit Center, Receipt Number: NITE AP-01658, Receipt Date: July 19, 2013), Kishimeji Shachashimeji 273-TS49 strain (Deposit Organization: National Institute of Technology and Evaluation, Patent Microorganism Deposit Center, Receipt Number) : NITE AP-01659, date of receipt: July 19, 2013), and any of the strains of the genus Glomus genus KANSO-19 It is characterized by being one or multiple shares.

なお、前記グロマス(Glomus)属KANSO−19菌株は、技術的理由から独立行政法人製品評価技術基盤機構特許微生物寄託センターに寄託を拒否されたため、分譲については本出願人が保証するものである。   In addition, since the said Glomus genus KANSO-19 strain was refused deposit by the independent administrative institution product evaluation technology base mechanism patent microorganism deposit center for a technical reason, this applicant guarantees for sale.

前記の外生菌根菌及び/又はアーバスキュラー菌根菌は、本発明の緑化資材の施用対象とする植物の種類や土壌の特性に応じて適当なものを1種類又は2種類以上選択して用いることが望ましい。   The above ectomycorrhizal fungi and / or arbuscular mycorrhizal fungi can be selected from one or more suitable ones according to the type of plant and soil characteristics to which the greening material of the present invention is applied. It is desirable to use it.

なお、pHの測定方法はpH電極法による。具体的には、まず、炭化物試料を乾燥重量換算で10グラムはかり取り、200mLの三角フラスコにとる。次に、蒸留水50mLを加えて、ゴム栓をして30分間振とうする。最後に、三角フラスコの内容物を100mLのビーカーに移し、pHメーターを用いてpHを測定する。   Note that the pH is measured by the pH electrode method. Specifically, first, a 10 g sample of a carbide sample in terms of dry weight is weighed and placed in a 200 mL Erlenmeyer flask. Next, add 50 mL of distilled water, put a rubber stopper and shake for 30 minutes. Finally, transfer the contents of the Erlenmeyer flask to a 100 mL beaker and measure the pH using a pH meter.

前記植物炭化物とは、植物体を加熱して炭化させたものである。本発明における植物炭化物としては、中性からアルカリ性のpH特性を有する一般的な木炭を好適に用いることができる。なお、植物炭化物のpHは炭化温度によって変化するが、本発明における植物炭化物としては炭化温度400℃〜800℃で生成された木炭を用いることが望ましい。一般に、農業用・園芸用の資材として流通している木炭は上記炭化温度で製造され、中性からアルカリ性のpH特性を有している。従って、本発明に係る緑化資材は市販の木炭を利用して容易に製造することができる。なお、本発明における植物炭化物としては、ナラ、ブナ、カシ、クヌギ等の木材を炭化させて成るいわゆる木炭の他、竹炭などの種々の植物の炭化物を用いることもできる。   The plant carbide is obtained by heating and carbonizing a plant body. As the plant carbide in the present invention, general charcoal having neutral to alkaline pH characteristics can be suitably used. In addition, although the pH of a plant carbide changes with carbonization temperature, it is desirable to use the charcoal produced | generated at the carbonization temperature of 400 to 800 degreeC as a plant carbide in this invention. In general, charcoal that is distributed as an agricultural and horticultural material is manufactured at the carbonization temperature and has neutral to alkaline pH characteristics. Therefore, the greening material according to the present invention can be easily manufactured using commercially available charcoal. In addition, as plant charcoal in the present invention, charcoal of various plants such as bamboo charcoal can be used in addition to so-called charcoal obtained by carbonizing wood such as oak, beech, oak and kunugi.

なお、菌根は主として直径2mm以下の細根に形成される。そこで、前記植物炭化物は、その粒径を2mm〜10mm(より望ましくは2mm〜6mm)とすることが好ましい。これにより、上記のような細根の発根を誘導することができ、菌根の形成効率を向上させることができる。なお、植物炭化物の粒径はふるい分け法により測定することができる。   The mycorrhiza is mainly formed into fine roots having a diameter of 2 mm or less. Therefore, the plant carbide preferably has a particle size of 2 mm to 10 mm (more desirably 2 mm to 6 mm). As a result, the rooting of fine roots as described above can be induced, and mycorrhizal formation efficiency can be improved. The particle size of the plant carbide can be measured by a sieving method.

本発明における酸性の液体としては、酢酸、クエン酸、又は食酢などの有機酸、野菜汁、及び果汁のうちの1種類又は複数種類を用いることが望ましい。これにより、植物炭化物を共生微生物の増殖に適したpH特性に調整できると共に、菌糸体の増殖促進効果を得ることもできる。なお、前記野菜汁としては、例えば市販の野菜ジュース等を用いることができる。   As the acidic liquid in the present invention, it is desirable to use one or more of organic acids such as acetic acid, citric acid or vinegar, vegetable juice, and fruit juice. Thereby, the plant carbide can be adjusted to pH characteristics suitable for the growth of symbiotic microorganisms, and the effect of promoting the growth of mycelium can be obtained. In addition, as said vegetable juice, commercially available vegetable juice etc. can be used, for example.

植物炭化物への前記酸性の液体の添加はいかなる方法によって行ってもよい。例えば、噴霧器等を用いて酸性の液体を植物炭化物の表面に噴霧したり、植物炭化物を酸性の液体に浸漬したりする等の方法を採用することができる。   The acidic liquid may be added to the plant carbide by any method. For example, it is possible to employ a method such as spraying an acidic liquid on the surface of the plant carbide using a sprayer or immersing the plant carbide in an acidic liquid.

また、上記本発明に係る緑化資材は、例えば、植物炭化物に前記酸性の液体と、所定量(例えば植物炭化物と等容積量)の砂を添加して混合し、該混合物を高圧滅菌処理した後に、この滅菌された混合物に予め共生微生物(例えばアーバスキュラー菌根菌)を感染させたアルファルファやソルガムなどの宿主植物を植え付け、所定温度(例えば20〜30℃)で所定期間(例えば約30〜40日間)栽培して前記の混合物中に菌糸を充分に伸長させることによって製造することができる。   In addition, the greening material according to the present invention is, for example, after adding a predetermined amount (for example, a volume equal to the amount of plant carbide) of sand and mixing the above-mentioned acidic liquid to plant carbide and mixing the mixture with high-pressure sterilization. Then, a host plant such as alfalfa or sorghum previously infected with a symbiotic microorganism (for example, arbuscular mycorrhizal fungi) in this sterilized mixture is planted, and a predetermined temperature (for example, about 20 to 30 ° C.) for a predetermined period (for example, about 30 to 40). Day) and can be produced by fully extending the mycelium in the mixture.

また更に、本発明に係る緑化資材は、植物炭化物に前記酸性の液体と、共生微生物の生存に必要な栄養を含む液体培地とを添加して高圧滅菌処理し、次いで滅菌された該混合物に予め所定の培地を用いて培養した共生微生物(例えば外生菌根菌)を一定量接種し、所定温度(例えば20〜30℃)で所定期間(例えば約30〜40日間)培養し、前記の植物炭化物と液体培地の混合物中に菌糸を充分に伸長させることによって製造することもできる。   Still further, the greening material according to the present invention comprises adding the acidic liquid and a liquid medium containing nutrients necessary for the survival of symbiotic microorganisms to plant charcoal, and then subjecting the mixture to a sterilized mixture in advance. A certain amount of symbiotic microorganisms (eg, ectomycorrhizal fungi) cultured using a predetermined medium are inoculated, cultured at a predetermined temperature (for example, 20 to 30 ° C.) for a predetermined period (for example, about 30 to 40 days), and the plant It can also be produced by fully extending the mycelium in a mixture of carbide and liquid medium.

なお、上記の培地としては、共生微生物の生育に必要な栄養を含む培地を使用する。例えば、前記植物炭化物に添加する液体培地としては、PDB(Potato Dextrose Broth)培地やMMN(Modified Melin-Norkrans)培地などを用いることができる。また、前記植物炭化物に保持させる前に予め共生微生物を培養するための培地としては、例えば、PDA(Potato Dextrose Agar)培地やMMN培地などを用いることができる。PDB培地は、例えばポテトスターチ4g及びデキストロース20gを精製水1000mLに溶解することで調製することができる。PDA培地は、例えばポテトスターチ4g、デキストロース20g及び寒天20gを精製水1000mLに溶解することで調製可能である。MMN培地は、例えばグルコース 10.0g、酒石酸アンモニウム 1.0g、KHPO 0.5g、MgSO・7HO 0.15g、CaCl・2HO 0.05g、1%FeCl溶液 1.2mL、0.1%塩酸チアミン溶液 0.1mL、マルトエキス(Difco社製) 3.0g、イーストエキス(Difco社製) 2.0gを精製水1000mLに溶解してpH5.5に調整することにより調製可能である。 In addition, as said culture medium, the culture medium containing a nutrient required for growth of a symbiotic microorganism is used. For example, PDB (Potato Dextrose Broth) medium, MMN (Modified Melin-Norkrans) medium, etc. can be used as the liquid medium added to the plant carbide. Moreover, as a culture medium for cultivating a symbiotic microorganism beforehand before making it hold | maintain to the said plant carbide, PDA (Potato Dextrose Agar) culture medium, MMN culture medium, etc. can be used, for example. The PDB medium can be prepared, for example, by dissolving 4 g of potato starch and 20 g of dextrose in 1000 mL of purified water. The PDA medium can be prepared, for example, by dissolving 4 g of potato starch, 20 g of dextrose and 20 g of agar in 1000 mL of purified water. The MMN medium is, for example, glucose 10.0 g, ammonium tartrate 1.0 g, KH 2 PO 4 0.5 g, MgSO 4 .7H 2 O 0.15 g, CaCl 2 .2H 2 O 0.05 g, 1% FeCl 3 solution 1 .2 mL, 0.1% 0.1% thiamine hydrochloride solution 0.1 mL, malto extract (Difco) 3.0 g, yeast extract (Difco) 2.0 g are dissolved in purified water 1000 mL and adjusted to pH 5.5. Can be prepared.

前記の高圧滅菌処理とは、高温高圧の水蒸気による滅菌処理(いわゆるオートクレーブ滅菌)を意味し、例えば11.8×10Pa(1.2kgf/cm)において121℃の過熱蒸気によって処理を行うことが望ましい。処理時間は滅菌処理を行う対象物質により異なり、植物炭化物と砂の混合物などの培土を高圧滅菌処理する場合には、培土の変質の問題が少なく、且つ滅菌が難しいため、処理時間を30分程度とし、PDB培地やPDA培地などの培地を高圧滅菌処理する場合には、処理時間を長くすると培地成分の変質が起こるため、処理時間を15分程度とする。 The high-pressure sterilization means sterilization with high-temperature and high-pressure steam (so-called autoclave sterilization). For example, the treatment is performed with superheated steam at 121 ° C. at 11.8 × 10 4 Pa (1.2 kgf / cm 2 ). It is desirable. The treatment time varies depending on the target substance to be sterilized. When cultivating soil such as a mixture of plant carbide and sand, the processing time is about 30 minutes because there are few problems with soil alteration and sterilization is difficult. When medium such as PDB medium or PDA medium is subjected to high-pressure sterilization treatment, if the treatment time is lengthened, the medium components are altered, so the treatment time is about 15 minutes.

上述の方法により緑化資材の内部に伸長した菌糸体は、植物の根があれば直ちに活動を開始して、素早く共生関係を築くことができる。しかしながら、その一方で乾燥や高温に影響されて共生能力が衰える可能性がある。そこで、上記方法によって製造された緑化資材には、更に、前記共生微生物の胞子懸濁液を添加することが望ましい。胞子は発菌して植物に共生するまでに時間を要するという問題があるが、乾燥や高温に耐え、長期間の共生能力を保持できるという利点がある。そこで、上記のように菌糸体と胞子の両方を植物炭化物に保持させることにより、両者の欠点を補完して即効性と効果の安定性を兼ね備えた緑化資材を得ることができる。   The mycelium elongated inside the greening material by the above-described method can immediately start an activity if there is a plant root, and can quickly establish a symbiotic relationship. However, on the other hand, there is a possibility that the symbiotic ability may be affected by drying and high temperature. Therefore, it is desirable to add a spore suspension of the symbiotic microorganism to the greening material produced by the above method. Spores have the problem that it takes time to germinate and symbiotic with plants, but they have the advantage of being able to withstand dryness and high temperatures and maintain long-term symbiotic ability. Therefore, by holding both mycelium and spores in the plant carbide as described above, it is possible to obtain a greening material that complements the disadvantages of both and has both immediate effect and stability of effect.

また、上述の方法により、それぞれ異なる共生微生物を保持して成る2種類以上の緑化資材を製造し、これらを混合することによって2種類以上の共生微生物を保持して成る緑化資材を製造してもよい。こうした混合資材は、例えばそれぞれ別種の共生微生物と共生する複数種類の植物を一箇所に混植する場合等に好適に用いることができる。   Further, by the above-described method, two or more kinds of greening materials each holding different symbiotic microorganisms are produced, and by mixing these, a greening material comprising two or more kinds of symbiotic microorganisms is produced. Good. Such a mixed material can be suitably used, for example, when a plurality of types of plants symbiotic with different symbiotic microorganisms are mixed in one place.

上記のような本発明に係る緑化資材は、樹勢の衰えた樹木又は果樹を活性化するための樹勢回復資材として好適に用いることができる。また、本発明に係る緑化資材は、苗木を植栽する緑化工事や造園工事において、又は花卉、野菜、果樹の育苗時などにおいて肥料の代替又は肥料の一部の代替として用いることもできる。いずれの場合においても、本発明に係る緑化資材は、対象植物(すなわち微生物と共生させようとする植物)が植栽される土壌に混合又は埋設することによって施用される。   The tree planting material according to the present invention as described above can be suitably used as a tree-restoring material for activating a tree or fruit tree whose tree has declined. In addition, the greening material according to the present invention can be used as a substitute for a fertilizer or a part of a fertilizer in a greening construction or a landscaping work for planting a seedling, or in raising a flower bud, a vegetable, or a fruit tree. In any case, the greening material according to the present invention is applied by being mixed or embedded in the soil where the target plant (that is, the plant to be symbiotic with the microorganism) is planted.

本発明に係る緑化資材をクロマツに施用する場合には、上記植物炭化物として炭化温度400℃〜800℃、粒径2〜6mmの木炭を使用し、共生微生物として外生菌根菌を用いることが望ましい。また、本発明に係る緑化資材をアカマツに施用する場合には、上記植物炭化物として炭化温度400℃〜600℃、粒径2〜6mmの木炭を使用し、共生微生物として外生菌根菌を用いることが望ましい。また更に、本発明に係る緑化資材をサクラ属の樹木に施用する場合には、上記植物炭化物として炭化温度400〜800℃、粒径2〜6mmの木炭を使用し、共生微生物としてアーバスキュラー菌根菌を用いることが望ましい。   When the greening material according to the present invention is applied to black pine, charcoal temperature of 400 ° C. to 800 ° C. and particle size of 2 to 6 mm are used as the plant carbide, and ectomycorrhizal fungi are used as symbiotic microorganisms. desirable. Moreover, when applying the greening material according to the present invention to Japanese red pine, charcoal temperature of 400 ° C. to 600 ° C. and particle size of 2 to 6 mm are used as the plant carbide, and ectomycorrhizal fungi are used as symbiotic microorganisms. It is desirable. Furthermore, when the greening material according to the present invention is applied to a tree of the genus Sakura, charcoal temperature of 400 to 800 ° C. and charcoal of 2 to 6 mm are used as the plant carbide, and arbuscular mycorrhiza as symbiotic microorganisms. It is desirable to use bacteria.

[外生菌根菌の菌体増殖と資材化]
まず、粒径2〜5mmの木炭(pH9.0)1Lに対して、40%濃度の食酢溶液を500mL混合して風乾し、pHを6.0に調整した木炭を準備した。次に、前記の木炭に対して、MMN液体培地を500mL加えて外生菌根菌の生育に必要な栄養分を前記木炭に含浸させた。その際、MMN培地には、10mLの無塩野菜ジュース(カゴメ株式会社製)を遠心分離処理した上清を予め加えた。その後、前記液体培地を含む木炭を、121℃、11.8×10Pa(1.2kgf/cm)の条件で15分間、高圧滅菌処理した。一方、予めMMN培地で平板培養したイグチ科の外生菌根菌であるチチアワタケ(Suillus granulatus)の1140−TK44菌株(NITE AP−01658)のコロニーを5mm角に4片切り取り、前記滅菌処理を行った液体培地を含む木炭に接種して28℃で培養した。これを前記木炭が白色の菌糸で充分に覆われるまで約1ヶ月間培養することにより緑化資材を得た。以下これを1140−TK44菌株資材と呼ぶ。
[Proliferation and materialization of ectomycorrhizal fungi]
First, 500 mL of a 40% strength vinegar solution was mixed with 1 L of charcoal (pH 9.0) having a particle size of 2 to 5 mm and air-dried to prepare charcoal having a pH adjusted to 6.0. Next, 500 mL of MMN liquid medium was added to the charcoal to impregnate the charcoal with nutrients necessary for the growth of ectomycorrhizal fungi. At that time, 10 mL of unsalted vegetable juice (manufactured by Kagome Co., Ltd.) was centrifuged and added to the MMN medium in advance. Thereafter, the charcoal containing the liquid medium was autoclaved at 121 ° C. and 11.8 × 10 4 Pa (1.2 kgf / cm 2 ) for 15 minutes. On the other hand, 1140-TK44 (NITE AP-01658) colonies of 1140-TK44 strain (Suillus granulatus), which is an ectomycorrhizal fungus of Iguchi family previously plated on MMN medium, were cut into 5 mm square pieces and subjected to the sterilization treatment. Inoculated into charcoal containing fresh liquid medium and cultured at 28 ° C. A greening material was obtained by culturing this for about 1 month until the charcoal was sufficiently covered with white mycelium. Hereinafter, this is referred to as 1140-TK44 strain material.

また、同様の方法により、キシメジ科の外生菌根菌であるシャカシメジ(Lyophyllum fumosum)273−TS49菌株(NITE AP−01659)を保持させた緑化資材を作製した。以下これを273−TS49菌株資材と呼ぶ。   Moreover, the greening material which hold | maintained Shakoshimeji (Lyophyllum fumosum) 273-TS49 strain (NITE AP-01659) which is an ectomycorrhizal fungus of the xylem family was produced by the same method. This is hereinafter referred to as 273-TS49 strain material.

更に、比較例として、同様の方法により、チチアワタケの別の菌株(1140菌株)を保持させた緑化資材(以下これを1140菌株資材と呼ぶ)、及びシャカシメジの別の菌株(273菌株)を保持させた緑化資材(以下これを273菌株資材と呼ぶ)を作製した。また、更に別の比較例として、木炭の代わりに市販の園芸培土を使用すると共に食酢及び野菜ジュースを添加しない通常のMMN培地を使用して上記同様の手順により前記チチアワタケ1140菌株又は前記シャカシメジ273菌株を保持した緑化資材を作製した。また、更に別の比較例として食酢及び野菜ジュースを添加しない通常のMMN培地を用いて上記同様の手順により前記チチアワタケ1140菌株又は前記シャカシメジ273菌株を保持した緑化資材を作製した。   Furthermore, as a comparative example, by the same method, a greening material (hereinafter referred to as 1140 strain material) in which another strain (1140 strain) of Chichiwatake was retained, and another strain (273 strain) of Shakashimeji were retained. A greening material (hereinafter referred to as 273 strain material) was prepared. Further, as another comparative example, the commercially available horticultural culture medium is used instead of charcoal, and a normal MMN medium not added with vinegar and vegetable juice is used, and the above-mentioned Tichiaiwatake 1140 strain or Shakashimeji 273 strain is obtained by the same procedure as described above. A greening material was produced. Moreover, the greening material which hold | maintained the said Tichiaiwatake 1140 strain or the said Shakashimeji 273 strain by the same procedure using the normal MMN culture medium which does not add vinegar and vegetable juice as another comparative example was produced.

前記1140−TK44菌株資材、273−TS49菌株と比較例の各資材における外生菌根菌の菌体増殖効果を評価した結果を図1に示す。なお、ここでは各資材に含まれる菌体の乾燥重量を比較することにより菌体増殖効果を評価した。なお、菌体の乾燥重量は、上記で作製した資材を乾燥器で乾燥させ、その乾燥重量から予め測定しておいた木炭又は園芸培土の乾燥重量を差し引くことによって測定した。   FIG. 1 shows the results of evaluating the cell growth effect of the ectomycorrhizal fungi in the materials of the 1140-TK44 strain, the 273-TS49 strain and the comparative examples. Here, the cell growth effect was evaluated by comparing the dry weight of the cells contained in each material. The dry weight of the cells was measured by drying the material prepared above with a drier and subtracting the dry weight of charcoal or horticultural soil previously measured from the dry weight.

その結果、比較例の各資材のうち、木炭を使用し食酢及び野菜ジュースを添加せずに作製した緑化資材(図中の「1140菌株+通常の木炭」及び「273菌株+通常の木炭」)では菌体がほとんど増殖しないのに対し、1140菌株資材及び273菌株資材では、園芸培土を用いた緑化資材(図中の「1140菌株+園芸培土」及び「273菌株+園芸培土」)に比べて高い菌体量が得られることが確認された。更に、本発明に係る緑化資材である1140−TK44菌株資材及び273−TS49菌株資材では、前記の1140菌株資材及び273菌株資材に比べて更に優れた菌体増殖効果が得られることが確認された。   As a result, among the materials of the comparative examples, greening materials prepared using charcoal without adding vinegar and vegetable juice ("1140 strain + normal charcoal" and "273 strain + normal charcoal" in the figure) In 1140 strain material and 273 strain material, compared with the planting material using horticultural soil ("1140 strain + horticultural soil" and "273 strain + horticultural soil" in the figure) It was confirmed that a high amount of cells can be obtained. Further, it was confirmed that the 1140-TK44 strain material and the 273-TS49 strain material, which are the greening materials according to the present invention, have a better cell growth effect than the 1140 strain material and the 273 strain material. .

[資材のpHによる影響]
様々なpHの木炭を用いてチチアワタケの1140−TK44菌株資材(実施例)及び1140菌株資材(比較例)、並びにシャカシメジの273−TS49菌株資材(実施例)及び273菌株資材(比較例)を作製し、上記実施例1と同様にして菌体増殖効果を評価した。なお、pHの調整は、粒径2〜5mmの木炭(pH9.0)1Lに対して、無処理、20、30、40、50%濃度の食酢溶液を500mL混合して風乾し、pHを段階的に5、6、7、8、9に調整した木炭を準備した。
その結果、図2及び図3に示すように、いずれもpH5.0〜8.0、特にpH6.0〜7.0において高い菌体増殖効果が見られ、pH9.0では菌体量が減少する傾向が認められた。更に、チチアワタケを用いた資材では、pH9.0を除く全てのpHにおいて実施例の緑化資材(1140−TK44菌株資材)が比較例の緑化資材(1140菌株資材)よりも高い菌体量を示した。また、シャカシメジを用いた資材では全てのpHにおいて実施例の緑化資材(273−TS49菌株資材)が比較例の緑化資材(273菌株資材)より高い菌体量を示した。
[Influence of material pH]
Preparation of 1140-TK44 strain material (Example) and 1140 strain material (Comparative example), and 273-TS49 strain material (Example) and 273 strain material (Comparative example) of Shakashimeji using various pH charcoal In the same manner as in Example 1, the cell growth effect was evaluated. In addition, adjustment of pH adjusts pH by mixing 500 mL of vinegar solutions of 20%, 30, 40, and 50% concentration with 1 mL of charcoal (pH 9.0) having a particle size of 2 to 5 mm and air-dried. Specifically, charcoal adjusted to 5, 6, 7, 8, and 9 was prepared.
As a result, as shown in FIG. 2 and FIG. 3, a high cell growth effect was observed at pH 5.0 to 8.0, particularly pH 6.0 to 7.0, and the amount of cells decreased at pH 9.0. The tendency to do was recognized. Furthermore, in the material using Tichiaiwatake, the greening material of the example (1140-TK44 strain material) showed higher cell mass than the greening material of the comparative example (1140 strain material) at all pH except pH 9.0. . Moreover, in the material using Shakashimeji, the greening material of the example (273-TS49 strain material) showed higher cell mass than the greening material of the comparative example (273 strain material) at all pHs.

[アーバスキュラー菌根菌の菌体増殖と資材化]
まず、1プラグ苗当たりの容量が15mLのセルトレイ(東缶興産株式会社製、セルトレイ#72)に、121℃、11.8×10Pa(1.2kgf/cm)の条件で高圧滅菌器(株式会社トミー精工製、BS−325)にて30分間滅菌処理した川砂を7mL入れ、次いでアーバスキュラー菌根菌であるグロマス(Glomus)属KANSO−19菌株の胞子液を2mL添加し、更に滅菌した川砂を3mL入れてアルファルファの種子を播種した。これを気温20〜30℃の条件下で適切に栽培管理し、適時に潅水を行った。また、発芽後1週間毎にピータースの液肥(第一園芸社製、NPK:25−5−20)を充分に潅水した。30日間栽培を継続した後、アルファルファの細根を採取し、10%水酸化カリウム水溶液で脱色処理後にトリパンブルー染色液で染色して、顕微鏡を用いてアーバスキュラー菌根菌の共生状況を確認した。
[Arbuscular mycorrhizal fungus body growth and materialization]
First, a high-pressure sterilizer was applied to a cell tray (cell tray # 72, manufactured by Tocan Kosan Co., Ltd.) having a capacity of 15 mL per plug seedling at 121 ° C. and 11.8 × 10 4 Pa (1.2 kgf / cm 2 ). 7 mL of river sand sterilized for 30 minutes by (Tomy Seiko Co., Ltd., BS-325) was added, and then 2 mL of spore solution of arbuscular mycorrhizal fungus Glomus genus KANSO-19 was added and further sterilized. 3 mL of the dried river sand was added and seeded with alfalfa seeds. This was properly cultivated and managed under conditions of an air temperature of 20 to 30 ° C. and irrigated in a timely manner. In addition, Peters' liquid fertilizer (Daiichi Gardening Co., Ltd., NPK: 25-5-20) was sufficiently irrigated every week after germination. After continuing cultivation for 30 days, alfalfa fine roots were collected, decolorized with a 10% aqueous potassium hydroxide solution, stained with trypan blue staining solution, and the symbiotic status of arbuscular mycorrhizal fungi was confirmed using a microscope.

次に、粒径2〜5mmの木炭(pH9.0)1Lに対して、40%濃度の食酢溶液を500mL混合して風乾し、pHを6.0に調整した木炭を準備した。その後、前記木炭と等容量の川砂を混合し、その混合物を温度121℃、11.8×10Pa(1.2kgf/cm)の条件で30分間高圧滅菌処理した。この混合物を培土として、先にセルトレイで育成したアルファルファを移植した。これを気温20〜30℃の条件下で適切に栽培管理し、適時に潅水を行った。また、発芽後1週間毎にピータースの液肥(第一園芸社製、NPK:25−5−10)を充分に潅水した。30〜40日間栽培を継続し、前述の方法でアルファルファの細根にアーバスキュラー菌根菌が共生していることを確認した。その後、潅水を中止し、植物体を枯死させて培土中での胞子形成を促し、培土を十分に乾燥させることによりアーバスキュラー菌根菌を保持した緑化資材を得た。以下これをKANSO−19菌株資材と呼ぶ。 Next, 500 mL of a 40% strength vinegar solution was mixed with 1 L of charcoal (pH 9.0) having a particle size of 2 to 5 mm and air-dried to prepare charcoal having a pH adjusted to 6.0. Thereafter, the charcoal and an equal volume of river sand were mixed, and the mixture was autoclaved for 30 minutes at a temperature of 121 ° C. and 11.8 × 10 4 Pa (1.2 kgf / cm 2 ). Using this mixture as soil, alfalfa previously grown on a cell tray was transplanted. This was properly cultivated and managed under conditions of an air temperature of 20 to 30 ° C. and irrigated in a timely manner. In addition, Peters' liquid fertilizer (Daiichi Horie, NPK: 25-5-10) was sufficiently irrigated every week after germination. Cultivation was continued for 30 to 40 days, and it was confirmed that arbuscular mycorrhizal fungi were symbiotic to the fine roots of alfalfa by the method described above. Thereafter, irrigation was stopped, the plant body was killed to promote spore formation in the culture soil, and the culture soil was sufficiently dried to obtain a greening material retaining arbuscular mycorrhizal fungi. This is hereinafter referred to as KANSO-19 strain material.

また、比較例として、アーバスキュラー菌根菌の上記とは別菌株である(Glomus sp. OG−105菌株)を保持した緑化資材及びアーバスキュラー菌根の更に別の菌株である(Glomus sp. KANSO−6菌株)を保持した緑化資材を上記同様の方法により作製した。以下これらを、それぞれOG−105菌株資材及びKANSO−6菌株資材と呼ぶ。   In addition, as a comparative example, a revegetation material holding another strain of arbuscular mycorrhizal fungus (Glomus sp. OG-105 strain) and another strain of arbuscular mycorrhiza (Glomus sp. KANSO) A greening material retaining -6 strain) was produced by the same method as described above. These are hereinafter referred to as OG-105 strain material and KANSO-6 strain material, respectively.

また、比較例として更に、木炭の代わりに市販の園芸培土を使用し、同様の手順(但し、食酢は添加しない)により前記アーバスキュラー菌根菌の各菌株を保持した緑化資材を作製した。また更に、別の比較例として食酢を添加しない木炭を用いて上記同様の手順により前記アーバスキュラー菌根菌の各菌株を保持した緑化資材を作製した。   Further, as a comparative example, a greening material holding each strain of the arbuscular mycorrhizal fungi was prepared by using a commercially available horticultural soil instead of charcoal and by the same procedure (but not adding vinegar). Furthermore, as another comparative example, a greening material holding each strain of the arbuscular mycorrhizal fungi was prepared by the same procedure as described above using charcoal to which vinegar was not added.

上記のKANSO−19菌株資材(実施例)と各比較例に係る緑化資材におけるアーバスキュラー菌根菌の菌体増殖効果の評価結果を図4に示す。なお、ここでは乾燥土壌(乾燥資材)100g当たりの胞子数を比較することにより菌体増殖効果を評価した。   The evaluation result of the cell growth effect of the arbuscular mycorrhizal fungi in the above-mentioned KANSO-19 strain material (Example) and the greening material according to each comparative example is shown in FIG. In addition, here, the cell growth effect was evaluated by comparing the number of spores per 100 g of dry soil (dry material).

その結果、KANSO−19菌株資材、OG−105菌株資材、及びKANSO−6菌株資材では、いずれも園芸培土を用いた緑化資材(図中の「KANSO−19菌株+園芸培土」、「OG−105菌株+園芸培土」、及び「KANSO−6菌株+園芸培土」)や、食酢を添加しない木炭を用いた緑化資材(図中の「KANSO−19菌株+通常の木炭」、「OG−105菌株+通常の木炭」、及び「KANSO−6菌株+通常の木炭」)よりも胞子数が多く、高い菌体増殖効果が得られることが確認された。更に、本発明に係る緑化資材(図中の「KANSO−19菌株資材」)では、アーバスキュラー菌根菌の他の菌株を用いて作製された緑化資材(図中の「OG−105菌株資材」及び「KANSO−6菌株資材」)と比べて、更に優れた菌体増殖効果が確認された。   As a result, all of the KANSO-19 strain material, the OG-105 strain material, and the KANSO-6 strain material were greening materials using the horticultural soil ("KANSO-19 strain + horticultural soil" in the figure, "OG-105"). "Strain + Horticultural soil" and "KANSO-6 strain + Horticultural soil") and greening materials using charcoal without vinegar ("KANSO-19 strain + normal charcoal" in the figure, "OG-105 strain + It was confirmed that the number of spores was higher than that of “ordinary charcoal” and “KANSO-6 strain + ordinary charcoal”), and a high cell growth effect was obtained. Furthermore, in the greening material ("KANSO-19 strain material" in the figure) according to the present invention, the greening material ("OG-105 strain material in the figure") produced using other strains of Arbuscular mycorrhizal fungi And “KANSO-6 strain material”), a further excellent cell growth effect was confirmed.

[資材のpHによる影響]
様々なpHの木炭を用いてチチアワタケのKANSO−19菌株資材(実施例)、並びにOG−105菌株資材(比較例)及びKANSO−6菌株資材(比較例)を作製し、上記実施例3と同様にして菌体増殖効果を評価した。なお、pHの調整は、粒径2〜5mmの木炭(pH9.0)1Lに対して、無処理、20、30、40、50%濃度の食酢溶液を500mL混合して風乾し、pHを段階的に5、6、7、8、9に調整した木炭を準備した。その結果、図5に示すように、いずれもpH5.0〜8.0、特にpH6.0〜7.0において高い菌体増殖効果が見られ、pH9.0では菌体量が減少する傾向が認められた。また、いずれのpHにおいても、本発明に係る緑化資材(KANSO−19菌株資材)において、比較例の緑化資材(OG−105菌株資材及びKANSO−6菌株資材)よりも高い菌体増殖効果が確認された。
[Influence of material pH]
KANSO-19 strain material (Example), OG-105 strain material (Comparative example), and KANSO-6 strain material (Comparative example) of Tichiaiwatake using various pH charcoal, and similar to Example 3 above Thus, the cell proliferation effect was evaluated. In addition, adjustment of pH adjusts pH by mixing 500 mL of vinegar solutions of 20%, 30, 40, and 50% concentration with 1 mL of charcoal (pH 9.0) having a particle size of 2 to 5 mm and air-dried. Specifically, charcoal adjusted to 5, 6, 7, 8, and 9 was prepared. As a result, as shown in FIG. 5, a high cell growth effect is observed at pH 5.0 to 8.0, especially pH 6.0 to 7.0, and the amount of the cells tends to decrease at pH 9.0. Admitted. Further, at any pH, the planting material according to the present invention (KANSO-19 strain material) has a higher cell growth effect than the greening materials of the comparative examples (OG-105 strain material and KANSO-6 strain material). It was done.

[外生菌根菌資材によるクロマツの育成効果]
乾熱滅菌処理を180℃で8時間行ったバーミキュライト(ニッタイ株式会社製)にクロマツの種子を播種した後、適時潅水して大きさの揃った無菌根の実生苗を育成した。次に、121℃、11.8×10Pa(1.2kgf/cm)の条件で30分間の高圧滅菌処理を行った川砂と赤玉土の等量混合培土に、前記クロマツの実生苗を定植し、その際、実施例1で作製したチチアワタケの資材である1140−TK44菌株資材(実施例)、又は1140菌株資材(比較例)を、実生苗1本に対して10mLずつ植穴に施用した。この実生苗を、2週間毎にピータースの液肥(NPK:25−5−10)を施用しつつ栽培したところ、栽培60日目には、肥料のみで栽培した苗木(対照区)よりも大きな苗木を得ることができた。特に、本発明に係る緑化資材である1140−TK44菌株資材では、比較例である1140菌株資材に比べて更に優れた育成効果が確認された。図6に栽培60日目における苗木の地上部及び地下部の乾燥重量を示す。なお、同図は、各試験区の苗数を10本ずつとし、上記試験を2回繰り返して行った結果の平均値を示している。
[Effects of black pine grown with ectomycorrhizal fungi]
After seeding black pine seeds on vermiculite (manufactured by Nittai Co., Ltd.) that had been subjected to dry heat sterilization at 180 ° C. for 8 hours, seedlings with aseptic roots of uniform size were cultivated by timely irrigation. Next, seedling seedlings of the black pine are placed in a mixed culture medium of equal amounts of river sand and red crust that has been subjected to high-pressure sterilization for 30 minutes at 121 ° C. and 11.8 × 10 4 Pa (1.2 kgf / cm 2 ). At that time, 1140-TK44 strain material (Example) or 1140 strain material (Comparative Example), which is a material of the bamboo shoot produced in Example 1, is applied to the planting hole by 10 mL for one seedling seedling. did. When this seedling was cultivated while applying Peters liquid fertilizer (NPK: 25-5-10) every two weeks, it was larger than the seedling cultivated only with fertilizer (control group) on the 60th day of cultivation. I was able to get a seedling. In particular, the 1140-TK44 strain material, which is a greening material according to the present invention, was confirmed to have an even better growth effect than the 1140 strain material, which is a comparative example. FIG. 6 shows the dry weight of the above-ground part and underground part of seedlings on the 60th day of cultivation. In addition, the figure has shown the average value of the result of having repeated the said test twice by making the number of seedlings of each test section into ten.

[外生菌根菌資材によるアカマツの育成効果]
乾熱滅菌処理を180℃で8時間行ったバーミキュライト(ニッタイ株式会社製)にアカマツの種子を播種した後、適時潅水して大きさの揃った無菌根の実生苗を育成した。次に、121℃、11.8×10Pa(1.2kgf/cm)の条件で30分間の高圧滅菌処理を行った川砂と赤玉土の等量混合培土に、前記アカマツの実生苗を定植し、その際、実施例1で作製したシャカシメジの資材である273−TS49菌株資材(実施例)、又は273菌株資材(比較例)を、実生苗1本に対して10mLずつ植穴に施用した。この実生苗を、2週間毎にピータースの液肥(NPK:25−5−10)を施用しつつ栽培したところ、栽培60日目には、肥料のみで栽培した苗木(対照区)よりも大きな苗木を得ることができた。特に、本発明に係る緑化資材である273−TS49菌株資材では、比較例である273菌株資材に比べて更に優れた育成効果が確認された。図7に栽培60日目における苗木の地上部及び地下部の乾燥重量を示す。なお、同図は、各試験区の苗数を10本ずつとし、上記試験を2回繰り返して行った結果の平均値を示している。
[Growing effect of Pinus densiflora with ectomycorrhizal fungi]
After seeding red pine seeds on vermiculite (manufactured by Nittai Co., Ltd.) that had been subjected to dry heat sterilization at 180 ° C. for 8 hours, seedlings with aseptic roots with uniform sizes were grown by irrigating timely. Next, the seedlings of Pinus densiflora seedlings were mixed in an equal volume mixed soil of river sand and red crust that had been subjected to high-pressure sterilization for 30 minutes under the conditions of 121 ° C. and 11.8 × 10 4 Pa (1.2 kgf / cm 2 ). In this case, 273-TS49 strain material (Example) or 273 strain material (Comparative Example), which is the material of Shakashimeji prepared in Example 1, is applied to the planting hole by 10 mL per seedling seedling. did. When this seedling was cultivated while applying Peters liquid fertilizer (NPK: 25-5-10) every two weeks, it was larger than the seedling cultivated only with fertilizer (control group) on the 60th day of cultivation. I was able to get a seedling. In particular, in the 273-TS49 strain material, which is a greening material according to the present invention, a further superior growth effect was confirmed as compared with the 273 strain material, which is a comparative example. FIG. 7 shows the dry weight of the above-ground part and the underground part of seedlings on the 60th day of cultivation. In addition, the figure has shown the average value of the result of having repeated the said test twice by making the number of seedlings of each test section into ten.

[アーバスキュラー菌根菌資材によるカスミザクラの育成効果]
乾熱滅菌処理を180℃で8時間行ったバーミキュライト(ニッタイ株式会社製)にカスミザクラの種子を播種した後、適時潅水して大きさの揃った無菌根の実生苗を育成した。次に、121℃、11.8×10Pa(1.2kgf/cm)の条件で30分間の高圧滅菌処理を行った川砂と赤玉土の等量混合培土に、前記カスミザクラの実生苗を定植し、その際、実施例3で作製したKANSO−19菌株資材、OG−105菌株資材、又はKANSO−6菌株資材を、上記実生苗1本に対し10mLずつ植穴に施用した。この実生苗を、2週間毎にピータースの液肥(NPK:25−5−10)を施用しつつ栽培したところ、栽培60日目には、いずれの緑化資材を施用した区においても肥料のみで栽培した苗木(対照区)よりも大きな苗木を得ることができた。特に、本発明に係る緑化資材であるKANSO−19菌株資材を施用した区では、比較例の緑化資材であるOG−105菌株資材又はKANSO−6菌株資材を施用した区に比べてより優れた苗木育成効果が確認された。図8に栽培60日目における苗木の地上部及び地下部の乾燥重量を示す。なお、同図は、各試験区の苗数を20本ずつとして上記試験を行った結果の平均値を示している。
[Growing effect of miscellaneous cherry by Arbuscular mycorrhizal fungus material]
After seeding Kasumi cherry seeds on vermiculite (manufactured by Nittai Co., Ltd.) that had been subjected to dry heat sterilization at 180 ° C. for 8 hours, seedlings of aseptic roots with uniform sizes were cultivated by irrigating timely. Next, the seedling seedlings of Kasumi cherry tree were put into an equal volume mixed soil of river sand and red crust that had been subjected to high-pressure sterilization for 30 minutes under the conditions of 121 ° C. and 11.8 × 10 4 Pa (1.2 kgf / cm 2 ). At that time, 10 mL of the KANSO-19 strain material, the OG-105 strain material, or the KANSO-6 strain material prepared in Example 3 was applied to the planting hole for each of the seedlings. When this seedling was cultivated while applying Peters' liquid fertilizer (NPK: 25-5-10) every two weeks, on the 60th day of cultivation, only the fertilizer was applied in any section where the greening material was applied. A larger seedling than the cultivated seedling (control) was able to be obtained. In particular, in the district where the KAANSO-19 strain material, which is the greening material according to the present invention, is applied, the seedlings are more excellent than the OG-105 strain material, which is the greening material of the comparative example, or the kanso-6 strain material. The training effect was confirmed. FIG. 8 shows the dry weight of the above-ground part and the underground part of seedlings on the 60th day of cultivation. In addition, the figure has shown the average value of the result of having performed the said test by making the number of seedlings of each test section into 20 pieces.

[外生菌根菌資材によるクロマツの根系再生効果]
予め育成したクロマツの根系範囲内に実施例1で作製した1140−TK44菌株資材又は1140菌株資材を1L施用し、該緑化資材による根系再生効果及び菌根形成効果を確認した。具体的には、容量30Lのプランターの中央にクロマツを定植してその両側の2箇所に円筒形の穴を穿設し、これらの穴に前記緑化資材を0.5Lずつ施用して栽培を行った。
[Regeneration effect of pine root system by ectomycorrhizal fungi material]
1L of 1140-TK44 strain material or 1140 strain material prepared in Example 1 was applied within the root system range of black pine grown in advance, and the root system regeneration effect and mycorrhiza formation effect of the greening material were confirmed. Specifically, Japanese black pine is planted in the center of a planter with a capacity of 30L, cylindrical holes are drilled in two places on both sides, and the greening material is applied to these holes in 0.5L increments for cultivation. It was.

また、緑化資材に代わって堆肥を施用したクロマツ(対照区1)と、赤玉土と川砂の等量混合物を施用したクロマツ(対照区2)についても同様に栽培を行った。   Also, black pine (control group 1) to which compost was applied instead of greening material and black pine (control group 2) to which an equal mixture of red crust and river sand was applied were also cultivated in the same manner.

6ヶ月間栽培を継続した後に、前記緑化資材、堆肥、又は赤玉土と川砂の混合物を土壌から掘り起こし、その中に含まれるクロマツの細根を洗い出して乾燥させ、その乾燥重量を測定した。その結果、1140−TK44菌株資材又は1140菌株資材を施用した区では、多くの細根が資材中に侵入・増殖していた。特に本発明に係る資材である1140−TK44菌株資材を施用した区では、図9(a)に示すように、対照区に比べて7倍以上、対照区に比べて3.5倍以上の細根量が確認され、比較例の資材である1140菌株資材を施用した区よりも高い根系再生効果が認められた。 After continuing the cultivation for 6 months, the greening material, compost, or a mixture of red jade soil and river sand was dug from the soil, and the fine roots of black pine contained therein were washed out and dried, and the dry weight was measured. As a result, in the section where 1140-TK44 strain material or 1140 strain material was applied, many fine roots invaded and proliferated in the material. In particular, in the section where the 1140-TK44 strain material, which is a material according to the present invention, is applied, as shown in FIG. 9 (a), it is 7 times or more compared to the control group 2 , and 3.5 times or more compared to the control group 1. The amount of fine roots was confirmed, and a higher root regeneration effect was observed than in the case where 1140 strain material, which is a material of the comparative example, was applied.

また、各区のクロマツにおける菌根形成率を測定したところ、図9(b)に示すように、1140−TK44菌株資材又は1140菌株資材の緑化資材を施用した区では、対照区1、2に比べて多くの菌根が形成されていた。更に、本発明に係る資材である1140−TK44菌株資材を施用した区では、比較例の資材である1140菌株資材を施用した区よりも高い菌根形成率が確認された。なお、上記の菌根形成率は、細根における全根端数を計数し、そのうち根端が外生菌根化している箇所の割合を算出して菌根形成率とした。つまり、菌根形成率=(外生菌根化した根端数/細根の全根端数)×100とした。なお、図9(a)、(b)は、いずれも各試験区のクロマツを6本ずつとし、上記試験を2回繰り返して行った結果の平均値を示している。   Moreover, when the mycorrhizal formation rate in the black pine of each division was measured, as shown in FIG.9 (b), in the division which applied the greening material of 1140-TK44 strain material or 1140 strain material, compared with the control districts 1 and 2. Many mycorrhizas were formed. Furthermore, a higher mycorrhizal formation rate was confirmed in the section where the 1140-TK44 strain material, which is the material according to the present invention, was applied, compared to the section where the 1140 strain material, which was the material of the comparative example, was applied. In addition, said mycorrhiza formation rate counted the total root tip number in a fine root, and calculated the ratio of the location in which the root tip is ectomycorrhizal root, and made it mycorrhizal formation rate. That is, the mycorrhizal formation rate = (external mycorrhiza root number / total number of fine roots) × 100. 9 (a) and 9 (b) show the average values of the results obtained by repeating the above test twice with six black pine in each test group.

[アーバスキュラー菌根菌資材によるソメイヨシノの根系再生効果]
予め育成したソメイヨシノの根系範囲内にKANSO−19菌株資材(実施例)又はOG−105菌株資材(比較例)の緑化資材を1L施用して6ヶ月間栽培を継続し、該緑化資材による根系再生効果及び菌根形成効果を確認した。また、緑化資材に代わって堆肥を施用したソメイヨシノ(対照区1)と、赤玉土と川砂の等量混合物を施用したソメイヨシノ(対照区2)についても根系再生効果及び菌根形成効果を確認した。なお、上記緑化資材、堆肥、及び赤玉土と川砂の混合物の施用、並びに根系再生効果の評価は、実施例8と同様の方法によって行った。但し、菌根形成効果の評価、すなわち菌根形成率の測定は、「ワーキング ウィズ マイコリザ イン フォレストリ− アンド アグリカルチャー(Working with mycorrhizas in forestry and agriculture)」、(1996年、オーストラリアン センター フォー インターナショナル アグリカルチュラル リサーチ(Australian Centre for International Agricultural Research)発行)の182頁〜184頁に記載の方法により行った。
[Regeneration effect of Yoshino cherry root system with Arbuscular mycorrhizal fungi]
Applying 1 L of greening material of KANSO-19 strain material (Example) or OG-105 strain material (Comparative example) within the range of pre-grown Yoshino cherry roots and continuing cultivation for 6 months, root regeneration by the greening material The effect and the mycorrhiza formation effect were confirmed. In addition, the root regeneration effect and the mycorrhiza formation effect were also confirmed for Yoshino cherry (control group 1) applied with compost instead of the greening material and Yoshino cherry (control group 2) applied with an equal mixture of red crust and river sand. In addition, application of the above-mentioned greening material, compost, and a mixture of red ball soil and river sand and evaluation of the root regeneration effect were performed by the same method as in Example 8. However, the evaluation of the mycorrhiza formation effect, that is, the measurement of the mycorrhiza formation rate is “Working with mycorrhizas in forestry and agriculture” (1996, Australian Center for International Agriculture). It was carried out by the method described on pages 182 to 184 of Cultural Research (issued by Australian Center for International Agricultural Research).

その結果、図10(a)に示すように、KANSO−19菌株資材又はOG−105菌株資材の緑化資材を施用した区では、対照区1及び対照区2に比べて高い根系再生効果が認められた。特に本発明に係る資材であるKANSO−19菌株資材を施用した区では、直径2mm以下の細根量が前記対照区1と比べて約2倍に、対照区2と比べると約6倍になっており、比較例の資材であるOG−105菌株資材を施用した区よりも高い根系再生効果が認められた。また、図10(b)に示すように、本発明に係る資材であるKANSO−19菌株資材を施用した区では、比較例の資材であるOG−105菌株資材を施用した区よりも高い菌根形成率が確認された。なお、図10(a)、(b)は、各試験区のソメイヨシノを6本ずつとし、上記試験を2回繰り返して行った結果の平均値を示している。   As a result, as shown in FIG. 10 (a), a higher root-system regeneration effect was observed in the section where the greening material of KANSO-19 strain material or OG-105 strain material was applied as compared to the control group 1 and the control group 2. It was. In particular, in the section where the KANSO-19 strain material, which is a material according to the present invention, was applied, the amount of fine roots having a diameter of 2 mm or less was about twice that of the control group 1 and about 6 times that of the control group 2. In addition, a higher root regeneration effect was observed than in the section where OG-105 strain material, which is a material of the comparative example, was applied. Moreover, as shown in FIG.10 (b), in the area | region which applied the KANSO-19 strain material which is the material which concerns on this invention, a mycorrhiza higher than the area which applied OG-105 strain material which is a material of a comparative example The formation rate was confirmed. 10 (a) and 10 (b) show average values of results obtained by repeating the above test twice with six Yoshino cherry trees in each test section.

Claims (9)

植物炭化物に酸性の液体を添加することによりpH5.0〜8.0としたものに、外生菌根菌及び/又はアーバスキュラー菌根菌の菌糸体を保持させて成るものであって、前記外生菌根菌又は前記アーバスキュラー菌根菌が、イグチ科チチアワタケ1140−TK44菌株(NITE AP−01658)、キシメジ科シャカシメジ273−TS49菌株(NITE AP−01659)、及びグロマス(Glomus)属KANSO−19菌株のいずれか一株又は複数株であることを特徴とする緑化資材。 What is obtained by holding mycelia of ectomycorrhizal fungi and / or arbuscular mycorrhizal fungi in a plant having a pH of 5.0 to 8.0 by adding an acidic liquid, The ectomycorrhizal fungi or the arbuscular mycorrhizal fungi are Iuchichichichitaketake 1140-TK44 strain (NITE AP-01658), Xymetidae Shakashimeji 273-TS49 strain (NITE AP-01659), and Glomus genus KANSO- A greening material characterized in that it is any one or a plurality of 19 strains. 上記酸性の液体が酢酸、クエン酸、及び食酢のうちのいずれか1つ又は複数であることを特徴とする請求項1に記載の緑化資材。   The greening material according to claim 1, wherein the acidic liquid is one or more of acetic acid, citric acid, and vinegar. 前記植物炭化物の粒径が2mm〜10mmであることを特徴とする請求項1又は2に記載の緑化資材。   The greening material according to claim 1 or 2, wherein a particle size of the plant carbide is 2 mm to 10 mm. 請求項1〜3のいずれかに記載の緑化資材に、更に、前記外生菌根菌及び/又はアーバスキュラー菌根菌の胞子懸濁液を添加して成ることを特徴とする緑化資材。 The greening material according to any one of claims 1 to 3, further comprising a spore suspension of the ectomycorrhizal fungi and / or arbuscular mycorrhizal fungi. クロマツの樹勢回復のために施用される緑化資材であって、請求項1〜4のいずれかに記載の緑化資材において前記植物炭化物を粒径が2〜6mm、炭化温度が400℃〜800℃の木炭とし、外生菌根菌を保持させたことを特徴とする緑化資材。   It is a greening material applied for the recovery of the vigor of black pine, wherein the plant carbide in the greening material according to any one of claims 1 to 4, having a particle size of 2 to 6 mm and a carbonization temperature of 400 ° C to 800 ° C. Greening material characterized by charcoal and ectomycorrhizal fungi retained. アカマツの樹勢回復のために施用される緑化資材であって、請求項1〜4のいずれかに記載の緑化資材において前記植物炭化物を粒径が2〜6mm、炭化温度が400℃〜600℃の木炭とし、外生菌根菌を保持させたことを特徴とする緑化資材。   It is a planting material applied for the recovery of the pine tree, and in the planting material according to any one of claims 1 to 4, the plant carbide has a particle size of 2 to 6 mm and a carbonization temperature of 400C to 600C. Greening material characterized by charcoal and ectomycorrhizal fungi retained. サクラ属の樹木の樹勢回復のために施用される緑化資材であって、請求項1〜4のいずれかに記載の緑化資材において前記植物炭化物を粒径が2〜6mm、炭化温度が400℃〜800℃の木炭とし、アーバスキュラー菌根菌を保持させたことを特徴とする緑化資材。   It is a tree planting material applied for restoring the tree vigor of a tree of the genus Sakura, wherein the plant carbide in the planting material according to any one of claims 1 to 4 has a particle size of 2 to 6 mm and a carbonization temperature of 400 ° C to A greening material characterized by charcoal at 800 ° C and retaining arbuscular mycorrhizal fungi. 請求項1〜7のいずれかに記載の緑化資材を製造する方法であって、前記植物炭化物に前記酸性の液体と砂を添加して混合し、該混合物を高圧滅菌処理した後、予め外生菌根菌及び/又はアーバスキュラー菌根菌を感染させた宿主植物を該混合物に植え付け、該混合物中に前記外生菌根菌及び/又はアーバスキュラー菌根菌の菌糸を伸長させることを特徴とする緑化資材の製造方法。   A method for producing a greening material according to any one of claims 1 to 7, wherein the acidic liquid and sand are added to and mixed with the plant carbide, and the mixture is subjected to high-pressure sterilization and then exogenous in advance. Characterized in that a host plant infected with mycorrhizal fungi and / or arbuscular mycorrhizal fungi is planted in the mixture, and the mycelium of the ectomycorrhizal fungi and / or arbuscular mycorrhizal fungi is elongated in the mixture. To make greening materials. 請求項1〜7のいずれかに記載の緑化資材を製造する方法であって、前記植物炭化物に前記酸性の液体と前記外生菌根菌及び/又はアーバスキュラー菌根菌の生育に必要な栄養を含む液体培地を添加して高圧滅菌処理した後、予め別途培養した外生菌根菌及び/又はアーバスキュラー菌根菌を前記植物炭化物に接種して培養し、菌糸を伸長させることを特徴とする緑化資材の製造方法。   It is a method of manufacturing the greening material in any one of Claims 1-7, Comprising: The nutrient required for growth of the acidic liquid and the ectomycorrhizal fungi and / or arbuscular mycorrhizal fungi to the plant charcoal And then sterilizing by high-pressure sterilization and then inoculating the plant charcoal with ectomycorrhizal fungi and / or arbuscular mycorrhizal fungi previously cultured separately, and extending the mycelium To make greening materials.
JP2013181883A 2013-09-03 2013-09-03 Tree planting material and its manufacturing method Expired - Fee Related JP6192162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013181883A JP6192162B2 (en) 2013-09-03 2013-09-03 Tree planting material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013181883A JP6192162B2 (en) 2013-09-03 2013-09-03 Tree planting material and its manufacturing method

Publications (3)

Publication Number Publication Date
JP2015047130A JP2015047130A (en) 2015-03-16
JP2015047130A5 JP2015047130A5 (en) 2016-10-20
JP6192162B2 true JP6192162B2 (en) 2017-09-06

Family

ID=52697669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013181883A Expired - Fee Related JP6192162B2 (en) 2013-09-03 2013-09-03 Tree planting material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6192162B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024080343A1 (en) * 2022-10-12 2024-04-18 株式会社Towing Biochar culture medium and method for producing same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016192946A (en) * 2015-04-01 2016-11-17 株式会社大成化研 Plant growth agent, method for guiding plant rootlet, plant with rootlet guided by plant growth agent, and method for guiding plant rootlet and growing fungus
CN106258433A (en) * 2016-08-19 2017-01-04 铜仁市金农绿色农业科技有限公司 A kind of Herba Dendrobii implantation methods
CN107624470A (en) * 2017-08-25 2018-01-26 普定县顺和水果苗木种植有限公司 A kind of car li cultural method
JP7404624B2 (en) * 2018-12-20 2023-12-26 Toppanホールディングス株式会社 Gas barrier laminate and its manufacturing method
CN112075234A (en) * 2020-08-26 2020-12-15 长江大学 Application of arbuscular mycorrhizal fungi in promoting growth of slash pine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5205690B2 (en) * 2005-09-14 2013-06-05 株式会社環境総合テクノス Revegetation material using heat-treated wood and method for producing and using the same
JP2012080829A (en) * 2010-10-12 2012-04-26 Kansai Electric Power Co Inc:The Greening material and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024080343A1 (en) * 2022-10-12 2024-04-18 株式会社Towing Biochar culture medium and method for producing same

Also Published As

Publication number Publication date
JP2015047130A (en) 2015-03-16

Similar Documents

Publication Publication Date Title
CN107446847B (en) Bacillus belgii GT11 and application thereof
JP6192162B2 (en) Tree planting material and its manufacturing method
CN105325244B (en) A kind of method that use in conjunction AMF carries out the cultivation of citrus container Va Mycorrhiza Seedling with PGPR microbial inoculums
CN105331567B (en) A kind of bacillus amyloliquefaciens and promoting growth of plants preparation and application
CN108130302A (en) A kind of special disease-resistant microbial inoculum of potato and preparation method thereof
CN109097303B (en) Paenibacillus polymyxa, spore suspension of paenibacillus polymyxa, microbial seedling culture substrate and preparation method of microbial seedling culture substrate
Abdel-Monaim et al. Efficacy of rhizobacteria and humic acid for controlling Fusarium wilt disease and improvement of plant growth, quantitative and qualitative parameters in tomato
JP2012080829A (en) Greening material and method for producing the same
CN105462881A (en) Paenibacillus polymyxa for preventing and treating vertieillium wilt in crops and application of paenibacillus polymyxa
Siddiqui et al. Mycorrhizal inoculants: progress in inoculant production technology
CN108641978B (en) Paenibacillus Lzh-N1 capable of preventing and treating pear brown spot and application of composite microbial inoculum thereof
Nurbaity et al. Application of Glomus sp. and Pseudomonas diminuta reduce the use of chemical fertilizers in production of potato grown on different soil types
CN106518185A (en) Special composite microbial fertilizer with functions of strengthening seedlings and promoting roots for tobaccos, and preparation method thereof
CN113151085A (en) Compound microbial agent for preventing and treating soil-borne diseases of tobacco and application thereof
CN109247178B (en) Method for improving planting survival rate of mercerizing wood in saline-alkali soil
US20190084897A1 (en) Iron (iii) oxide containing soil-binding composition
Sharma et al. Screening of AM fungi and Azotobacter chroococcum under natural, solarization, chemical sterilization and moisture conservation practices for commercial mango nursery production in north-west Himalayas
CN106069652B (en) A method of it directly sowing dendrobium devonianum seeds on tea tree and cultivates seedling
JP5205690B2 (en) Revegetation material using heat-treated wood and method for producing and using the same
CN114175996A (en) Propagation method of arbuscular mycorrhizal fungi
KR0165895B1 (en) Streptomyces ncimb 40227 active in biostimulation of agricultural production
Sangmanee et al. The potential of endophytic actinomycetes,(Streptomyces sp.) for the biocontrol of powdery mildew disease in sweet pea (Pisum sativum)
CN107216186A (en) Production method and application process with disease-resistant growth-promoting functions functional biological organic fertilizer
Nurjaman et al. Effect of endophytic fungi inoculation and ecoenzyme on the growth of gmelina (Gmelina arborea (Roxb.)) seedlings
Zale et al. Choosing a favorable substrate to cultivate native orchids symbiotically: Examples using Goodyera tesselata and Platanthera blephariglottis

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160831

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170804

R150 Certificate of patent or registration of utility model

Ref document number: 6192162

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees