JP6184398B2 - Method for evaluating reformed water - Google Patents

Method for evaluating reformed water Download PDF

Info

Publication number
JP6184398B2
JP6184398B2 JP2014258231A JP2014258231A JP6184398B2 JP 6184398 B2 JP6184398 B2 JP 6184398B2 JP 2014258231 A JP2014258231 A JP 2014258231A JP 2014258231 A JP2014258231 A JP 2014258231A JP 6184398 B2 JP6184398 B2 JP 6184398B2
Authority
JP
Japan
Prior art keywords
water
reforming
particle size
reformed
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014258231A
Other languages
Japanese (ja)
Other versions
JP2016118463A (en
Inventor
澤本 悟博
悟博 澤本
力男 奈良
力男 奈良
良光 小林
良光 小林
雅詞 黒瀬
雅詞 黒瀬
文仁 櫻井
文仁 櫻井
康弘 大原
康弘 大原
友保 佐藤
友保 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of National Colleges of Technologies Japan
Original Assignee
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of National Colleges of Technologies Japan filed Critical Institute of National Colleges of Technologies Japan
Priority to JP2014258231A priority Critical patent/JP6184398B2/en
Publication of JP2016118463A publication Critical patent/JP2016118463A/en
Application granted granted Critical
Publication of JP6184398B2 publication Critical patent/JP6184398B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、抗火石を用いた改質処理水の評価方法に関するものである。   The present invention relates to a method for evaluating modified treated water using anti-fluorite.

金属の切削加工は切削工具の冷却及び摩耗軽減のため切削油を供給しながら行うことが一般的である。これら切削油としては油性切削油と水溶性切削油が存在する。ただし近年では、冷却能力が高く且つ廃棄時の環境負荷が少ない水溶性切削油の使用が主流となっている。この水溶性切削油は、基本的に水(切削溶媒水)に油剤を溶かして調製する。   Metal cutting is generally performed while supplying cutting oil to cool the cutting tool and reduce wear. These cutting oils include oil-based cutting oil and water-soluble cutting oil. However, in recent years, the use of water-soluble cutting oil, which has a high cooling capacity and has a low environmental load during disposal, has become the mainstream. This water-soluble cutting oil is basically prepared by dissolving an oil in water (cutting solvent water).

ここで、本願発明者らは使用する切削溶媒水によって油剤の分散性が変化し、この油剤の分散性の違いは水溶性切削油の性能に影響を与えることを見出した。そして、油剤の分散性に優れた切削溶媒水(水溶性切削油)を得るための下記[特許文献1]に記載の発明に関与した。この[特許文献1]に記載の発明は、流紋岩の一種である抗火石の素焼物や、抗火石の釉薬を塗布した焼成物を用いて切削溶媒水を改質し、油剤の分散性に優れた水溶性切削油を得るものである。そして、この抗火石を用いた改質処理水は、切削溶媒水のみならず、観賞魚類や養殖魚類の飼育水、飲料用水、温浴水、各種溶媒、その他として様々な分野への応用が期待されている。   Here, the inventors of the present application have found that the dispersibility of the oil changes depending on the cutting solvent water used, and that the difference in dispersibility of the oil affects the performance of the water-soluble cutting oil. And it was concerned in the invention described in the following [Patent Document 1] for obtaining cutting solvent water (water-soluble cutting oil) excellent in dispersibility of the oil agent. In the invention described in [Patent Document 1], an anti-fluorite unglazed product that is a kind of rhyolite or a fired product coated with an anti-fluorite glaze is used to modify the cutting solvent water to disperse the oil. To obtain a water-soluble cutting oil excellent in water resistance. And the modified treated water using this anti-fluorite is expected to be applied not only to cutting solvent water, but also to a variety of fields such as breeding water for ornamental fish and cultured fish, drinking water, warm bath water, various solvents, etc. ing.

特開2011−174064号公報JP 2011-174064 A

上記の[特許文献1]に記載の技術により、油剤等の分散性に優れ特に水溶性切削油の切削溶媒水に好適な改質処理水を得ることが可能となった。しかしながら、得られた改質処理水が適切に処理され良好なレベルに改質しているかの評価方法、評価指標は存在せず、改質処理水を水溶性切削油として使用する際には水溶性切削油を実際に調製するまで、その改質処理水の良否判断が行えなかった。   By the technique described in [Patent Document 1], it has become possible to obtain modified treated water that is excellent in dispersibility of oils and the like and that is particularly suitable for cutting solvent water of water-soluble cutting oil. However, there is no evaluation method and evaluation index as to whether the obtained modified treated water has been appropriately treated and modified to a good level, and when the modified treated water is used as a water-soluble cutting oil, it is water soluble. Until the actual cutting oil was actually prepared, the quality of the modified treated water could not be judged.

本発明は上記事情に鑑みてなされたものであり、改質処理水が良好なレベルに改質しているか否かを判断する改質処理水の評価方法を提供することを目的とする。   This invention is made | formed in view of the said situation, and it aims at providing the evaluation method of the reforming process water which judges whether the reforming process water is reforming to a favorable level.

本発明は、
(1)抗火石12間に通水する改質処理を行った改質処理水の評価方法であって、
前記改質処理を行う前の原水を比較水として所定量採取するステップと、
前記改質処理を行った改質処理水を被験水として所定量採取するステップと、
前記比較水と被験水とに所定の粒径を有する粒径標準溶液としての真球状ポリスチレンラテックス粒子の水分散体を所定量添加して測定試料を調製するステップと、
前記測定試料の真球状ポリスチレンラテックス粒子の粒度分布の中央値を取得するステップと、
前記比較水の中央値と前記被験水の中央値とを比較するステップと、
前記被験水の中央値が前記比較水の中央値の50%に満たない時に前記改質処理水を良品と判断するステップと、
有することを特徴とする改質処理水の評価方法を提供することにより、上記課題を解決する。
(2)抗火石12間に通水する第1の改質処理と、表面に釉薬を塗布して焼成した抗火石焼成体ビーズ22間に通水する第2の改質処理と、素焼きの抗火石ビーズの表面を銀の層で覆った銀被覆抗火石ビーズ32間に通水する第3の改質処理と、を行った高度改質処理水に、前記第1の改質処理を行った第1の改質処理水を混合した改質処理水の評価方法であって、
前記第1の改質処理を行う前の原水を第1の比較水として所定量採取し、前記第1の改質処理を行った後の第1の改質処理水を第2の比較水として所定量採取するステップと、
前記高度改質処理水と前記第1の改質処理水とを所定の比率で混合した改質処理水を被験水として所定量採取するステップと、
前記第1の比較水と第2の比較水と被験水とに所定の粒径を有する粒径標準溶液としての真球状ポリスチレンラテックス粒子の水分散体を所定量添加して測定試料を調製するステップと、
前記測定試料の真球状ポリスチレンラテックス粒子の粒度分布の中央値を取得するステップと、
前記測定試料の中央値を比較するステップと、
前記第2の比較水の中央値が前記第1の比較水の中央値の50%に満たず、且つ前記被験水の中央値が前記第2の比較水の中央値よりも小さい時に、混合した前記改質処理水を良品と判断するステップと、
有することを特徴とする改質処理水の評価方法を提供することにより、上記課題を解決する。
(3)測定試料のゼータ電位を測定するステップと、
比較水のゼータ電位と被験水のゼータ電位とを比較するステップと、
前記被験水のゼータ電位の絶対値が前記比較水のゼータ電位の絶対値よりも大きい時に改質処理水を良品と判断するステップと、をさらに有することを特徴とする上記(1)または(2)に記載の改質処理水の評価方法を提供することにより、上記課題を解決する。
(4)測定試料の透光率を測定するステップと、
比較水の透光率と被験水の透光率とを比較するステップと、
前記被験水の透光率が前記比較水の透光率よりも大きい時に改質処理水を良品と判断するステップと、をさらに有することを特徴とする上記(1)乃至(3)のいずれかに記載の改質処理水の評価方法を提供することにより、上記課題を解決する。
The present invention
(1) A method for evaluating reformed water that has been subjected to a reforming process for passing water between the anti-fluorite stones 12;
Collecting a predetermined amount of raw water before the reforming treatment as comparative water;
Collecting a predetermined amount of the reformed treated water subjected to the reforming treatment as test water;
Adding a predetermined amount of an aqueous dispersion of spherical polystyrene latex particles as a particle size standard solution having a predetermined particle size to the comparative water and the test water, and preparing a measurement sample;
Obtaining a median value of the particle size distribution of the spherical polystyrene latex particles of the measurement sample;
Comparing the median of the comparative water and the median of the test water;
Determining the reformed water as non-defective when the median test water is less than 50% of the median of the comparative water;
The above-described problems are solved by providing a method for evaluating reformed treated water, which is characterized by comprising:
(2) A first modification process for passing water between the anti-fluorite stones 12, a second modification process for passing water between the anti-fire stone fired body beads 22 fired by applying a glaze to the surface, and an anti-baking resistance The first reforming treatment was performed on the highly-modified water that was subjected to the third reforming treatment in which water was passed between the silver-coated antifluorite beads 32 in which the surface of the pyrolite beads was covered with a silver layer. A method for evaluating reformed treated water obtained by mixing first modified treated water,
A predetermined amount of raw water before the first reforming treatment is collected as a first comparison water, and the first reforming treatment water after the first reforming treatment is used as a second comparison water. Collecting a predetermined amount;
Collecting a predetermined amount of modified treated water obtained by mixing the highly modified treated water and the first modified treated water at a predetermined ratio as test water;
A step of preparing a measurement sample by adding a predetermined amount of an aqueous dispersion of true spherical polystyrene latex particles as a particle size standard solution having a predetermined particle size to the first comparison water, the second comparison water, and the test water. When,
Obtaining a median value of the particle size distribution of the spherical polystyrene latex particles of the measurement sample;
Comparing the median of the measurement sample;
Mixed when the median value of the second comparison water was less than 50% of the median value of the first comparison water and the median value of the test water was smaller than the median value of the second comparison water Determining the modified treated water as non-defective product;
The above-described problems are solved by providing a method for evaluating reformed treated water, which is characterized by comprising:
(3) measuring the zeta potential of the measurement sample;
Comparing the zeta potential of the comparative water with the zeta potential of the test water;
(1) or (2), further comprising the step of determining that the treated water is non-defective when the absolute value of the zeta potential of the test water is larger than the absolute value of the zeta potential of the comparative water. The above-described problems are solved by providing the method for evaluating reformed treated water described in (1).
(4) measuring the transmissivity of the measurement sample;
Comparing the transmittance of the comparative water with the transmittance of the test water;
Any one of the above (1) to (3), further comprising the step of judging the modified treated water as a non-defective product when the light transmittance of the test water is larger than the light transmittance of the comparative water. The said subject is solved by providing the evaluation method of the reforming process water as described in above.

本発明に係る改質処理水の評価方法によれば、改質処理水の良否を改質処理後に判定することができる。   According to the method for evaluating reformed water according to the present invention, the quality of the reformed water can be determined after the reforming process.

改質処理水の製造装置を示す図である。It is a figure which shows the manufacturing apparatus of reforming process water. 改質処理水の分散性を示すグラフである。It is a graph which shows the dispersibility of reforming process water. 改質処理水の効果を示すグラフである。It is a graph which shows the effect of reforming treatment water. 本発明に係る改質処理水の評価方法のフローチャートである。It is a flowchart of the evaluation method of the reforming process water which concerns on this invention. 本発明に係る改質処理水の評価方法のフローチャートである。It is a flowchart of the evaluation method of the reforming process water which concerns on this invention. 本発明に係る改質処理水の評価方法による評価結果を示すグラフである。It is a graph which shows the evaluation result by the evaluation method of the modification process water which concerns on this invention.

先ず、本発明を適用する改質処理水の製造方法である第1の改質処理、第2の改質処理、第3の改質処理に関して説明を行う。ここで、図1(a)は、水道水等の原水に対し第1の改質処理を行う改質処理装置10を示す図である。この改質処理装置10は、内部に適度な大きさに破砕された抗火石12が充填され、改質処理装置10に原水を供給する給水配管10aと、改質処理装置10の内部を通水した改質処理水を吐出する吐水配管10bと、を有している。ここで、抗火石とは伊豆半島等で産出する流紋岩の一種で、その組成は火山性ガラスを主とし、石英、長石、雲母およびその他成分を含有し、主成分であるケイ酸(シリカ)が縦横に交走し、ガラス繊維化した多孔質性の海綿状火成岩である。   First, the first reforming process, the second reforming process, and the third reforming process, which are methods for producing the reforming process water to which the present invention is applied, will be described. Here, Fig.1 (a) is a figure which shows the modification | reformation processing apparatus 10 which performs a 1st modification process with respect to raw | natural waters, such as a tap water. The reforming treatment apparatus 10 is filled with an anti-fluorite 12 crushed to an appropriate size inside, and a water supply pipe 10 a that supplies raw water to the reforming treatment apparatus 10 and water passing through the reforming treatment apparatus 10. And a water discharge pipe 10b for discharging the modified treated water. Here, anti-fluorite is a kind of rhyolite produced in the Izu peninsula, etc. The composition is mainly volcanic glass, containing quartz, feldspar, mica and other components, and the main component silicic acid (silica) ) Is a porous spongy igneous rock that crosses vertically and horizontally and is made into glass fiber.

次に、改質処理装置10の動作を説明する。先ず、給水配管10aに水道水等の原水を所定の流量で供給する。これにより、改質処理装置10内には給水配管10aから原水が供給される。供給された原水は抗火石12間を通って吐水配管10bから吐出する。また、この吐出された水を供給配管10aに供給することもできる。このとき、抗火石成分が原水に作用して、原水に対する第1の改質処理が施される。このようにして得られた改質処理水は、水溶性切削油の切削溶媒水等、様々な用途に使用される。また、以下に示す高度改質処理装置50に供給され更なる改質処理が施される。   Next, the operation of the reforming apparatus 10 will be described. First, raw water such as tap water is supplied to the water supply pipe 10a at a predetermined flow rate. As a result, raw water is supplied into the reforming apparatus 10 from the water supply pipe 10a. The supplied raw water passes through the anti-fluorite 12 and is discharged from the water discharge pipe 10b. Further, the discharged water can be supplied to the supply pipe 10a. At this time, the anti-fluorite component acts on the raw water, and the first reforming process is performed on the raw water. The modified treated water thus obtained is used for various applications such as a cutting solvent water for water-soluble cutting oil. Further, it is supplied to an advanced reforming processing apparatus 50 shown below and subjected to further reforming processing.

次に、本発明を適用する改質処理水の第2の改質処理、第3の改質処理に関して説明する。図1(b)は、第1の改質処理が施された第1の改質処理水に対し第2の改質処理、第3の改質処理を行う高度改質処理装置50を示す図である。この高度改質処理装置50は、表面に釉薬を塗布して焼成した抗火石焼成体ビーズ22が充填した第2改質部20と、素焼きの抗火石ビーズの表面を銀の層で覆った銀被覆抗火石ビーズ32が充填した第3改質部30と、改質処理水を貯留するタンク40と、このタンク40内の改質処理水を第2改質部20と第3改質部30とに循環させるポンプ42と、を有している。また、高度改質処理装置50は、上記の第1の改質処理水をタンク40に供給する給水口50aと、タンク40と第2改質部20とを繋ぐ連結配管50bと、第2改質部20と第3改質部30とを繋ぐ連結配管50cと、第3改質部30とタンク40とを繋ぐ連結配管50dと、タンク40内に貯留する高度改質処理水を吐出する吐水口50eと、を有している。   Next, the second and third reforming treatment water to which the present invention is applied will be described. FIG. 1B is a diagram showing an advanced reforming apparatus 50 that performs a second reforming process and a third reforming process on the first reforming process water subjected to the first reforming process. It is. The advanced reforming apparatus 50 includes a second reforming portion 20 filled with anti-fluorite fired body beads 22 baked by applying glaze on the surface, and a silver layer covering the surface of the unglazed anti-fluorite beads with a silver layer. The third reformer 30 filled with the coated anti-fluorite beads 32, the tank 40 for storing the reformed water, and the second reformer 20 and the third reformer 30 for the reformed water in the tank 40. And a pump 42 that circulates between the two. Further, the advanced reforming apparatus 50 includes a water supply port 50a that supplies the first reformed treated water to the tank 40, a connection pipe 50b that connects the tank 40 and the second reforming unit 20, and a second modified The connecting pipe 50c that connects the mass part 20 and the third reforming part 30, the connecting pipe 50d that connects the third reforming part 30 and the tank 40, and the discharge that discharges highly reformed treated water stored in the tank 40. And a water outlet 50e.

ここで、第2改質部20に充填する抗火石焼成体ビーズ22は、粒径50μm〜550μm程度の比較的粗い抗火石粉末を30wt%以上含有し、粘土をバインダとして略球形状に成形した後、1000℃〜1500℃の温度で焼成して素焼きビーズを作製し、この素焼きビーズの表面に釉薬を塗布して1000℃〜1500℃の温度で再焼成したものである。尚、このとき用いる釉薬としては、上記の抗火石粉末97wt%と合成糊3wt%とを適量の水で混合したものを用いることが好ましい。また、第3改質部30に充填する銀被覆抗火石ビーズ32は、例えば上記と同様の手法で作製された素焼きビーズの表面に、銀の薄膜を周知の手法で成膜して作製したものである。   Here, the anti-fluorite fired body beads 22 filled in the second modified portion 20 contain 30 wt% or more of a relatively coarse anti-fluorite powder having a particle size of about 50 μm to 550 μm, and are formed into a substantially spherical shape using clay as a binder. Thereafter, firing is performed at a temperature of 1000 ° C. to 1500 ° C. to produce unglazed beads, a glaze is applied to the surface of the unglazed beads, and the firing is performed at a temperature of 1000 ° C. to 1500 ° C. In addition, as a glaze used at this time, it is preferable to use what mixed said anti-fluorite powder 97 wt% and synthetic paste 3 wt% with a suitable quantity of water. The silver-coated anti-fluorite beads 32 to be filled in the third modified portion 30 are produced by, for example, forming a silver thin film on the surface of an unglazed bead produced by the same method as described above by a well-known method. It is.

次に、高度改質処理装置50の動作を説明する。先ず、改質処理装置10により第1の改質処理水を作製する。次に、この第1の改質処理水を高度改質処理装置50のタンク40内に給水口50aを介して所定量供給する。次に、ポンプ42を駆動する。これにより、タンク40内の第1の改質処理水は連結配管50bを通って第2改質部20に供給される。これにより、第2改質部20内を第1の改質処理水が通水する。このとき、第1の改質処理水には抗火石焼成体ビーズ22の抗火石成分が作用して、第1の改質処理水に対する更なる改質処理(第2の改質処理)が施される。第2の改質処理が施された第2の改質処理水は連結配管50cを通って第3改質部30に供給される。これにより、第3改質部30内を第2の改質処理水が通水する。このとき、第2の改質処理水には銀被覆抗火石ビーズ32の抗火石成分及び銀成分が作用して、第2の改質処理水に対する更なる改質処理(第3の改質処理)が施される。第3の改質処理が施された高度改質処理水は連結配管50dを通ってタンク40内に吐出され、再度、第2改質部20に供給されて高度改質処理装置50内を循環し、更に改質処理が施される。また、タンク40内に貯留する高度改質処理水は適宜、吐水口50eから取水される。そして、取水した高度改質処理水には別途作製された第1の改質処理水が所定の比率で混合される。これにより得られた改質処理水は、水溶性切削油の切削溶媒水に用いられる他、様々な用途に使用される。尚、高度改質処理水をそのまま使用することも可能であるが、高度改質処理水は製造コストが高く高価であるため、上記のように第1の改質処理水で希釈して使用することが実用上好ましい。また、高度改質処理装置50は上記のように循環型とすることが好ましいが、タンク40を用いずに給水口(給水配管)50aをポンプ42を介して第2改質部20に接続するとともに、吐水口(吐水配管)50eを第3改質部30に接続して通過型の高度改質処理装置50としても良い。   Next, the operation of the advanced reforming apparatus 50 will be described. First, first reforming water is prepared by the reforming apparatus 10. Next, a predetermined amount of the first reformed water is supplied into the tank 40 of the advanced reformer 50 through the water supply port 50a. Next, the pump 42 is driven. Thus, the first reformed water in the tank 40 is supplied to the second reforming unit 20 through the connection pipe 50b. As a result, the first reforming water passes through the second reforming unit 20. At this time, the anti-fluorite component of the anti-fluorite fired body beads 22 acts on the first modified water, and further modification processing (second modification processing) is performed on the first modified water. Is done. The second reformed water subjected to the second reforming process is supplied to the third reforming unit 30 through the connection pipe 50c. As a result, the second reformed water passes through the third reforming unit 30. At this time, the anti-fluorite component and the silver component of the silver-coated anti-fluorite beads 32 act on the second modified water, so that the second modified water (third modified treatment) is further modified. ) Is given. The highly reformed treated water subjected to the third reforming treatment is discharged into the tank 40 through the connecting pipe 50d, and is supplied again to the second reforming unit 20 and circulates in the highly reforming treatment apparatus 50. Further, a reforming process is performed. Moreover, the highly modified treated water stored in the tank 40 is taken from the water outlet 50e as appropriate. Then, the first modified water produced separately is mixed with the taken advanced modified water at a predetermined ratio. The modified treated water thus obtained is used for various applications in addition to being used as a cutting solvent water for water-soluble cutting oil. Although it is possible to use the highly reformed treated water as it is, the highly reformed treated water is expensive and expensive to manufacture, so it is diluted with the first modified treated water as described above. It is practically preferable. The advanced reforming apparatus 50 is preferably a circulation type as described above, but the water supply port (water supply pipe) 50a is connected to the second reforming unit 20 via the pump 42 without using the tank 40. At the same time, a water outlet (water discharge pipe) 50e may be connected to the third reforming unit 30 to form a pass-through type advanced reforming apparatus 50.

そして、これらの改質処理水を切削溶媒水として使用する場合には、周知の油剤と溶剤とを混合して水溶性切削油を作製する。作製された水溶性切削油は切削油タンク等に貯留され、切削加工機は切削油タンクから水溶性切削油を加工部に供給、循環しながら切削加工を行う。   And when using these modified process water as cutting solvent water, a well-known oil agent and a solvent are mixed and water-soluble cutting oil is produced. The produced water-soluble cutting oil is stored in a cutting oil tank or the like, and the cutting machine performs cutting while supplying and circulating water-soluble cutting oil from the cutting oil tank to the processing unit.

ここで、水道水と改質処理水とを切削溶媒水として用いたときの水溶性切削油中の油剤(エマルジョン)の平均粒径のグラフを図2に示す。尚、図2中のBは原水(水道水)を切削溶媒水とし油剤を5vol%混合して調製した水溶性切削油中の油剤成分の平均粒径であり、Aは第1の改質処理水を切削溶媒水とし油剤を5vol%混合して調製した水溶性切削油中の油剤成分の平均粒径であり、A’は第1の改質処理水を90vol%、高度改質処理水を5vol%、油剤を5vol%混合して調製した水溶性切削油中の油剤成分の平均粒径であり、A’’は第1の改質処理水を85vol%、高度改質処理水を10vol%、油剤を5vol%混合して調製した水溶性切削油中の油剤成分の平均粒径である。   Here, the graph of the average particle diameter of the oil agent (emulsion) in the water-soluble cutting oil when tap water and the modified treated water are used as the cutting solvent water is shown in FIG. Note that B in FIG. 2 is the average particle diameter of the oil component in the water-soluble cutting oil prepared by mixing raw water (tap water) with cutting solvent water and 5 vol% of the oil, and A is the first modification treatment. The average particle size of the oil component in the water-soluble cutting oil prepared by mixing 5 vol% of the oil with water as the cutting solvent water, and A ′ is 90 vol% of the first modified treated water and the highly modified treated water. The average particle size of the oil component in the water-soluble cutting oil prepared by mixing 5 vol% and 5 vol% of the oil, A ″ is 85 vol% of the first modified treated water, and 10 vol% of the highly modified treated water. The average particle diameter of the oil component in the water-soluble cutting oil prepared by mixing 5 vol% of the oil agent.

図2から、水道水を切削溶媒水として用いた水溶性切削油Bの油剤成分の平均粒径は196.4nmであったのに対し、改質処理水を切削溶媒水として用いた水溶性切削油A、A’、A’’の油剤成分の平均粒径はそれぞれ82.9nm、63.2nm、45.9nmと、水道水を切削溶媒水として用いたものよりも低い値を示した。このことから、切削溶媒水に改質処理水を用いることで油剤成分の分散性が向上し平均粒径は小さな値を示すことがわかる。また、この油剤成分の平均粒径は高度改質処理水の比率が増加するに伴って減少し、第2、第3の改質処理が改質処理水の分散性を更に向上させることが判る。尚、第1の改質処理水と高度改質処理水との混合比率は上記の例に限定されるわけではなく、用途やコスト等により適切な比率が適宜選定される。   From FIG. 2, the average particle size of the oil component of water-soluble cutting oil B using tap water as cutting solvent water was 196.4 nm, whereas water-soluble cutting using modified treated water as cutting solvent water. The average particle diameters of the oil agent components of oils A, A ′, and A ″ were 82.9 nm, 63.2 nm, and 45.9 nm, respectively, which were lower than those using tap water as the cutting solvent water. From this, it can be seen that by using the modified treated water as the cutting solvent water, the dispersibility of the oil component is improved and the average particle size shows a small value. Further, the average particle diameter of the oil component decreases as the ratio of the advanced reforming treatment water increases, and it can be seen that the second and third reforming treatments further improve the dispersibility of the reforming treatment water. . The mixing ratio of the first reformed treated water and the advanced reformed treated water is not limited to the above example, and an appropriate ratio is appropriately selected depending on the use, cost, and the like.

次に、上記の水溶性切削油Bと水溶性切削油Aを使用して円形切削加工を行った時の切削加工本数と真円度のグラフを図3(a)に示す。また、このときの被削材の温度上昇のグラフを図3(b)に示す。図3(a)から、水道水を使用した水溶性切削油Bでは切削本数13本で真円度が1.8μmを超えたのに対し、第1の改質処理水を使用した水溶性切削油Aでは切削本数40本まで真円度が1.8μmを超えず、改質処理水を使用することで切削工具の摩耗が抑制され加工精度が長期間継続することが判る。また、図3(b)から、水道水を使用した水溶性切削油Bでは被削材の温度上昇が約3℃であったのに対し、第1の改質処理水を使用した水溶性切削油Aでは被削材の温度上昇が約1.2℃であり、改質処理水を使用することで切削時の温度上昇が抑制されることが判る。これらのことから、改質処理水を切削溶媒水として使用することで水溶性切削油の能力が向上することがわかる。   Next, FIG. 3A shows a graph of the number of cuts and roundness when circular cutting is performed using the water-soluble cutting oil B and the water-soluble cutting oil A described above. Moreover, the graph of the temperature rise of the work material at this time is shown in FIG.3 (b). From FIG. 3 (a), the water-soluble cutting oil B using tap water has 13 cuts and the roundness exceeds 1.8 μm, whereas the water-soluble cutting using the first modified water is used. With oil A, the roundness does not exceed 1.8 μm up to 40 cuttings, and it can be seen that the use of the modified treated water suppresses the wear of the cutting tool and continues the machining accuracy for a long period of time. Further, from FIG. 3 (b), the water-soluble cutting oil B using tap water had a temperature rise of about 3 ° C., whereas the water-soluble cutting using the first modified water was used. With oil A, the temperature rise of the work material is about 1.2 ° C., and it can be seen that the use of the modified treated water suppresses the temperature rise during cutting. From these facts, it is understood that the ability of the water-soluble cutting oil is improved by using the modified treated water as the cutting solvent water.

次に、本発明に係る改質処理水の評価方法を図4、図5のフローチャートを用いて説明する。尚、以後は高度改質処理水と第1の改質処理水とを混合した改質処理水を便宜的に混合改質処理水と記述する。ここで、図4は第1の改質処理のみを行った第1の改質処理水の評価方法であり、図5は高度改質処理水と第1の改質処理水とを混合した混合改質処理水の評価方法である。先ず、第1の改質処理のみを行った改質処理水の評価方法では、第1の改質処理を行う前の原水を予め比較水として所定量採取する(比較水採取ステップS100)。次に、原水に対する第1の改質処理を行う(ステップS002)。次に、第1の改質処理を行った第1の改質処理水を被験水として所定量採取する(被験水採取ステップS104)。   Next, the method for evaluating reformed water according to the present invention will be described with reference to the flowcharts of FIGS. Hereinafter, the reformed water obtained by mixing the highly reformed water and the first reformed water is referred to as a mixed reformed water for convenience. Here, FIG. 4 is a method for evaluating the first reformed water that has undergone only the first reforming process, and FIG. 5 is a mixture in which the highly reformed water and the first reformed water are mixed. This is a method for evaluating reformed water. First, in the method for evaluating reformed water that has undergone only the first reforming process, a predetermined amount of raw water before the first reforming process is collected in advance as comparative water (comparative water sampling step S100). Next, a first reforming process is performed on the raw water (step S002). Next, a predetermined amount of the first modified treated water subjected to the first modified treatment is collected as test water (test water collection step S104).

次に、採取した比較水と被験水とに所定の粒径を有する粒径標準溶液としての真球状ポリスチレンラテックス粒子の水分散体を所定量(5vol%)添加して攪拌し、測定試料を調製する(測定試料調製ステップS202)。ここで、粒径標準溶液とは粒度測定機の校正等に用いる市販の標準液である。尚、ここでは粒径標準溶液として112nmの粒径標準溶液を用いた例を説明するが、粒径標準溶液は概ね100nmオーダーの粒径標準溶液であれば特に限定はなく、例えば116nmの粒径標準溶液を用いても良い。   Next, a predetermined amount (5 vol%) of an aqueous dispersion of spherical polystyrene latex particles as a particle size standard solution having a predetermined particle size is added to the collected comparative water and test water, and stirred to prepare a measurement sample. (Measurement sample preparation step S202). Here, the particle size standard solution is a commercially available standard solution used for calibration of a particle size measuring machine. Here, an example in which a 112 nm particle size standard solution is used as the particle size standard solution will be described. However, the particle size standard solution is not particularly limited as long as it is a particle size standard solution of the order of 100 nm. A standard solution may be used.

次に、これら測定試料中に分散した粒径標準溶液粒子の粒度分布を周知の粒度分布計を用いて測定する。そして、得られた粒度分布の中央値を取得する(測定ステップS204)。次に、得られた測定試料の粒度分布の中央値を比較する(比較ステップS206)。そして、被験水の中央値が比較水の中央値の50%に満たない時に改質処理水を良品と判断する(判定ステップS208)。   Next, the particle size distribution of the particle size standard solution particles dispersed in these measurement samples is measured using a known particle size distribution meter. And the median value of the obtained particle size distribution is acquired (measurement step S204). Next, the median values of the particle size distributions of the obtained measurement samples are compared (comparison step S206). Then, when the median value of the test water is less than 50% of the median value of the comparative water, the reformed water is determined to be non-defective (determination step S208).

また、混合改質処理水の評価方法では、先ず前述の比較水採取ステップS100と同様に、第1の改質処理を行う前の原水を第1の比較水として所定量採取する(第1の比較水採取ステップS100)。次に、原水に対する第1の改質処理を行う(ステップS002)。次に、第1の改質処理を行った第1の改質処理水を第2の比較水として所定量採取する(第2の比較水採取ステップS102)。次に、第1の改質処理水に対し、第2、第3の改質処理を行う(ステップS004)。次に、第2、第3の改質処理により得られた高度改質処理水と、別途作製した第1の改質処理水とを所定の比率で混合する(ステップS006)。次に、この混合改質処理水を被験水として所定量採取する(被験水採取ステップS104)。   Further, in the evaluation method of the mixed reforming treated water, first, as in the comparative water sampling step S100 described above, a predetermined amount of raw water before the first reforming process is collected as the first comparative water (first first). Comparative water collection step S100). Next, a first reforming process is performed on the raw water (step S002). Next, a predetermined amount of the first reformed water that has undergone the first reforming process is collected as second comparative water (second comparative water sampling step S102). Next, the second and third reforming processes are performed on the first reforming process water (step S004). Next, the advanced reforming water obtained by the second and third reforming treatments and the separately prepared first reforming water are mixed at a predetermined ratio (step S006). Next, a predetermined amount of this mixed reforming treated water is collected as test water (test water collection step S104).

次に、採取した第1の比較水、第2の比較水、被験水に上記の粒径標準溶液を所定量(5vol%)添加して攪拌し、測定試料を調製する(測定試料調製ステップS202)。次に、これら測定試料中に分散した粒径標準溶液粒子の粒度分布を周知の粒度分布計を用いて測定する。そして、得られた粒度分布の中央値を取得する(測定ステップS204)。   Next, a predetermined amount (5 vol%) of the above particle size standard solution is added to the collected first comparison water, second comparison water, and test water and stirred to prepare a measurement sample (measurement sample preparation step S202). ). Next, the particle size distribution of the particle size standard solution particles dispersed in these measurement samples is measured using a known particle size distribution meter. And the median value of the obtained particle size distribution is acquired (measurement step S204).

次に、第1の比較水(原水)の粒度分布の中央値と、第2の比較水(第1の改質処理水)の粒度分布の中央値とを比較する(第1の比較ステップS206)。そして、第2の比較水の中央値が第1の比較水の中央値の50%に満たず、第1の改質処理水が適正に改質していることを確認する(第1の判定ステップS208)。   Next, the median value of the particle size distribution of the first comparison water (raw water) is compared with the median value of the particle size distribution of the second comparison water (first reformed water) (first comparison step S206). ). Then, it is confirmed that the median value of the second comparison water is less than 50% of the median value of the first comparison water, and that the first reforming treated water is appropriately reformed (first determination) Step S208).

次に、第2の比較水の粒度分布の中央値と、被験水の粒度分布の中央値とを比較する(第2の比較ステップS306)。そして、被験水の中央値が第2の比較水の中央値よりも小さい時に混合改質処理水を良品と判断する(第2の判定ステップS308)。   Next, the median value of the particle size distribution of the second comparison water is compared with the median value of the particle size distribution of the test water (second comparison step S306). Then, when the median value of the test water is smaller than the median value of the second comparison water, the mixed reforming treated water is judged as a non-defective product (second judgment step S308).

ここで、図6(a)に、第1の比較水B(水道水)、第2の比較水A(第1の改質処理水)、混合改質処理水A’’’の各測定試料の粒度分布の中央値を示す。尚、粒度分布の測定は株式会社大塚電子製ESL Z−1000を用いて動的光散乱法により行った。また、混合改質処理水A’’’の測定試料は第1の改質処理水を87vol%、高度改質処理水を3vol%、粒径標準溶液を5vol%混合したものを用いた。   Here, FIG. 6A shows the respective measurement samples of the first comparative water B (tap water), the second comparative water A (first modified treated water), and the mixed modified treated water A ′ ″. The median particle size distribution is shown. The particle size distribution was measured by a dynamic light scattering method using ESL Z-1000 manufactured by Otsuka Electronics Co., Ltd. In addition, the measurement sample of the mixed modified treated water A "" used was a mixture of 87 vol% of the first modified treated water, 3 vol% of the highly modified treated water, and 5 vol% of the particle size standard solution.

図6(a)から、第1の比較水B(水道水)の中央値は310.4nmであったのに対し、第2の比較水A(第1の改質処理水)の中央値は126.2nmであり、第1の比較水B(水道水)の半分以下であることが判る。尚、112nmの粒径標準溶液が溶媒中に理想的な状態で分散した場合、その平均粒径、中央値は112nmを示す。しかしながら、実際には粒径標準溶液の真球状ポリスチレンラテックス粒子が溶媒中で凝集し、その粒径はみかけ上、大きな値を示す。そして、この凝集が強い程、平均粒径、中央値ともに大きな値を示す。ただし、平均粒径の差は小さく評価指標としては適当ではない。よって、本発明では粒度分布の中央値を分散性の指標として改質処理水の評価に用いる。そして、中央値が原水の半分以下に減少した改質処理水を用いた水溶性切削油は潤滑性と冷却能力の向上が認められ、中央値が半分に至らなかったものは向上効果が不十分であった。   From FIG. 6A, the median value of the first comparative water B (tap water) was 310.4 nm, whereas the median value of the second comparative water A (first reformed water) was It is 126.2 nm, and it can be seen that it is less than half of the first comparative water B (tap water). In addition, when a 112 nm particle size standard solution is dispersed in an ideal state in a solvent, the average particle size and the median value are 112 nm. However, in reality, the spherical polystyrene latex particles of the particle size standard solution aggregate in the solvent, and the particle size apparently shows a large value. And as this aggregation is stronger, both the average particle diameter and the median value are larger. However, the difference in average particle size is small and is not suitable as an evaluation index. Therefore, in the present invention, the median value of the particle size distribution is used as an index of dispersibility for the evaluation of the reformed water. Water-soluble cutting oil using modified treated water whose median value has been reduced to less than half of the raw water is recognized to improve lubricity and cooling capacity, and those whose median value does not reach half have insufficient improvement effect. Met.

よって、第1の改質処理水の評価方法では、第1の改質処理を行う前の比較水の(粒径標準溶液の)粒度分布の中央値と、第1の改質処理を行った被験水の(粒径標準溶液の)粒度分布の中央値とを比較し、被験水の中央値が比較水の中央値の半分、即ち50%に満たない値を示した時に第1の改質処理水を良品と判断する。   Therefore, in the evaluation method of the first reforming treatment water, the median value of the particle size distribution (of the standard particle size solution) of the comparative water before the first reforming treatment and the first reforming treatment were performed. Compare the median of the particle size distribution (of the particle size standard solution) of the test water, and when the median value of the test water shows half of the median value of the comparative water, that is, less than 50%, the first modification Judge treated water as good.

また、混合改質処理水A’’’の中央値は119.4nmであり、第1の改質処理水である第2の比較水Aよりも更に低い値を示した。これは、第2、第3の改質処理を行った高度改質処理水を第1の改質処理水に混合することで、処理水の改質レベルが第1の改質処理水よりも向上することを意味している。   Further, the median value of the mixed reforming treated water A "" was 119.4 nm, which was a lower value than the second comparative water A that is the first reforming treated water. This is because the advanced reforming water subjected to the second and third reforming treatments is mixed with the first reforming treatment water, so that the reforming level of the treatment water is higher than that of the first reforming treatment water. Means to improve.

よって、混合改質処理水の評価方法では、前述の第1の比較ステップS206と第1の判定ステップS208とを行った後に、第2の比較水の(粒径標準溶液の)粒度分布の中央値と被験水の(粒径標準溶液の)粒度分布の中央値とを比較する(第2の比較ステップS306)。そして、第2の比較水の中央値が被験水の中央値よりも小さい時に混合改質処理水を良品と判断する(第2の判定ステップS308)。   Therefore, in the mixed reforming treatment water evaluation method, after performing the first comparison step S206 and the first determination step S208 described above, the center of the particle size distribution (of the particle size standard solution) of the second comparison water is obtained. The value is compared with the median value of the particle size distribution (of the particle size standard solution) of the test water (second comparison step S306). Then, when the median value of the second comparison water is smaller than the median value of the test water, the mixed reforming treated water is judged as a non-defective product (second judgment step S308).

尚、ここでは第1の比較水、第2の比較水、被験水を同時に評価する例を説明しているが、予め第1の比較水と第2の比較水とを評価し、第1の改質処理が適切に行われていることを確認した後に第2、第3の改質処理を行い、第2の比較水と被験水とを評価して混合改質処理水の良否を判定しても良い。   In addition, although the example which evaluates 1st comparison water, 2nd comparison water, and test water simultaneously is demonstrated here, 1st comparison water and 2nd comparison water are evaluated beforehand, and 1st comparison water is evaluated. After confirming that the reforming process is properly performed, the second and third reforming processes are performed, and the quality of the mixed reforming process water is determined by evaluating the second comparison water and the test water. May be.

さらに、本発明に係る改質処理水の評価方法では測定試料の粒度分布に加え、各測定試料のゼータ電位、透光率を測定し、これらの結果を組み合わせて改質処理水の良否判定を行っても良い。   Furthermore, in the evaluation method for the modified treated water according to the present invention, in addition to the particle size distribution of the measured sample, the zeta potential and the light transmittance of each measured sample are measured, and the quality of the modified treated water is judged by combining these results. You can go.

ここで、図6(b)、図6(c)に各測定試料のゼータ電位を示す。また、図6(d)に各測定試料の透光率を示す。尚、ゼータ電位の測定は株式会社大塚電子製ESL Z−1000を用いて電気浸透法により行った。また、透光率の測定はアズワン株式会社製ASD11Dを用い、715nmの波長の光の透光率を測定した。尚、透光率はイオン交換水の透光率を100%とした比率で示した。   Here, FIG. 6B and FIG. 6C show the zeta potential of each measurement sample. FIG. 6D shows the transmissivity of each measurement sample. The zeta potential was measured by electroosmosis using ESL Z-1000 manufactured by Otsuka Electronics Co., Ltd. Moreover, the measurement of the transmissivity measured the translucency of the light of a wavelength of 715 nm using ASD11D by ASONE CORPORATION. In addition, the light transmittance was shown by the ratio which made the light transmittance of ion-exchange water 100%.

図6(b)から、第1の比較水B(水道水)のゼータ電位の絶対値は7.17mV(測定値−7.17mV)であり、第2の比較水A(第1の改質処理水)のゼータ電位の絶対値は12.82mV(測定値−12.82mV)であり、高度改質処理水Cのゼータ電位の絶対値は19.21mV(測定値−19.21mV)であり、改質処理が施されるにつれ大きな値を示すことがわかる。また、図6(c)から、第2の比較水A(第1の改質処理水)のゼータ電位の絶対値は16.20mV(測定値−16.20mV)であり、混合改質処理水A’’’のゼータ電位の絶対値は29.24mV(測定値−29.24mV)であり、高度改質処理水を第1の改質処理水に混合することで、ゼータ電位の絶対値は第1の改質処理水よりも大きな値を示すことがわかる。尚、図6(b)、図6(c)における第2の比較水Aの値が異なるのは、原水、改質処理日、測定日等が異なるためである。   From FIG. 6B, the absolute value of the zeta potential of the first comparative water B (tap water) is 7.17 mV (measured value−7.17 mV), and the second comparative water A (first reformed water) The absolute value of the zeta potential of the treated water) is 12.82 mV (measured value minus 12.82 mV), and the absolute value of the zeta potential of the highly modified treated water C is 19.21 mV (measured value minus 19.21 mV). It can be seen that a larger value is exhibited as the reforming treatment is performed. Further, from FIG. 6C, the absolute value of the zeta potential of the second comparative water A (first reformed treated water) is 16.20 mV (measured value −16.20 mV), and the mixed reformed treated water The absolute value of the zeta potential of A ′ ″ is 29.24 mV (measured value −29.24 mV). By mixing the highly reformed treated water with the first reformed treated water, the absolute value of the zeta potential is It can be seen that the value is larger than that of the first reforming treated water. The reason why the value of the second comparison water A in FIGS. 6B and 6C is different is that the raw water, the reforming date, the measurement date, etc. are different.

よって、比較ステップ、判定ステップ(ステップS206、S306、S208、S308)にゼータ電位の絶対値の評価を加え、改質処理前後で粒度分布の中央値が前述の条件を満たし、且つゼータ電位の絶対値が増加したときに改質処理水を良品と判断するようにしても良い。   Therefore, the absolute value of the zeta potential is evaluated in the comparison step and the determination step (steps S206, S306, S208, and S308), and the median value of the particle size distribution satisfies the above-mentioned conditions before and after the reforming process, and the absolute value of the zeta potential is When the value increases, the reformed water may be judged as a non-defective product.

また、図6(d)から、第1の比較水B(水道水)の透光率はイオン交換水比99.2%であり、第2の比較水A(第1の改質処理水)はイオン交換水比100.2%であり、改質処理が施されることで透明度が増すことがわかる。また、混合改質処理水A’’’の透光率はイオン交換水比101.7%であり、第2の比較水A(第1の改質処理水)よりも透明度が高いことがわかる。これらのことは、改質処理によって改質処理水の分散性が向上し、凝集物が減少したことに起因するものと思われる。   Moreover, from FIG.6 (d), the transmittance | permeability of 1st comparison water B (tap water) is 99.2% of ion-exchange water, and 2nd comparison water A (1st reforming treated water). The ion exchange water ratio is 100.2%, and it can be seen that the transparency is increased by the modification treatment. Further, the light transmittance of the mixed reforming treated water A ″ ′ is 101.7% as compared with the ion-exchanged water, which indicates that the transparency is higher than that of the second comparative water A (first reforming treated water). . These things are considered to be due to the improvement of the dispersibility of the reformed water by the reforming treatment and the reduction of aggregates.

よって、比較ステップ、判定ステップ(ステップS206、S306、S208、S308)に透光率の評価を加え、改質処理前後で粒度分布の中央値が前述の条件を満たし、且つ透光率が上昇したときに改質処理水を良品と判断するようにしても良い。また、比較ステップ、判定ステップで粒度分布の中央値、ゼータ電位の絶対値、透光率の全てを評価指標として用いても良い。   Therefore, the transmittance is evaluated in the comparison step and the determination step (steps S206, S306, S208, and S308), and the median value of the particle size distribution satisfies the above-described conditions before and after the reforming process, and the transmittance is increased. Sometimes, the reformed water may be judged as a good product. Further, in the comparison step and the determination step, all of the median value of the particle size distribution, the absolute value of the zeta potential, and the light transmittance may be used as evaluation indexes.

以上のように、本発明に係る改質処理水の評価方法は、作製した改質処理水に粒径標準溶液を添加し、その粒径標準溶液中の真球状ポリスチレンラテックス粒子の分散性等を評価することで改質処理水の良否判定を行う。これにより、従来、実際に使用するまで不明であった改質処理水の良否判定を改質処理後に直ちに行うことが可能となる。   As described above, the method for evaluating the modified treated water according to the present invention adds the particle size standard solution to the produced modified treated water, and determines the dispersibility of the spherical polystyrene latex particles in the particle size standard solution. The quality of the reformed water is determined by evaluating. As a result, it is possible to immediately determine whether or not the quality of the reformed water has been unknown until the actual use.

尚、本例で示した改質処理水の評価方法は一例であり、評価手順、評価機器、粒径標準溶液の添加量等は上記の例に限定されるものではない。また、本発明は本発明の要旨を逸脱しない範囲で変更して実施することが可能である。   In addition, the evaluation method of the reforming process water shown by this example is an example, and the evaluation procedure, the evaluation apparatus, the addition amount of a particle size standard solution, etc. are not limited to said example. In addition, the present invention can be modified and implemented without departing from the gist of the present invention.

10 改質処理装置
12 抗火石
20 第2改質部
22 抗火石焼成体ビーズ
30 第3改質部
32 銀被覆抗火石ビーズ
40 タンク
42 ポンプ
50 高度改質処理装置
10 Modification processing equipment
12 Firestone
20 Second reforming section
22 Firestone fired beads
30 Third reforming section
32 Silver coated anti-fluorite beads
40 tanks
42 Pump
50 Advanced reformer

Claims (4)

抗火石間に通水する改質処理を行った改質処理水の評価方法であって、
前記改質処理を行う前の原水を比較水として所定量採取するステップと、
前記改質処理を行った改質処理水を被験水として所定量採取するステップと、
前記比較水と被験水とに所定の粒径を有する粒径標準溶液としての真球状ポリスチレンラテックス粒子の水分散体を所定量添加して測定試料を調製するステップと、
前記測定試料の真球状ポリスチレンラテックス粒子の粒度分布の中央値を取得するステップと、
前記比較水の中央値と前記被験水の中央値とを比較するステップと、
前記被験水の中央値が前記比較水の中央値の50%に満たない時に前記改質処理水を良品と判断するステップと、
有することを特徴とする改質処理水の評価方法。
It is a method for evaluating modified treated water that has undergone a modification treatment for passing water between anti-fluorite,
Collecting a predetermined amount of raw water before the reforming treatment as comparative water;
Collecting a predetermined amount of the reformed treated water subjected to the reforming treatment as test water;
Adding a predetermined amount of an aqueous dispersion of spherical polystyrene latex particles as a particle size standard solution having a predetermined particle size to the comparative water and the test water, and preparing a measurement sample;
Obtaining a median value of the particle size distribution of the spherical polystyrene latex particles of the measurement sample;
Comparing the median of the comparative water and the median of the test water;
Determining the reformed water as non-defective when the median test water is less than 50% of the median of the comparative water;
A method for evaluating reformed water characterized by comprising:
抗火石間に通水する第1の改質処理と、表面に釉薬を塗布して焼成した抗火石焼成体ビーズ間に通水する第2の改質処理と、素焼きの抗火石ビーズの表面を銀の層で覆った銀被覆抗火石ビーズ間に通水する第3の改質処理と、を行った高度改質処理水に、前記第1の改質処理を行った第1の改質処理水を混合した改質処理水の評価方法であって、
前記第1の改質処理を行う前の原水を第1の比較水として所定量採取し、前記第1の改質処理を行った後の第1の改質処理水を第2の比較水として所定量採取するステップと、
前記高度改質処理水と前記第1の改質処理水とを所定の比率で混合した改質処理水を被験水として所定量採取するステップと、
前記第1の比較水と第2の比較水と被験水とに所定の粒径を有する粒径標準溶液としての真球状ポリスチレンラテックス粒子の水分散体を所定量添加して測定試料を調製するステップと、
前記測定試料の真球状ポリスチレンラテックス粒子の粒度分布の中央値を取得するステップと、
前記測定試料の中央値を比較するステップと、
前記第2の比較水の中央値が前記第1の比較水の中央値の50%に満たず、且つ前記被験水の中央値が前記第2の比較水の中央値よりも小さい時に、混合した前記改質処理水を良品と判断するステップと、
有することを特徴とする改質処理水の評価方法。
The first modification treatment that allows water to flow between the anti-fluorite, the second modification treatment that allows water to flow between the beads of the fired firestone fired by applying a glaze on the surface, and the surface of the unfired anti-fluorite beads. A first reforming process in which the first reforming process is performed on the highly reformed water that has been subjected to the third reforming process that passes between the silver-coated anti-fluorite beads covered with the silver layer. A method for evaluating reformed treated water mixed with water,
A predetermined amount of raw water before the first reforming treatment is collected as a first comparison water, and the first reforming treatment water after the first reforming treatment is used as a second comparison water. Collecting a predetermined amount;
Collecting a predetermined amount of modified treated water obtained by mixing the highly modified treated water and the first modified treated water at a predetermined ratio as test water;
A step of preparing a measurement sample by adding a predetermined amount of an aqueous dispersion of true spherical polystyrene latex particles as a particle size standard solution having a predetermined particle size to the first comparison water, the second comparison water, and the test water. When,
Obtaining a median value of the particle size distribution of the spherical polystyrene latex particles of the measurement sample;
Comparing the median of the measurement sample;
Mixed when the median value of the second comparison water was less than 50% of the median value of the first comparison water and the median value of the test water was smaller than the median value of the second comparison water Determining the modified treated water as non-defective product;
A method for evaluating reformed water characterized by comprising:
測定試料のゼータ電位を測定するステップと、
比較水のゼータ電位と被験水のゼータ電位とを比較するステップと、
前記被験水のゼータ電位の絶対値が前記比較水のゼータ電位の絶対値よりも大きい時に改質処理水を良品と判断するステップと、をさらに有することを特徴とする請求項1または請求項2に記載の改質処理水の評価方法。
Measuring the zeta potential of the measurement sample;
Comparing the zeta potential of the comparative water with the zeta potential of the test water;
The method further comprises the step of determining the reformed water as a non-defective product when the absolute value of the zeta potential of the test water is larger than the absolute value of the zeta potential of the comparative water. The evaluation method of the reforming treated water as described in 1.
測定試料の透光率を測定するステップと、
比較水の透光率と被験水の透光率とを比較するステップと、
前記被験水の透光率が前記比較水の透光率よりも大きい時に改質処理水を良品と判断するステップと、をさらに有することを特徴とする請求項1乃至請求項3のいずれかに記載の改質処理水の評価方法。
Measuring the transmissivity of the measurement sample;
Comparing the transmittance of the comparative water with the transmittance of the test water;
The method further comprises the step of determining the modified treated water as a non-defective product when the light transmittance of the test water is larger than the light transmittance of the comparative water. The evaluation method of the modified treated water as described.
JP2014258231A 2014-12-22 2014-12-22 Method for evaluating reformed water Active JP6184398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014258231A JP6184398B2 (en) 2014-12-22 2014-12-22 Method for evaluating reformed water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014258231A JP6184398B2 (en) 2014-12-22 2014-12-22 Method for evaluating reformed water

Publications (2)

Publication Number Publication Date
JP2016118463A JP2016118463A (en) 2016-06-30
JP6184398B2 true JP6184398B2 (en) 2017-08-23

Family

ID=56242991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014258231A Active JP6184398B2 (en) 2014-12-22 2014-12-22 Method for evaluating reformed water

Country Status (1)

Country Link
JP (1) JP6184398B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7455346B2 (en) * 2018-10-17 2024-03-26 株式会社澤本商事 Method for producing silicic acid aqueous solution
JP7359504B1 (en) 2023-06-07 2023-10-11 ティーケイケイホールディングス株式会社 Evaluation method and device for water modification effect, and method and device for determining water modification effect presence/absence

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002066568A (en) * 2000-08-28 2002-03-05 Japan Organo Co Ltd Water treating method and apparatus
JP2008063355A (en) * 2006-09-04 2008-03-21 Shisetsu Kogyo Kk Method for producing w/o-type emulsion fuel and apparatus for producing w/o-type emulsion fuel
US20150344339A1 (en) * 2012-12-25 2015-12-03 Toray Industries, Inc. Water treatment method
JP6269474B2 (en) * 2012-12-27 2018-01-31 東レ株式会社 Composite semipermeable membrane

Also Published As

Publication number Publication date
JP2016118463A (en) 2016-06-30

Similar Documents

Publication Publication Date Title
CN105441043B (en) A kind of temporarily stifled microballoon and preparation method thereof
WO2016100245A2 (en) Static mixer
JP6184398B2 (en) Method for evaluating reformed water
EP4237596A2 (en) Method for producing a particulate carrier material provided with elementary silver and elementary ruthenium
EP2174751A1 (en) Abrasive grain agglomerates, method for their manufacture and their application
CN106457381A (en) A new method of making a cemented carbide or cermet body
KR101251567B1 (en) Nickel powder, process for producing the same, and conductive paste
CN111704481B (en) Production process of antibacterial polished brick, preparation method of antibacterial agent and antibacterial polished brick
CN107140654A (en) A kind of Modified Quartz Sand preparation method
TW201238931A (en) Refractory object, glass overflow forming block, and process of forming and using the refractory object
CN106744738B (en) A method of preparing hexagonal nanometer boron nitride synusia
CN105980516B (en) Including kaolinic proppant and anti-backflow additive
CN105177579A (en) Method for corrosion of Ni-Mn-Si-Cr alloy
JP2008122030A (en) Raw material for constituting heat pipe
Ou et al. Hydrophobically modified melamine‐formaldehyde sponge used for conformance control and water shutoff during oil production
CN106391998A (en) Coating for sand mould low-pressure casting of aluminum alloy and preparation method thereof
TWI792540B (en) Copper powder and copper powder manufacturing method
JP7007563B2 (en) Evaluation method for 3D objects
CN112342838A (en) Process for preparing liquid titanium dioxide for producing decorative base paper
CN110295034B (en) Gas injection channeling-preventing agent for deep part of carbonate karst cave or hole oil reservoir and application method thereof
EP3992169A1 (en) Coloured technical corundum ceramic and method for producing the same
JP6860207B2 (en) Emulsion type heat storage material and its manufacturing method
CN105694841A (en) Preparation method of oil extraction sand carrying liquid treating agent
JP2011137189A (en) Silver particulate having high sphericity, and method for producing the same
CN104130766B (en) Preparation method of low-density fracturing propping agent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170725

R150 Certificate of patent or registration of utility model

Ref document number: 6184398

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250