JP6183860B2 - Oxidation catalyst and organic oxide production method - Google Patents

Oxidation catalyst and organic oxide production method Download PDF

Info

Publication number
JP6183860B2
JP6183860B2 JP2014534346A JP2014534346A JP6183860B2 JP 6183860 B2 JP6183860 B2 JP 6183860B2 JP 2014534346 A JP2014534346 A JP 2014534346A JP 2014534346 A JP2014534346 A JP 2014534346A JP 6183860 B2 JP6183860 B2 JP 6183860B2
Authority
JP
Japan
Prior art keywords
reaction
oxidation catalyst
gold
oxidation
glucose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014534346A
Other languages
Japanese (ja)
Other versions
JPWO2014038511A1 (en
Inventor
春田 正毅
正毅 春田
翔 竹之内
翔 竹之内
絢子 竹歳
絢子 竹歳
武井 孝
孝 武井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Metropolitan University
Original Assignee
Tokyo Metropolitan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan University filed Critical Tokyo Metropolitan University
Publication of JPWO2014038511A1 publication Critical patent/JPWO2014038511A1/en
Application granted granted Critical
Publication of JP6183860B2 publication Critical patent/JP6183860B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/003Catalysts comprising hydrides, coordination complexes or organic compounds containing enzymes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/42Hydroxy-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/58Aldonic, ketoaldonic or saccharic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/03Oxidoreductases acting on the CH-OH group of donors (1.1) with a oxygen as acceptor (1.1.3)
    • C12Y101/03004Glucose oxidase (1.1.3.4)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/70Oxidation reactions, e.g. epoxidation, (di)hydroxylation, dehydrogenation and analogues

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

本発明は、酸化触媒及び有機酸化物の製造方法に関し、さらに詳しくは、反応効率が高く、しかも常温常圧に近い低コストな反応条件下で有機酸化物の製造を行うことができる酸化触媒及び有機酸化物の製造方法に関するものである。   The present invention relates to an oxidation catalyst and a method for producing an organic oxide. More specifically, the present invention relates to an oxidation catalyst capable of producing an organic oxide under low-cost reaction conditions with high reaction efficiency and close to normal temperature and pressure. The present invention relates to a method for producing an organic oxide.

有機化合物の合成技術は、製薬、化学、食品、材料などを始めとしたあらゆる分野で応用されており、これまで、種々技術が提案されている。その結果、人工的に合成を行うことが可能となった有機化合物は飛躍的に増加したが、それでもなお、人工的に合成を行うことが困難な有機化合物や合成できても効率が悪い有機化合物や反応系も多数存在するのが現状である。
そのような有機化合物として有機酸化物があり、かかる有機酸化物の合成方法の1つとして、反応選択性が高い酵素を用いた反応や金属触媒を用いた反応などが提案されている。
例えばグルコン酸の製造において、特許文献1では、従来の微生物を用いた発酵法による製造法に代わる方法として、グルコースオキシダーゼ及びカタラーゼを、微生物を介することなく特定の条件で触媒として用い、従来の発酵法よりも製造に要する時間が短く、収率が高くなる方法が提案されている。
また、特許文献2では、炭素材料表面に金ナノ粒子が担持されてなる金ナノ触媒を用いて、グルコン酸を効率よく酸化する反応系について提案されている。また、特許文献3では、酵素とルテニウムやパラジウム等の金属とを併用することにより、反応効率を高くする有機酸化物の製造方法が提案されている。
また、特許文献4には、グルコ−スオキシダ−ゼと貴金属微粒子とを高分子ゲルビ−ズに固定化してなるゲルビーズ触媒を用いてグルコン酸を製造する製造方法が提案されている。
Synthetic techniques for organic compounds have been applied in various fields including pharmaceuticals, chemistry, foods, and materials, and various techniques have been proposed so far. As a result, the number of organic compounds that can be artificially synthesized has increased dramatically. Nevertheless, organic compounds that are difficult to artificially synthesize or organic compounds that are inefficient even if synthesized There are also many reaction systems.
As such an organic compound, there is an organic oxide, and as one of methods for synthesizing such an organic oxide, a reaction using an enzyme with high reaction selectivity, a reaction using a metal catalyst, and the like have been proposed.
For example, in the production of gluconic acid, in Patent Document 1, glucose oxidase and catalase are used as catalysts under specific conditions without using microorganisms as a method instead of the conventional fermentation method using microorganisms. A method has been proposed in which the time required for production is shorter than that of the method and the yield is increased.
Patent Document 2 proposes a reaction system that efficiently oxidizes gluconic acid using a gold nanocatalyst in which gold nanoparticles are supported on the surface of a carbon material. Patent Document 3 proposes a method for producing an organic oxide that increases the reaction efficiency by using an enzyme in combination with a metal such as ruthenium or palladium.
Patent Document 4 proposes a production method for producing gluconic acid using a gel bead catalyst obtained by immobilizing glucosoxidase and noble metal fine particles on a polymer gel beads.

特表平10−502825号公報Japanese National Patent Publication No. 10-502825

特開2009−220017号公報JP 2009-220017 A

特開2001−161388号公報JP 2001-161388 A

特開平06−70785号公報Japanese Patent Laid-Open No. 06-70785

しかしながら、上述の提案にかかる酸化触媒及び有機酸化物の製造方法は、未だ不十分で要求されているレベルにはないものであった。
すなわち、特許文献1に記載の提案では、ある程度低い温度条件でも反応が進行するものの未だ反応効率の点で不十分であった。
特許文献2に記載の提案では、反応温度を高く設定しなければならないなど反応条件を通常のよりも厳しい条件とする必要があり、非効率であった。
特許文献3に記載の提案では、酵素を用いた系における過酸化水素の発生というネガティブ要素を排除することにより、酵素を用いた系の効率をより高めることは可能となったものの、常温常圧に近い低コストな反応条件下で反応が進行しているとは言えず不十分なものであった。
特許文献4に記載の提案は、単に貴金属(Pd,Pt等)触媒の併用により、Hの分解を促進させて酵素活性を維持するものであり、一定の効果は得られるものの、未だに反応速度が遅く、常温常圧に近い低コストな反応条件下での製造ではなく未だ不十分であった。
このため、従来提案されている方法よりも、反応効率が高く、しかも常温常圧に近い低コストな反応条件下で有機酸化物の製造を行うことができる酸化触媒及び有機酸化物の製造方法の開発が要望されているのが現状である。
However, the oxidation catalyst and the method for producing an organic oxide according to the above proposal are still insufficient and not at the required level.
That is, in the proposal described in Patent Document 1, the reaction proceeds even under a somewhat low temperature condition, but is still insufficient in terms of reaction efficiency.
The proposal described in Patent Document 2 is inefficient because it is necessary to set the reaction conditions to be stricter than usual, for example, the reaction temperature must be set high.
In the proposal described in Patent Document 3, although it became possible to further improve the efficiency of the system using the enzyme by eliminating the negative factor of generation of hydrogen peroxide in the system using the enzyme, However, the reaction was not sufficient because the reaction was not progressing under low-cost reaction conditions.
The proposal described in Patent Document 4 is to promote the decomposition of H 2 O 2 and maintain the enzyme activity simply by using a noble metal (Pd, Pt, etc.) catalyst in combination. The reaction rate was slow, and it was still insufficient, not the production under low-cost reaction conditions close to normal temperature and pressure.
For this reason, an oxidation catalyst capable of producing an organic oxide under a low-cost reaction condition having a higher reaction efficiency than that of a conventionally proposed method and close to normal temperature and pressure, and an organic oxide production method Currently, there is a demand for development.

したがって、本発明の目的は、反応効率が高く、しかも常温常圧に近い低コストな反応条件下で有機酸化物の製造を行うことができる酸化触媒及び有機酸化物の製造方法を提供することにある。   Accordingly, an object of the present invention is to provide an oxidation catalyst capable of producing an organic oxide under a low-cost reaction condition having high reaction efficiency and close to normal temperature and pressure, and an organic oxide production method. is there.

本発明者らは、上記課題を解消すべく鋭意検討した結果、酵素反応における副生成物である過酸化物を除去できる化合物を酵素と併用する際に通常の金属では酵素の活性を阻害するなどの問題を生じてしまうことを知見し、酵素と相性がよく相乗効果を発揮し得る金属触媒についてさらに検討した結果、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors inhibit the activity of an enzyme with a normal metal when a compound capable of removing a peroxide as a by-product in an enzyme reaction is used in combination with the enzyme. As a result of further study on metal catalysts that have good compatibility with enzymes and can exhibit a synergistic effect, the present invention has been completed.

すなわち、本発明は以下の各発明を提供するものである。
1 有機化合物の酸化反応に際して所定の酵素を触媒として用いた場合に過酸化物を発生する酸化反応系に用いられる酸化触媒であって、
上記酵素と金含有粒子とを含み、
上記金含有粒子が、金ナノ粒子を担体に担持させてなる粒子であることを特徴とする酸化触媒。
2 上記酵素と上記金含有粒子との配合割合が、重量比で1:0.1〜10であることを特徴とする1記載の酸化触媒。
3 上記担体が金属酸化物であり、該金属酸化物がZrO、Al、CeO又はSiOである1又は2記載の酸化触媒。
4 上記有機化合物がグルコースであり、上記の所定の酵素がグルコースオキシダーゼであり、上記過酸化物が過酸化水素である1〜3のいずれかに記載の酸化触媒。
5 1記載の酸化触媒を用いる有機酸化物の製造方法であって、
有機化合物を、上記酸化触媒の存在下、50℃以下の温度で且つpH6〜8の中性領域で反応させることを特徴とする製造方法。
That is, the present invention provides the following inventions.
1. An oxidation catalyst used in an oxidation reaction system that generates peroxide when a predetermined enzyme is used as a catalyst in an oxidation reaction of an organic compound,
Including the enzyme and gold-containing particles,
An oxidation catalyst, wherein the gold-containing particles are particles formed by supporting gold nanoparticles on a carrier.
2. The oxidation catalyst according to 1, wherein a mixing ratio of the enzyme and the gold-containing particles is 1: 0.1 to 10 by weight.
3 The oxidation catalyst according to 1 or 2, wherein the support is a metal oxide, and the metal oxide is ZrO 2 , Al 2 O 3 , CeO 2, or SiO 2 .
4 The oxidation catalyst according to any one of 1 to 3, wherein the organic compound is glucose, the predetermined enzyme is glucose oxidase, and the peroxide is hydrogen peroxide.
5. A method for producing an organic oxide using the oxidation catalyst according to 1.
An organic compound is reacted in the presence of the oxidation catalyst at a temperature of 50 ° C. or lower and in a neutral region of pH 6-8.

本発明の酸化触媒は、反応効率が高く、しかも常温常圧に近い低コストな反応条件下で有機酸化物の製造を行うことができるものである。
また、本発明の有機酸化物の製造方法によれば、反応効率が高く、しかも常温常圧に近い低コストな反応条件下で有機酸化物の製造を行うことができる。
The oxidation catalyst of the present invention has high reaction efficiency and can produce an organic oxide under low-cost reaction conditions close to normal temperature and pressure.
Moreover, according to the method for producing an organic oxide of the present invention, the organic oxide can be produced under low-cost reaction conditions having high reaction efficiency and close to normal temperature and pressure.

図1は実施例1及び2、比較例1〜3において行ったグルコース酸化反応におけるグルコースのグルコン酸への転化率を経時的に示すグラフである。FIG. 1 is a graph showing the conversion rate of glucose to gluconic acid over time in the glucose oxidation reactions performed in Examples 1 and 2 and Comparative Examples 1 to 3. 図2は、実施例1のグルコース酸化反応の生成物をH−NMRで分析した結果を示すチャートであり、(a)は、チャート全体を示すものであり、(b)は、グルコン酸部分を拡大して示すものである。FIG. 2 is a chart showing the results of H-NMR analysis of the product of the glucose oxidation reaction of Example 1, (a) shows the entire chart, and (b) shows the gluconic acid moiety. It is an enlarged view. 図3は実施例1、比較例1、4及び5において行ったグルコース酸化反応におけるグルコースのグルコン酸への転化率を経時的に示すグラフである。FIG. 3 is a graph showing the conversion rate of glucose to gluconic acid over time in the glucose oxidation reaction performed in Example 1 and Comparative Examples 1, 4 and 5. 図4は実施例1及び3において行ったグルコース酸化反応におけるグルコースのグルコン酸への転化率を経時的に示すグラフである。FIG. 4 is a graph showing the conversion rate of glucose to gluconic acid in the glucose oxidation reaction performed in Examples 1 and 3 over time. 図5は実施例1及び比較例6において行ったグルコース酸化反応におけるグルコースのグルコン酸への転化率を経時的に示すグラフである。FIG. 5 is a graph showing the conversion rate of glucose to gluconic acid in the glucose oxidation reaction performed in Example 1 and Comparative Example 6 over time.

以下、本発明をさらに詳細に説明する。
本発明の酸化触媒は、有機化合物の酸化反応に際して所定の酵素を触媒として用いた場合に過酸化物を発生する酸化反応系に用いられる酸化触媒であって、上記酵素と金含有粒子とを含み、上記金含有粒子が、金ナノ粒子を金属酸化物に担持させてなる粒子である、酸化触媒である。
Hereinafter, the present invention will be described in more detail.
The oxidation catalyst of the present invention is an oxidation catalyst used in an oxidation reaction system that generates peroxide when a predetermined enzyme is used as a catalyst in the oxidation reaction of an organic compound, and includes the enzyme and gold-containing particles. The gold-containing particles are oxidation catalysts, which are particles formed by supporting gold nanoparticles on a metal oxide.

<所定の酵素>
本発明において用いられる上記の所定の酵素は、有機化合物の酸化反応に用いられるものであれば特に制限されないが、過酸化水素を発生させるオキシダーゼ等が挙げられ、具体的には、グルコースオキシダーゼ、アルコールオキシダーゼ、アスコルビン酸オキシダーゼ、サルコシンオキシダーゼ等が好ましく挙げられる。
<Predetermined enzyme>
The predetermined enzyme used in the present invention is not particularly limited as long as it is used for an oxidation reaction of an organic compound, and examples thereof include oxidase that generates hydrogen peroxide. Specifically, glucose oxidase, alcohol Preferred examples include oxidase, ascorbate oxidase, sarcosine oxidase and the like.

<金含有粒子>
本発明において用いられる上記金含有粒子は、金ナノ粒子を金属酸化物などの担体に担持させてなる粒子である。
上記金含有粒子の平均粒子径は10nm〜1μmであるのが好ましく、上記金ナノ粒子と上記担体との構成比は、重量比で、上記金ナノ粒子1に対して上記担体10〜500とするのが好ましい。
(金ナノ粒子)
上記金ナノ粒子とは、金原子が好ましくは10〜50,000個集合してなる粒子をいい、さらに好ましくは200〜10,000個集合してなる粒子をいう。
上記金ナノ粒子の粒子径は、平均粒子径で2〜10nmであるのが好ましく、2〜5nmであるのがさらに好ましい。
<Gold-containing particles>
The gold-containing particles used in the present invention are particles obtained by supporting gold nanoparticles on a carrier such as a metal oxide.
The average particle size of the gold-containing particles is preferably 10 nm to 1 μm, and the composition ratio between the gold nanoparticles and the carrier is a weight ratio of the carrier 10 to 500 with respect to the gold nanoparticle 1. Is preferred.
(Gold nanoparticles)
The gold nanoparticles are particles formed by preferably collecting 10 to 50,000 gold atoms, and more preferably particles formed by collecting 200 to 10,000 gold atoms.
The particle diameter of the gold nanoparticles is preferably 2 to 10 nm as an average particle diameter, and more preferably 2 to 5 nm.

(担体)
本発明において用いられる担体としては、金属酸化物、カーボン、又はセルロースなどが挙げられ、特に金属酸化物を好ましく挙げることができる。
上記金属酸化物は、上記金ナノ粒子を担持できるものであれば、特に制限なく用いることができ、上記金属酸化物としては、ZrO、Al、CeO、SiOなどが挙げられ、ZrO、又は、Alを好ましく挙げることができる。
上記金属酸化物の形状は、球状、板状、フラワー状、ロッド(棒)状等種々形態とすることができる。
また、上記金属酸化物の大きさは、平均粒子径で10nm〜1μmであるのが好ましい。
また、上記金属酸化物の大きさは、金ナノ粒子の粒子径の4〜20倍であるのが好ましい。
また、上金属酸化物の形状が、板状、フラワー状、ロッド(棒)状である場合には、厚さを5nm〜100nmとするのが好ましい。
また、上記カーボンとしては、ダイヤモンド結晶構造を有するナノサイズのダイヤモンドである、ナノダイヤモンドを好ましく挙げることができる。上記セルロースとしては、天然物、人工物の別なく用いることができ、ニトロセルロースやアセチルセルロースなどの誘導体を用いることもできる。これらカーボンやセルロースの形状、大きさは上述の金属酸化物を同様とすることができる。
(Carrier)
Examples of the carrier used in the present invention include a metal oxide, carbon, or cellulose, and a metal oxide is particularly preferable.
The metal oxide can be used without particular limitation as long as it can support the gold nanoparticles, and examples of the metal oxide include ZrO 2 , Al 2 O 3 , CeO 2 , and SiO 2. ZrO 2 or Al 2 O 3 can be preferably mentioned.
The shape of the metal oxide can be various forms such as a spherical shape, a plate shape, a flower shape, and a rod shape.
The size of the metal oxide is preferably 10 nm to 1 μm in terms of average particle diameter.
The size of the metal oxide is preferably 4 to 20 times the particle diameter of the gold nanoparticles.
Further, when the shape of the upper metal oxide is a plate shape, a flower shape, or a rod (rod) shape, the thickness is preferably 5 nm to 100 nm.
Moreover, as said carbon, the nano diamond which is a nano size diamond which has a diamond crystal structure can be mentioned preferably. As said cellulose, it can use regardless of a natural product and an artificial thing, and derivatives, such as nitrocellulose and acetylcellulose, can also be used. The shape and size of these carbon and cellulose can be the same as those of the above metal oxide.

(製造方法)
上記金含有粒子は 金化合物と上記担体としての上記金属酸化物とを混合し、得られた混合物を焼成及び/又は還元することにより得ることができる。
上記金化合物としては、Au[C(NHCl等のエチレンジアミン金錯体、ジメチル(アセチルアセトナート)金(III)、などのジメチル金β‐ジケトン誘導体錯体金錯体化合物が挙げられる。
上記混合に際しては、固相混合法、湿式混合法などの混合方法を用いることができる。
上記固相混合法は、上記金化合物と上記金属酸化物とを乳鉢などの混合器を用いて両者固体状のまま混合する方法である。
上記湿式混合法は、アセトン、メタノール等の溶媒に上記金化合物と上記金属酸化物とを溶解又は分散させた系でボールミルなどの混合装置を用いる方法である。
上記焼成は、上記混合により得た混合物を電気炉で100〜400℃の温度条件にて1〜10時間空気焼成することにより行うことができる。
上記金属酸化物と上記金化合物との混合比は、金属酸化物100重量部に対して上記金化合物0.1〜5重量部とするのが好ましい。
また、担持後に得られる金ナノ粒子が金属酸化物に担持されてなる金含有粒子に対して、後処理もしくは焼成と同時に行う処理として、還元処理、焼成処理、プラズマ処理などの処理を常法に従って行うことにより、得られる金含有粒子に付着した不純物や副生物を除去することもできる。
また、上記担体として上記カーボンやセルロースを用いた場合も上記金属酸化物を用いる場合に準じて製造することができる。
(Production method)
The gold-containing particles can be obtained by mixing a gold compound and the metal oxide as the carrier, and firing and / or reducing the obtained mixture.
Examples of the gold compound include gold complexes of dimethyl gold β-diketone derivatives such as ethylenediamine gold complexes such as Au [C 2 H 4 (NH 2 ) 2 ] 2 Cl 3 and dimethyl (acetylacetonato) gold (III). Is mentioned.
In the mixing, a mixing method such as a solid phase mixing method or a wet mixing method can be used.
The solid phase mixing method is a method in which the gold compound and the metal oxide are mixed in a solid state using a mixer such as a mortar.
The wet mixing method is a method of using a mixing device such as a ball mill in a system in which the gold compound and the metal oxide are dissolved or dispersed in a solvent such as acetone or methanol.
The firing can be performed by air firing the mixture obtained by the above mixing in an electric furnace at a temperature of 100 to 400 ° C. for 1 to 10 hours.
The mixing ratio of the metal oxide and the gold compound is preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of the metal oxide.
In addition, for gold-containing particles in which gold nanoparticles obtained after loading are supported on a metal oxide, a treatment such as a reduction treatment, a firing treatment, a plasma treatment, or the like is performed according to a conventional method as a post-treatment or a treatment performed simultaneously with firing. By carrying out, impurities and by-products attached to the gold-containing particles obtained can be removed.
In addition, when the carbon or cellulose is used as the carrier, it can be produced according to the case where the metal oxide is used.

(酸化触媒の形態、配合割合)
本発明の酸化触媒は、上記金含有粒子と上記酵素とを含有していれば、その使用形態は特に制限されず、後述する反応系に混合した後で投入しても別々に投入してもよい。
また、本発明の酸化触媒には、本発明の所望の効果を損なわない範囲で通常この種の酸化触媒に併用される緩衝液、各種塩、補酵素等の添加剤を含有させてもよい。
また、上記金含有粒子と上記酵素とを混合した形態とする場合の混合方法は、酵素活性を失活させない方法であれば特に制限されない。
酵素と金含有粒子との配合割合は、重量比で酵素:金含有粒子=1:0.1〜10であることが好ましく、1:0.2〜5であることが特に好ましい。
(Oxidation catalyst form, blending ratio)
The use form of the oxidation catalyst of the present invention is not particularly limited as long as it contains the gold-containing particles and the enzyme. Good.
Further, the oxidation catalyst of the present invention may contain additives such as a buffer solution, various salts, and a coenzyme that are usually used in combination with this type of oxidation catalyst as long as the desired effects of the present invention are not impaired.
Moreover, the mixing method in the case where the gold-containing particles are mixed with the enzyme is not particularly limited as long as it does not deactivate the enzyme activity.
The blending ratio of the enzyme and the gold-containing particles is preferably enzyme: gold-containing particles = 1: 0.1 to 10 and more preferably 1: 0.2 to 5 by weight ratio.

<使用方法>
本発明の酸化触媒は、有機化合物の酸化反応に際して所定の酵素を触媒として用いた場合に過酸化物を発生する酸化反応系に用いられる酸化触媒であり、上記有機化合物の酸化反応の触媒として用いられるのが好ましい。
以下に本発明の酸化触媒を使用した本発明の有機酸化物の製造方法を詳細に説明する。
本発明の有機酸化物の製造方法は、上記酸化触媒を用いて、上記有機化合物を所定の温度と所定のpHで反応を行う有機酸化物の製造方法である。
上記温度は、60℃以下の温度であり、50℃以下であるのが好ましい。温度が50℃を超えると反応実行時の操作が煩雑になり、特別な装置設備が必要になる等コストが高くなるので、上記温度範囲内とする必要がある。
上記pHは、pH6〜8の中性領域である。中性領域でない場合、たとえば大量のアルカリを必要とする場合には、反応後に中和作業が必要で工程数の増加による反応操作の煩雑化とそれに伴うコストの増加が生じるので、上記範囲内とする必要がある。
換言すると、本発明の酸化触媒は、50℃以下の温度で且つpH6〜8の中性領域で酸化反応を行うことができるものである。
pHの調製は、水酸化ナトリウム溶液などのアルカリ溶液を反応時に添加して生成するグルコン酸を中和する方法、反応溶液にpH6〜8に緩衝作用がある緩衝液を用いる方法、などの方法を用いて行うことができる。中和する方法を採用した場合には得られたグルコン酸ナトリウムを常法に従ってグルコン酸とすることにより目的物であるグルコン酸を得ることができる。
本発明の酸化触媒は種々有機化合物の酸化反応に際して使用することができ、その際、常温に近い反応温度、常圧に近い圧力条件、中性領域で高い反応性をもって目的化合物を得ることができるが、中でも下記するような有機化合物の合成反応系における酸化反応触媒として好ましく用いることができる。
<How to use>
The oxidation catalyst of the present invention is an oxidation catalyst used in an oxidation reaction system that generates peroxide when a predetermined enzyme is used as a catalyst in the oxidation reaction of an organic compound, and is used as a catalyst for the oxidation reaction of the organic compound. It is preferred that
Below, the manufacturing method of the organic oxide of this invention which uses the oxidation catalyst of this invention is demonstrated in detail.
The method for producing an organic oxide of the present invention is a method for producing an organic oxide in which the organic compound is reacted at a predetermined temperature and a predetermined pH using the oxidation catalyst.
The said temperature is a temperature of 60 degrees C or less, and it is preferable that it is 50 degrees C or less. If the temperature exceeds 50 ° C., the operation at the time of carrying out the reaction becomes complicated, and costs such as the need for special equipment are increased. Therefore, it is necessary to keep the temperature within the above range.
The pH is a neutral region of pH 6-8. If it is not a neutral region, for example, when a large amount of alkali is required, neutralization work is required after the reaction, and the reaction operation becomes complicated due to an increase in the number of steps and the accompanying cost increases. There is a need to.
In other words, the oxidation catalyst of the present invention can perform an oxidation reaction at a temperature of 50 ° C. or lower and in a neutral region of pH 6-8.
The pH is adjusted by a method such as a method of neutralizing gluconic acid produced by adding an alkaline solution such as a sodium hydroxide solution during the reaction, a method using a buffer solution having a buffering action at pH 6 to 8 in the reaction solution, or the like. Can be used. When the method of neutralization is adopted, the obtained gluconic acid can be obtained by converting the obtained sodium gluconate into gluconic acid according to a conventional method.
The oxidation catalyst of the present invention can be used in the oxidation reaction of various organic compounds. At that time, the target compound can be obtained with high reactivity in a reaction temperature close to normal temperature, a pressure condition close to normal pressure, and a neutral region. However, among these, it can be preferably used as an oxidation reaction catalyst in the organic compound synthesis reaction system described below.

(グルコースの酸化反応)
下記式(化1)に示す反応によりグルコースを酸化してグルコン酸を製造する際の酸化反応である。
この場合の酸化触媒としては、酵素としてグルコースオキシダーゼを用い、金ナノ粒子を金属酸化物としてのZrOに担持させてなる金含有粒子を用いてなるものを好ましく用いることができる。
反応条件は上述の好ましい範囲であるが、アルカリ溶液の添加により反応液のpHを中性に保つこともできる。また、反応温度や圧力は上記の使用方法の欄に記載したような比較的低温条件で且つ常圧とすることができる。
(Oxidation reaction of glucose)
This is an oxidation reaction for producing gluconic acid by oxidizing glucose by the reaction shown in the following formula (Formula 1).
As the oxidation catalyst in this case, a catalyst comprising glucose oxidase as an enzyme and gold-containing particles obtained by supporting gold nanoparticles on ZrO 2 as a metal oxide can be preferably used.
The reaction conditions are in the above-described preferable range, but the pH of the reaction solution can be kept neutral by adding an alkaline solution. In addition, the reaction temperature and pressure can be set to normal pressure under relatively low temperature conditions as described in the column of the above usage.

Figure 0006183860
Figure 0006183860

本発明の酸化触媒は、上記グルコン酸製造の酸化反応以外でも種々の酸化反応系で応用可能である。
例えば、以下の反応系が挙げられる。
ヒドロキシル基をカルボニル基へ変換する反応系
C−OH → RC=O
ホルミル基をカルボキシル基へ変換する反応系
R−CHO → R−COOH
アミノ基を酸化的脱アミノ化する反応系
R−CHNH → R−CHO
NH−CH反応系
R−NH −CH → R−NH
窒素化合物反応系
R−CHNO → R−CHO
硫黄化合物反応系
RSO 2− → RSO 2−
上述の各式中、Rはすべてアルキル基などの脂肪族基、フェニル基などの芳香族基、その他の一価の置換基を示す。
The oxidation catalyst of the present invention can be applied in various oxidation reaction systems other than the oxidation reaction for producing gluconic acid.
For example, the following reaction system is mentioned.
Reaction system for converting hydroxyl group to carbonyl group R 2 C—OH → R 2 C═O
Reaction system for converting formyl group to carboxyl group R-CHO → R-COOH
Reaction system for oxidative deamination of amino group R-CH 2 NH 3 + → R-CHO
NH—CH reaction system R—NH 2 + —CH 3 → R—NH 3 +
Nitrogen compound reaction system R-CH 2 NO 2 → R-CHO
Sulfur compound reaction system RSO 3 2− → RSO 4 2−
In the above-described formulas, all Rs represent aliphatic groups such as alkyl groups, aromatic groups such as phenyl groups, and other monovalent substituents.

<用途>
本発明の酸化触媒は、種々の有機化合物の酸化反応に用いることができ、高効率に、常温常圧に近い条件且つ中性領域、たとえばpH=7.0、温度30℃、1気圧の条件で反応を行うことができるものである。
また、酵素は固定化せず、液中に溶解させるだけで使用できるので簡便な操作で各種反応を行うことが可能である。
<Application>
The oxidation catalyst of the present invention can be used for oxidation reactions of various organic compounds, and is highly efficient under conditions close to normal temperature and normal pressure and in a neutral region, for example, pH = 7.0, temperature 30 ° C., and 1 atmosphere. It is possible to carry out the reaction.
In addition, since the enzyme is not immobilized and can be used simply by dissolving it in a solution, various reactions can be performed by simple operations.

以下、本発明について実施例及び比較例を示してさらに具体的に説明するが本発明はこれらに何ら制限されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated more concretely, this invention is not restrict | limited to these at all.

〔実施例1〕酸化触媒(Au/ZrOとグルコースオキシダーゼとを含有する酸化触媒)を用いたグルコース酸化反応
金化合物としてのジメチル(アセチルアセトナート)金(III)(トリケミカル社製、商品名「ジメチル金アセチルアセトナート錯体」)4.2mgと、金属酸化物としてのZrO(第一稀元素社製、商品名「ZrO2
RC−100」)0.5gとを、メノウ乳鉢で20分間混合し、H/N(20%/80%、体積比)流通下、120℃、2時間の条件で還元処理を行い、ZrOにAuが担持されてなる金含有粒子を得た。得られた金含有粒子の詳細を以下に示す。
金含有粒子の平均粒子径:5〜10nm(平均粒子径はHR−TEM(高分解能透過形電子顕微鏡)により測定)
金ナノ粒子の平均粒子径:4.2nm(平均粒子径はHAADF−STEM(高角散乱環状暗視野走査透過形電子顕微鏡)により測定)
金ナノ粒子と金属酸化物との構成比(重量比)=5:1000
次に、D−グルコースを0.1mol/Lの濃度となるようにビーカー中で蒸留水に溶解させ、得られた溶液をウォーターバスで30℃に加温し、撹拌しながら、60mL/分の流量のOで30分間バブリングした。
バブリング後の上記溶液に、酸化触媒としての上記金含有粒子とグルコースオキシダーゼ(和光純薬工業社製、商品名「20000U」)とを、それぞれの濃度が0.26g/Lと0.13g/Lとになるように添加、混合し、グルコース酸化反応を開始させた。
グルコース酸化反応は、60mL/分の流量でOのバブリングを続け、ウォーターバスで30℃に加温し、pHが7.0になるように1mol/Lの水酸化ナトリウム溶液を滴下し続ける条件の下で行った。
グルコースのグルコン酸への転化率(%)は、反応開始から5分毎の1M水酸化ナトリウム溶液の滴下量により、以下の数式(数式)で算出した。
Example 1 Glucose Oxidation Reaction Using Oxidation Catalyst (Oxidation Catalyst Containing Au / ZrO 2 and Glucose Oxidase) Dimethyl (acetylacetonate) gold (III) as a gold compound (trade name, manufactured by Trichemical Co., Ltd.) 4.2 mg of “dimethylgold acetylacetonate complex”) and ZrO 2 as a metal oxide (made by Daiichi Rare Element Co., Ltd., trade name “ZrO2”)
RC-100 ") 0.5 g was mixed in an agate mortar for 20 minutes and subjected to a reduction treatment under conditions of 120 ° C for 2 hours under the flow of H 2 / N 2 (20% / 80%, volume ratio). Gold-containing particles in which Au was supported on ZrO 2 were obtained. Details of the gold-containing particles obtained are shown below.
Average particle size of gold-containing particles: 5 to 10 nm (average particle size measured by HR-TEM (high resolution transmission electron microscope))
Average particle diameter of gold nanoparticles: 4.2 nm (average particle diameter is measured by HAADF-STEM (high angle scattering annular dark field scanning transmission electron microscope))
Composition ratio (weight ratio) of gold nanoparticles and metal oxide = 5: 1000
Next, D-glucose was dissolved in distilled water in a beaker so as to have a concentration of 0.1 mol / L, and the resulting solution was heated to 30 ° C. in a water bath and stirred at 60 mL / min. Bubbling at a flow rate of O 2 for 30 minutes.
To the solution after bubbling, the gold-containing particles as an oxidation catalyst and glucose oxidase (trade name “20000U”, manufactured by Wako Pure Chemical Industries, Ltd.) are added at respective concentrations of 0.26 g / L and 0.13 g / L. Then, the glucose oxidation reaction was started by adding and mixing.
The glucose oxidation reaction is a condition in which O 2 bubbling is continued at a flow rate of 60 mL / min, heated to 30 ° C. in a water bath, and 1 mol / L sodium hydroxide solution is continuously added dropwise so that the pH becomes 7.0. Went under.
The conversion rate (%) of glucose to gluconic acid was calculated by the following formula (formula) by the amount of 1M sodium hydroxide solution dropped every 5 minutes from the start of the reaction.

Figure 0006183860
Figure 0006183860

その結果を図1に示す。
また、グルコースのグルコン酸への転化初速度を、上記転化率の経時変化データの開始から開始10分後の転化率の傾きを計算することにより算出した。その結果を表1に示す。
加えて、グルコース酸化反応の生成物を調べるために、反応終了後の反応溶液をH−NMR(日本電子社製、装置名「JMN−ECS300」)で常法に従って分析した。
その結果を図2に示す。
The result is shown in FIG.
In addition, the initial conversion rate of glucose to gluconic acid was calculated by calculating the slope of the conversion rate 10 minutes after the start of the conversion data with time. The results are shown in Table 1.
In addition, in order to examine the product of the glucose oxidation reaction, the reaction solution after completion of the reaction was analyzed by H-NMR (manufactured by JEOL Ltd., apparatus name “JMN-ECS300”) according to a conventional method.
The result is shown in FIG.

〔実施例2〕酸化触媒(Au/Alとグルコースオキシダーゼとを含有する酸化触媒)を用いたグルコース酸化反応
金属酸化物としてAlを用いた以外は、実施例1と同様にして金含有粒子を調製した。
金含有粒子の平均粒子径:20〜50nm(平均粒子径はHR−TEMにより測定)
金ナノ粒子の平均粒子径:11.1nm(平均粒子径はHAADF−STEMにより測定)
金ナノ粒子と金属酸化物との構成比(重量比)=5:1000
これ以外は実施例1と同様にして酸化触媒を調製し、実施例1と同様にしてグルコース酸化反応を行い、転化率を算出した。
その結果を図1に示す。
また、実施例1と同様に転化初速度を算出した。その結果を表1に示す。
Example 2 except using Al 2 O 3 as a glucose oxidation metal oxide used (oxidation catalyst containing a Au / Al 2 O 3 and glucose oxidase) oxidation catalyst in the same manner as in Example 1 To prepare gold-containing particles.
Average particle size of gold-containing particles: 20 to 50 nm (average particle size is measured by HR-TEM)
Average particle diameter of gold nanoparticles: 11.1 nm (average particle diameter measured by HAADF-STEM)
Composition ratio (weight ratio) of gold nanoparticles and metal oxide = 5: 1000
Except for this, an oxidation catalyst was prepared in the same manner as in Example 1, a glucose oxidation reaction was performed in the same manner as in Example 1, and the conversion rate was calculated.
The result is shown in FIG.
Further, the initial conversion speed was calculated in the same manner as in Example 1. The results are shown in Table 1.

〔比較例1〕酵素のみを用いたグルコース酸化反応
金含有粒子を用いずに酵素(グルコースオキシダーゼ)のみ添加した以外は実施例1と同様にしてグルコース酸化反応を行い、転化率を算出した。
その結果を図1に示す。
また、実施例1と同様に転化初速度を算出した。その結果を表1に示す。
Comparative Example 1 Glucose Oxidation Reaction Using Only Enzyme A glucose oxidation reaction was performed in the same manner as in Example 1 except that only the enzyme (glucose oxidase) was added without using gold-containing particles, and the conversion rate was calculated.
The result is shown in FIG.
Further, the initial conversion speed was calculated in the same manner as in Example 1. The results are shown in Table 1.

〔比較例2〕Au/ZrOのみを用いたグルコース酸化反応
グルコースオキシダーゼを用いずに実施例1で用いた金含有粒子のみを酸化触媒として用いた以外は実施例1と同様にグルコース酸化反応を行い、転化率を算出した。
その結果を図1に示す。
[Comparative Example 2] Glucose oxidation reaction using only Au / ZrO 2 A glucose oxidation reaction was carried out in the same manner as in Example 1 except that only the gold-containing particles used in Example 1 were used as the oxidation catalyst without using glucose oxidase. The conversion was calculated.
The result is shown in FIG.

〔比較例3〕Au/Alのみを用いたグルコース酸化反応
グルコースオキシダーゼを用いずに金含有粒子(Au/Al)を酸化触媒として用いた以外は実施例2と同様にしてグルコース酸化反応を行い、転化率を算出した。
その結果を図1に示す。
Except that Comparative Example 3 Au / Al 2 O 3 only the glucose oxidation reaction of glucose oxidase with gold-containing particles without using (Au / Al 2 O 3) was used as an oxidation catalyst in the same manner as in Example 2 A glucose oxidation reaction was performed and the conversion rate was calculated.
The result is shown in FIG.

〔比較例4〕Pt/ZrOとグルコースオキシダーゼとを含有する酸化触媒を用いたグルコース酸化反応
金化合物としてのジメチル(アセチルアセトナート)金(III)をビスアセチルアセトナト白金に代えた以外は、実施例1と同様に粒子を合成してPt含有粒子を得、金含有粒子に代えて得られたPt含有粒子を用いた以外は実施例1と同様にしてグルコース酸化反応を行い、転化率を算出した。
その結果を図3に示す。
また、実施例1と同様に転化初速度を算出した。その結果を表1に示す。
[Comparative Example 4] Glucose oxidation reaction using an oxidation catalyst containing Pt / ZrO 2 and glucose oxidase, except that dimethyl (acetylacetonate) gold (III) as a gold compound was replaced with bisacetylacetonatoplatinum, The particles were synthesized in the same manner as in Example 1 to obtain Pt-containing particles, and a glucose oxidation reaction was performed in the same manner as in Example 1 except that Pt-containing particles obtained instead of gold-containing particles were used. Calculated.
The result is shown in FIG.
Further, the initial conversion speed was calculated in the same manner as in Example 1. The results are shown in Table 1.

〔比較例5〕Au/ケッチェンブラックとグルコースオキシダーゼとを含有する酸化触媒を用いたグルコース酸化反応
金属酸化物としてのZrOに代えてケッチェンブラック(以下「KB」と呼ぶこともある。)を用いた以外は実施例1と同様に粒子を合成し金含有ケッチェンブラック粒子を得、金含有粒子に代えて得られた金含有KB粒子及びグルコースオキシダーゼを酸化触媒として用いた以外はグルコース酸化反応を行い、転化率を算出した。
その結果を図3に示す。
また、実施例1と同様に転化初速度を算出した。その結果を表1に示す。
Comparative Example 5 Glucose Oxidation Reaction Using an Oxidation Catalyst Containing Au / Ketjen Black and Glucose Oxidase Instead of ZrO 2 as a metal oxide, Ketjen Black (hereinafter sometimes referred to as “KB”) In the same manner as in Example 1 except that the gold-containing ketjen black particles were synthesized, and the oxidation of glucose was performed except that the gold-containing KB particles and glucose oxidase obtained instead of the gold-containing particles were used as the oxidation catalyst. Reaction was performed and the conversion was calculated.
The result is shown in FIG.
Further, the initial conversion speed was calculated in the same manner as in Example 1. The results are shown in Table 1.

〔実施例3〕Au/ZrOとグルコースオキシダーゼとを含有する酸化触媒を用いたグルコース酸化反応(40℃)
グルコース酸化反応時の反応溶液の温度を40℃に変えた以外は、実施例1と同様にして、グルコース酸化反応を行い、転化率を算出した。
その結果を図4に実施例1の結果と合わせて示す。
[Example 3] Glucose oxidation reaction (40 ° C) using an oxidation catalyst containing Au / ZrO 2 and glucose oxidase
A glucose oxidation reaction was performed in the same manner as in Example 1 except that the temperature of the reaction solution during the glucose oxidation reaction was changed to 40 ° C., and the conversion rate was calculated.
The results are shown in FIG. 4 together with the results of Example 1.

〔比較例6〕Au/ZrOとグルコースオキシダーゼとを含有する酸化触媒を用いたグルコース酸化反応(pH9.5)
グルコース酸化反応時の反応溶液のpHを9.5となるように調整した以外は、実施例1と同様にして、グルコース酸化反応を行い、転化率を算出した。
その結果を図5に実施例1の結果と合わせて示す。
[Comparative Example 6] Glucose oxidation reaction (pH 9.5) using an oxidation catalyst containing Au / ZrO 2 and glucose oxidase
A glucose oxidation reaction was performed in the same manner as in Example 1 except that the pH of the reaction solution during the glucose oxidation reaction was adjusted to 9.5, and the conversion rate was calculated.
The results are shown in FIG. 5 together with the results of Example 1.

以下、結果について考察する。
図1に示す結果から、本発明の酸化触媒は、酵素のみ(比較例1)からなる酸化触媒に比してグルコン酸の転換率及び転換速度が顕著に高く、酸化触媒として有用であることがわかる。
一方、金含有金属酸化物のみを用いた比較例2及び3は、グルコン酸への転換がほとんど見られず、これらの酸化触媒では常温中性に近い反応条件では反応が進まず、高温及び/又は塩基性という特別な反応条件を整えなければ反応を進行させられないことがわかる。この結果から、本発明の酸化触媒は、より安価に酸化反応を行いうるものであることがわかる。
The results are discussed below.
From the results shown in FIG. 1, the oxidation catalyst of the present invention has a remarkably high conversion rate and conversion rate of gluconic acid as compared with an oxidation catalyst consisting of only an enzyme (Comparative Example 1), and is useful as an oxidation catalyst. Recognize.
On the other hand, in Comparative Examples 2 and 3 using only the gold-containing metal oxide, almost no conversion to gluconic acid was observed, and these oxidation catalysts did not proceed under reaction conditions close to room temperature neutrality. It can also be seen that the reaction cannot proceed unless special reaction conditions such as basicity are prepared. From this result, it can be seen that the oxidation catalyst of the present invention can perform an oxidation reaction at a lower cost.

図2に示す結果から本発明の酸化触媒を用いてグルコース酸化反応を行った場合(実施例1)、高選択的にグルコン酸が得られることがわかる。   The results shown in FIG. 2 show that gluconic acid can be obtained with high selectivity when the glucose oxidation reaction is carried out using the oxidation catalyst of the present invention (Example 1).

図3に示す結果から、白金含有粒子を用いてなる酸化触媒(比較例4)では、本発明の酸化触媒と比較して活性が低いことがわかる。 また、金属酸化物の代わりにケッチェンブラックを用いて調整した金含有粒子を用いた酸化触媒(比較例5)は、酵素のみからなる酸化触媒(比較例1)よりも活性が低く、本発明の酸化触媒よりも著しく活性が低いことがわかる。   From the results shown in FIG. 3, it can be seen that the oxidation catalyst using the platinum-containing particles (Comparative Example 4) has lower activity than the oxidation catalyst of the present invention. Moreover, the oxidation catalyst (Comparative Example 5) using the gold-containing particles prepared by using ketjen black instead of the metal oxide has lower activity than the oxidation catalyst (Comparative Example 1) consisting only of the enzyme, and the present invention. It can be seen that the activity is significantly lower than that of the oxidation catalyst.

Figure 0006183860
Figure 0006183860

表1は実施例1及び2、比較例1、4及び5において行ったグルコース酸化反応におけるグルコースのグルコン酸への転化初速度を示すデータである。
表1に示す結果から、本発明の酸化触媒を用いた系に比して各比較例の酸化触媒では添加初速度が低く、活性に劣ることがわかる。
Table 1 is data showing the initial conversion rate of glucose to gluconic acid in the glucose oxidation reaction carried out in Examples 1 and 2 and Comparative Examples 1, 4 and 5.
From the results shown in Table 1, it can be seen that the oxidation catalyst of each comparative example has a low initial addition rate and is inferior in activity as compared with the system using the oxidation catalyst of the present invention.

図4に示す結果から、本発明の酸化触媒では、反応温度が30℃〜40℃といった常温に近い温度条件で良好に反応が進行することがわかる。   From the results shown in FIG. 4, it can be seen that in the oxidation catalyst of the present invention, the reaction proceeds satisfactorily under a temperature condition close to room temperature such as 30 ° C. to 40 ° C.

図5に示す結果から、塩基性条件下の反応(pH9.5,比較例6)では、反応開始からある程度時間が経過すると、急激に反応効率活性が低下し、最終的な転化率も低く、pHが塩基性条件となる範囲では反応が高活性に進まないことがわかる。   From the results shown in FIG. 5, in the reaction under basic conditions (pH 9.5, Comparative Example 6), when a certain amount of time has elapsed from the start of the reaction, the reaction efficiency activity suddenly decreases and the final conversion rate is low, It can be seen that the reaction does not proceed to high activity in the range where the pH is in the basic condition.

以上の結果から、本発明の酸化触媒は、常温に近く、また中性領域のpHで、製造コストが低く、高い活性で反応を行うことができるものであることがわかる。
また、本発明の有機酸化物の製造方法によれば、中性領域のpHで、特別にアルカリなどを添加することなく、高効率で酸化反応を行うことができることがわかる。
From the above results, it can be seen that the oxidation catalyst of the present invention is close to normal temperature and has a pH in a neutral region, which is low in production cost and can be reacted with high activity.
Moreover, according to the manufacturing method of the organic oxide of this invention, it turns out that an oxidation reaction can be performed with high efficiency, without adding an alkali etc. specially at pH of a neutral region.

本発明の酸化触媒は種々有機化合物の酸化反応に際して使用することができ、その際、高収率で反応選択性をもって目的化合物を得ることができるため、製薬、化学、食品、材料、バイオなどを始めとしたあらゆる分野で応用が可能である。


The oxidation catalyst of the present invention can be used in the oxidation reaction of various organic compounds. In this case, since the target compound can be obtained with high reaction selectivity with high yield, pharmaceutical, chemical, food, material, bio, etc. It can be applied in all fields including the beginning.


Claims (4)

有機化合物の酸化反応に際して所定の酵素を触媒として用いた場合に過酸化物を発生する酸化反応系に用いられる酸化触媒であって、
上記酵素と金含有粒子とを含み、
上記金含有粒子が、金ナノ粒子を担体に担持させてなる粒子であり、
上記担体が金属酸化物であり、該金属酸化物がZrO 、Al 、CeO 又はSiO であることを特徴とする酸化触媒。
An oxidation catalyst used in an oxidation reaction system that generates peroxide when a predetermined enzyme is used as a catalyst in an oxidation reaction of an organic compound,
Including the enzyme and gold-containing particles,
The gold-containing particles, Ri Oh gold nanoparticles with particles made by supporting on a carrier,
The carrier is a metal oxide, an oxidation catalyst in which the metal oxide is to ZrO 2, Al 2 O 3, CeO 2 or SiO 2 der wherein Rukoto.
上記酵素と上記金含有粒子との配合割合が、重量比で1:0.1〜10であることを特徴とする請求項1記載の酸化触媒。 2. The oxidation catalyst according to claim 1, wherein a mixing ratio of the enzyme and the gold-containing particles is 1: 0.1 to 10 by weight. 上記有機化合物がグルコースであり、上記の所定の酵素がグルコースオキシダーゼであり、上記過酸化物が過酸化水素である請求項1〜3のいずれかに記載の酸化触媒。 The oxidation catalyst according to any one of claims 1 to 3, wherein the organic compound is glucose, the predetermined enzyme is glucose oxidase, and the peroxide is hydrogen peroxide. 請求項1記載の酸化触媒を用いる有機酸化物の製造方法であって、
有機化合物を、上記酸化触媒の存在下、60℃以下の温度で且つpH6〜8の中性領域で酸化反応させることを特徴とする製造方法。
A method for producing an organic oxide using the oxidation catalyst according to claim 1,
An organic compound is subjected to an oxidation reaction at a temperature of 60 ° C. or lower and in a neutral region of pH 6 to 8 in the presence of the oxidation catalyst.
JP2014534346A 2012-09-04 2013-09-02 Oxidation catalyst and organic oxide production method Active JP6183860B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012194605 2012-09-04
JP2012194605 2012-09-04
PCT/JP2013/073538 WO2014038511A1 (en) 2012-09-04 2013-09-02 Oxidation catalyst, and method for producing organic oxide

Publications (2)

Publication Number Publication Date
JPWO2014038511A1 JPWO2014038511A1 (en) 2016-08-08
JP6183860B2 true JP6183860B2 (en) 2017-08-23

Family

ID=50237120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014534346A Active JP6183860B2 (en) 2012-09-04 2013-09-02 Oxidation catalyst and organic oxide production method

Country Status (2)

Country Link
JP (1) JP6183860B2 (en)
WO (1) WO2014038511A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110063968B (en) * 2019-04-18 2021-09-03 朗姿赛尔生物科技(广州)有限公司 Method for repairing diseased pancreatic islets by using specific stem cells

Also Published As

Publication number Publication date
JPWO2014038511A1 (en) 2016-08-08
WO2014038511A1 (en) 2014-03-13

Similar Documents

Publication Publication Date Title
Villa et al. Selective oxidation of glycerol under acidic conditions using gold catalysts
Liu et al. Modulating the catalytic behavior of non-noble metal nanoparticles by inter-particle interaction for chemoselective hydrogenation of nitroarenes into corresponding azoxy or azo compounds
JP7157456B2 (en) PdRu Solid Solution Nanoparticles, Manufacturing Method and Catalyst Therefor, Method for Controlling Crystal Structure of PtRu Solid Solution Nanoparticles, and AuRu Solid Solution Nanoparticles and Manufacturing Method Therefor
EP2756899B1 (en) A plurality of ruthenium nanoparticles, use and method for producing same
KR101578071B1 (en) Preparation method of high dispered novel metal catalyst
EP2749352B1 (en) Exhaust gas purification catalyst, and method for producing same
CN113292411A (en) Application of perovskite catalyst in preparation of formic acid by catalyzing carbon dioxide hydrogenation and preparation method
WO2013187323A1 (en) Gold cluster catalyst and method for producing same
CN110961134A (en) Method for synthesizing monatomic catalyst, monatomic catalyst and application
CN1974510A (en) Process fof hydrogenating carboxylic acid and its ester to prepare alcohol
CN109569600A (en) Catalyst of synthesizing methylmethacrylate and its preparation method and application
CN113083294A (en) Catalytic hydrogenation catalyst, preparation method and application thereof
CN114345368B (en) PdCo bimetallic catalyst, preparation method and application thereof
JP6183860B2 (en) Oxidation catalyst and organic oxide production method
Larm et al. Selective aerobic oxidation of benzyl alcohol under ambient conditions using polyionic nanoclay-supported gold/palladium nanoparticles
CN111545239B (en) Solid catalyst for glycerol oxidation and preparation method thereof
CN113769741A (en) Copper-based catalyst for ethylene carbonate catalytic hydrogenation, and preparation method and application thereof
WO2017066901A1 (en) Process for oxidation of alcohols
US20130052708A1 (en) Method for conversion of carbohydrate polymers to chemical products using cerium oxide catalyst
US10814313B2 (en) Method for the preparation of metal oxide hollow nanoparticles
CN108160085B (en) Preparation method of silicon-based nano-selenium
JP5279239B2 (en) Method for producing methanol synthesis catalyst
CN107570185B (en) Preparation method and application of catalyst
CN102029155B (en) Hydrogen producing catalyst
JP2011038158A (en) Metallic fine particle and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170719

R150 Certificate of patent or registration of utility model

Ref document number: 6183860

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250