JP6187946B2 - Rotating device 2 for power generator - Google Patents

Rotating device 2 for power generator Download PDF

Info

Publication number
JP6187946B2
JP6187946B2 JP2016017520A JP2016017520A JP6187946B2 JP 6187946 B2 JP6187946 B2 JP 6187946B2 JP 2016017520 A JP2016017520 A JP 2016017520A JP 2016017520 A JP2016017520 A JP 2016017520A JP 6187946 B2 JP6187946 B2 JP 6187946B2
Authority
JP
Japan
Prior art keywords
flywheel
rotation
electromotive force
weight
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016017520A
Other languages
Japanese (ja)
Other versions
JP2017127174A (en
Inventor
篤見 衛藤
篤見 衛藤
嗣人 山崎
嗣人 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ECO INFINITY CO., LTD.
Original Assignee
ECO INFINITY CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ECO INFINITY CO., LTD. filed Critical ECO INFINITY CO., LTD.
Priority to JP2016017520A priority Critical patent/JP6187946B2/en
Priority to PCT/JP2016/060979 priority patent/WO2016153077A1/en
Publication of JP2017127174A publication Critical patent/JP2017127174A/en
Application granted granted Critical
Publication of JP6187946B2 publication Critical patent/JP6187946B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、水力、風力、太陽光等の自然エネルギーを駆動源にした回転駆動装置により効率よく回転させて発電装置を発電させるための回転装置に関するものである。  The present invention relates to a rotating device for generating electric power by generating an electric power by efficiently rotating with a rotational driving device using natural energy such as hydropower, wind power, and sunlight as a driving source.

発電装置は、従来公知のものとして風力発電装置、蒸気力発電装置、水力発電装置、波力発電装置、太陽光発電装置など大掛かりな様々な発電装置が開発されている。
近年、地球温暖化問題が表面化し、二酸化炭素排出規制が叫ばれている。この対策とするクリーンエネルギー技術として、前記の太陽光電池、風力発電等が注目され開発され現在稼動しているが、コスト及びメンテナンス等の問題でなかなか普及していないのが現状である。
As power generation devices, various large-scale power generation devices such as wind power generation devices, steam power generation devices, hydroelectric power generation devices, wave power generation devices, and solar power generation devices have been developed.
In recent years, the issue of global warming has surfaced, and carbon dioxide emission regulations have been screamed. As a clean energy technology to cope with this, the above-mentioned solar cells, wind power generation and the like have been noticed and developed and are currently in operation, but the current situation is that they are not widely used due to problems such as cost and maintenance.

一般に、水力、風力などの自然エネルギー源を利用して発電装置により電気エネルギーに変換する場合は、水力発電装置、風力発電装置等の回転駆動装置により、発電装置を回転させる。In general, when a natural energy source such as hydropower or wind power is used to convert electric energy by a power generation device, the power generation device is rotated by a rotary drive device such as a hydropower generation device or a wind power generation device.

最近では、特許文献1〜特許文献4により紹介されているように、水力発電装置、風力発電装置等の回転駆動装置により回転する回転装置を介して発電機に接続するものが登場している。
この回転装置は、簡略化して図10に示すように、前記回転駆動装置に水平状態にした回転駆動軸100を接続し、この回転駆動軸100に真円鉛直型のリング状又は円盤状のフライホイール200をその円心200c部を接続固定し、フライホイール200にその円心200cからの半径線上に弾み錘りガイド300を例えば45度の等回転角度間隔位置A〜Hに放射状に配置し、弾み錘りガイド300にガイドロール付設の錘り又は永久磁石付設弾み錘り400をGnの範囲で摺動自在に装着し、これらの弾み錘り400をフライホイール200の回転で真円軌跡で偏心回転させる鉛直型の一重及び/又は二重のリング軌条500をフライホイール200と平行に固定配置したものである。
Recently, as introduced in Patent Documents 1 to 4, there has been an apparatus that is connected to a generator via a rotating device that is rotated by a rotary drive device such as a hydroelectric power generator or a wind power generator.
As shown in FIG. 10, the rotating device is simply connected to a rotating drive shaft 100 in a horizontal state, and the rotary drive shaft 100 is connected to the rotary drive shaft 100 in a ring-shaped or disk-shaped fly shape. The wheel 200 is fixedly connected to the circular center 200c, and the flywheel 200 is radially arranged on the radial line from the circular center 200c with the weight and weight guide 300 at, for example, 45 degrees equal rotation angle interval positions A to H. A weight provided with a guide roll or a weight provided with a permanent magnet 400 is slidably mounted in the range of Gn on the weight-weight guide 300, and these weight-weights 400 are eccentric with a perfect circle locus by the rotation of the flywheel 200. A vertical type single and / or double ring rail 500 to be rotated is fixedly arranged in parallel to the flywheel 200.

この回転装置の重要な機能は、弾み錘り400の重心の真円ガイド軌跡500Zを形成するリング軌条500は、円心500cを回転駆動軸100の軸心100c(フライホイール200の円心200cでもある)から水平に所定量Ln偏位させることにより弾み錘り400を真円軌跡で且つ回転駆動軸100の軸心100cに対して偏心回転させて回転駆動軸100に回転モーメントを付与し回転力を増大して発電機の発電効率を高めることにある。
更に回転装置は、弾み錘り400を永久磁石付設弾み錘り400にし、リング軌条500を永久磁石配列軌条にして、リング軌条500の永久磁石の磁力の反発による永久磁石付設弾み錘り400を浮動回転させることによって機械摩擦を最小限に抑え、永久磁石付設弾み錘り400の重力の殆どを回転モーメント発生に利用することが開示してある。
An important function of this rotating device is that the ring rail 500 that forms the true circular guide locus 500Z of the center of gravity of the elastic weight 400 has a circular center 500c that is connected to the axial center 100c of the rotational drive shaft 100 (even the central center 200c of the flywheel 200). By horizontally deviating by a predetermined amount Ln, the elastic weight 400 is eccentrically rotated with respect to the axis 100c of the rotational drive shaft 100 with a perfect circular locus, and a rotational moment is applied to the rotational drive shaft 100 to provide rotational force. To increase the power generation efficiency of the generator.
Further, the rotating device uses the elastic weight 400 as the permanent weight 400 with the permanent magnet, the ring rail 500 as the permanent magnet arrangement rail, and the floating weight 400 with the permanent magnet due to the repulsion of the magnetic force of the permanent magnet in the ring rail 500. It is disclosed that the mechanical friction is minimized by rotating, and most of the gravity of the elastic weight 400 with a permanent magnet is used for generating a rotational moment.

しかしながらこの特許文献1〜4に開示の回転装置は、いずれも次の問題がある。
つまりリング軌条500による弾み錘り400の真円軌跡において、弾み錘り400は、水平回転駆動軸100の軸心100cに対して偏心回転するため、水平回転駆動軸100を回転駆動し例えば図に向かって右回転方向(→正回転方向)に回転すると水平回転駆動軸100に掛かる+回転モーメントを付与する領域は、上昇領域X3〜X4の−の回転モーメントを超える下降回転領域X1〜X2内であり最大の+回転モーメントは回転角度位置Cであることは言うまでもない。
そして下降回転開始位置X1(上昇回転終了位置でもある)と上昇回転開始位置X2(下降回転終了位置でもある)では回転モーメントは発生しないニュートラル位置である。
而して、上昇回転領域X2〜X1の中で、領域X2〜X3内とX4〜X1内は、その何れも当該領域に弾み錘りが位置する間は、−の回転モーメントが発生する領域であり、水平回転駆動軸100の軸心100cに常に図の左回転方向への逆回転負荷が掛かりエネルギーロスを生じ減速状態となり回転変動を起こし安定しない。この領域を機械力学的に無くすることが従来からの課題であった。
However, all of the rotating devices disclosed in Patent Documents 1 to 4 have the following problems.
That is, in the true circular locus of the elastic weight 400 by the ring rail 500, the elastic weight 400 rotates eccentrically with respect to the axis 100c of the horizontal rotation driving shaft 100. The region to which the + rotation moment applied to the horizontal rotation drive shaft 100 when rotating in the right rotation direction (→ the normal rotation direction) is within the descending rotation regions X1 to X2 exceeding the minus rotation moment of the ascending regions X3 to X4. Needless to say, the largest + rotational moment is the rotational angular position C.
The descending rotation start position X1 (also the ascending rotation end position) and the ascending rotation start position X2 (also the descending rotation end position) are neutral positions where no rotational moment is generated.
Thus, in the ascending rotation regions X2 to X1, the regions X2 to X3 and X4 to X1 are regions where a negative rotational moment is generated while the elastic weight is located in the region. Yes, the shaft center 100c of the horizontal rotation drive shaft 100 is always subjected to a reverse rotation load in the left rotation direction in the drawing, causing an energy loss, resulting in a decelerating state, causing rotation fluctuations and being unstable. It has been a conventional problem to eliminate this region mechanically.

特開2010−35393号公報JP 2010-35393 A 特開2010068681号公報Japanese Patent Laying-Open No. 20130068681 特開2010−96170号公報JP 2010-96170 A 特許第5505749号公報Japanese Patent No. 5,505,749 特開2012−207653号公報JP 2012-207653 A 特開2012−207654号公報JP 2012-207654 A

前記領域X2〜X3内とX4〜X1の−回転モーメント発生領域を無くしようとして従来は、リング軌条を卵形にした発明が特許文献5にて紹介され、またリング軌条を半縦楕円形と半横楕円形を合わせた発明が特許文献6にて紹介されている。しかしこの両者の発明は、縦型(鉛直型)で左右一対の複雑な卵形リング軌条や縦・横半楕円形リング軌条の為、共に形状設計及び製作が極めて困難であると共に、弾み錘りの回転軌跡が真円でないため回転駆動軸100にかかる軸力が不均一で異音及び振動が発生し、円滑な回転速度の増速が望めなかった。  In the past, an invention in which the ring rail was formed into an oval shape was introduced in Patent Document 5 in an attempt to eliminate the -rotation moment generation region in the regions X2 to X3 and X4 to X1. Patent Document 6 introduces an invention that combines horizontal ellipses. However, both of these inventions are vertical (vertical) and a pair of left and right complex egg-shaped ring rails and vertical and horizontal semi-elliptical ring rails, so that it is very difficult to design and manufacture both, Since the rotation trajectory is not a perfect circle, the axial force applied to the rotary drive shaft 100 is non-uniform, abnormal noise and vibration are generated, and a smooth increase in the rotational speed cannot be expected.

本発明は、機械力学的構成と電気的エネルギー構成の良機能をマッチングしてハイブリット化し、弾み錘りの重心の安定した真円回転軌跡を維持しながらも、前記したニュートラル位置とされていた前記下降開始位置X1と上昇開始位置X2、及び前記領域X2〜X3内とX4〜X1において、後述の電気パルス型駆動・発電機構により、磁力による助力を与えて回転駆動軸100に+回転モーメントを付与すると共に起電力を効率よく発生させて集電蓄電し、これにより回転駆動軸100の全回転領域にて+回転モーメントを付与することが可能になり、しかも弾み錘りの回転抵抗を大幅に低減し、前記回転駆動軸にかかる軸力の増大と分布を改善し、しかも回転駆動軸100と弾み錘り400を除く他の構成部を軽量金属や樹脂にて形成して、装置全体を軽量コンパクト化してその利用範囲を業務用から一般家庭用までに大幅に拡張する回転装置を提供するものである。  The present invention matched and hybridized good functions of mechanical mechanical structure and electrical energy structure, and maintained the above-mentioned neutral position while maintaining a stable circular rotation locus of the center of gravity of the elastic weight. At the descending start position X1 and the ascending start position X2, and within the regions X2 to X3 and X4 to X1, an electric pulse type drive / power generation mechanism described later gives assistance by magnetic force to give a rotational moment to the rotary drive shaft 100. At the same time, the electromotive force is efficiently generated and collected and stored, so that a + rotation moment can be applied to the entire rotation region of the rotary drive shaft 100, and the rotational resistance of the spring weight is greatly reduced. In addition, the increase and distribution of the axial force applied to the rotary drive shaft are improved, and the other components excluding the rotary drive shaft 100 and the elastic weight 400 are formed of lightweight metal or resin. Te, there is provided a rotary device for significantly expand the application range by weight compact the entire apparatus from commercial to general household.

上記課題を満足させる本発明の回転装置における主な技術構成は、各関係図に示すように次の(1)の通りである。
(1)、水平状態にした回転駆動軸100の胴部に真円のフライホイール200の円心部を接続し、前記回転駆動軸100又は前記フライホイール200に初期の回転駆動装置を接続し、前記フライホイール200の半径線上に弾み錘りガイド300を等回転角度間隔で配置し、前記弾み錘りガイド300に前記弾み錘り400を摺動自在に装着し、これらの弾み錘り400の重心を前記フライホイール200の回転でフライホイール200の円心200cに対して偏心した真円の回転軌跡500Zで回転させる鉛直型のリング軌条500を前記フライホイール200と平行に固定配置した回転装置において、
前記フライホイール200に所定の等回転角度間隔で永久磁石600を配列し、前記リング軌条500における弾み錘り400の重心の偏心回転軌跡500Zであってフライホイール200の円心200cに対して弾み錘り400の上昇回転案内開始位置X2の点対称位置X4から、上昇回転終了位置X1までの弾み錘り回転角度域X4〜X1と同一の回転角度域Z4〜Z1に電磁石コイル700を前記永久磁石600に反発又は吸引磁極関係にして配置し、前記電磁石コイル700に対して永久磁石600が対面した際に電気パルスをON−OFFし且つこの電気パルスOFF時に逆起電力の鋭いスパイク電圧を発生させる磁気検知駆動電源/逆起電力スイッチング回路と、磁気検知駆動電源/逆起電力スイッチング回路に駆動電力を供給する駆動電源901と、電磁石コイル700からの逆起電力を所定時間又はフライホイール200の回転角度単位で集電蓄電し放電するコンデンサースイッチング回路CNと、コンデンサースイッチング回路CNからの放電を充電する逆起電力入力電源902とにより構成してなる電気パルス型駆動・発電機構を備えたことを特徴とする発電用の回転装置。
The main technical configuration of the rotating device of the present invention that satisfies the above-mentioned problems is as follows (1) as shown in each relational diagram.
(1) connecting the center of the flywheel 200 to the trunk of the rotary drive shaft 100 in a horizontal state, and connecting the initial rotary drive device to the rotary drive shaft 100 or the flywheel 200; Ballistic weight guides 300 are arranged on the radial line of the flywheel 200 at equal rotation angle intervals, and the ballistic weights 400 are slidably mounted on the ballistic weight guides 300. In a rotating device in which a vertical ring rail 500 is fixedly arranged in parallel with the flywheel 200, by rotating the flywheel 200 on a true circular rotation locus 500Z eccentric with respect to the center 200c of the flywheel 200 by the rotation of the flywheel 200,
Permanent magnets 600 are arranged on the flywheel 200 at predetermined equal rotation angle intervals, and an eccentric rotation locus 500Z of the center of gravity of the elastic weight 400 in the ring rail 500, and the elastic weight with respect to the circular center 200c of the flywheel 200. The permanent magnet 600 has the electromagnetic coil 700 placed in the same rotation angle range Z4 to Z1 as the elastic weight rotation angle range X4 to X1 from the point-symmetrical position X4 of the rising rotation guide start position X2 to the rising rotation end position X1. Are arranged in a repulsive or attractive magnetic pole relationship, and when the permanent magnet 600 faces the electromagnet coil 700, the electric pulse is turned on and off, and a sharp spike voltage of the back electromotive force is generated when the electric pulse is turned off. Supply drive power to detection drive power supply / back electromotive force switching circuit and magnetic detection drive power supply / back electromotive force switching circuit Drive power source 901, a capacitor switching circuit CN that collects and stores back electromotive force from the electromagnetic coil 700 for a predetermined time or in units of rotation angle of the flywheel 200, and back electromotive force that charges the discharge from the capacitor switching circuit CN A rotating device for power generation, comprising an electric pulse type drive / power generation mechanism constituted by a power input power source 902.

本発明の発電装置用の回転装置は、前述課題に記載したように、機械力学的構成と電気的エネルギー構成の良機能をマッチングしてハイブリット化し、弾み錘り400の重心の安定した真円回転軌跡500Zを維持しながらも、前記したフライホイール200の永久磁石600の回転角度域Z4〜Z1において、前記電気パルス型駆動・発電機構により、フライホイール200の回転方向に磁力による吸引又は反発の助力を与えて弾み錘り回転角度域X4〜X1における弾み錘り400を引き上げて回転駆動軸100に+回転モーメントを付与すると共に電磁石コイル700に永久磁石600通過による起電力を発生させてこれをそのまま又は後述するコンデンサースイッチング回路CNにより所定時間又はフライホイール200の回転角度単位で集電蓄電しながら逆起電力入力電源902に放電し充電することを繰り返す。
これにより回転駆動軸100の全回転領域にて+回転モーメントを付与すると共に、回転駆動軸100の回転を所定速度まで漸増して以降に発電する。つまり電気パルス型駆動・発電機構でフライホイール200を回転させながらそれに必要な電源を超える発電が効率よくえられる。しかも、前記回転駆動軸100にかかる軸力(+回転モーメント)の増大と分布が改善される。また回転駆動軸100と弾み錘り400を除く他の構成部を軽量金属や樹脂にて形成して、装置全体をより軽量コンパクト化してその発電効率を高めて、利用範囲を業務用から一般家庭用までに大幅に拡張する等の優れた効果を呈する。
As described in the above-mentioned subject, the rotating device for the power generator of the present invention is hybridized by matching the good functions of the mechanical mechanical configuration and the electrical energy configuration, and the stable circular rotation of the center of gravity of the elastic weight 400 is stable. While maintaining the trajectory 500Z, in the rotation angle range Z4 to Z1 of the permanent magnet 600 of the flywheel 200 described above, the electric pulse type drive / power generation mechanism assists in attraction or repulsion by magnetic force in the rotation direction of the flywheel 200. To give the rotational drive shaft 100 a + rotation moment and generate an electromotive force by passing through the permanent magnet 600 in the electromagnet coil 700 as it is. Alternatively, a predetermined time or a rotation angle of the flywheel 200 by a capacitor switching circuit CN described later Position in while power storage collector and discharged to the back electromotive force input power 902 repeats to charge.
As a result, a + rotation moment is applied in the entire rotation region of the rotation drive shaft 100, and the rotation of the rotation drive shaft 100 is gradually increased to a predetermined speed, and then power is generated. In other words, power generation exceeding the power source necessary for the flywheel 200 can be efficiently obtained while the flywheel 200 is rotated by the electric pulse type drive / power generation mechanism. In addition, the increase and distribution of the axial force (+ rotational moment) applied to the rotary drive shaft 100 is improved. In addition, the other components excluding the rotary drive shaft 100 and the elastic weight 400 are made of lightweight metal or resin, the entire device is made lighter and more compact, and its power generation efficiency is increased. It exhibits excellent effects such as a significant expansion before use.

<本発明の構成の主な特徴と作用効果の要約>
A.偏心回転機構の基本効果
◎ 磁力ガイドによる ⇒ 機械摩擦軽減
◎ 弾み錘り400の重力による ⇒ 回転アシスト
◎ 弾み錘り400の回転力による ⇒ 遠心力、スピード
B.弾み錘り400の偏心回転運動の効果
◎ 回転モーメント差による自走回転運動
◎ 電磁コイル700の電力入力駆動範囲より大きい起電力の出力
◎ エネルギー保存則は破らず
C.起電力の取り方による効果
◎ パルス型駆動・発電により磁気抵抗を排除
◎ 駆動電力入力より広範囲の起電石コイル700を配置
◎ 後述例のコンデンサースイッチング回路CNにより所定時間又はフライホイール 200の回転角度単位で集電蓄電しながら逆起電力入力電源902に放電して充電す る為、従来の偏心回転式の回転装置よりも更に高く安定した発電効率が得られる。
<Summary of main features and effects of the configuration of the present invention>
A. Basic effect of eccentric rotation mechanism ◎ By magnetic force guide ⇒ Reduced mechanical friction ◎ By gravity of bounce weight 400 ⇒ Rotation assist ◎ By rotation force of bounce weight 400 ⇒ Centrifugal force, speed B. Effect of eccentric rotational motion of spring weight 400 ◎ Self-running rotational motion due to difference in rotational moment ◎ Output of electromotive force larger than power input drive range of electromagnetic coil 700 ◎ Energy conservation law is not violated. Effect of how to take electromotive force ◎ Eliminate magnetic resistance by pulse-type driving and power generation ◎ Arrange a wide range of electromotive stone coil 700 from driving power input ◎ Predetermined time or unit of rotation angle of flywheel 200 by capacitor switching circuit CN of example described later Therefore, since the counter electromotive force input power source 902 is discharged and charged while collecting and storing electricity, the power generation efficiency is higher and more stable than the conventional eccentric rotating type rotating device.

<以上の結果次の副次効果を呈する>
1.CO削減対策
既存のあらゆる回転式発電機構の入出力効率アップ ハイブリッドカーエンジンへの 応用
2.地域需要
走行距離の飛躍的改善 家庭用ポータブル発電機から緊急時、過疎地用発電設備
3.環境保全
リサイクル資源の有効利用(バッテリーの再生利用)
<The above results show the following secondary effects>
1. CO 2 reduction measures Increased input / output efficiency of all existing rotary power generation systems Application to hybrid car engines Regional demand Dramatic improvement in mileage Power generation facilities for depopulated areas in the event of emergency from portable portable generators for home use Environmental conservation Effective use of recycled resources (battery recycling)

本発明における実施例の基本装置構成を示すもので図4に示す矢視A−Eから見た縦断面である。FIG. 5 shows a basic device configuration of an embodiment of the present invention, and is a longitudinal section viewed from an arrow AE shown in FIG. 4. 図1に示す矢視A−Aからみた側断面説明図に、電気パルス型駆動・発電機構を加えた説明図であり、電気パルス型駆動・発電機構はフライホイール200の永久磁石600の配置回転角度と同じ配置角度で3個の電磁石コイル700を設けて3個同時に永久磁石600の到来検知と電気パルス発信、逆起電力蓄電等を制御するタイプである。It is explanatory drawing which added the electric pulse type drive and electric power generation mechanism to the side cross-section explanatory drawing seen from arrow AA shown in FIG. 1, and an electric pulse type drive and electric power generation mechanism is arrangement | positioning rotation of the permanent magnet 600 of the flywheel 200 This is a type in which three electromagnet coils 700 are provided at the same arrangement angle as the angle and the arrival detection of the permanent magnet 600, electric pulse transmission, back electromotive force storage, and the like are controlled at the same time. 図1に示す矢視A−Aからみた側断面説明図に、電気パルス型駆動・発電機構を加えた説明図であり、電気パルス型駆動・発電機構はフライホイール200の永久磁石600の配置回転角度内の配置角度で電磁石コイル700を設けて上流側から順に永久磁石600の到来検知と電気パルス発信、逆起電力蓄電等を制御するタイプである。It is explanatory drawing which added the electric pulse type drive and electric power generation mechanism to the side cross-section explanatory drawing seen from arrow AA shown in FIG. 1, and an electric pulse type drive and electric power generation mechanism is arrangement | positioning rotation of the permanent magnet 600 of the flywheel 200 This is a type in which the electromagnet coil 700 is provided at an arrangement angle within the angle and arrival detection of the permanent magnet 600, electric pulse transmission, back electromotive force storage, and the like are controlled in order from the upstream side. 図1〜図3に記載の実施例において、フライホイール200と弾み錘りガイド300と、リング軌条500と弾み錘り400等の配置関係を示し、これに基ずいて弾み錘りガイド300による回転駆動軸100に付与する回転モーメントの発生域と、電気パルス型駆動・発電機構の電磁石コイルの配置領域を表示した側面説明図である。In the embodiment shown in FIG. 1 to FIG. 3, the arrangement relation of the flywheel 200 and the elastic weight guide 300, the ring rail 500 and the elastic weight 400, etc. is shown, and the rotation by the elastic weight guide 300 is based on this. It is side surface explanatory drawing which displayed the generation | occurrence | production area | region of the rotational moment provided to the drive shaft 100, and the arrangement | positioning area | region of the electromagnet coil of an electric pulse type drive and electric power generation mechanism. 電気パルス型駆動・発電機構の一例回路において具体的に示す説明図である。It is explanatory drawing shown concretely in an example circuit of an electric pulse type drive and electric power generation mechanism. 電磁石コイル700への入力電気パルスを、(2)に起電力の波形を示す。An input electric pulse to the electromagnet coil 700 and an electromotive force waveform are shown in (2). 電磁石コイル700に電源供給する駆動電源901と逆起電力入力電源902の発電による電圧変化の検証を検証1と検証2に示す。Verification of voltage change due to power generation by the driving power source 901 and the back electromotive force input power source 902 for supplying power to the electromagnet coil 700 is shown in verifications 1 and 2. 回転モーメント算出に必要なフライホイール200の回転角度で、回転と共に変化するフライホイール200の中心200cから弾み錘り400までの距離:Sについての説明図である。It is explanatory drawing about distance: S from the center 200c of the flywheel 200 which changes with rotation with the rotation angle of the flywheel 200 required for rotational moment calculation to the elastic weight 400. FIG. 駆動電源/逆起電力スイッチング回路の他の例を示す説明図である。It is explanatory drawing which shows the other example of a drive power supply / back electromotive force switching circuit. 従来装置の概略側面と問題を提示する説明図である。It is explanatory drawing which shows the schematic side surface and problem of a conventional apparatus.

発明を実施するための形態を実施例により詳細に説明する。
1.発電用の発電装置用の回転装置例の構成(本例の本体は特許第5505749号公報に記載の装置を適用している)
本発明の発電装置用の回転装置例の基本的なハード構成を図1〜図3に示す。
図1〜図3において、本例の回転装置は、初期駆動用の回転駆動装置101に水平状態にした回転駆動軸100の一方を接続し、この回転駆動軸100の他方に発電装置102を接続し、回転駆動軸100の中央部には、1ユニットの弾み錘り偏心回転機構を配置してある。
前記初期駆動用の回転駆動装置101はフライホイール200の側面に離間可能にしたものであってもよい。本発明においてはこの初期駆動用の回転駆動装置101は、電気パルス型駆動・発電機構に電源を入れた後、フライホイール200を最初に回転させるもので、極端には、フライホイール200を手動レバー又はバネのような起動機構(装置)等で回転させるようにすれば不要である。フライホイール200の回転を停止するには電気パルス型駆動・発電機構の電源を切ればよい。
The mode for carrying out the invention will be described in detail by way of examples.
1. Configuration of a rotating device example for a power generating device for power generation (the main body of this example applies the device described in Japanese Patent No. 550549)
A basic hardware configuration of a rotating device example for a power generator of the present invention is shown in FIGS.
1 to 3, in the rotating device of this example, one of the rotating drive shafts 100 in a horizontal state is connected to the rotating drive device 101 for initial driving, and the power generating device 102 is connected to the other of the rotating drive shafts 100. At the center of the rotary drive shaft 100, one unit of the weight-weight eccentric rotation mechanism is arranged.
The initial driving rotary drive device 101 may be separated from the side surface of the flywheel 200. In the present invention, the rotary drive device 101 for initial driving is to first rotate the flywheel 200 after turning on the electric pulse type drive / power generation mechanism. Alternatively, it is not necessary if it is rotated by an activation mechanism (device) such as a spring. To stop the rotation of the flywheel 200, the electric pulse type drive / power generation mechanism may be turned off.

上記弾み錘り偏心回転機構は、回転駆動軸100に同心関係で弾み弾み錘りガイド300を介して円心200c部を接続固定して矢印Yの回転方向に回転する真円鉛直型の円盤又はリング状のフライホイール200と、フライホイール200の両側近傍に平行に固定配置した一対の内外二重リング式のリング軌条500と、弾み弾み錘りガイド300にGnの範囲で移動自在に装着した永久磁石付設の弾み錘り400とからなる。  The above-mentioned elastic weight eccentric rotation mechanism is a perfect circular vertical disk rotating in the rotational direction of arrow Y by connecting and fixing the circular center 200c portion via the elastic spring weight guide 300 concentrically with the rotational drive shaft 100 or A ring-shaped flywheel 200, a pair of inner and outer double ring-type ring rails 500 fixedly arranged in parallel in the vicinity of both sides of the flywheel 200, and a perpetual spring weight guide 300 permanently mounted in the range of Gn. It consists of a resilient weight 400 with a magnet.

前記弾み錘りガイド300は、フライホイール200の同一直径線上で一対を45度の等回転角度間隔位置(図3に示すA〜H)に放射状に配置する。
前記リング軌条500は、円心を回転駆動軸100の軸心100cから水平直径線上HLで所定量Lnを偏位させて、横断面コ型で内外周二重リング501,502に各々永久磁石501,502を円周配列してある。
The elastic weight guides 300 are radially arranged on the same diameter line of the flywheel 200 at equal rotation angle intervals of 45 degrees (A to H shown in FIG. 3).
The ring rail 500 has a circular center deviated from the shaft center 100c of the rotary drive shaft 100 by a predetermined amount Ln on the horizontal diameter line HL, and has a U-shaped cross section with permanent magnets 501 on the inner and outer double rings 501 and 502, respectively. 502 are arranged circumferentially.

永久磁石付設し弾み錘り400は、コ型枠の内外側に付設した永久磁石401、402の各々をリング軌条500の永久磁石501,502の外側に反発磁極関係で接近配置し、回転駆動軸100の回転駆動によりフライホイール200と弾み錘りガイド300を介して非接触の浮遊状態でガイドされフライホイール200の軸芯に対して偏心回転する。A permanent weight 400 is provided with a permanent weight 400 in which permanent magnets 401 and 402 provided on the inner and outer sides of the U-shaped frame are arranged close to each other on the outer side of the permanent magnets 501 and 502 of the ring rail 500 in a repulsive magnetic pole relationship. By being driven to rotate 100, it is guided in a non-contact floating state via the flywheel 200 and the spring weight guide 300, and rotates eccentrically with respect to the axis of the flywheel 200.

<+回転モーメント発生領域X1〜X2と−回転モーメント発生領域X2〜X1>
図4において、前記回転装置例の基本的なハード構成により、永久磁石付設し弾み錘り400を矢印Y方向に偏心回転させると+の回転モーメント発生領域X1〜X2と−の回転モーメント発生領域X2〜X1が生じ、それぞれの範囲が異なり、X1〜X2〈X2〜X1となる。
また、−の回転モーメント発生領域X2〜X1のなかで前記X3〜X4の間は、−の回転モーメントが発生するが+の回転モーメント発生領域X1〜X2が大きいため回転駆動軸100には+の回転モーメントが作用し自走回転能力範囲となる。これに対してX2〜X3の間とX4〜X1の間は何れも−の回転モーメント発生域のため、本発明においては少なくとも、X4〜X1及び/又はX2〜X3の間に相当するフライホイール200の回転角度範囲Z4〜Z1及び/又はZ2〜Z3の間を前記電気パルス型駆動・発電機構による必要駆動入力範囲とするものである。
<+ Rotation Moment Generation Areas X1-X2 and -Rotation Moment Generation Areas X2-X1>
In FIG. 4, when the elastic weight 400 provided with a permanent magnet is eccentrically rotated in the direction of the arrow Y by the basic hardware configuration of the rotating device example, + rotational moment generation regions X1 to X2 and −rotational moment generation region X2 ~ X1 occurs, the respective ranges are different, and X1 to X2 <X2 to X1.
Further, a negative rotation moment is generated between the X3 and X4 in the negative rotation moment generation region X2 to X1, but the positive rotation moment generation region X1 to X2 is large. Rotation moment is applied and the range of self-propelled rotation capability is reached. On the other hand, between X2 and X3 and between X4 and X1 is a negative rotation moment generation region, in the present invention, at least the flywheel 200 corresponding to between X4 to X1 and / or X2 to X3. The rotation angle range Z4 to Z1 and / or Z2 to Z3 is set as a necessary drive input range by the electric pulse type drive / power generation mechanism.

2.電気パルス型駆動・発電機構の構成
図2、図3、図5に電気パルス型駆動・発電機構の構成の概略を示す。
本例の電気パルス型駆動・発電機構は、駆動電源/逆起電力スイッチング回路を備え、フライホイール200の永久磁石600の配置回転角度と同じ配置角度で複数個の電磁石コイル700を設けてこれらに駆動電源/逆起電力スイッチング回路により同時に永久磁石600検知による電気パルス発信等を制御するタイプである。
図2において、前記フライホイール200の外周面に、永久磁石600を30度の等回転角度間隔で固定配置する。
この永久磁石600の回転領域において、前記リング軌条500における弾み錘り400の上昇回転案内の開始位置X2の点対称位置X4から上昇回転終了位置X1(下降開始位置でもある)までの弾み錘りの重心の偏心回転域X4〜X1に相当するフライホイール200の永久磁石600の回転角度領域Z4〜Z1に近接して任意の円弧角度間隔で電磁石コイル700を、前記永久磁石600に反発磁極関係又は吸引磁極関係にして配置する。電磁石コイル700は、フライホイール助力駆動用の電磁石コイルである。
2. Configuration of Electric Pulse Type Drive / Power Generation Mechanism FIGS. 2, 3, and 5 schematically show the configuration of the electric pulse type drive / power generation mechanism.
The electric pulse type drive / power generation mechanism of this example includes a drive power source / back electromotive force switching circuit, and a plurality of electromagnet coils 700 are provided at the same arrangement angle as the arrangement rotation angle of the permanent magnet 600 of the flywheel 200. It is a type that controls the electric pulse transmission by the permanent magnet 600 detection at the same time by the driving power source / back electromotive force switching circuit.
In FIG. 2, permanent magnets 600 are fixedly arranged on the outer peripheral surface of the flywheel 200 at equal rotation angle intervals of 30 degrees.
In the rotation region of the permanent magnet 600, the amount of the elastic weight from the point symmetry position X4 of the upward rotation guide start position X2 of the elastic weight 400 in the ring rail 500 to the upward rotation end position X1 (which is also the downward start position). The electromagnetic coil 700 is placed at an arbitrary arc angle interval in the vicinity of the rotation angle region Z4 to Z1 of the permanent magnet 600 of the flywheel 200 corresponding to the eccentric rotation region X4 to X1 of the center of gravity. Arrange them in a magnetic pole relationship. The electromagnet coil 700 is an electromagnet coil for flywheel assist drive.

この駆動用の電磁石コイル700は、前部に永久磁石600の到来を検知する磁気検出コイルC1を付設し、更に個々に磁気検知および駆動電源/逆起電力スイッチング回路を有する。
以下駆動電源/逆起電力スイッチング回路を単にスイッチング回路と言う。
スイッチング回路は、図2〜図3及び図5に一例の回路を示すように駆動電力を供給する駆動電源901と、駆動用の電磁石コイル700からの逆起電力を蓄電する逆起電力入力電源902に接続してある。
磁気検出コイルC1は本例に限らず、適宜なホトセンサー、ホール素子、トランスミッター、機械的リミッター等を電磁石コイル700の前部に或いは、永久磁石600の回転走行路に近接して設けてもよい。また回転駆動軸100に電気的、光学的、機械的な回転角度検出器を設けて永久磁石600が電磁石コイルに到達する回転角度間隔毎に検知信号を発信させるようにしてもよい。
The driving electromagnet coil 700 is provided with a magnetic detection coil C1 for detecting the arrival of the permanent magnet 600 at the front, and further includes magnetic detection and a driving power source / back electromotive force switching circuit.
Hereinafter, the driving power source / back electromotive force switching circuit is simply referred to as a switching circuit.
The switching circuit includes a driving power source 901 that supplies driving power and a back electromotive force input power source 902 that stores back electromotive force from the driving electromagnet coil 700, as shown in FIG. 2 to FIG. 3 and FIG. Is connected to.
The magnetic detection coil C1 is not limited to this example, and an appropriate photo sensor, Hall element, transmitter, mechanical limiter, or the like may be provided in the front of the electromagnet coil 700 or close to the rotating travel path of the permanent magnet 600. . Further, an electrical, optical, and mechanical rotation angle detector may be provided on the rotation drive shaft 100 so that a detection signal is transmitted at every rotation angle interval at which the permanent magnet 600 reaches the electromagnet coil.

本例の駆動用の電磁石コイル700は、前記Z4〜Z1領域で複数個例えば3個配置し、位置Z4からZ1にかけて漸減する−回転モーメントに応じて磁束密度をZ4側から順に小さく設計して3個の永久磁石600に同時に電気パルス発信ONして反発回転させ電気パルス発信OFFによりスパイク電圧発信を可能にしてある。このスパイク電圧発信は、永久磁石600の通過により数十倍に倍加される。
前記逆起電力入力電源902は電磁石コイルからの前記スパイク電圧を蓄電する。この蓄電は駆動電源901及び逆起電力入力電源902を鉛電池の逆起電力入力電源にした際、鉛電池の逆起電力入力電源の再生効果があることは検証されている。
A plurality of, for example, three electromagnet coils 700 for driving in this example are arranged in the Z4 to Z1 region, and gradually decrease from the position Z4 to Z1. The magnetic flux density is designed to be reduced in order from the Z4 side according to the rotational moment. Electric pulse transmission is simultaneously turned on and repelled by the permanent magnets 600, and spike voltage transmission is enabled by turning off the electric pulse transmission. This spike voltage transmission is doubled several tens of times by the passage of the permanent magnet 600.
The back electromotive force input power source 902 stores the spike voltage from the electromagnetic coil. It has been verified that this power storage has a regeneration effect of the back electromotive force input power source of the lead battery when the drive power source 901 and the back electromotive force input power source 902 are used as the back electromotive force input power source of the lead battery.

図5において、駆動用の電磁石コイル700単位に設けたスイッチング回路は、次のa)〜f)の制御等を行う。
1)、図5の(1)に示すように、駆動用電源901に出力側の逆起電力入力電源 902を接続して、前記初期駆動手段により起動する。起動後は、ステップ2 )〜6)が繰り返し、パルス駆動による回転が継続する。
2)、図5の(2)に示すように、永久磁石600が磁気検知用コイルを通過する ときに、電磁誘導によって矢印αのようにコイルに微弱電圧が生じ
3)、駆動電源スイッチングトランジスタ803が矢印βに示すようにONになり 、その結果、駆動電源901により、電磁石コイル700に矢印γに示すよう に電気パルス通電して、当該電磁石コイル700に対面通過する永久磁石60 0と相対する極と同極を生じさせて、永久磁石600を反発力で離間させフラ イホイール200を回転方向に動かす。
(電磁石コイル700と駆動電源901及び出力の極性を反対にすることによ り、反発力を吸引力(または反発と吸引の組み合わせ)として使うこともでき る。)
5)、この反発力によって、永久磁石600が鉄心面から離間するときに、磁力の 減少を磁気検出コイル700が検知し、駆動電源スイッチングトランジスタ8 03によって駆動電源901から電磁石コイル700への電気パルス通電は遮 断される。
6)、図5の(3)に示すように、電磁石コイル700への電気パルス通電は遮断 されると同時に永久磁石600が磁気検知用コイルC1から遠ざかると、駆動 電源スイッチングトランジスタ803のスイッチングはOFF状態になるため 、電磁石コイル700には逆起電力が生じ、矢印εのように唯一の閉じた回路 を通って、逆起電力入力電源902に入力される。
即ち、前記逆起電力は、駆動電源901とは反対の極性になり、整流用ダイオ ード801、802および駆動電源スイッチング用トレンジスタ803により 、発電出力として逆起電力入力電源902に放電して充電する。
電磁石コイル700からの逆起電力は、当該永久磁石600の通過によりコギ ングトルク(磁力抵抗)を相殺すると同時に逆起電力の慣性によって逆起電力 の鋭いスパイク発電である。このスパイク電圧は電磁石コイル700への入力 電圧の数十倍に達する。図6には(1)に電磁石コイル700への入力電気パ ルスを、(2)に起電力の波形を示す。
In FIG. 5, the switching circuit provided in the driving electromagnetic coil 700 unit performs the following controls a) to f).
1) As shown in (1) of FIG. 5, an output-side counter electromotive force input power source 902 is connected to a driving power source 901, and the initial driving means is used for starting. After startup, steps 2) to 6) are repeated, and rotation by pulse driving continues.
2) As shown in (2) of FIG. 5, when the permanent magnet 600 passes through the magnetic detection coil, a weak voltage is generated in the coil as indicated by arrow α by electromagnetic induction. 3) The drive power switching transistor 803 Is turned ON as indicated by arrow β, and as a result, the drive power source 901 energizes the electromagnet coil 700 as indicated by arrow γ, and is opposed to the permanent magnet 600 that faces the electromagnet coil 700. The same polarity as the pole is generated, the permanent magnet 600 is separated by the repulsive force, and the flywheel 200 is moved in the rotation direction.
(By reversing the polarity of the electromagnetic coil 700, the drive power source 901, and the output, the repulsive force can be used as the attractive force (or the combination of repulsive and attractive).)
5) Due to this repulsive force, when the permanent magnet 600 moves away from the iron core surface, the magnetic detection coil 700 detects a decrease in magnetic force, and the drive power supply switching transistor 803 causes an electrical pulse from the drive power supply 901 to the electromagnet coil 700. Power is cut off.
6) As shown in (3) of FIG. 5, when the electric pulse energization to the electromagnet coil 700 is cut off and at the same time the permanent magnet 600 moves away from the magnetism detection coil C1, the switching of the drive power switching transistor 803 is turned off. Therefore, a back electromotive force is generated in the electromagnetic coil 700 and is input to the back electromotive force input power source 902 through a single closed circuit as indicated by an arrow ε.
In other words, the counter electromotive force has a polarity opposite to that of the drive power source 901, and is charged by being discharged into the counter electromotive force input power source 902 as a power generation output by the rectifying diodes 801 and 802 and the drive power source switching transformer 803. To do.
The counter electromotive force from the electromagnet coil 700 is a spike power generation with a sharp counter electromotive force due to the inertia of the counter electromotive force at the same time as the cogging torque (magnetic resistance) is canceled by the passage of the permanent magnet 600. This spike voltage reaches several tens of times the input voltage to the electromagnetic coil 700. In FIG. 6, (1) shows the input electric pulse to the electromagnetic coil 700, and (2) shows the electromotive force waveform.

而して、電磁石コイル700に電源供給する駆動電源901と逆起電力入力電源902の発電による電圧変化を図6の検証1と検証2に示す。
前記駆動電源901および逆起電力入力電源902の検証実験において、グラフ1は駆動電源901と逆起電力入力電源902の電圧の変化を示す。フライホイール200の回転を開始して約1分で回転は安定し、電磁石コイル700による駆動と自走が釣り合った状態になる。フライホイール200の駆動に必要な負荷は最小になり、入力側の電圧降下はなくなるが、逆起電力入力電源902電圧は入力上限(許容電圧)に向けて上昇を続ける。
グラフ2はそれぞれのバッテリー電圧の初期値との差分を示す。回転開始後約2分半で入力と出力の電圧差が等しくなり、それ以降は出力が上回ることが検証できた。
Thus, voltage changes due to power generation by the drive power source 901 and the back electromotive force input power source 902 that supply power to the electromagnet coil 700 are shown in verification 1 and verification 2 in FIG.
In the verification experiment of the driving power source 901 and the back electromotive force input power source 902, the graph 1 shows changes in the voltages of the driving power source 901 and the back electromotive force input power source 902. The rotation is stabilized about 1 minute after the start of the rotation of the flywheel 200, and the driving by the electromagnetic coil 700 and the self-running state are balanced. The load necessary for driving the flywheel 200 is minimized and the voltage drop on the input side is eliminated, but the voltage of the back electromotive force input power supply 902 continues to increase toward the input upper limit (allowable voltage).
Graph 2 shows the difference from the initial value of each battery voltage. It was verified that the voltage difference between the input and output became equal approximately 2 and a half minutes after the start of rotation, and the output exceeded thereafter.

図3に示す例は、電気パルス型駆動・発電機構において、各電磁石コイル700をフライホイール200の永久磁石600の配置回転角度内の配置角度で設けて、上流側から順次に電気パルス発信とスパイク電圧発生等を制御するタイプである。
つまり、図3に示す3個の各電磁石コイル700は、次の状態を示す。
1)、上流側の電磁石コイル700は、その磁極位置に永久磁石600が接近している タイミング位置を示す。
2)、次の中間の電磁石コイル700は、その磁極位置に永久磁石600が手前直前に 位置しているタイミング位置を示す
3)、下流側の電磁石コイル700は、その磁極位置の直前に永久磁石600が位置し て、永久磁石600検出、電磁石コイル700への電気パルスON−OFF、電磁 石コイル700から起電力によるスパイク電圧が発生するタイミング位置を示す。
In the example shown in FIG. 3, in the electric pulse type drive / power generation mechanism, each electromagnet coil 700 is provided at an arrangement angle within the arrangement rotation angle of the permanent magnet 600 of the flywheel 200, and the electric pulse transmission and spike are sequentially performed from the upstream side. This type controls voltage generation.
That is, each of the three electromagnetic coils 700 shown in FIG. 3 shows the following state.
1) The upstream electromagnet coil 700 indicates the timing position at which the permanent magnet 600 approaches the magnetic pole position.
2) The next intermediate electromagnetic coil 700 indicates the timing position at which the permanent magnet 600 is positioned immediately before the magnetic pole position. 3) The downstream electromagnetic coil 700 is the permanent magnet immediately before the magnetic pole position. 600 indicates the timing position at which the permanent magnet 600 is detected, the electric pulse ON / OFF to the electromagnet coil 700, and the spike voltage generated by the electromotive force from the electromagnet coil 700 is generated.

本例はこのように全体構成を機械的構成と電気的構成を組み合わせることにより、通常の機械的構成だけでは、エネルギーの入出力収支はゼロとなり、運動学的な機械としての「閉じた系におけるエネルギー保存の法則」を破るものではない。
しかし本例においては、電磁石コイル700による駆動入力により回転速度を所定速度に漸増して、+側回転モーメント発生の範囲を全回転領域にして、入出力範囲に比例した出力効率に近づけることができる。
In this example, by combining the mechanical configuration and the electrical configuration in this way, the input / output balance of energy becomes zero only with the normal mechanical configuration, and the “in a closed system as a kinematic machine” It does not break the law of conservation of energy.
However, in this example, the rotational speed is gradually increased to a predetermined speed by the drive input by the electromagnet coil 700, so that the range of occurrence of the + side rotational moment can be made to be the entire rotational area, and the output efficiency proportional to the input / output range can be approached. .

3.前記実施例における発電について
(1)、弾み錘り400の偏心回転機構のチューニングは図6例において、フライホイール200の中心200cを通る直径線上にある弾み錘りガイド300には一対の弾み錘り400がスライドするように取り付けられている。今、フライホイール200の中心200cから弾み錘り400までの距離(腕の長さ):S、フライホイール200の中心200cからの弾み錘り400の回転角度:θ、弾み錘り400から水平直径線HLまでの垂線とフライホイール200の中心200cとの間の距離:d、真円のリング軌条500による弾み錘り400の回転軌跡半径(リング軌条500の半径でもある):rとすると、フライホイール200の中心200cから弾み錘り400までの距離:Sは、以下の式によって求められる。
3. Regarding power generation in the above embodiment (1), in the example of FIG. 6, tuning of the eccentric rotation mechanism of the elastic weight 400 is performed in the elastic weight guide 300 on the diameter line passing through the center 200 c of the flywheel 200. 400 is attached to slide. Now, the distance (arm length) from the center 200c of the flywheel 200 to the bullet weight 400: S, the rotation angle of the bullet weight 400 from the center 200c of the flywheel 200: θ, the horizontal diameter from the bullet weight 400 If the distance between the vertical line to the line HL and the center 200c of the flywheel 200 is d, the radius of rotation of the elastic weight 400 by the perfect ring rail 500 (also the radius of the ring rail 500): r The distance S from the center 200c of the wheel 200 to the spring weight 400 is determined by the following equation.

ここで±(プラスマイナス)の記号があるのは、本例が、フライホイール200の同一直径線上の一対の弾み錘りガイド300上にそれぞれ弾み錘り400が対になって回転しており、それぞれの弾み錘りガイド300の長さが異なることを示している。式1から、Sはd、r、θのみに依存する量としてS=S(d,r,θ)と書けることがわかる。つまり前記距離(d)と半径(r)が決まれば、フライホイール200の回転角度だけで、回転と共に変化する前記Sの距離がわかる。またこの関係式から毎分のフライホイール200の回転数と弾み錘り400の質量によって、慣性モーメント、動的トルク、馬力、遠心力、コリオリ力、ジャイロ効果等の有用な物理量の検証が可能になる。 Here, there is a symbol of ± (plus or minus), in this example, the weights 400 rotate in pairs on the pair of weight-weight guides 300 on the same diameter line of the flywheel 200. It shows that the lengths of the respective resilient weight guides 300 are different. From Equation 1, it can be seen that S can be written as S = S (d, r, θ) as a quantity that depends only on d, r, and θ. That is, if the distance (d) and the radius (r) are determined, only the rotation angle of the flywheel 200 can determine the S distance that changes with rotation. Also, from this relational expression, it is possible to verify useful physical quantities such as moment of inertia, dynamic torque, horsepower, centrifugal force, Coriolis force, gyro effect, etc. by the number of revolutions of flywheel 200 per minute and the mass of the spring weight 400 Become.

(2)、電気パルス型駆動・発電機構における電磁石コイル700の起電力について
起電力発電の原理である電磁気学の「電磁誘導」の法則から、起電力e(V、ボルト)は数2で求められる。
(2) Electromotive force of the electromagnetic coil 700 in the electric pulse type drive / power generation mechanism From the law of “electromagnetic induction” of electromagnetism which is the principle of electromotive force power generation, the electromotive force e (V, volt) is obtained by the following equation (2). It is done.

ここでν:永久磁石600の磁場が電磁石コイル700を横切る速度(m/s)、B:永久磁石の磁
向のなす角度である。
前記数1から発電効率を上げるには永久磁石600の
○磁界を強くして(a)=(b)
○回転速度を上げて(a)<(b)
○磁力面積を拡大して(a)<(b)
すればよい。但しa:前記領域X4〜X1の回転モーメント,b:前記領域X1〜X2の回転モーメント。
Where ν: the speed at which the magnetic field of the permanent magnet 600 traverses the electromagnet coil 700 (m / s), B: the magnetism of the permanent magnet
This is the angle between the directions.
In order to increase the power generation efficiency from Equation 1, the magnetic field of the permanent magnet 600 is increased (a) = (b)
○ Increase the rotation speed (a) <(b)
○ Enlarge the magnetic area (a) <(b)
do it. However, a: The rotational moment of the said area | regions X4-X1, b: The rotational moment of the said area | regions X1-X2.

又図6及び数1から永久磁石付設し弾み錘り400の円周方向への回転速度ν(:軌道距離の
と数4で現わせる。
Also, from FIG. 6 and Equation 1, the rotational speed ν (: orbital distance
And appear in Equation 4.

る発電出力の優位性が明らかとなる。偏心のない通常の円形回転では入出力は相殺し、このような優位性は得られない。自走回転能力と必要駆動入力との比(回転効率)αは次の数5により求められる。 The superiority of power generation output becomes clear. In a normal circular rotation without eccentricity, the input and output cancel each other, and such superiority cannot be obtained. The ratio (rotational efficiency) α between the self-running rotational capacity and the required drive input is obtained by the following equation (5).

又AからCに向かって回転する弾み錘の対はBからDに向けて錘を押し上げなくてはならないので、それらの回転の比は回転モーメントの比でもありそれをβと名付けると、次の数6により求められる。 Moreover, since the pair of the weights rotating from A to C must push up the weights from B to D, the ratio of their rotation is also the ratio of the rotational moments. It is obtained by Equation 6.

このαとβについて偏心率d/rの値を変化させて算出すると、表1のようになる。
このデータから回転効率を高く取りすぎると、回転モーメント比βが低下し回転の勢いが弱まることがわかる。つまり、機械としての最大の総合効率は、これらの範囲の間で「効率」と「回転の勢い」のチューニングによって決定しなければならない。
When α and β are calculated by changing the value of the eccentricity d / r, Table 1 is obtained.
From this data, it can be seen that if the rotational efficiency is too high, the rotational moment ratio β decreases and the rotational momentum weakens. In other words, the maximum overall efficiency of the machine must be determined by tuning “efficiency” and “speed of rotation” between these ranges.

この表1のデータから回転効率を高く取りすぎると、回転モーメント比βが低下し回転の勢いが弱まることがわかる。つまり、機械としての最大の総合効率は、これらの範囲の間で「効率」と「回転の勢い」のチューニングによって決定すればよい。 From the data in Table 1, it can be seen that if the rotational efficiency is too high, the rotational moment ratio β decreases and the rotational momentum weakens. In other words, the maximum overall efficiency as a machine may be determined by tuning “efficiency” and “speed of rotation” between these ranges.

(3)、その他のチューニングについて
前記の数1と数2から、偏芯構造に起因する自走部分の走行を起電原理に活用することにより、通常の回転体よりも高い効率で発電できることが分かる。
この原理的な効率化を実際の構造物とするためには、数5と数6の構造部分のチューニングを行う必要がある。
また実機の作製・製造に当たっては、駆動入力用の電気・磁気の調整や、作成する機構の寸法に合わせた各種パラメータの最適化が必要となる。応用分野については、現行のデジタル制御、材料、電池等の技術との融合により、回転体による発電において少なくとも数パーセントから数十パーセントの改善は見込める。
総合的な省力化と経済効果では、あらゆる回転体発電のインフラに貢献すると考えられる。
(3) Other tunings From the above formulas 1 and 2, by using the traveling of the self-running part due to the eccentric structure as the principle of electromotive force, it is possible to generate power with higher efficiency than a normal rotating body. I understand.
In order to make this principle efficiency improvement to an actual structure, it is necessary to tune the structural parts of Equations 5 and 6.
In manufacturing and manufacturing an actual machine, it is necessary to adjust electric and magnetic for driving input and optimize various parameters according to the dimensions of the mechanism to be created. With regard to application fields, at least several percent to several tens of percent improvement in power generation by a rotating body can be expected due to integration with current digital control, materials, battery and other technologies.
Total labor saving and economic effects are considered to contribute to all types of rotary power generation infrastructure.

次に前記スイッチング回路(:駆動電源/逆起電力スイッチング回路)の他の例として図9に示す。本例の駆動電源/逆起電力スイッチング回路は、駆動電力を供給する駆動電源901と、駆動用の電磁石コイル700からの逆起電力を集電蓄電するコンデンサースイッチング回路CNを介して逆起電力入力電源902に接続してある。
コンデンサースイッチング回路CNは、コンデンサーCoとスイッチSwとそのドライバーDにより構成し、ドライバーDは、スイッチSwを所定時間又はフライホイール200の回転角度単位でON/OFF動作する。つまりスイッチSwがOFF動作中は逆起電力をコンデンサーCoに効率良く安定集電蓄電し、この後のスイッチSwのON動作中はコンデンサーCoでの集電蓄電量を逆起電力入力電源902に出力して充電することを繰り返すものである。
Next, FIG. 9 shows another example of the switching circuit (drive power source / back electromotive force switching circuit). The driving power source / back electromotive force switching circuit of this example has a back electromotive force input via a driving power source 901 that supplies driving power and a capacitor switching circuit CN that collects and stores back electromotive force from the driving electromagnetic coil 700. A power source 902 is connected.
The capacitor switching circuit CN includes a capacitor Co, a switch Sw, and a driver D thereof, and the driver D performs an ON / OFF operation of the switch Sw for a predetermined time or a rotation angle unit of the flywheel 200. That is, the back electromotive force is efficiently and stably collected and stored in the capacitor Co while the switch Sw is OFF, and the amount of current collected and stored in the capacitor Co is output to the back electromotive force input power source 902 while the switch Sw is ON. And repeatedly charging.

環境省の資料によると、近年の発電に伴うCO2の排出は増加の一途をたどっている。IPCC(気候変動に関する政府間パネル)の最新の警告では、今世紀末までにCO排出をゼロにしなければ、相当レベルでの社会経済障害が懸念されるという。
今後は、現存の発電効率を飛躍的に改善すること、化石資源以外の発電機構の実用化、それに伴う設備と維持に関わるコストの問題などが課題として明白になる。
本発明は、本発明は前述の優れた作用効果を呈するため、現存システムの高効率化、化石資源使用の低減、自然エネルギーの有効活用において、環境、経済、暮らしに大きな改善オプションを提供する。更に本発明の発電装置用の回転装置は、自然エネルギー源を利用したクリーンエネルギーとして、メンテナンスフリー発電を手軽に低コストで得る事を実現し、一般家庭は勿論、自動車産業や各種電力供給産業に広く普及し産業界に広く活用される発電装置用の回転装置であり社会的貢献は多大なものがある。
According to materials from the Ministry of the Environment, CO2 emissions from power generation in recent years have been increasing. The latest warning IPCC (Intergovernmental Panel on Climate Change), unless the zero CO 2 emissions by the end of the century, that socioeconomic failure at equivalent levels are concerned.
In the future, issues such as drastic improvement of the existing power generation efficiency, practical application of power generation mechanisms other than fossil resources, and associated costs for equipment and maintenance will become clear.
Since the present invention exhibits the above-described excellent operational effects, the present invention provides a great improvement option for the environment, economy, and living in improving the efficiency of existing systems, reducing the use of fossil resources, and effectively utilizing natural energy. Furthermore, the rotating device for a power generator according to the present invention realizes maintenance-free power generation easily and at low cost as clean energy using a natural energy source, and is applicable not only to general households but also to the automobile industry and various power supply industries. It is a rotating device for power generators that is widely spread and widely used in industry and has a great social contribution.

100:回転駆動軸
101:回転駆動装置(初期駆動用)
102:発電装置
200:フライホイール
300:弾み弾み錘りガイド
400:弾み錘り
500:リング軌条
600:永久磁石
700:電磁石コイル
C1 :磁気検知用コイル
803:駆動電源スイッチングトランジスタ
901:駆動電源
902:逆起電力入力電源
CN :コンデンサースイッチング回路
100: Rotation drive shaft 101: Rotation drive device (for initial drive)
102: Power generation device 200: Flywheel 300: Bounce and weight guide 400: Bounce weight 500: Ring rail 600: Permanent magnet 700: Electromagnetic coil C1: Magnetic detection coil 803: Driving power source switching transistor 901: Driving power source 902: Back electromotive force input power supply CN: Capacitor switching circuit

Claims (1)

水平状態にした回転駆動軸100の胴部に真円のフライホイール200の円心部を接続し、前記回転駆動軸100又は前記フライホイール200に回転駆動装置を接続し、前記フライホイール200の半径線上に弾み錘りガイド300を等回転角度間隔で配置し、前記弾み錘りガイド300に前記弾み錘り400を摺動自在に装着し、これらの弾み錘り400の重心を前記フライホイール200の回転でフライホイール200の円心200cに対して偏心した真円の回転軌跡500Zで回転させる鉛直型のリング軌条500を前記フライホイール200と平行に固定配置した回転装置において、
前記フライホイール200に所定の等回転角度間隔で永久磁石600を配列し、前記リング軌条500における弾み錘り400の重心の偏心回転軌跡500Zであってフライホイール200の円心200cに対して弾み錘り400の上昇回転案内開始位置X2の点対称位置X4から、上昇回転終了位置X1までの弾み錘り回転角度域X4〜X1と同一の回転角度域Z4〜Z1に電磁石コイル700を前記永久磁石600に反発又は吸引磁極関係にして配置し、前記電磁石コイル700に対して永久磁石600が対面した際に電気パルスをON−OFFし且つこの電気パルスOFF時に逆起電力の鋭いスパイク電圧を発生させる磁気検知および駆動電源/逆起電力スイッチング回路と、電磁石コイル700からの逆起電力を所定時間又はフライホイール200の回転角度単位で集電蓄電し放電するコンデンサースイッチング回路CNと、コンデンサースイッチング回路CNからの放電を充電する逆起電力入力電源902とにより構成してなる電気パルス型駆動・発電機構を備えたことを特徴とする発電用の回転装置。
A circular center of the flywheel 200 is connected to the body of the rotary drive shaft 100 in a horizontal state, a rotary drive device is connected to the rotary drive shaft 100 or the flywheel 200, and the radius of the flywheel 200 is The elastic weight guides 300 are arranged on the line at equal rotation angle intervals, the elastic weights 400 are slidably mounted on the elastic weight guide 300, and the center of gravity of the elastic weights 400 is set on the flywheel 200. In a rotating device in which a vertical ring rail 500 that is rotated in a rotation path 500Z of a perfect circle eccentric with respect to the center 200c of the flywheel 200 by rotation is fixedly arranged in parallel to the flywheel 200,
Permanent magnets 600 are arranged on the flywheel 200 at predetermined equal rotation angle intervals, and an eccentric rotation locus 500Z of the center of gravity of the elastic weight 400 in the ring rail 500, and the elastic weight with respect to the circular center 200c of the flywheel 200. The permanent magnet 600 has the electromagnetic coil 700 placed in the same rotation angle range Z4 to Z1 as the elastic weight rotation angle range X4 to X1 from the point-symmetrical position X4 of the rising rotation guide start position X2 to the rising rotation end position X1. Are arranged in a repulsive or attractive magnetic pole relationship, and when the permanent magnet 600 faces the electromagnet coil 700, the electric pulse is turned on and off, and a sharp spike voltage of the back electromotive force is generated when the electric pulse is turned off. The detection and driving power source / back electromotive force switching circuit and the back electromotive force from the electromagnet coil 700 are set for a predetermined time or fly. An electric pulse type drive / power generation mechanism comprising a capacitor switching circuit CN that collects and stores and discharges electricity in units of the rotation angle of the reel 200, and a back electromotive force input power source 902 that charges the discharge from the capacitor switching circuit CN is provided. A rotating device for power generation characterized by the above.
JP2016017520A 2015-03-26 2016-01-13 Rotating device 2 for power generator Expired - Fee Related JP6187946B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016017520A JP6187946B2 (en) 2016-01-13 2016-01-13 Rotating device 2 for power generator
PCT/JP2016/060979 WO2016153077A1 (en) 2015-03-26 2016-03-22 Rotating device for power generating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016017520A JP6187946B2 (en) 2016-01-13 2016-01-13 Rotating device 2 for power generator

Publications (2)

Publication Number Publication Date
JP2017127174A JP2017127174A (en) 2017-07-20
JP6187946B2 true JP6187946B2 (en) 2017-08-30

Family

ID=59365639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016017520A Expired - Fee Related JP6187946B2 (en) 2015-03-26 2016-01-13 Rotating device 2 for power generator

Country Status (1)

Country Link
JP (1) JP6187946B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2699021C1 (en) * 2018-12-14 2019-09-03 Олег Фёдорович Меньших Self-sustained magneto-gravitational "motor-generator" system with autostabilization of resonance mode of oscillating movement of magnet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2024269B1 (en) * 2019-11-20 2021-08-18 Keetman Arie Electric motor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5696962B2 (en) * 2011-03-29 2015-04-08 雄一 大宅 Eccentric rotary power generator (1)
JP2012207654A (en) * 2011-03-29 2012-10-25 Yuichi Otaku Eccentric rotation type power generation apparatus
JP5505749B1 (en) * 2013-03-11 2014-05-28 篤見 衛藤 Rotating device for power generator
JP5544675B1 (en) * 2013-12-10 2014-07-09 幹章 臼間 Hydroelectric generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2699021C1 (en) * 2018-12-14 2019-09-03 Олег Фёдорович Меньших Self-sustained magneto-gravitational "motor-generator" system with autostabilization of resonance mode of oscillating movement of magnet

Also Published As

Publication number Publication date
JP2017127174A (en) 2017-07-20

Similar Documents

Publication Publication Date Title
TWI535178B (en) Plane generator using magnetic levitation system
JP2015195717A (en) Rotation apparatus for power generation device or the like
CN105659489A (en) Mobile induction and power-generation device
JP5696962B2 (en) Eccentric rotary power generator (1)
JP6187946B2 (en) Rotating device 2 for power generator
CN102437710A (en) Moving magnetic field generating apparatus
KR20120056408A (en) Generator
CN102122872A (en) Wind driven generator with axial magnetic levitation bearing
JP5866746B1 (en) Rotating device for power generator
WO2016153077A1 (en) Rotating device for power generating apparatus
WO2011057423A1 (en) Permanent magnet motion-creating apparatus and process
Azam et al. Speed Breaker Power Generator
CN106662081A (en) Drive-in electric turbine (d-iet)
JP2012207654A (en) Eccentric rotation type power generation apparatus
CN104054255A (en) Electrical machine
KR20200060263A (en) Power generation system
JP6318331B1 (en) Power generator
JP2010096170A (en) Axial force rotary power plant
JP2009261204A (en) Roll-type generator
JP7291910B1 (en) Power generator using centrifugal force, gravity, and magnetic force
JP3232374U (en) Eccentric rotary power generator
KR101596193B1 (en) Tubular generator
JP6195195B2 (en) Eccentric rotary power generator (2)
JP2013241926A (en) Electric power generator
CN216356342U (en) Energy generator

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170404

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170404

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170724

R150 Certificate of patent or registration of utility model

Ref document number: 6187946

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S303 Written request for registration of pledge or change of pledge

Free format text: JAPANESE INTERMEDIATE CODE: R316303

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

LAPS Cancellation because of no payment of annual fees