JP6190104B2 - Nickel plating material and method for producing the same - Google Patents

Nickel plating material and method for producing the same Download PDF

Info

Publication number
JP6190104B2
JP6190104B2 JP2012242032A JP2012242032A JP6190104B2 JP 6190104 B2 JP6190104 B2 JP 6190104B2 JP 2012242032 A JP2012242032 A JP 2012242032A JP 2012242032 A JP2012242032 A JP 2012242032A JP 6190104 B2 JP6190104 B2 JP 6190104B2
Authority
JP
Japan
Prior art keywords
nickel plating
chemical polishing
nickel
substrate
maximum height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012242032A
Other languages
Japanese (ja)
Other versions
JP2014091845A (en
Inventor
久寿 荒木
久寿 荒木
佐藤 淳
佐藤  淳
宮澤 寛
寛 宮澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metaltech Co Ltd
Original Assignee
Dowa Metaltech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metaltech Co Ltd filed Critical Dowa Metaltech Co Ltd
Priority to JP2012242032A priority Critical patent/JP6190104B2/en
Publication of JP2014091845A publication Critical patent/JP2014091845A/en
Application granted granted Critical
Publication of JP6190104B2 publication Critical patent/JP6190104B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • ing And Chemical Polishing (AREA)

Description

本発明は、ニッケルめっき材およびその製造方法に関し、特に、素材上にニッケルめっき皮膜が形成されたニッケルめっき材およびその製造方法に関する。   The present invention relates to a nickel plating material and a method for manufacturing the same, and more particularly to a nickel plating material having a nickel plating film formed on a material and a method for manufacturing the same.

従来、金属素材上にニッケルめっき皮膜が形成されたニッケルめっき材は、プリント配線基板、電池容器、電池用端子などの材料として広く使用されている。   Conventionally, nickel plating materials in which a nickel plating film is formed on a metal material have been widely used as materials for printed wiring boards, battery containers, battery terminals, and the like.

近年、リチウムイオン電池の負極用タブリードの材料として、銅素材上にニッケルめっき皮膜が形成されたニッケルめっき材が使用されており、このような導体のニッケルめっき材からなるタブリードの表面には、樹脂からなる絶縁フィルムが溶着などにより貼り付けられている(例えば、特許文献1参照)。   In recent years, a nickel plating material in which a nickel plating film is formed on a copper material has been used as a material for a negative electrode tab lead of a lithium ion battery, and the surface of the tab lead made of a nickel plating material of such a conductor has a resin. The insulating film which consists of is affixed by welding etc. (for example, refer patent document 1).

特開2011−202121号公報(段落番号0004)JP2011-202121A (paragraph number 0004)

しかし、銅素材上にニッケルめっき皮膜が形成されたニッケルめっき材をタブリード(タブ端子)の形状に加工した後、その表面に樹脂からなる絶縁フィルムを貼り付ける際に、ニッケルめっき材の表面粗さが粗く、光沢度が低いと、絶縁フィルムの密着性が悪くなるという問題があった。   However, after processing a nickel plating material with a nickel plating film on a copper material into the shape of a tab lead (tab terminal), the surface roughness of the nickel plating material is applied when an insulating film made of resin is applied to the surface. When the roughness is low and the glossiness is low, there is a problem that the adhesion of the insulating film is deteriorated.

そのため、表面粗さが粗い銅素材上に光沢ニッケルめっきを行う際に、(少なくとも2.4μm以上の厚さの)十分に厚いニッケルめっき皮膜を銅素材上に形成しなければ、ニッケルめっき材の表面粗さを低減させるとともに光沢度(反射濃度)を(2.0以上に)高めて絶縁フィルムの密着性を向上させることができなかった。   Therefore, when performing bright nickel plating on a copper material having a rough surface, if a sufficiently thick nickel plating film (with a thickness of at least 2.4 μm or more) is not formed on the copper material, It was not possible to improve the adhesion of the insulating film by reducing the surface roughness and increasing the glossiness (reflection density) (to 2.0 or more).

したがって、本発明は、このような従来の問題点に鑑み、ニッケルめっき皮膜を厚くしなくても、表面粗さを低減させるとともに光沢度を高めることができる、ニッケルめっき材およびその製造方法を提供することを目的とする。   Therefore, in view of such conventional problems, the present invention provides a nickel plating material and a method for manufacturing the same, which can reduce the surface roughness and increase the gloss without increasing the thickness of the nickel plating film. The purpose is to do.

本発明者らは、上記課題を解決するために鋭意研究した結果、銅または銅合金からなる基材上にニッケルめっきを行うことによりニッケルめっき材を製造する方法において、ニッケルめっきを行う前に基材の表面を化学研磨することにより、ニッケルめっき皮膜を厚くしなくても、表面粗さを低減させるとともに光沢度を高めることができることを見出し、本発明を完成するに至った。   As a result of diligent research to solve the above problems, the present inventors have found that in a method for producing a nickel plating material by performing nickel plating on a substrate made of copper or a copper alloy, By chemically polishing the surface of the material, it was found that the surface roughness can be reduced and the glossiness can be increased without increasing the thickness of the nickel plating film, and the present invention has been completed.

すなわち、本発明によるニッケルめっき材の製造方法は、銅または銅合金からなる基材上にニッケルめっきを行うことによりニッケルめっき材を製造する方法において、ニッケルめっきを行う前に基材の表面を化学研磨することを特徴とする。   That is, the method for producing a nickel plating material according to the present invention is a method for producing a nickel plating material by performing nickel plating on a substrate made of copper or a copper alloy. It is characterized by polishing.

このニッケルめっき材の製造方法において、ニッケルめっきの前処理として基材の脱脂および酸洗浄を行い、脱脂後で酸洗浄前に化学研磨を行うのが好ましい。   In this method for producing a nickel-plated material, it is preferable to perform degreasing and acid cleaning of the substrate as a pretreatment for nickel plating, and to perform chemical polishing after degreasing and before acid cleaning.

また、上記のニッケルめっき材の製造方法において、化学研磨を行う前に基材のバフ研磨およびスキンパスの少なくとも一方を行うのが好ましい。この場合、ニッケルめっきの前処理として基材の脱脂および酸洗浄を行い、脱脂前にバフ研磨およびスキンパスの少なくとも一方を行い、脱脂後で酸洗浄前に化学研磨を行うのが好ましい。   In the above method for producing a nickel-plated material, it is preferable to perform at least one of buffing of the substrate and skin pass before chemical polishing. In this case, it is preferable to perform degreasing and acid cleaning of the substrate as a pretreatment for nickel plating, to perform at least one of buffing and skin pass before degreasing, and to perform chemical polishing after degreasing and before acid cleaning.

また、本発明によるニッケルめっき材は、銅または銅合金の圧延板材からなる基材上に厚さ0.5〜2.0μmのニッケルめっき皮膜が形成され、基材の圧延方向の視感反射濃度と、圧延方向および板厚方向に対して垂直な方向の視感反射濃度が2.0以上であり、これらの視感反射濃度の差が0.1以下であることを特徴とする。   Further, the nickel plating material according to the present invention has a nickel plating film having a thickness of 0.5 to 2.0 μm formed on a base material made of a rolled plate material of copper or copper alloy, and the luminous reflection density in the rolling direction of the base material. The luminous reflection density in the direction perpendicular to the rolling direction and the plate thickness direction is 2.0 or more, and the difference between these luminous reflection densities is 0.1 or less.

本発明によれば、銅または銅合金からなる基材上にニッケルめっきを行うことによりニッケルめっき材を製造する方法において、ニッケルめっきを行う前に基材の表面を化学研磨することにより、ニッケルめっき皮膜を厚くしなくても、表面粗さを低減させるとともに光沢度を高めることができる。   According to the present invention, in a method for producing a nickel plating material by performing nickel plating on a base material made of copper or a copper alloy, the surface of the base material is chemically polished before performing nickel plating. Even if the film is not thickened, the surface roughness can be reduced and the glossiness can be increased.

本発明によるニッケルめっき材の製造方法の実施の形態では、銅または銅合金(の圧延板材など)からなる基材上にニッケルめっきを行うことによりニッケルめっき材を製造する方法において、ニッケルめっきを行う前に基材の表面を化学研磨する。   In an embodiment of a method for producing a nickel plating material according to the present invention, nickel plating is performed in a method for producing a nickel plating material by performing nickel plating on a base material made of copper or a copper alloy (rolled plate material thereof). Before, the surface of the substrate is chemically polished.

このニッケルめっき材の製造方法では、ニッケルめっきの前処理として基材の脱脂および酸洗浄を行い、脱脂後で酸洗浄前に化学研磨を行うのが好ましい。   In this method for producing a nickel-plated material, it is preferable to perform degreasing and acid cleaning of the base material as pretreatment of nickel plating, and to perform chemical polishing after degreasing and before acid cleaning.

また、上記のニッケルめっき材の製造方法において、化学研磨を行う前に基材のバフ研磨およびスキンパス(スキンパス仕上げ圧延)の少なくとも一方を行うのが好ましい。このようにバフ研磨およびスキンパスの少なくとも一方を行うことにより、ニッケルめっき材の光沢度をさらに向上させることができる。この場合、ニッケルめっきの前処理として基材の脱脂および酸洗浄を行い、脱脂前にバフ研磨およびスキンパスの少なくとも一方を行い、脱脂後で酸洗浄前に化学研磨を行うのが好ましい。   In the method for producing a nickel-plated material, it is preferable to perform at least one of buffing of the base material and skin pass (skin pass finish rolling) before chemical polishing. Thus, by performing at least one of buffing and skin pass, the gloss of the nickel plating material can be further improved. In this case, it is preferable to perform degreasing and acid cleaning of the substrate as a pretreatment for nickel plating, to perform at least one of buffing and skin pass before degreasing, and to perform chemical polishing after degreasing and before acid cleaning.

ニッケルめっきでは、スルファミン酸ニッケルとサッカリン系1次光沢剤とアセチルアルコール系2次光沢剤を含有する水溶液からなるめっき液を使用するスルファミン酸光沢ニッケルめっき浴中に酸洗浄後の基材を入れ、めっき液温度40〜60℃、電流密度1〜10A/dmで電気めっきを行って、基材上に厚さ0.5μm以上のニッケルめっき皮膜を形成するが好ましい。 In nickel plating, the base after acid cleaning is placed in a sulfamic acid bright nickel plating bath using a plating solution comprising an aqueous solution containing nickel sulfamate, a saccharin primary brightener and an acetyl alcohol secondary brightener, It is preferable to perform electroplating at a plating solution temperature of 40 to 60 ° C. and a current density of 1 to 10 A / dm 2 to form a nickel plating film having a thickness of 0.5 μm or more on the substrate.

また、化学研磨は、液温25〜55℃に調節したペルオキシ硫酸塩と鉄水溶性塩と75%硫酸10〜30mL/Lを含む化学研磨剤(ペルオキシ硫酸塩と鉄水溶性塩(過硫酸アンモニウム鉄)を含む化学研磨剤)に基材を浸漬して行うのが好ましい。なお、この化学研磨では、液温と浸漬時間を調整して、基材の表面に対して垂直方向(基材が板材の場合には板厚方向)のエッチング量を0.10〜4.0μmにするのが好ましく、0.15〜4.0μmにするのがさらに好ましい。また、基材のスキンパスを行った場合にはエッチング量を0.10〜4.0μmにするのが好ましい。   In addition, chemical polishing is performed using a chemical polishing agent (peroxysulfate and iron water-soluble salt (ammonium iron persulfate) containing peroxysulfate, iron water-soluble salt and 75% sulfuric acid 10 to 30 mL / L adjusted to a liquid temperature of 25 to 55 ° C. It is preferable to immerse the substrate in a chemical abrasive containing In this chemical polishing, the amount of etching in the direction perpendicular to the surface of the substrate (in the plate thickness direction when the substrate is a plate material) is adjusted to 0.10 to 4.0 μm by adjusting the liquid temperature and immersion time. Preferably, the thickness is 0.15 to 4.0 μm. Moreover, when the skin pass of the substrate is performed, the etching amount is preferably set to 0.10 to 4.0 μm.

このように化学研磨を行うことにより、ニッケルめっき皮膜を(2.4μm以上に)厚くしなくても(厚さ0.5〜2.0μm程度でも)、(粗化処理とは異なり)表面粗さを低減させとともに光沢度を高める(視感反射濃度を2.0以上にする)ことができ、ニッケルめっき材の表面に樹脂からなる絶縁フィルムを貼り付ける場合にその密着性を向上させることができる。   By performing chemical polishing in this way, the surface of the nickel plating film is roughened (unlike the roughening treatment) even if the nickel plating film is not thickened (over 2.4 μm or more) (even if the thickness is about 0.5 to 2.0 μm). This can reduce the thickness and increase the glossiness (the luminous reflection density is 2.0 or more), and can improve the adhesion when an insulating film made of resin is attached to the surface of the nickel plating material. it can.

このニッケルめっき材の製造方法により、銅または銅合金の圧延板材からなる基材上に厚さ0.5〜2.0μmのニッケルめっき皮膜が形成され、基材の圧延方向(L.D.)の視感反射濃度と、圧延方向および板厚方向に対して垂直な方向(T.D.)の視感反射濃度が2.0以上であり、これらの視感反射濃度の差が0.1以下と少ない(表面が平滑な)ニッケルめっき材を製造することができる。   By this method for producing a nickel-plated material, a nickel-plated film having a thickness of 0.5 to 2.0 μm is formed on a substrate made of a rolled plate material of copper or copper alloy, and the rolling direction (LD) of the substrate. The luminous reflection density in the direction perpendicular to the rolling direction and the sheet thickness direction (TD) is 2.0 or more, and the difference between these luminous reflection densities is 0.1. It is possible to produce a nickel plating material having a small number (smooth surface) as follows.

以下、本発明によるニッケルめっき材およびその製造方法の実施例について詳細に説明する。   Hereinafter, examples of the nickel plating material and the manufacturing method thereof according to the present invention will be described in detail.

[実施例1]
まず、45mm×70mm×0.2mmの大きさの純銅(C1020R−O材)の圧延板材からなる基材をアルカリ系界面活性剤(ユケン工業株式会社製のパクナCu35)により電解脱脂した後、液温25℃に調整した化学研磨剤(ペルオキシ硫酸塩30g/Lと鉄水溶性塩15g/Lと75%硫酸20mL/Lを含む化学研磨剤)に12秒間浸漬して化学研磨した。この化学研磨と同じ条件で銅箔を化学研磨し、その銅箔の重量減少(エッチング量)を測定し、このエッチング量と銅箔の表面積からエッチング速度を算出したところ、エッチング量は0.17μmであり、エッチング速度は0.85μm/分であった。
[Example 1]
First, a substrate made of a rolled plate of pure copper (C1020R-O material) having a size of 45 mm × 70 mm × 0.2 mm is electrolytically degreased with an alkaline surfactant (Pakna Cu35 manufactured by Yuken Industry Co., Ltd.), and then the liquid Chemical polishing was performed by dipping in a chemical polishing agent (chemical polishing agent containing 30 g / L of peroxysulfate, 15 g / L of iron water-soluble salt and 20 mL / L of 75% sulfuric acid) adjusted to a temperature of 25 ° C. for 12 seconds. The copper foil was chemically polished under the same conditions as this chemical polishing, the weight reduction (etching amount) of the copper foil was measured, and the etching rate was calculated from the etching amount and the surface area of the copper foil. The etching amount was 0.17 μm. The etching rate was 0.85 μm / min.

この化学研磨後の基材の表面粗さとして、超深度表面形状測定顕微鏡(株式会社キーエンス製のVK−8500)を使用して、倍率2000倍、測定エリア105μm×139μmで測定した結果から、JIS B0601に基づいて表面粗さを示すパラメータである算術平均粗さRaおよび最大高さRyを算出した。その結果、化学研磨後の基材の算術平均粗さRaは0.05μm、最大高さRyは0.40μmであった。   The surface roughness of the substrate after this chemical polishing was measured using a super-deep surface shape measurement microscope (VK-8500 manufactured by Keyence Corporation) at a magnification of 2000 times and a measurement area of 105 μm × 139 μm. Based on B0601, the arithmetic average roughness Ra and the maximum height Ry, which are parameters indicating the surface roughness, were calculated. As a result, the arithmetic average roughness Ra of the substrate after chemical polishing was 0.05 μm, and the maximum height Ry was 0.40 μm.

次に、化学研磨後の基材を酸洗浄した後、スルファミン酸ニッケルとサッカリン系1次光沢剤とアセチルアルコール系2次光沢剤を含有する水溶液からなるめっき液を使用するスルファミン酸光沢ニッケルめっき浴中に酸洗浄後の基材を入れ、めっき液温度50℃、電流密度5A/dmで電気めっきを120秒間行った後、水洗し、乾燥して、ニッケルめっき材を得た。このニッケルめっき材のニッケルめっき皮膜の厚さを、蛍光X線膜厚計(SIIナノテクノロジー社製の蛍光X線膜厚計SFT3200)により測定したところ、1.2μmであった。 Next, after the chemical polishing substrate is acid cleaned, a sulfamic acid bright nickel plating bath using a plating solution comprising an aqueous solution containing nickel sulfamate, a saccharin primary brightener and an acetyl alcohol secondary brightener. The substrate after acid cleaning was put therein, and electroplating was performed for 120 seconds at a plating solution temperature of 50 ° C. and a current density of 5 A / dm 2 , followed by washing with water and drying to obtain a nickel plating material. When the thickness of the nickel plating film of this nickel plating material was measured with a fluorescent X-ray film thickness meter (fluorescent X-ray film thickness meter SFT3200 manufactured by SII Nano Technology), it was 1.2 μm.

このようにして得られたニッケルめっき材の表面粗さとして、化学研磨後の基材の表面粗さと同様の方法により、算術平均粗さRaおよび最大高さRyを算出したところ、算術平均粗さRaは0.05μm、最大高さRyは0.35μmであった。   As the surface roughness of the nickel plating material thus obtained, the arithmetic average roughness Ra and the maximum height Ry were calculated by the same method as the surface roughness of the base material after chemical polishing. Ra was 0.05 μm, and the maximum height Ry was 0.35 μm.

また、得られたニッケルめっき材の外観を評価するために、ニッケルめっき材の光沢度として、反射濃度計(日本電色工業株式会社製のデンシトメーターND−1)を使用して視感反射濃度を測定したところ、基材の圧延方向(L.D.)に反射濃度計(光沢度計)を配置した場合には2.15、圧延方向および板厚方向に対して垂直な方向(T.D.)に反射濃度計を配置した場合には2.10であり、これらの視感反射濃度の差(光沢度の差)は0.05であった。   Moreover, in order to evaluate the external appearance of the obtained nickel plating material, the reflection density meter (Nippon Denshoku Industries Co., Ltd. densitometer ND-1) was used as the glossiness of the nickel plating material, and the luminous reflection. When the density was measured, when a reflection densitometer (glossiness meter) was arranged in the rolling direction (LD) of the substrate, 2.15, a direction perpendicular to the rolling direction and the plate thickness direction (T D.) and the reflection densitometer were 2.10, the difference in luminous reflection density (difference in glossiness) was 0.05.

また、得られたニッケルめっき材の表面にポリプロピレン樹脂(耐熱ポリプロピレン+特殊ポリプロピレン)からなる樹脂フィルムを貼り付けて、電解液(エチレンカーボネート、ジメチルカーボネート、6フッ化リンリチウムが質量比1:1:1の電解液)に4週間浸漬させた後、引張り試験機によって10N/cmの力で樹脂フィルムが剥がれるか否かを試験して、樹脂フィルムの密着性を調べたところ、樹脂フィルムは剥がれず、樹脂フィルムの密着性は良好であった。   In addition, a resin film made of polypropylene resin (heat-resistant polypropylene + special polypropylene) is pasted on the surface of the obtained nickel plating material, and an electrolyte solution (ethylene carbonate, dimethyl carbonate, lithium hexafluorophosphate has a mass ratio of 1: 1: 1) for 4 weeks, and then tested whether the resin film was peeled off with a tensile tester with a force of 10 N / cm, and when the adhesion of the resin film was examined, the resin film did not peel off. The adhesion of the resin film was good.

[実施例2]
化学研磨の際の浸漬時間を18秒間とした以外は、実施例1と同様の方法により、ニッケルめっき材を作製し、化学研磨の際のエッチング量およびエッチング速度を求めるとともに、化学研磨後の基材の表面粗さとして算術平均粗さRaおよび最大高さRyを算出し、ニッケルめっき材について、表面粗さ、光沢度および樹脂フィルムの密着性を調べた。その結果、化学研磨の際のエッチング量は0.26μm、エッチング速度は0.85μm/分であり、化学研磨後の基材の算術平均粗さRaは0.03μm、最大高さRyは0.21μmであった。また、ニッケルめっき材の算術平均粗さRaは0.03μm、最大高さRyは0.15μmであった。また、光沢度は、L.D.では2.29、T.D.では2.25であり、これらの光沢度の差は0.04であった。また、樹脂フィルムの密着性は良好であった。
[Example 2]
A nickel plating material was prepared in the same manner as in Example 1 except that the immersion time during chemical polishing was 18 seconds, and the etching amount and etching rate during chemical polishing were determined. The arithmetic average roughness Ra and the maximum height Ry were calculated as the surface roughness of the material, and the surface roughness, the glossiness, and the adhesion of the resin film were examined for the nickel plated material. As a result, the etching amount during chemical polishing was 0.26 μm, the etching rate was 0.85 μm / min, the arithmetic average roughness Ra of the substrate after chemical polishing was 0.03 μm, and the maximum height Ry was 0.2. It was 21 μm. The arithmetic average roughness Ra of the nickel plating material was 0.03 μm, and the maximum height Ry was 0.15 μm. The glossiness is L.P. D. 2.29, T. D. Was 2.25, and the difference in glossiness between these was 0.04. Moreover, the adhesiveness of the resin film was favorable.

[実施例3]
化学研磨の際の浸漬時間を24秒間とした以外は、実施例1と同様の方法により、ニッケルめっき材を作製し、化学研磨の際のエッチング量およびエッチング速度を求めるとともに、化学研磨後の基材の表面粗さとして算術平均粗さRaおよび最大高さRyを算出し、ニッケルめっき材について、表面粗さ、光沢度および樹脂フィルムの密着性を調べた。その結果、化学研磨の際のエッチング量は0.34μm、エッチング速度は0.85μm/分であり、化学研磨後の基材の算術平均粗さRaは0.03μm、最大高さRyは0.22μmであった。また、ニッケルめっき材の算術平均粗さRaは0.03μm、最大高さRyは0.20μmであった。また、光沢度は、L.D.では2.28、T.D.では2.21であり、これらの光沢度の差は0.07であった。また、樹脂フィルムの密着性は良好であった。
[Example 3]
A nickel plating material was prepared in the same manner as in Example 1 except that the immersion time during chemical polishing was 24 seconds, and the etching amount and etching rate during chemical polishing were determined. The arithmetic average roughness Ra and the maximum height Ry were calculated as the surface roughness of the material, and the surface roughness, the glossiness, and the adhesion of the resin film were examined for the nickel plated material. As a result, the etching amount at the time of chemical polishing was 0.34 μm, the etching rate was 0.85 μm / min, the arithmetic average roughness Ra of the substrate after chemical polishing was 0.03 μm, and the maximum height Ry was 0.8. 22 μm. The arithmetic average roughness Ra of the nickel plating material was 0.03 μm, and the maximum height Ry was 0.20 μm. The glossiness is L.P. D. 2.28, T. D. Was 2.21, and the difference in glossiness between these was 0.07. Moreover, the adhesiveness of the resin film was favorable.

[実施例4]
化学研磨の際の浸漬時間を180秒間とした以外は、実施例1と同様の方法により、ニッケルめっき材を作製し、化学研磨の際のエッチング量およびエッチング速度を求めるとともに、化学研磨後の基材の表面粗さとして算術平均粗さRaおよび最大高さRyを算出し、ニッケルめっき材について、表面粗さ、光沢度および樹脂フィルムの密着性を調べた。その結果、化学研磨の際のエッチング量は2.55μm、エッチング速度は0.85μm/分であり、化学研磨後の基材の算術平均粗さRaは0.06μm、最大高さRyは0.35μmであった。また、ニッケルめっき材の算術平均粗さRaは0.06μm、最大高さRyは0.30μmであった。また、光沢度は、L.D.では2.23、T.D.では2.20であり、これらの光沢度の差は0.03であった。また、樹脂フィルムの密着性は良好であった。
[Example 4]
A nickel plating material was prepared by the same method as in Example 1 except that the immersion time during chemical polishing was 180 seconds, and the etching amount and etching rate during chemical polishing were determined. The arithmetic average roughness Ra and the maximum height Ry were calculated as the surface roughness of the material, and the surface roughness, the glossiness, and the adhesion of the resin film were examined for the nickel plated material. As a result, the etching amount at the time of chemical polishing was 2.55 μm, the etching rate was 0.85 μm / min, the arithmetic average roughness Ra of the substrate after chemical polishing was 0.06 μm, and the maximum height Ry was 0.8. It was 35 μm. The arithmetic average roughness Ra of the nickel plating material was 0.06 μm, and the maximum height Ry was 0.30 μm. The glossiness is L.P. D. Then 2.23, T.W. D. Was 2.20, and the difference in glossiness between these was 0.03. Moreover, the adhesiveness of the resin film was favorable.

[実施例5]
化学研磨の際の浴温を40℃とした以外は、実施例1と同様の方法により、ニッケルめっき材を作製し、化学研磨の際のエッチング量およびエッチング速度を求めるとともに、化学研磨後の基材の表面粗さとして算術平均粗さRaおよび最大高さRyを算出し、ニッケルめっき材について、表面粗さ、光沢度および樹脂フィルムの密着性を調べた。その結果、化学研磨の際のエッチング量は0.26μm、エッチング速度は1.30μm/分であり、化学研磨後の基材の算術平均粗さRaは0.05μm、最大高さRyは0.54μmであった。また、ニッケルめっき材の算術平均粗さRaは0.03μm、最大高さRyは0.36μmであった。また、光沢度は、L.D.では2.19、T.D.では2.15であり、これらの光沢度の差は0.04であった。また、樹脂フィルムの密着性は良好であった。
[Example 5]
Except that the bath temperature at the time of chemical polishing was 40 ° C., a nickel plating material was prepared by the same method as in Example 1, and the etching amount and the etching rate at the time of chemical polishing were obtained. The arithmetic average roughness Ra and the maximum height Ry were calculated as the surface roughness of the material, and the surface roughness, the glossiness, and the adhesion of the resin film were examined for the nickel plated material. As a result, the etching amount during chemical polishing was 0.26 μm, the etching rate was 1.30 μm / min, the arithmetic average roughness Ra of the substrate after chemical polishing was 0.05 μm, and the maximum height Ry was 0.2. It was 54 μm. Further, the arithmetic average roughness Ra of the nickel plating material was 0.03 μm, and the maximum height Ry was 0.36 μm. The glossiness is L.P. D. 2.19, T.I. D. Was 2.15, and the difference in glossiness between these was 0.04. Moreover, the adhesiveness of the resin film was favorable.

[実施例6]
化学研磨の際の浴温を40℃とした以外は、実施例4と同様の方法により、ニッケルめっき材を作製し、化学研磨の際のエッチング量およびエッチング速度を求めるとともに、化学研磨後の基材の表面粗さとして算術平均粗さRaおよび最大高さRyを算出し、ニッケルめっき材について、表面粗さ、光沢度および樹脂フィルムの密着性を調べた。その結果、化学研磨の際のエッチング量は3.90μm、エッチング速度は1.30μm/分であり、化学研磨後の基材の算術平均粗さRaは0.15μm、最大高さRyは0.99μmであった。また、ニッケルめっき材の算術平均粗さRaは0.07μm、最大高さRyは0.43μmであった。また、光沢度は、L.D.では2.20、T.D.では2.17であり、これらの光沢度の差は0.03であった。また、樹脂フィルムの密着性は良好であった。
[Example 6]
A nickel plating material was prepared by the same method as in Example 4 except that the bath temperature during chemical polishing was 40 ° C., and the etching amount and etching rate during chemical polishing were determined. The arithmetic average roughness Ra and the maximum height Ry were calculated as the surface roughness of the material, and the surface roughness, the glossiness, and the adhesion of the resin film were examined for the nickel plated material. As a result, the etching amount during chemical polishing was 3.90 μm, the etching rate was 1.30 μm / min, the arithmetic average roughness Ra of the base material after chemical polishing was 0.15 μm, and the maximum height Ry was 0.8. It was 99 μm. The arithmetic average roughness Ra of the nickel plating material was 0.07 μm, and the maximum height Ry was 0.43 μm. The glossiness is L.P. D. In 2.20, T.I. D. Was 2.17, and the difference in glossiness between these was 0.03. Moreover, the adhesiveness of the resin film was favorable.

[実施例7]
化学研磨の際の浴温を55℃とし、浸漬時間を6秒間とした以外は、実施例1と同様の方法により、ニッケルめっき材を作製し、化学研磨の際のエッチング量およびエッチング速度を求めるとともに、化学研磨後の基材の表面粗さとして算術平均粗さRaおよび最大高さRyを算出し、ニッケルめっき材について、表面粗さ、光沢度および樹脂フィルムの密着性を調べた。その結果、化学研磨の際のエッチング量は0.17μm、エッチング速度は1.73μm/分であり、化学研磨後の基材の算術平均粗さRaは0.04μm、最大高さRyは0.36μmであった。また、ニッケルめっき材の算術平均粗さRaは0.05μm、最大高さRyは0.25μmであった。また、光沢度は、L.D.では2.08、T.D.では2.02であり、これらの光沢度の差は0.06であった。また、樹脂フィルムの密着性は良好であった。
[Example 7]
A nickel plating material is prepared by the same method as in Example 1 except that the bath temperature during chemical polishing is 55 ° C. and the immersion time is 6 seconds, and the etching amount and etching rate during chemical polishing are obtained. At the same time, the arithmetic average roughness Ra and the maximum height Ry were calculated as the surface roughness of the base material after chemical polishing, and the surface roughness, the glossiness, and the adhesion of the resin film were examined for the nickel plating material. As a result, the etching amount during chemical polishing was 0.17 μm, the etching rate was 1.73 μm / min, the arithmetic average roughness Ra of the substrate after chemical polishing was 0.04 μm, and the maximum height Ry was 0.8. It was 36 μm. The arithmetic average roughness Ra of the nickel plating material was 0.05 μm, and the maximum height Ry was 0.25 μm. The glossiness is L.P. D. 2.08, T. D. Was 2.02, and the difference in glossiness between these was 0.06. Moreover, the adhesiveness of the resin film was favorable.

[実施例8]
化学研磨の際の浴温を55℃とした以外は、実施例1と同様の方法により、ニッケルめっき材を作製し、化学研磨の際のエッチング量およびエッチング速度を求めるとともに、化学研磨後の基材の表面粗さとして算術平均粗さRaおよび最大高さRyを算出し、ニッケルめっき材について、表面粗さ、光沢度および樹脂フィルムの密着性を調べた。その結果、化学研磨の際のエッチング量は0.35μm、エッチング速度は1.73μm/分であり、化学研磨後の基材の算術平均粗さRaは0.05μm、最大高さRyは0.34μmであった。また、ニッケルめっき材の算術平均粗さRaは0.03μm、最大高さRyは0.21μmであった。また、光沢度は、L.D.では2.28、T.D.では2.24であり、これらの光沢度の差は0.04であった。また、樹脂フィルムの密着性は良好であった。
[Example 8]
A nickel plating material was prepared in the same manner as in Example 1 except that the bath temperature during chemical polishing was set to 55 ° C., and the etching amount and etching rate during chemical polishing were determined. The arithmetic average roughness Ra and the maximum height Ry were calculated as the surface roughness of the material, and the surface roughness, the glossiness, and the adhesion of the resin film were examined for the nickel plated material. As a result, the etching amount at the time of chemical polishing is 0.35 μm, the etching rate is 1.73 μm / min, the arithmetic average roughness Ra of the substrate after chemical polishing is 0.05 μm, and the maximum height Ry is 0.8. It was 34 μm. The arithmetic average roughness Ra of the nickel plating material was 0.03 μm, and the maximum height Ry was 0.21 μm. The glossiness is L.P. D. 2.28, T. D. Was 2.24, and the difference in glossiness between these was 0.04. Moreover, the adhesiveness of the resin film was favorable.

[実施例9]
化学研磨の際の浴温を55℃とし、浸漬時間を60秒間とした以外は、実施例1と同様の方法により、ニッケルめっき材を作製し、化学研磨の際のエッチング量およびエッチング速度を求めるとともに、化学研磨後の基材の表面粗さとして算術平均粗さRaおよび最大高さRyを算出し、ニッケルめっき材について、表面粗さ、光沢度および樹脂フィルムの密着性を調べた。その結果、化学研磨の際のエッチング量は1.73μm、エッチング速度は1.73μm/分であり、化学研磨後の基材の算術平均粗さRaは0.08μm、最大高さRyは0.65μmであった。また、ニッケルめっき材の算術平均粗さRaは0.10μm、最大高さRyは0.50μmであった。また、光沢度は、L.D.では2.27、T.D.では2.25であり、これらの光沢度の差は0.02であった。また、樹脂フィルムの密着性は良好であった。
[Example 9]
A nickel plating material is prepared by the same method as in Example 1 except that the bath temperature during chemical polishing is 55 ° C. and the immersion time is 60 seconds, and the etching amount and etching rate during chemical polishing are obtained. At the same time, the arithmetic average roughness Ra and the maximum height Ry were calculated as the surface roughness of the base material after chemical polishing, and the surface roughness, the glossiness, and the adhesion of the resin film were examined for the nickel plating material. As a result, the etching amount during chemical polishing was 1.73 μm, the etching rate was 1.73 μm / min, the arithmetic average roughness Ra of the substrate after chemical polishing was 0.08 μm, and the maximum height Ry was 0.8. It was 65 μm. The arithmetic average roughness Ra of the nickel plating material was 0.10 μm, and the maximum height Ry was 0.50 μm. The glossiness is L.P. D. Then 2.27, T.I. D. Was 2.25, and the difference in glossiness between these was 0.02. Moreover, the adhesiveness of the resin film was favorable.

[実施例10]
化学研磨の際の浴温を55℃とし、浸漬時間を120秒間とした以外は、実施例1と同様の方法により、ニッケルめっき材を作製し、化学研磨の際のエッチング量およびエッチング速度を求めるとともに、化学研磨後の基材の表面粗さとして算術平均粗さRaおよび最大高さRyを算出し、ニッケルめっき材について、表面粗さ、光沢度および樹脂フィルムの密着性を調べた。その結果、化学研磨の際のエッチング量は3.46μm、エッチング速度は1.73μm/分であり、化学研磨後の基材の算術平均粗さRaは0.15μm、最大高さRyは0.70μmであった。また、ニッケルめっき材の算術平均粗さRaは0.14μm、最大高さRyは0.74μmであった。また、光沢度は、L.D.では2.21、T.D.では2.14であり、これらの光沢度の差は0.07であった。また、樹脂フィルムの密着性は良好であった。
[Example 10]
A nickel plating material is produced by the same method as in Example 1 except that the bath temperature during chemical polishing is 55 ° C. and the immersion time is 120 seconds, and the etching amount and etching rate during chemical polishing are obtained. At the same time, the arithmetic average roughness Ra and the maximum height Ry were calculated as the surface roughness of the base material after chemical polishing, and the surface roughness, the glossiness, and the adhesion of the resin film were examined for the nickel plating material. As a result, the etching amount during chemical polishing was 3.46 μm, the etching rate was 1.73 μm / min, the arithmetic average roughness Ra of the substrate after chemical polishing was 0.15 μm, and the maximum height Ry was 0.8. It was 70 μm. The arithmetic average roughness Ra of the nickel plating material was 0.14 μm, and the maximum height Ry was 0.74 μm. The glossiness is L.P. D. In 2.21, T.I. D. Was 2.14, and the difference in glossiness between them was 0.07. Moreover, the adhesiveness of the resin film was favorable.

[実施例11]
電気めっき時間を90秒間としてニッケルめっき皮膜の厚さを0.9μmとした以外は、実施例5と同様の方法により、ニッケルめっき材を作製し、化学研磨の際のエッチング量およびエッチング速度を求めるとともに、化学研磨後の基材の表面粗さとして算術平均粗さRaおよび最大高さRyを算出し、ニッケルめっき材について、表面粗さ、光沢度および樹脂フィルムの密着性を調べた。その結果、化学研磨の際のエッチング量は0.26μm、エッチング速度は1.30μm/分であり、化学研磨後の基材の算術平均粗さRaは0.05μm、最大高さRyは0.54μmであった。また、ニッケルめっき材の算術平均粗さRaは0.05μm、最大高さRyは0.44μmであった。また、光沢度は、L.D.では2.05、T.D.では2.00であり、これらの光沢度の差は0.05であった。また、樹脂フィルムの密着性は良好であった。
[Example 11]
A nickel plating material is prepared by the same method as in Example 5 except that the electroplating time is 90 seconds and the thickness of the nickel plating film is 0.9 μm, and the etching amount and the etching rate are obtained during chemical polishing. At the same time, the arithmetic average roughness Ra and the maximum height Ry were calculated as the surface roughness of the base material after chemical polishing, and the surface roughness, the glossiness, and the adhesion of the resin film were examined for the nickel plating material. As a result, the etching amount during chemical polishing was 0.26 μm, the etching rate was 1.30 μm / min, the arithmetic average roughness Ra of the substrate after chemical polishing was 0.05 μm, and the maximum height Ry was 0.2. It was 54 μm. Further, the arithmetic average roughness Ra of the nickel plating material was 0.05 μm, and the maximum height Ry was 0.44 μm. The glossiness is L.P. D. 2.05, T. D. Was 2.00, and the difference in glossiness between these was 0.05. Moreover, the adhesiveness of the resin film was favorable.

[比較例1]
化学研磨を行わなかった以外は、実施例5と同様の方法により、ニッケルめっき材を作製し、めっき前の基材の表面粗さとして算術平均粗さRaおよび最大高さRyを算出し、ニッケルめっき材について、表面粗さ、光沢度および樹脂フィルムの密着性を調べた。その結果、めっき前の基材の算術平均粗さRaは0.11μm、最大高さRyは0.88μmであった。また、ニッケルめっき材の算術平均粗さRaは0.17μm、最大高さRyは0.69μmであった。また、光沢度は、L.D.では0.69、T.D.では0.62であり、これらの光沢度の差は0.07であった。また、引張り試験によって樹脂フィルムが剥がれ、樹脂フィルムの密着性良好でなかった。
[Comparative Example 1]
A nickel plated material was prepared by the same method as in Example 5 except that chemical polishing was not performed, and the arithmetic average roughness Ra and the maximum height Ry were calculated as the surface roughness of the substrate before plating. The plating material was examined for surface roughness, glossiness and resin film adhesion. As a result, the arithmetic average roughness Ra of the base material before plating was 0.11 μm, and the maximum height Ry was 0.88 μm. Further, the arithmetic average roughness Ra of the nickel plating material was 0.17 μm, and the maximum height Ry was 0.69 μm. The glossiness is L.P. D. Then 0.69, T.I. D. Was 0.62, and the difference in glossiness between these was 0.07. Moreover, the resin film peeled off by the tensile test, and the adhesiveness of the resin film was not good.

[比較例2]
電気めっき時間を180秒間としてニッケルめっき皮膜の厚さを1.8μmとした以外は、比較例1と同様の方法により、ニッケルめっき材を作製し、めっき前の基材の表面粗さとして算術平均粗さRaおよび最大高さRyを算出し、ニッケルめっき材について、表面粗さ、光沢度および樹脂フィルムの密着性を調べた。その結果、めっき前の基材の算術平均粗さRaは0.11μm、最大高さRyは0.88μmであった。また、ニッケルめっき材の算術平均粗さRaは0.16μm、最大高さRyは0.74μmであった。また、光沢度は、L.D.では0.76、T.D.では0.70であり、これらの光沢度の差は0.06であった。また、樹脂フィルムの密着性は良好でなかった。
[Comparative Example 2]
A nickel plating material was prepared by the same method as in Comparative Example 1 except that the electroplating time was 180 seconds and the thickness of the nickel plating film was 1.8 μm, and the arithmetic average was calculated as the surface roughness of the substrate before plating. The roughness Ra and the maximum height Ry were calculated, and the surface roughness, the glossiness, and the adhesion of the resin film were examined for the nickel plating material. As a result, the arithmetic average roughness Ra of the base material before plating was 0.11 μm, and the maximum height Ry was 0.88 μm. The arithmetic average roughness Ra of the nickel plating material was 0.16 μm, and the maximum height Ry was 0.74 μm. The glossiness is L.P. D. In 0.76, T.I. D. Was 0.70, and the difference in glossiness between these was 0.06. Moreover, the adhesiveness of the resin film was not good.

[比較例3]
電気めっき時間を240秒間としてニッケルめっき皮膜の厚さを2.4μmとした以外は、比較例1と同様の方法により、ニッケルめっき材を作製し、めっき前の基材の表面粗さとして算術平均粗さRaおよび最大高さRyを算出し、ニッケルめっき材について、表面粗さ、光沢度および樹脂フィルムの密着性を調べた。その結果、めっき前の基材の算術平均粗さRaは0.11μm、最大高さRyは0.88μmであった。また、ニッケルめっき材の算術平均粗さRaは0.16μm、最大高さRyは0.65μmであった。また、光沢度は、L.D.では0.97、T.D.では0.95であり、これらの光沢度の差は0.02であった。また、樹脂フィルムの密着性は良好でなかった。
[Comparative Example 3]
A nickel plating material was prepared by the same method as in Comparative Example 1 except that the electroplating time was 240 seconds and the thickness of the nickel plating film was 2.4 μm. The arithmetic average was calculated as the surface roughness of the substrate before plating. The roughness Ra and the maximum height Ry were calculated, and the surface roughness, the glossiness, and the adhesion of the resin film were examined for the nickel plating material. As a result, the arithmetic average roughness Ra of the base material before plating was 0.11 μm, and the maximum height Ry was 0.88 μm. The arithmetic average roughness Ra of the nickel plating material was 0.16 μm, and the maximum height Ry was 0.65 μm. The glossiness is L.P. D. 0.97, T. D. Was 0.95, and the difference in glossiness between these was 0.02. Moreover, the adhesiveness of the resin film was not good.

これらの実施例1〜11および比較例1〜3のニッケルめっき材の製造条件および特性を表1および表2に示す。   Tables 1 and 2 show the production conditions and characteristics of the nickel plating materials of Examples 1 to 11 and Comparative Examples 1 to 3.

Figure 0006190104
Figure 0006190104

Figure 0006190104
Figure 0006190104

[実施例12]
電解脱脂前に基材のバフ研磨およびスキンパスを行った以外は、実施例11と同様の方法により、ニッケルめっき材を作製し、化学研磨の際のエッチング量およびエッチング速度を求めるとともに、化学研磨後の基材の表面粗さとして算術平均粗さRaおよび最大高さRyを算出し、ニッケルめっき材について、表面粗さ、光沢度および樹脂フィルムの密着性を調べた。
[Example 12]
A nickel plating material was prepared by the same method as in Example 11 except that the base material was buffed and skin-passed before electrolytic degreasing, and the etching amount and etching rate during chemical polishing were determined. The arithmetic average roughness Ra and the maximum height Ry were calculated as the surface roughness of the substrate, and the surface roughness, the glossiness, and the adhesiveness of the resin film were examined for the nickel plating material.

なお、バフ研磨は、円筒状のバフ(研磨輪)を基材に押し当てて行い、スキンパスは、スキンパス圧延装置(石川島播磨工業株式会社製の2段スキンパスミル)を用いて行った。   The buffing was performed by pressing a cylindrical buff (polishing wheel) against the substrate, and the skin pass was performed using a skin pass rolling device (two-stage skin pass mill manufactured by Ishikawajima Harima Kogyo Co., Ltd.).

その結果、化学研磨の際のエッチング量は0.26μm、エッチング速度は1.30μm/分であり、化学研磨後の基材の算術平均粗さRaは0.09μm、最大高さRyは0.61μmであった。また、ニッケルめっき材の算術平均粗さRaは0.03μm、最大高さRyは0.26μmであった。また、光沢度は、L.D.では2.22、T.D.では2.16であり、これらの光沢度の差は0.06であった。また、樹脂フィルムの密着性は良好であった。   As a result, the etching amount during chemical polishing was 0.26 μm, the etching rate was 1.30 μm / min, the arithmetic average roughness Ra of the base material after chemical polishing was 0.09 μm, and the maximum height Ry was 0.2. It was 61 μm. The arithmetic average roughness Ra of the nickel plating material was 0.03 μm, and the maximum height Ry was 0.26 μm. The glossiness is L.P. D. Then 2.22, T.A. D. Was 2.16, and the difference in glossiness between these was 0.06. Moreover, the adhesiveness of the resin film was favorable.

[実施例13]
化学研磨の際の浸漬時間を6秒間とし、電気めっき時間を120秒間としてニッケルめっき皮膜の厚さを1.2μmとした以外は、実施例12と同様の方法により、ニッケルめっき材を作製し、化学研磨の際のエッチング量およびエッチング速度を求めるとともに、化学研磨後の基材の表面粗さとして算術平均粗さRaおよび最大高さRyを算出し、ニッケルめっき材について、表面粗さ、光沢度および樹脂フィルムの密着性を調べた。その結果、化学研磨の際のエッチング量は0.13μm、エッチング速度は1.30μm/分であり、化学研磨後の基材の算術平均粗さRaは0.06μm、最大高さRyは0.43μmであった。また、ニッケルめっき材の算術平均粗さRaは0.02μm、最大高さRyは0.13μmであった。また、光沢度は、L.D.では2.24、T.D.では2.21であり、これらの光沢度の差は0.03であった。また、樹脂フィルムの密着性は良好であった。
[Example 13]
A nickel plating material was prepared by the same method as in Example 12, except that the immersion time during chemical polishing was 6 seconds, the electroplating time was 120 seconds, and the thickness of the nickel plating film was 1.2 μm. In addition to obtaining the etching amount and etching rate during chemical polishing, the arithmetic average roughness Ra and the maximum height Ry are calculated as the surface roughness of the base material after chemical polishing. And the adhesiveness of the resin film was investigated. As a result, the etching amount during chemical polishing was 0.13 μm, the etching rate was 1.30 μm / min, the arithmetic average roughness Ra of the substrate after chemical polishing was 0.06 μm, and the maximum height Ry was 0.2. It was 43 μm. The arithmetic average roughness Ra of the nickel plating material was 0.02 μm, and the maximum height Ry was 0.13 μm. The glossiness is L.P. D. 2.24, T. D. Was 2.21, and the difference in glossiness between these was 0.03. Moreover, the adhesiveness of the resin film was favorable.

[比較例4]
化学研磨を行わなかった以外は、実施例13と同様の方法により、ニッケルめっき材を作製し、めっき前の基材の表面粗さとして算術平均粗さRaおよび最大高さRyを算出し、ニッケルめっき材について、表面粗さ、光沢度および樹脂フィルムの密着性を調べた。その結果、めっき前の基材の算術平均粗さRaは0.08μm、最大高さRyは0.55μmであった。また、ニッケルめっき材の算術平均粗さRaは0.07μm、最大高さRyは0.62μmであった。また、光沢度は、L.D.では1.30、T.D.では1.18であり、これらの光沢度の差は0.12であった。また、樹脂フィルムの密着性は良好でなかった。
[Comparative Example 4]
A nickel plated material was prepared by the same method as in Example 13 except that chemical polishing was not performed, and the arithmetic average roughness Ra and the maximum height Ry were calculated as the surface roughness of the base material before plating. The plating material was examined for surface roughness, glossiness and resin film adhesion. As a result, the arithmetic average roughness Ra of the base material before plating was 0.08 μm, and the maximum height Ry was 0.55 μm. The arithmetic average roughness Ra of the nickel plating material was 0.07 μm, and the maximum height Ry was 0.62 μm. The glossiness is L.P. D. 1.30, T. D. Was 1.18, and the difference in glossiness was 0.12. Moreover, the adhesiveness of the resin film was not good.

[比較例5]
電気めっき時間を240秒間としてニッケルめっき皮膜の厚さを2.4μmとした以外は、比較例4と同様の方法により、ニッケルめっき材を作製し、めっき前の基材の表面粗さとして算術平均粗さRaおよび最大高さRyを算出し、ニッケルめっき材について、表面粗さ、光沢度および樹脂フィルムの密着性を調べた。その結果、めっき前の基材の算術平均粗さRaは0.08μm、最大高さRyは0.55μmであった。また、ニッケルめっき材の算術平均粗さRaは0.07μm、最大高さRyは0.54μmであった。また、光沢度は、L.D.では2.21、T.D.では2.20であり、これらの光沢度の差は0.01であった。また、樹脂フィルムの密着性は良好であった。
[Comparative Example 5]
A nickel plating material was prepared by the same method as in Comparative Example 4 except that the electroplating time was 240 seconds and the thickness of the nickel plating film was 2.4 μm. The arithmetic average was calculated as the surface roughness of the base material before plating. The roughness Ra and the maximum height Ry were calculated, and the surface roughness, the glossiness, and the adhesion of the resin film were examined for the nickel plating material. As a result, the arithmetic average roughness Ra of the base material before plating was 0.08 μm, and the maximum height Ry was 0.55 μm. The arithmetic average roughness Ra of the nickel plating material was 0.07 μm, and the maximum height Ry was 0.54 μm. The glossiness is L.P. D. In 2.21, T.I. D. And 2.20, and the difference in glossiness was 0.01. Moreover, the adhesiveness of the resin film was favorable.

これらの実施例12〜13および比較例4〜5のニッケルめっき材の製造条件および特性を表3および表4に示す。   Tables 3 and 4 show the production conditions and characteristics of the nickel plating materials of Examples 12 to 13 and Comparative Examples 4 to 5.

Figure 0006190104
Figure 0006190104

Figure 0006190104
Figure 0006190104

Claims (9)

銅または銅合金からなる基材上にニッケルめっきを行うことによりニッケルめっき材を製造する方法において、基材をペルオキシ硫酸塩と鉄水溶性塩を含む化学研磨剤に浸漬して基材の表面を化学研磨した後、ニッケルめっきを行って基材上に厚さ0.5〜2.0μmのニッケルめっき皮膜を形成することを特徴とする、ニッケルめっき材の製造方法。 In a method for producing a nickel plating material by performing nickel plating on a substrate made of copper or a copper alloy, the substrate surface is immersed in a chemical abrasive containing peroxysulfate and iron water-soluble salt. A method for producing a nickel plating material, characterized in that after chemical polishing, nickel plating is performed to form a nickel plating film having a thickness of 0.5 to 2.0 μm on a substrate. 前記鉄水溶性塩が過硫酸アンモニウム鉄であることを特徴とする、請求項1に記載のニッケルめっき材の製造方法。The said iron water-soluble salt is ammonium persulfate iron, The manufacturing method of the nickel plating material of Claim 1 characterized by the above-mentioned. 前記基板の表面の化学研磨において、前記基材の表面に対して垂直方向のエッチング量を0.10〜4.0μmにすることを特徴とする、請求項1または2に記載のニッケルめっき材の製造方法。 In the chemical polishing of the surface of the substrate, the etching amount in the direction perpendicular to the surface of the base material is set to 0.10 to 4.0 µm, The nickel plating material according to claim 1 or 2 , Production method. 前記化学研磨を行う前に前記基材のバフ研磨およびスキンパスの少なくとも一方を行うことを特徴とする、請求項1乃至3のいずれかに記載のニッケルめっき材の製造方法。 The method for producing a nickel-plated material according to any one of claims 1 to 3 , wherein at least one of buffing and skin pass of the base material is performed before the chemical polishing. 前記化学研磨後の基材の表面の算術平均粗さRaが0.03〜0.15μmであり、最大高さRyが0.21〜0.99μmであることを特徴とする、請求項1乃至のいずれかに記載のニッケルめっき材の製造方法。 The arithmetic average roughness Ra of the surface of the substrate after the chemical polishing is 0.03 to 0.15 μm, and the maximum height Ry is 0.21 to 0.99 μm. 4. The method for producing a nickel plating material according to any one of 4 above. 前記ニッケルめっきが、スルファミン酸ニッケルとサッカリン系1次光沢剤とアセチルアルコール系2次光沢剤を含有する水溶液からなるめっき液を使用するスルファミン酸光沢ニッケルめっき浴中において、めっき液温度40〜60℃、電流密度1〜10A/dmで電気めっきを行うことであることを特徴とする、請求項1乃至のいずれかに記載のニッケルめっき材の製造方法。 In the sulfamic acid bright nickel plating bath in which the nickel plating uses a plating solution comprising an aqueous solution containing nickel sulfamate, a saccharin primary brightener and an acetyl alcohol secondary brightener, a plating solution temperature of 40 to 60 ° C. , characterized in that by performing electroplating at a current density of 1 to 10 a / dm 2, the production method of the nickel-plated material according to any one of claims 1 to 5. 銅または銅合金の圧延板材からなる基材上に厚さ0.5〜2.0μmのニッケルめっき皮膜が形成され、基材の圧延方向の視感反射濃度と、圧延方向および板厚方向に対して垂直な方向の視感反射濃度が2.0以上であり、これらの視感反射濃度の差が0.1以下であることを特徴とする、ニッケルめっき材。 A nickel plating film having a thickness of 0.5 to 2.0 μm is formed on a substrate made of a rolled plate material of copper or copper alloy, and the luminous reflection density in the rolling direction of the substrate, the rolling direction and the plate thickness direction A nickel plating material, wherein a luminous reflection density in a vertical direction is 2.0 or more, and a difference between these luminous reflection densities is 0.1 or less. 前記ニッケルめっき材の表面の算術平均粗さRaが0.02〜0.14μmであり、最大高さRyが0.15〜0.74μmであることを特徴とする、請求項に記載のニッケルめっき材。 The nickel according to claim 7 , wherein the arithmetic average roughness Ra of the surface of the nickel plating material is 0.02 to 0.14 μm, and the maximum height Ry is 0.15 to 0.74 μm. Plating material. 前記ニッケルめっき皮膜の厚さが0.9〜1.2μmであることを特徴とする、請求項またはに記載のニッケルめっき材。 The nickel plating material according to claim 7 or 8 , wherein the nickel plating film has a thickness of 0.9 to 1.2 µm.
JP2012242032A 2012-11-01 2012-11-01 Nickel plating material and method for producing the same Active JP6190104B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012242032A JP6190104B2 (en) 2012-11-01 2012-11-01 Nickel plating material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012242032A JP6190104B2 (en) 2012-11-01 2012-11-01 Nickel plating material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2014091845A JP2014091845A (en) 2014-05-19
JP6190104B2 true JP6190104B2 (en) 2017-08-30

Family

ID=50936167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012242032A Active JP6190104B2 (en) 2012-11-01 2012-11-01 Nickel plating material and method for producing the same

Country Status (1)

Country Link
JP (1) JP6190104B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6532322B2 (en) * 2015-07-03 2019-06-19 Dowaメタルテック株式会社 Silver plating material and method for manufacturing the same
JP6990498B2 (en) * 2016-03-31 2022-01-12 Dowaメタルテック株式会社 Nickel plating material and its manufacturing method
JP6794723B2 (en) * 2016-09-02 2020-12-02 トヨタ自動車株式会社 Method of forming a metal film
CN110539238A (en) * 2019-08-21 2019-12-06 福建捷思金属科技发展有限公司 Copper plate oxidation nickel plating disorder treatment method
CN110373664A (en) * 2019-08-21 2019-10-25 福建捷思金属科技发展有限公司 A kind of copper sheet surface scratch restorative procedure
KR102281132B1 (en) * 2019-10-24 2021-07-26 일진머티리얼즈 주식회사 Electrolytic Nickel Foil for Thin Film-type Capacitor and Production Method of the Same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4929053B1 (en) * 1970-08-01 1974-08-01
JPS5551439B2 (en) * 1974-04-27 1980-12-24
JPS5615473B2 (en) * 1974-04-30 1981-04-10
JPS5319937A (en) * 1976-08-09 1978-02-23 Mitsubishi Gas Chemical Co Preetreatment method of lustrous plating after chemical polishing
JP4344714B2 (en) * 2005-04-19 2009-10-14 エルエス ケーブル リミテッド Low-roughness copper foil having high strength and method for producing the same
JP5117796B2 (en) * 2007-09-03 2013-01-16 メルテックス株式会社 Chemical abrasive and metal plating method using copper or copper alloy pre-plated using the chemical abrasive
DE102009016659A1 (en) * 2008-09-23 2010-06-24 Siemens Aktiengesellschaft Anchor group for monolayers of organic compounds on metal and component manufactured therefrom based on organic electronics
JP5869749B2 (en) * 2010-03-31 2016-02-24 Jx金属株式会社 Manufacturing method of bright nickel plating material, and manufacturing method of electronic component using bright nickel plating material

Also Published As

Publication number Publication date
JP2014091845A (en) 2014-05-19

Similar Documents

Publication Publication Date Title
JP6190104B2 (en) Nickel plating material and method for producing the same
US7789976B2 (en) Low surface roughness electrolytic copper foil and process for producing the same
JP5417458B2 (en) Copper foil for secondary battery negative electrode current collector
JP5684328B2 (en) Method for producing surface roughened copper plate and surface roughened copper plate
US20070108060A1 (en) Method of preparing copper plating layer having high adhesion to magnesium alloy using electroplating
JP5977488B2 (en) Method for producing multilayer plated aluminum or aluminum alloy foil
JP5077479B1 (en) Contacts and electronic parts using the same
TWI518210B (en) Electrolytic copper foil and method for manufacturing the same and surface-treated copper foil using the electrolytic copper foil
JP2008274417A (en) Laminated copper foil and method of manufacturing the same
KR102378297B1 (en) Electrodeposited copper foil, current collectors for negative electrode of lithium-ion secondary batteries and lithium-ion secondary batteries
JP4840546B2 (en) Contact manufacturing composition, contact and connector using the same
JP2016204719A (en) Silver plated material and method for producing the same
CN114555868B (en) Electrolytic foil and current collector for battery
JP2010236072A (en) Stacked copper foil and method for manufacturing the same
JP6193687B2 (en) Silver plating material and method for producing the same
JP2010238652A (en) Copper foil for lithium secondary battery, and manufacturing method thereof
JP2011099128A (en) Plated member and method for manufacturing the same
JP2009087561A (en) Copper foil for lithium secondary cell and its manufacturing method
JP6532323B2 (en) Silver plating material and method for manufacturing the same
JP6352087B2 (en) Surface-treated aluminum material and method for producing the same
CN109923714A (en) Secondary cell electrolytic copper foil and its production method with excellent bending resistance
JP5443790B2 (en) Method for producing nickel plating material
JP5503814B1 (en) Electrolytic copper foil and method for producing the same, negative electrode of lithium ion secondary battery, and lithium ion secondary battery
CN112323106A (en) Rapid silver plating process
JP6532322B2 (en) Silver plating material and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170804

R150 Certificate of patent or registration of utility model

Ref document number: 6190104

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250