JP6181522B2 - Styrenic resin extruded foam and method for producing the same - Google Patents

Styrenic resin extruded foam and method for producing the same Download PDF

Info

Publication number
JP6181522B2
JP6181522B2 JP2013228959A JP2013228959A JP6181522B2 JP 6181522 B2 JP6181522 B2 JP 6181522B2 JP 2013228959 A JP2013228959 A JP 2013228959A JP 2013228959 A JP2013228959 A JP 2013228959A JP 6181522 B2 JP6181522 B2 JP 6181522B2
Authority
JP
Japan
Prior art keywords
weight
foam
extruded foam
styrene resin
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013228959A
Other languages
Japanese (ja)
Other versions
JP2015089892A (en
Inventor
武紀 菊地
武紀 菊地
大嗣 高橋
大嗣 高橋
清水 浩司
浩司 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2013228959A priority Critical patent/JP6181522B2/en
Publication of JP2015089892A publication Critical patent/JP2015089892A/en
Application granted granted Critical
Publication of JP6181522B2 publication Critical patent/JP6181522B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)

Description

本発明は、軽量で断熱性に優れた、高性能且つ経済的なスチレン系樹脂押出発泡体、及び、その製造方法に関する。   The present invention relates to a high-performance and economical styrene resin extruded foam that is lightweight and excellent in heat insulation, and a method for producing the same.

スチレン系樹脂押出発泡体は、良好な施工性や断熱特性から、例えば構造物の断熱材として用いられている。スチレン系樹脂押出発泡体の製造方法として、押出発泡成形が公知である。この押出発泡成形は、押出機などを用いてスチレン系樹脂組成物を加熱溶融し、ついで発泡剤を添加し、所定の樹脂温度に冷却した後、これを低圧域に押し出すことによりスチレン系樹脂押出発泡体を連続的に製造する。   Styrenic resin extruded foam is used as a heat insulating material for structures, for example, because of good workability and heat insulating properties. As a method for producing a styrene resin extruded foam, extrusion foam molding is known. In this extrusion foaming molding, a styrene resin composition is heated and melted using an extruder or the like, then a foaming agent is added, cooled to a predetermined resin temperature, and then extruded into a low pressure region to extrude a styrene resin. The foam is produced continuously.

近年、炭酸ガス排出量削減の観点から、住宅、建築物などの省エネルギー化の要求が高まっていることから、従来以上に高断熱性の発泡体の技術開発が望まれており、種々の技術が提案されている。   In recent years, from the viewpoint of reducing carbon dioxide emissions, there has been an increasing demand for energy saving in houses, buildings, etc., and therefore technological development of foams with higher heat insulation than ever before has been desired. Proposed.

例えば、特許文献1〜4では、グラファイト、及び/又は、酸化チタンのような熱線輻射抑制剤を添加する技術が開示されている。   For example, Patent Documents 1 to 4 disclose techniques for adding a heat radiation inhibitor such as graphite and / or titanium oxide.

特許文献1では、グラファイトを添加することにより断熱性が向上する方法が提案されている。さらに、特許文献2〜3では、グラファイトの多量使用による形状不安定性(日射による反り)を防ぐため、酸化チタンと併用する方法が提案されている。通常、前記スチレン系樹脂押出発泡体の断熱材は、諸物性のバランスやハンドリング性、コストパフォーマンスなどの理由から、密度は30kg/m前後のものが使用される。しかしながら、前述の方法では、熱線輻射をより効果的に抑制するためと考えられる理由で、密度が35kg/m以上と高密度であり、従来のような軽量性を維持しつつ、優れた断熱性を付与することは困難であった。 Patent Document 1 proposes a method in which heat insulation is improved by adding graphite. Further, Patent Documents 2 to 3 propose a method of using in combination with titanium oxide in order to prevent shape instability (warping due to solar radiation) due to a large amount of graphite. Usually, the heat insulating material of the styrene resin extruded foam has a density of about 30 kg / m 3 for reasons such as balance of physical properties, handling properties, and cost performance. However, in the above-mentioned method, the density is as high as 35 kg / m 3 or more for the reason that it is considered to more effectively suppress the heat ray radiation, and excellent heat insulation while maintaining the lightness as in the past. It was difficult to impart sex.

また、特許文献4では、難燃性と断熱性を両立するために、押出発泡体の気泡膜を厚くする方法が提案されている。しかし、この方法では、気泡膜を厚くするために、押出発泡体の気泡径、密度を複雑に制御しなければならず、特に35kg/m未満の低密度域において容易な製造が困難であった。 Moreover, in patent document 4, in order to make a flame retardance and heat insulation compatible, the method of thickening the foam film of an extrusion foam is proposed. However, in this method, in order to make the bubble film thick, the bubble diameter and density of the extruded foam must be controlled in a complicated manner, and easy manufacture is difficult, particularly in a low density region of less than 35 kg / m 3. It was.

特開2004−196907号公報JP 2004-196907 A 特開2009−256426号公報JP 2009-256426 A 特開2010−254780号公報JP 2010-254780 A 特開2011−046845号公報JP 2011-046845 A

このような状況の下、本発明が解決しようとする課題は、軽量、且つ、優れた断熱性を有し、高性能で経済的なスチレン系樹脂押出発泡体、及び、その製造方法を提供することである。   Under such circumstances, the problem to be solved by the present invention is to provide a high-performance and economical styrene resin extruded foam having light weight and excellent heat insulation, and a method for producing the same. That is.

本発明者らは、前記課題を解決するために鋭意検討した結果、熱線輻射抑制剤を使用し、製造直後の平面圧縮強度と見掛け密度を所定の範囲とすることにより、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have completed the present invention by using a heat ray radiation suppressor and setting the plane compressive strength and the apparent density immediately after production within a predetermined range. It came.

すなわち本発明は、
[1]スチレン系樹脂及び発泡剤を用いて押出発泡して得られるスチレン系樹脂押出発泡体であって、グラファイトをスチレン系樹脂100重量部に対して1.0重量部以上3.5重量部以下含み、見掛け密度が25kg/m以上35kg/m未満であり、且つ、製造直後の平面圧縮強度Fと見掛け密度Dとが以下の式(1)を満たし、
F≦2.52×D−55.3・・・・・式(1)
熱伝導率が0.0245W/mK以下であることを特徴とする、スチレン系樹脂押出発泡体。
[2]前記グラファイトをスチレン系樹脂100重量部に対して1.5重量部以上3.0重量部以下含むことを特徴とする、[1]に記載のスチレン系樹脂押出発泡体。
[3]酸化チタンをスチレン系樹脂100重量部に対して1.0重量部以上3.0重量部以下含むことを特徴とする、[1]〜[2]のいずれかに記載のスチレン系樹脂押出発泡体。
[4]前記発泡剤が少なくともイソブタンを含み、更に、水、二酸化炭素、窒素、炭素数が2〜5のアルコール類、ジメチルエーテル、塩化メチル、及び、塩化エチルよりなる群から選ばれる少なくとも一種以上を含むことを特徴とする、[1]〜[3]のいずれかに記載のスチレン系樹脂押出発泡体。
[5]臭素系難燃剤をスチレン系樹脂100重量部に対して1.0重量部以上5.0重量部以下含むことを特徴とする、[1]〜[4]のいずれかに記載のスチレン系樹脂押出発泡体。
[6]前記スチレン系樹脂押出発泡体製造から1週間後の該押出発泡体中のイソブタンの残存量が該押出発泡体1kgあたり0.30mol以上0.60mol以下であることを特徴とする、[1]〜[5]のいずれかに記載のスチレン系樹脂押出発泡体。
[7]前記スチレン系樹脂押出発泡体の厚みが10〜150mmであることを特徴とする、[1]〜[6]のいずれかに記載の押出発泡体。
[8]スチレン系樹脂及び発泡剤を用いて押出発泡して得られるスチレン系樹脂押出発泡体であって、グラファイトをスチレン系樹脂100重量部に対して1.0重量部以上3.5重量部以下含み、見掛け密度が25kg/m以上35kg/m未満であり、且つ、製造直後の平面圧縮強度Fと見掛け密度Dとが以下の式(1)を満たし、
F≦2.52×D−55.3・・・・・式(1)
熱伝導率が0.0245W/mK以下であることを特徴とする、スチレン系樹脂押出発泡体の製造方法の製造方法であって、スリットダイ出口の厚み方向開度aと得られるスチレン系樹脂押出発泡体の厚みAから計算される厚み拡大比A/aが12以下、且つ、発泡直前の金型内部の樹脂圧力が2.5MPa以上であることを特徴とする、スチレン系樹脂押出発泡体の製造方法。
That is, the present invention
[1] A styrene resin extruded foam obtained by extrusion foaming using a styrene resin and a foaming agent, and 1.0 to 3.5 parts by weight of graphite with respect to 100 parts by weight of styrene resin Including the following, the apparent density is 25 kg / m 3 or more and less than 35 kg / m 3 , and the plane compressive strength F and the apparent density D immediately after the production satisfy the following formula (1),
F ≦ 2.52 × D-55.3 Equation (1)
A styrene resin extruded foam characterized by having a thermal conductivity of 0.0245 W / mK or less.
[2] The extruded styrene resin foam according to [1], wherein the graphite is contained in an amount of 1.5 to 3.0 parts by weight with respect to 100 parts by weight of the styrene resin.
[3] The styrenic resin according to any one of [1] to [2], characterized in that it contains 1.0 to 3.0 parts by weight of titanium oxide with respect to 100 parts by weight of the styrenic resin. Extruded foam.
[4] The blowing agent contains at least isobutane, and further contains at least one selected from the group consisting of water, carbon dioxide, nitrogen, alcohols having 2 to 5 carbon atoms, dimethyl ether, methyl chloride, and ethyl chloride. The styrene resin extruded foam according to any one of [1] to [3], wherein
[5] The styrene according to any one of [1] to [4], wherein the brominated flame retardant is contained in an amount of 1.0 to 5.0 parts by weight with respect to 100 parts by weight of the styrene resin. -Based resin extruded foam.
[6] The residual amount of isobutane in the extruded foam one week after the production of the styrene resin extruded foam is 0.30 mol or more and 0.60 mol or less per kg of the extruded foam, 1]-[5] Styrenic resin extrusion foam in any one of.
[7] The extruded foam according to any one of [1] to [6], wherein the styrene resin extruded foam has a thickness of 10 to 150 mm.
[8] A styrene resin extruded foam obtained by extrusion foaming using a styrene resin and a foaming agent, and 1.0 to 3.5 parts by weight of graphite with respect to 100 parts by weight of styrene resin Including the following, the apparent density is 25 kg / m 3 or more and less than 35 kg / m 3 , and the plane compressive strength F and the apparent density D immediately after the production satisfy the following formula (1),
F ≦ 2.52 × D-55.3 Equation (1)
A method for producing a styrenic resin extruded foam, characterized by having a thermal conductivity of 0.0245 W / mK or less, wherein the styrenic resin extrusion is obtained with a thickness direction opening a at the slit die outlet. A thickness expansion ratio A / a calculated from the thickness A of the foam is 12 or less, and the resin pressure inside the mold immediately before foaming is 2.5 MPa or more. Production method.

本発明によれば、軽量、且つ、優れた断熱性を有し、高性能で経済的なスチレン系樹脂押出発泡体を容易に得ることができる。   According to the present invention, it is possible to easily obtain a styrene-based resin extruded foam that is lightweight, has excellent heat insulation, and is high performance and economical.

見掛け密度と製造直後の平面圧縮強度Apparent density and flat compressive strength immediately after production

以下、本発明の実施形態を説明する。なお、本実施の形態は本発明の一部にすぎず、本発明の要旨を変更しない範囲で本実施形態を適宜変更できることは言うまでもない。   Embodiments of the present invention will be described below. In addition, this embodiment is only a part of this invention, and it cannot be overemphasized that this embodiment can be suitably changed in the range which does not change the summary of this invention.

本発明で用いられるスチレン系樹脂としては、特に限定はなく、スチレン、メチルスチレン、エチルスチレン、イソプロピルスチレン、ジメチルスチレン、ブロモスチレン、クロロスチレン、ビニルトルエン、ビニルキシレン等のスチレン系単量体の単独重合体または2種以上の単量体の組み合わせからなる共重合体や、前記スチレン系単量体とジビニルベンゼン、ブタジエン、アクリル酸、メタクリル酸、アクリル酸メチル、メタクリル酸メチル、アクリロニトリル、無水マレイン酸、無水イタコン酸などの単量体の1種または2種以上とを共重合させた共重合体などが挙げられる。スチレン系単量体と共重合させるアクリル酸、メタクリル酸、アクリル酸メチル、メタクリル酸メチル、無水マレイン酸、無水イタコン酸などの単量体は、製造されるスチレン系樹脂押出発泡体の圧縮強度等の物性を低下させない程度の量を用いることができる。また、本発明に用いるスチレン系樹脂は、前記スチレン系単量体の単独重合体または共重合体に限られず、前記スチレン系単量体の単独重合体または共重合体と、前記他の単量体の単独重合体または共重合体とのブレンド物であってもよく、ジエン系ゴム強化ポリスチレンやアクリル系ゴム強化ポリスチレンをブレンドすることもできる。さらに、本発明のスチレン系樹脂は、メルトフローレート(以下MFR)、成形加工時の溶融粘度、溶融張力などを調整する目的で、分岐構造を有するスチレン系樹脂であってもよい。   The styrene resin used in the present invention is not particularly limited, and styrene monomers such as styrene, methyl styrene, ethyl styrene, isopropyl styrene, dimethyl styrene, bromo styrene, chloro styrene, vinyl toluene, and vinyl xylene are used alone. A copolymer consisting of a polymer or a combination of two or more monomers, the styrene monomer and divinylbenzene, butadiene, acrylic acid, methacrylic acid, methyl acrylate, methyl methacrylate, acrylonitrile, maleic anhydride And a copolymer obtained by copolymerizing one or more monomers such as itaconic anhydride. Monomers such as acrylic acid, methacrylic acid, methyl acrylate, methyl methacrylate, maleic anhydride, and itaconic anhydride to be copolymerized with styrenic monomers are the compression strength of the styrene resin extrusion foam produced The amount can be used so as not to deteriorate the physical properties. Further, the styrene resin used in the present invention is not limited to the homopolymer or copolymer of the styrene monomer, but the homopolymer or copolymer of the styrene monomer and the other single monomer. It may be a blend of the polymer with a homopolymer or copolymer, and may be blended with diene rubber reinforced polystyrene or acrylic rubber reinforced polystyrene. Furthermore, the styrenic resin of the present invention may be a styrenic resin having a branched structure for the purpose of adjusting the melt flow rate (hereinafter referred to as MFR), the melt viscosity at the time of molding, the melt tension, and the like.

本発明におけるスチレン系樹脂としては、MFRが0.1〜50g/10分のものを用いることが、押出発泡成形する際の成形加工性に優れ、成形加工時の吐出量、得られた熱可塑性樹脂発泡体の厚みや幅、密度または独立気泡率を所望の値に調整しやすく、発泡性(発泡体の厚みや幅、密度、独立気泡率、表面性などを所望の状況に調整しやすいほど、発泡性が良い)、外観などに優れた熱可塑性樹脂発泡体が得られると共に、圧縮強度、曲げ強度または曲げたわみ量といった機械的強度や、靱性などの特性のバランスがとれた、熱可塑性樹脂発泡体が得られる点から、好ましい。さらに、スチレン系樹脂のMFRは、成形加工性および発泡性に対する機械的強度、靱性などのバランスの点から、0.3〜30g/10分がさらに好ましく、0.5〜25g/10分が特に好ましい。なお、本発明において、MFRは、JIS K7210(1999年)のA法、試験条件Hにより測定される。   As the styrenic resin in the present invention, one having an MFR of 0.1 to 50 g / 10 min is excellent in molding processability at the time of extrusion foam molding, the discharge amount at the molding process, and the obtained thermoplasticity It is easy to adjust the thickness, width, density, or closed cell ratio of the resin foam to a desired value, and the foamability (the thickness, width, density, closed cell ratio, surface property, etc. of the foam is easily adjusted to the desired situation. Thermoplastic resin with a good balance of mechanical strength such as compressive strength, bending strength or amount of bending, and toughness, etc. It is preferable from the point that a foam is obtained. Furthermore, the MFR of the styrenic resin is more preferably 0.3 to 30 g / 10 minutes, particularly 0.5 to 25 g / 10 minutes, from the viewpoint of the balance of molding processability and foaming mechanical strength and toughness. preferable. In addition, in this invention, MFR is measured by A method and test condition H of JISK7210 (1999).

本発明においては、前述されたスチレン系樹脂のなかでも、経済性・加工性の面からポリスチレン樹脂が特に好適に使用することができる。また、押出発泡体により高い耐熱性が要求される場合には、スチレン‐アクリロニトリル共重合体、(メタ)アクリル酸共重合ポリスチレン、無水マレイン酸変性ポリスチレンを用いることが好ましい。また、押出発泡体により高い耐衝撃性が求められる場合には、ゴム強化ポリスチレンを用いることが好ましい。これらスチレン系樹脂は、単独で使用してもよく、また、共重合成分、分子量や分子量分布、分岐構造、MFRなどの異なるスチレン系樹脂を2種以上混合して使用してもよい。   In the present invention, among the styrenic resins described above, a polystyrene resin can be particularly suitably used from the viewpoint of economy and processability. Further, when high heat resistance is required for the extruded foam, it is preferable to use a styrene-acrylonitrile copolymer, (meth) acrylic acid copolymer polystyrene, or maleic anhydride-modified polystyrene. Moreover, when high impact resistance is calculated | required by an extrusion foam, it is preferable to use rubber reinforced polystyrene. These styrenic resins may be used alone, or two or more different styrenic resins such as copolymerization component, molecular weight, molecular weight distribution, branched structure, and MFR may be mixed and used.

本発明で用いられる発泡剤としては、特に限定するものではないが、炭素数3〜5の飽和炭化水素を使用することにより、優れた環境適合性を付与することができる。   Although it does not specifically limit as a foaming agent used by this invention, The outstanding environmental compatibility can be provided by using a C3-C5 saturated hydrocarbon.

本発明で用いられる炭素数3〜5の飽和炭化水素としては、例えば、プロパン、n−ブタン、i−ブタン、n−ペンタン、i−ペンタン、ネオペンタンなどが挙げられる。これらの炭素数3〜5の飽和炭化水素のなかでは、発泡性の点から、プロパン、n−ブタン、i−ブタン、あるいは、これらの混合物が好ましい。また、発泡体の断熱性能の点から、n−ブタン、i−ブタン(以下、「イソブタン」と呼ぶこともある)、あるいは、これらの混合物が好ましく、特に好ましくはi−ブタンである。   Examples of the saturated hydrocarbon having 3 to 5 carbon atoms used in the present invention include propane, n-butane, i-butane, n-pentane, i-pentane, neopentane and the like. Among these saturated hydrocarbons having 3 to 5 carbon atoms, propane, n-butane, i-butane, or a mixture thereof is preferable from the viewpoint of foamability. Further, n-butane, i-butane (hereinafter sometimes referred to as “isobutane”), or a mixture thereof is preferred from the viewpoint of the heat insulating performance of the foam, and i-butane is particularly preferred.

ただし、目的とする発泡倍率、難燃性等の発泡体の諸特性いかんによっては、その使用量などが制限される場合があり、押出発泡成形性などが充分でない場合がある。   However, depending on various properties of the foam, such as the desired foaming ratio and flame retardancy, the amount used may be limited, and the extrusion foam moldability may not be sufficient.

本発明では、さらに、他の発泡剤を用いることにより、発泡体製造時の可塑化効果や助発泡効果が得られ、押出圧力を低減し、安定的に発泡体の製造が可能となる。   In the present invention, by using another foaming agent, a plasticizing effect and an auxiliary foaming effect at the time of foam production can be obtained, the extrusion pressure can be reduced, and the foam can be stably produced.

他の発泡剤としては、例えば、ジメチルエーテル、ジエチルエーテル、メチルエチルエーテル、イソプロピルエーテル、n−ブチルエーテル、ジイソプロピルエーテル、フラン、フルフラール、2−メチルフラン、テトラヒドロフラン、テトラヒドロピランなどのエーテル類;ジメチルケトン、メチルエチルケトン、ジエチルケトン、メチルn−プロピルケトン、メチル−n−ブチルケトン、メチル−i−ブチルケトン、メチル−n−アミルケトン、メチル−n−ヘキシルケトン、エチル−n−プロピルケトン、エチル−n−ブチルケトンなどのケトン類;メタノール、エタノール、プロピルアルコール、i−プロピルアルコール、ブチルアルコール、i−ブチルアルコール、t−ブチルアルコールなどの炭素数1〜4の飽和アルコール類;蟻酸メチルエステル、蟻酸エチルエステル、蟻酸プロピルエステル、蟻酸ブチルエステル、蟻酸アミルエステル、プロピオン酸メチルエステル、プロピオン酸エチルエステルなどのカルボン酸エステル類;塩化メチル、塩化エチルなどのハロゲン化アルキル、トランス−1、3、3、3−テトラフルオロプロパ−1−エンなどの有機発泡剤、水、二酸化炭素などの無機発泡剤、アゾ化合物、テトラゾールなどの化学発泡剤などを用いることができる。これら他の発泡剤は、単独で用いてもよいし、2種以上を混合して用いてもよい。   Other foaming agents include, for example, ethers such as dimethyl ether, diethyl ether, methyl ethyl ether, isopropyl ether, n-butyl ether, diisopropyl ether, furan, furfural, 2-methyl furan, tetrahydrofuran, tetrahydropyran; dimethyl ketone, methyl ethyl ketone , Diethyl ketone, methyl n-propyl ketone, methyl-n-butyl ketone, methyl-i-butyl ketone, methyl-n-amyl ketone, methyl-n-hexyl ketone, ethyl-n-propyl ketone, ethyl-n-butyl ketone, etc. A saturated alcohol having 1 to 4 carbon atoms such as methanol, ethanol, propyl alcohol, i-propyl alcohol, butyl alcohol, i-butyl alcohol, t-butyl alcohol; Carboxylic acid esters such as acid methyl ester, formic acid ethyl ester, formic acid propyl ester, formic acid butyl ester, formic acid amyl ester, propionic acid methyl ester, propionic acid ethyl ester; alkyl halides such as methyl chloride and ethyl chloride, trans-1 Organic foaming agents such as 3,3,3-tetrafluoroprop-1-ene, inorganic foaming agents such as water and carbon dioxide, chemical foaming agents such as azo compounds and tetrazole, and the like can be used. These other blowing agents may be used alone or in combination of two or more.

他の発泡剤の中では、発泡性、発泡体成形性などの点からは、炭素数1〜4の飽和アルコール、ジメチルエーテル、ジエチルエーテル、メチルエチルエーテル、塩化メチル、塩化エチルなどが好ましく、発泡剤の燃焼性、発泡体の難燃性あるいは後述する断熱性等の点からは、水、二酸化炭素が好ましい。これらの中では、可塑化効果の点からジメチルエーテルが、コスト、気泡径の制御による断熱性向上効果の点から水が特に好ましい。   Among other foaming agents, from the viewpoints of foamability, foam formability, etc., saturated alcohols having 1 to 4 carbon atoms, dimethyl ether, diethyl ether, methyl ethyl ether, methyl chloride, ethyl chloride, etc. are preferable. From the viewpoints of the flammability of the foam, the flame retardancy of the foam, the heat insulation properties described later, and the like, water and carbon dioxide are preferred. Among these, dimethyl ether is particularly preferable from the viewpoint of the plasticizing effect, and water is particularly preferable from the viewpoint of the effect of improving the heat insulation by controlling the cost and the bubble diameter.

本発明で使用される発泡剤として、少なくともイソブタンを含み、更に、水、二酸化炭素、窒素、炭素数が2〜5のアルコール類、ジメチルエーテル、塩化メチル、及び、塩化エチルよりなる群から選ばれる少なくとも一種以上を含むことが、発泡体の断熱性能、発泡性、発泡成形性などが両立できる点で好ましい。   The blowing agent used in the present invention contains at least isobutane, and is further selected from the group consisting of water, carbon dioxide, nitrogen, alcohols having 2 to 5 carbon atoms, dimethyl ether, methyl chloride, and ethyl chloride. It is preferable that one or more types are included in that the heat insulating performance, foamability, foam moldability, etc. of the foam can be compatible.

発泡剤を添加または注入する際の圧力は、特に制限するものではなく、押出機などの内圧力よりも高い圧力であればよい。   The pressure when adding or injecting the foaming agent is not particularly limited as long as it is higher than the internal pressure of an extruder or the like.

本発明における発泡剤の使用量は、スチレン系樹脂100重量部に対して、2〜20重量部が好ましく、2〜10重量部がより好ましい。発泡剤の添加量が2重量部より少ないと、発泡倍率が低く、樹脂発泡体としての軽量、断熱などの特性が発揮されにくい場合があり、20重量部より多いと、過剰な発泡剤量の為、発泡体中にボイドなどの不良を生じる場合がある。   The amount of the foaming agent used in the present invention is preferably 2 to 20 parts by weight and more preferably 2 to 10 parts by weight with respect to 100 parts by weight of the styrene resin. When the addition amount of the foaming agent is less than 2 parts by weight, the foaming ratio is low, and the characteristics such as light weight and heat insulation as the resin foam may be difficult to be exhibited. Therefore, defects such as voids may occur in the foam.

本発明においては、スチレン系樹脂押出発泡体製造から1週間後の該押出発泡体中のイソブタンの残存量を、所定量とすることで、JIS A9511に準じた燃焼試験法に合格し、且つ、優れた断熱性を有するスチレン系押出発泡体を得ることが出来る。スチレン系樹脂押出発泡体製造から1週間後の該押出発泡体中のイソブタンの残存量は、該押出発泡体1kgあたり0.30mol以上0.60mol以下が好ましく、0.40mol以上0.55mol以下がより好ましい。0.30mol未満では、空気より低い熱伝導率を有するイソブタンの押出発泡体中での量が少なく、押出発泡体へ優れた断熱性を付与できない。一方で、燃焼性の高いイソブタンの量が0.60molより多いとJIS A9511に準じた燃焼試験法に不合格となる場合がある。   In the present invention, the residual amount of isobutane in the extruded foam one week after the production of the styrene resin extruded foam is set to a predetermined amount, thereby passing the combustion test method according to JIS A9511, and A styrene-based extruded foam having excellent heat insulation can be obtained. The residual amount of isobutane in the extruded foam after one week from the production of the styrene resin extruded foam is preferably 0.30 mol or more and 0.60 mol or less, and 0.40 mol or more and 0.55 mol or less per kg of the extruded foam. More preferred. If it is less than 0.30 mol, the amount of isobutane having a thermal conductivity lower than that of air in the extruded foam is small, and excellent heat insulating properties cannot be imparted to the extruded foam. On the other hand, if the amount of isobutane having high flammability is more than 0.60 mol, the combustion test method according to JIS A9511 may be rejected.

本発明においては、他の発泡剤として水やアルコール類を用いる場合には、安定して押出発泡成形を行うために、吸水性物質を添加することが好ましい。本発明に用いられる吸水性物質の具体例としては、ポリアクリル酸塩系重合体、澱粉−アクリル酸グラフト共重合体、ポリビニルアルコール系重合体、ビニルアルコール−アクリル酸塩系共重合体、エチレン−ビニルアルコール系共重合体、アクリロニトリル−メタクリル酸メチル−ブタジエン系共重合体、ポリエチレンオキサイド系共重合体およびこれらの誘導体などの吸水性高分子の他、表面にシラノール基を有する無水シリカ(酸化ケイ素)[例えば、日本アエロジル(株)製AEROSILなどが市販されている]などのように表面に水酸基を有する粒子径1000nm以下の微粉末;スメクタイト、膨潤性フッ素雲母などの吸水性あるいは水膨潤性の層状珪酸塩並びにこれらの有機化処理品;ゼオライト、活性炭、アルミナ、シリカゲル、多孔質ガラス、活性白土、けい藻土などの多孔性物質等があげられる。   In the present invention, when water or alcohol is used as the other foaming agent, it is preferable to add a water-absorbing substance in order to stably perform extrusion foaming. Specific examples of water-absorbing substances used in the present invention include polyacrylate polymers, starch-acrylic acid graft copolymers, polyvinyl alcohol polymers, vinyl alcohol-acrylate copolymers, ethylene- In addition to water-absorbing polymers such as vinyl alcohol copolymers, acrylonitrile-methyl methacrylate-butadiene copolymers, polyethylene oxide copolymers and derivatives thereof, anhydrous silica (silicon oxide) having silanol groups on the surface [For example, AEROSIL manufactured by Nippon Aerosil Co., Ltd. is commercially available] Fine particles having a hydroxyl group on the surface and having a particle diameter of 1000 nm or less; Silicates and their organic treated products: zeolite, activated carbon, alumina, silica Gel, porous glass, activated clay, porous material or the like, such as diatomaceous earth and the like.

本発明で用いられる吸水性物質の添加量は、水の添加量などによって、適宜調整されるものであるが、スチレン系樹脂100重量部に対して、0.01〜5重量部が好ましく、0.1〜3重量部がより好ましい。   The addition amount of the water-absorbing substance used in the present invention is appropriately adjusted depending on the addition amount of water and the like, but is preferably 0.01 to 5 parts by weight with respect to 100 parts by weight of the styrenic resin. 0.1 to 3 parts by weight is more preferable.

本発明では、難燃剤として臭素系難燃剤を含有することにより、得られるスチレン系樹脂発泡体に難燃性を付与することができる。   In this invention, a flame retardance can be provided to the styrene resin foam obtained by containing a brominated flame retardant as a flame retardant.

本発明における臭素系難燃剤の具体的な例としては、ヘキサブロモシクロドデカン、テトラブロモビスフェノールA−ビス(2,3−ジブロモ−2−メチルプロピル)エーテル、テトラブロモビスフェノールA−ビス(2,3−ジブロモプロピル)エーテル、トリス(2,3−ジブロモプロピル)イソシアヌレートや、臭素化スチレン−ブタジエンブロックコポリマーのような脂肪族臭素含有ポリマーが挙げられる。これらは、単独で用いても、2種以上を混合して用いても良い。   Specific examples of the brominated flame retardant in the present invention include hexabromocyclododecane, tetrabromobisphenol A-bis (2,3-dibromo-2-methylpropyl) ether, tetrabromobisphenol A-bis (2,3 -Dibromopropyl) ether, tris (2,3-dibromopropyl) isocyanurate, and aliphatic bromine-containing polymers such as brominated styrene-butadiene block copolymers. These may be used alone or in combination of two or more.

これらのうち、ヘキサブロモシクロドデカン、テトラブロモビスフェノールA−ビス(2、3−ジブロモ−2−メチルプロピル)エーテル、及びテトラブロモビスフェノールA−ビス(2、3−ジブロモプロピル)エーテルからなる混合臭素系難燃剤、臭素化スチレン−ブタジエンブロックコポリマーが、押出運転が良好であり、発泡体の耐熱性に悪影響を及ぼさない等の理由から、望ましく用いられる。これらの物質はそれ単体で用いても、または混合物として用いても良い。   Of these, a mixed bromine system consisting of hexabromocyclododecane, tetrabromobisphenol A-bis (2,3-dibromo-2-methylpropyl) ether, and tetrabromobisphenol A-bis (2,3-dibromopropyl) ether A flame retardant and a brominated styrene-butadiene block copolymer are desirably used because they have good extrusion operation and do not adversely affect the heat resistance of the foam. These substances may be used alone or as a mixture.

本発明における臭素系難燃剤の含有量は、スチレン系樹脂100重量部に対して、1.0重量部以上5.0重量部以下が好ましく、1.5重量部以上4.0重量部以下がより好ましい。臭素系難燃剤の含有量が1.0重量部未満では、難燃性などの発泡体としての良好な諸特性が得られがたい傾向があり、一方、5.0重量部を超えると、発泡体製造時の安定性、表面性などを損なう場合がある。但し、難燃剤の含有量は、JIS A9511測定方法Aに規定される難燃性が得られるように、発泡剤含有量、発泡体密度、難燃相乗効果を有する添加剤などの種類あるいは含有量などに合わせて、適宜調整されることがより好ましい。   The content of the brominated flame retardant in the present invention is preferably 1.0 part by weight or more and 5.0 parts by weight or less, and 1.5 parts by weight or more and 4.0 parts by weight or less with respect to 100 parts by weight of the styrene resin. More preferred. If the brominated flame retardant content is less than 1.0 part by weight, good properties as a foam such as flame retardancy tend to be difficult to obtain, whereas if it exceeds 5.0 parts by weight, foaming is likely to occur. It may impair the stability and surface properties during body production. However, the content of the flame retardant is the type or content of the foaming agent content, the foam density, an additive having a flame retardant synergistic effect, etc. so that the flame retardancy specified in JIS A9511 measurement method A can be obtained. It is more preferable to adjust appropriately according to the above.

本発明においては、スチレン系樹脂押出発泡体の難燃性能を向上させる目的で、ラジカル発生剤を併用することができる。具体的には、2,3−ジメチル−2,3−ジフェニルブタン、ポリ−1,4−ジイソプロピルベンゼン、2,3−ジエチル−2,3−ジフェニルブタン、3,4−ジメチル−3,4−ジフェニルヘキサン、3,4−ジエチル−3,4−ジフェニルヘキサン、2,4−ジフェニル−4−メチル−1−ペンテン、2,4−ジフェニル−4−エチル−1−ペンテン等が挙げられる。ジクミルパーオキサイドの様な過酸化物も用いられる。その中でも、樹脂加工温度条件にて、安定なものが好ましく、具体的には2,3−ジメチル−2,3−ジフェニルブタン、及びポリ−1,4−ジイソプロピルベンゼンであり、好ましい添加範囲としては、スチレン系樹脂100重量部に対して、0.05〜0.5重量部である。   In the present invention, a radical generator can be used in combination for the purpose of improving the flame retardancy of the styrene resin extruded foam. Specifically, 2,3-dimethyl-2,3-diphenylbutane, poly-1,4-diisopropylbenzene, 2,3-diethyl-2,3-diphenylbutane, 3,4-dimethyl-3,4- Examples include diphenylhexane, 3,4-diethyl-3,4-diphenylhexane, 2,4-diphenyl-4-methyl-1-pentene, and 2,4-diphenyl-4-ethyl-1-pentene. Peroxides such as dicumyl peroxide are also used. Among them, those that are stable under the resin processing temperature conditions are preferable, specifically 2,3-dimethyl-2,3-diphenylbutane and poly-1,4-diisopropylbenzene, and the preferable addition range is The amount is 0.05 to 0.5 parts by weight based on 100 parts by weight of the styrene resin.

更に、難燃性能を向上させる目的で、熱安定性能を損なわない範囲で、リン酸エステル及びホスフィンオキシドの様なリン系難燃剤を併用することができる。リン酸エステルとしては、トリフェニルホスフェート、トリクレジルホスフェート、トリキシリレニルホスフェート、クレジルジフェニルフォスフェート、2−エチルヘキシルジフェニルホスフェート、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリス(2−エチルヘキシル)ホスフェート、トリス(ブトキシエチル)ホスフェート、または縮合リン酸エステル等が挙げられ、特にトリフェニルホフェートが好ましい。又、ホスフィンオキシド型のリン系難燃剤としては、トリフェニルホスフィンオキシドが好ましい。これらリン酸エステル及びホスフィンオキシドは単独または2種以上併用しても良い。好ましい添加範囲としては、スチレン系樹脂100重量部に対して0.1〜2重量部である。   Furthermore, for the purpose of improving the flame retardancy, a phosphorus flame retardant such as a phosphate ester and a phosphine oxide can be used in combination as long as the thermal stability performance is not impaired. Examples of phosphoric acid esters include triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, 2-ethylhexyl diphenyl phosphate, trimethyl phosphate, triethyl phosphate, tributyl phosphate, tris (2-ethylhexyl) phosphate, Examples thereof include tris (butoxyethyl) phosphate, condensed phosphate ester and the like, and triphenyl phosphate is particularly preferable. As the phosphine oxide-type phosphorus flame retardant, triphenylphosphine oxide is preferable. These phosphate esters and phosphine oxides may be used alone or in combination of two or more. A preferable addition range is 0.1 to 2 parts by weight with respect to 100 parts by weight of the styrene resin.

本発明においては、必要に応じて樹脂、及び/又は、難燃剤の安定剤を使用することが出来る。特に限定されるものでは無いが、安定剤の具体的な例としては、ビスフェノールAジグリシジルエーテル型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂のようなエポキシ化合物;ジペンタエリスリトールとアジピン酸との部分エステルおよび多価アルコールとの反応物のような多価アルコールエステル;トリエチレングリコール−ビス−3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート、ペンタエリトリトールテトラキス[3−(3’,5’−ジ−tert−ブチル−4’−ヒドロキシフェニル)プロピオネート]、オクタデシル3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオナートであり、ペンタエリトリトールテトラキス[3−(3’,5’−ジ−tert−ブチル−4’−ヒドロキシフェニル)プロピオネート]のようなフェノール系安定剤;3,9−ビス(2,4−ジ−tert−ブチルフェノキシ)−2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5.5]ウンデカン、3,9−ビス(2,6−ジ−tert−ブチル−4−メチルフェノキシ)−2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5.5]ウンデカン、及びテトラキス(2,4−ジ−tert−ブチル−5−メチルフェニル)−4,4′−ビフェニレンジホスホナイト)のようなホスファイト系安定剤;などが発泡体の難燃性能を低下させることなく、かつ、発泡体の熱安定性を向上させることから、好適に用いられる。   In the present invention, if necessary, a resin and / or a flame retardant stabilizer can be used. Although not particularly limited, specific examples of the stabilizer include epoxy compounds such as bisphenol A diglycidyl ether type epoxy resin, cresol novolac type epoxy resin, phenol novolac type epoxy resin; dipentaerythritol and adipine Polyhydric alcohol esters such as partial esters with acids and reactants with polyhydric alcohols; triethylene glycol-bis-3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionate, pentaerythritol tetrakis [3- (3 ′, 5′-di-tert-butyl-4′-hydroxyphenyl) propionate], octadecyl 3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, pentaerythritol Tetrakis [3- 3 ′, 5′-di-tert-butyl-4′-hydroxyphenyl) propionate]; 3,9-bis (2,4-di-tert-butylphenoxy) -2,4, 8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane, 3,9-bis (2,6-di-tert-butyl-4-methylphenoxy) -2,4,8,10-tetraoxa- Phosphite stabilizers such as 3,9-diphosphaspiro [5.5] undecane, and tetrakis (2,4-di-tert-butyl-5-methylphenyl) -4,4'-biphenylenediphosphonite); Are preferably used because they do not reduce the flame retardancy of the foam and improve the thermal stability of the foam.

本発明においては、熱線輻射抑制剤としてグラファイトを添加することにより、高い断熱性を有する発泡体が得られる。前記熱線輻射抑制剤とは、近赤外または赤外領域(例えば、800〜3000nm程度の波長域)の光を反射・散乱・吸収する特性を有する物質をいう。   In the present invention, a foam having high heat insulating properties can be obtained by adding graphite as a heat ray radiation inhibitor. The said heat ray radiation inhibitor means the substance which has the characteristic to reflect, scatter, and absorb the light of near infrared or infrared region (for example, wavelength range of about 800-3000 nm).

本発明で使用するグラファイトは、例えば、鱗(片)状黒鉛、土状黒鉛、球状黒鉛、人造黒鉛などが挙げられる。これらの中でも、熱線輻射抑制効果が高い点から、主成分が鱗(片)状黒鉛のものを用いることが好ましい。グラファイトは、固定炭素分が80%以上が好ましく、85%以上がより好ましい。固定炭素分を上記範囲とすることで高い断熱性を有する発泡体が得られる。   Examples of the graphite used in the present invention include scale-like graphite, earthy graphite, spherical graphite, and artificial graphite. Among these, it is preferable to use the one whose main component is scale-like graphite from the viewpoint of a high heat ray radiation suppressing effect. Graphite preferably has a fixed carbon content of 80% or more, and more preferably 85% or more. The foam which has high heat insulation is obtained by making fixed carbon content into the said range.

グラファイトの分散粒子径は15μm以下が好ましく、10μm以下がより好ましい。粒径を上記範囲とすることで、グラファイトの比表面積が大きくなり、熱線輻射との衝突確率が高くなるため、熱線輻射抑制効果が高くなる。分散粒径を前記範囲とするためには、一次粒径が15μm以下のものを選択すればよい。   The dispersed particle diameter of graphite is preferably 15 μm or less, and more preferably 10 μm or less. By setting the particle size within the above range, the specific surface area of graphite is increased, and the probability of collision with heat radiation is increased, so that the effect of suppressing heat radiation is enhanced. In order to make the dispersed particle diameter within the above range, a particle having a primary particle diameter of 15 μm or less may be selected.

なお、前記分散粒径とは、発泡板中に分散しているそれぞれの粒子の粒子径の個数基準の算術平均値であり、粒子径は発泡板断面を顕微鏡などにより拡大して計測される。前記一次粒径とは体積平均粒径(d50)を意味する。   The dispersed particle size is an arithmetic average value based on the number of particles dispersed in the foam plate, and the particle size is measured by enlarging the cross section of the foam plate with a microscope or the like. The primary particle size means a volume average particle size (d50).

本発明におけるグラファイトの含有量は、スチレン系樹脂100重量部に対して1.0重量部以上3.5重量部以下が好ましく、1.5重量部以上3.0重量部以下がより好ましい。含有量が1.0重量部未満では、十分な熱線輻射抑制効果が得られない。含有量が3.5重量部超では、含有量相応の熱線輻射抑制効果が得られずコストメリットが無い。   The graphite content in the present invention is preferably 1.0 part by weight or more and 3.5 parts by weight or less, and more preferably 1.5 parts by weight or more and 3.0 parts by weight or less with respect to 100 parts by weight of the styrene resin. When the content is less than 1.0 part by weight, a sufficient heat ray radiation suppressing effect cannot be obtained. When the content exceeds 3.5 parts by weight, the effect of suppressing heat radiation corresponding to the content cannot be obtained, and there is no cost merit.

尚、本発明におけるグラファイトの含有量は、JIS K 6226−2:2003に準じて測定することが出来る。具体的には、発泡体から約10mgの試験片を切り出し、熱分析システム:EXSTAR6000を備えた熱重量測定装置:TG/DTA 220U[エスアイアイ・ナノテクノロジー(株)製]を用いて、[1]200mL/分の窒素気流下で40℃から600℃まで20℃/分で昇温した後600℃で10分保持、[2]200mL/分の窒素気流下で600℃から400℃まで10℃/分で降温した後400℃で5分保持、[3]200mL/分の空気気流下で400℃から800℃まで20℃/分で昇温した後800℃で15分保持する。以下式(2)、式(3)よりグラファイトの含有量を算出できる。
炭素分=[3]での減少重量/試験片全量×100・・・(2)
グラファイト含有量=炭素分/使用したグラファイトの固定炭素分・・・(3)
本発明で使用することができる熱線輻射抑制剤としては、グラファイトの他に、酸化チタン、硫酸バリウム、酸化亜鉛、酸化アルミニウム、酸化アンチモンなどの白色系粒子を併用することが出来る。これらは、単独で使用しても良く、2種以上を併用しても良い。これらの中でも、線輻射抑制効果が大きい点から、酸化チタンや硫酸バリウムが好ましく、酸化チタンがより好ましい。白色系粒子の分散粒径については、特に限定されるものではないが、効果的に赤外線を反射し、また樹脂への発色性を考慮すれば、例えば、酸化チタンでは0.1μm〜10μmが好ましく、0.15μm〜5μmがより好ましい。
In addition, content of the graphite in this invention can be measured according to JISK6226-2: 2003. Specifically, about 10 mg of a test piece was cut out from the foam, and the thermogravimetric measurement apparatus equipped with EXSTAR6000: TG / DTA 220U [manufactured by SII Nanotechnology Co., Ltd.] was used. The temperature was raised from 40 ° C. to 600 ° C. at 20 ° C./min under a nitrogen flow of 200 mL / min and then held at 600 ° C. for 10 minutes. [2] 10 ° C. from 600 ° C. to 400 ° C. under a nitrogen flow of 200 mL / min The temperature is lowered at / min and then held at 400 ° C. for 5 minutes. [3] The temperature is raised from 400 ° C. to 800 ° C. under an air stream of 200 mL / min at 20 ° C./min and then held at 800 ° C. for 15 minutes. Hereinafter, the graphite content can be calculated from the formulas (2) and (3).
Carbon content = weight reduced at [3] / total amount of test piece × 100 (2)
Graphite content = carbon content / fixed carbon content of graphite used (3)
As a heat ray radiation inhibitor that can be used in the present invention, white particles such as titanium oxide, barium sulfate, zinc oxide, aluminum oxide, and antimony oxide can be used in combination with graphite. These may be used alone or in combination of two or more. Among these, titanium oxide and barium sulfate are preferable, and titanium oxide is more preferable because the effect of suppressing radiation radiation is large. The dispersed particle diameter of the white particles is not particularly limited, but is preferably 0.1 μm to 10 μm, for example, in the case of titanium oxide, in view of effectively reflecting infrared rays and considering color developability to the resin. 0.15 μm to 5 μm is more preferable.

本発明における白色系粒子の含有量としては、スチレン系樹脂100重量部に対して、1.0重量部以上3.0重量部以下が好ましく、1.5重量部以上2.5重量部以下がより好ましい。白色系粒子は、グラファイトと比較して熱線輻射抑制効果が小さく、含有量が1.0重量部未満では、上記白色系粒子を含有しても熱線輻射抑制効果は殆どない。3.0重量部超では、含有量相応の熱線輻射抑制効果が得られない、一方で、押出安定性・成形性が劣ったり、発泡体の難燃性が悪化する傾向がある。   The content of the white particles in the present invention is preferably 1.0 part by weight or more and 3.0 parts by weight or less, and 1.5 parts by weight or more and 2.5 parts by weight or less with respect to 100 parts by weight of the styrene resin. More preferred. The white particles have a smaller heat ray radiation suppressing effect than graphite, and if the content is less than 1.0 part by weight, even if the white particles are contained, there is almost no heat ray radiation suppressing effect. If it exceeds 3.0 parts by weight, the heat radiation suppression effect corresponding to the content cannot be obtained, while the extrusion stability and moldability tend to be inferior, and the flame retardancy of the foam tends to deteriorate.

本発明における熱線輻射抑制剤の合計含有量は、スチレン系樹脂100重量部に対して、1.0重量部以上6.0重量部以下が好ましく、2.0重量部以上5.0重量部以下がより好ましい。熱線輻射抑制剤の合計含有量が1.0重量部未満では、高い断熱性が得られず、6.0重量部超では、押出安定性・成形性が劣ったり、燃焼性が損なわれたりする傾向がある。   The total content of the heat ray radiation inhibitor in the present invention is preferably 1.0 part by weight or more and 6.0 parts by weight or less, and 2.0 parts by weight or more and 5.0 parts by weight or less with respect to 100 parts by weight of the styrene resin. Is more preferable. When the total content of the heat ray radiation suppressor is less than 1.0 part by weight, high heat insulation cannot be obtained, and when it exceeds 6.0 parts by weight, the extrusion stability and formability are inferior or the combustibility is impaired. Tend.

本発明においては、さらに、必要に応じて、本発明の効果を阻害しない範囲で種々のシリカ、ケイ酸カルシウム、ワラストナイト、カオリン、クレイ、マイカ、酸化亜鉛、酸化チタン、炭酸カルシウムなどの無機化合物、ステアリン酸ナトリウム、ステアリン酸マグネシウム、ステアリン酸バリウム、流動パラフィン、オレフィン系ワックス、ステアリルアミド系化合物などの加工助剤、フェノール系抗酸化剤、リン系安定剤、窒素系安定剤、イオウ系安定剤、ベンゾトリアゾール類、ヒンダードアミン類などの耐光性安定剤、前記以外の難燃剤、帯電防止剤、顔料などの着色剤などの添加剤を含有されてもよい。   In the present invention, various inorganic substances such as silica, calcium silicate, wollastonite, kaolin, clay, mica, zinc oxide, titanium oxide, calcium carbonate and the like, as long as they do not inhibit the effects of the present invention. Compounds, processing aids such as sodium stearate, magnesium stearate, barium stearate, liquid paraffin, olefin wax, stearylamide compound, phenolic antioxidant, phosphorus stabilizer, nitrogen stabilizer, sulfur stabilizer It may contain additives such as a light-resistant stabilizer such as an agent, a benzotriazole, a hindered amine, a flame retardant other than the above, an antistatic agent, and a colorant such as a pigment.

スチレン系樹脂に各種添加剤を添加する手順として、例えば、スチレン系樹脂に対して各種添加剤を添加して混合した後、押出機に供給して加熱溶融し、更に発泡剤を添加して混合する手順が挙げられるが、各種添加剤をスチレン系樹脂に添加するタイミングや混練時間は特に限定されない。   As a procedure for adding various additives to the styrenic resin, for example, after adding and mixing various additives to the styrenic resin, the mixture is supplied to an extruder, heated and melted, and further added with a foaming agent and mixed. The timing for adding various additives to the styrenic resin and the kneading time are not particularly limited.

本発明のスチレン系樹脂押出発泡体の製造方法としては、スチレン系樹脂、難燃剤、他の添加剤等を押出機等の加熱溶融手段に供給し、任意の段階で高圧条件下にて発泡剤をスチレン樹脂に添加し、流動ゲルとなし、押出発泡に適する温度に冷却した後、ダイを通して該流動ゲルを低圧領域に押出発泡して、発泡体を形成することにより製造される。   As a method for producing a styrene resin extruded foam of the present invention, a styrene resin, a flame retardant, other additives and the like are supplied to a heating and melting means such as an extruder, and the foaming agent is subjected to a high pressure condition at any stage. Is added to a styrene resin to form a fluid gel, cooled to a temperature suitable for extrusion foaming, and then extruded and foamed through a die into a low pressure region to form a foam.

加熱温度は、使用されるスチレン系樹脂が溶融する温度以上であればよいが、添加剤などの影響による樹脂の分子劣化ができる限り抑制される温度、例えば150〜260℃程度が好ましい。溶融混練時間は、単位時間当たりのスチレン系樹脂の押出量や溶融混練手段として用いる押出機の種類により異なるので一義的に規定することはできず、スチレン系樹脂と発泡剤や添加剤とが均一に分散混合されるに要する時間として適宜設定される。   The heating temperature may be equal to or higher than the temperature at which the styrenic resin used melts, but a temperature at which molecular degradation of the resin due to the influence of additives and the like is suppressed as much as possible, for example, about 150 to 260 ° C. is preferable. The melt-kneading time varies depending on the amount of styrene-based resin extruded per unit time and the type of extruder used as the melt-kneading means, so it cannot be uniquely defined. The styrene-based resin and the blowing agent or additive are uniform. The time required for the dispersion and mixing is appropriately set.

溶融混練手段としては、例えばスクリュー型の押出機などが挙げられるが、通常の押出発泡に用いられるものであれば特に制限されない。   Examples of the melt-kneading means include a screw type extruder, but are not particularly limited as long as they are used for ordinary extrusion foaming.

本発明の発泡成形方法は、例えば、押出成形用に使用される開口部が直線のスリット形状を有するスリットダイを通じて、高圧領域から低圧領域へ開放して得られた押出発泡体を、スリットダイと密着又は接して設置された成形金型、及び該成形金型の下流側に隣接して設置された成形ロールなどを用いて、断面積の大きい板状発泡体を成形する方法が用いられる。成形金型の流動面形状調整および金型温度調整によって、所望の発泡体の断面形状、発泡体の表面性、発泡体品質が得られる。   In the foam molding method of the present invention, for example, an extrusion foam obtained by opening from a high-pressure region to a low-pressure region through a slit die having an opening used for extrusion molding having a straight slit shape is used as a slit die. A method of forming a plate-like foam having a large cross-sectional area using a molding die placed in close contact with or in contact with a molding roll placed adjacent to the downstream side of the molding die is used. By adjusting the flow surface shape of the molding die and the mold temperature, the desired cross-sectional shape of the foam, the surface property of the foam, and the quality of the foam can be obtained.

本発明においては、スリットダイ出口の厚み方向開度aと得られるスチレン系樹脂押出発泡体の厚みAから計算される厚み拡大比A/aが12以下とすることで、製造直後の平面圧縮強度を所望の範囲とし、優れた断熱性を有する押出発泡体が得られる。A/aが12超の場合、製造直後の平面圧縮強度は所望の範囲とならず、断熱性が悪化する。   In the present invention, the thickness expansion ratio A / a calculated from the thickness direction opening degree a at the exit of the slit die and the thickness A of the styrene resin extruded foam obtained is 12 or less, so that the plane compression strength immediately after production is An extruded foam having an excellent heat insulating property is obtained. When A / a is more than 12, the plane compressive strength immediately after production is not in the desired range, and the heat insulation is deteriorated.

本発明において、発泡直前のダイ内部の樹脂圧力(以下、「発泡圧力」と呼ぶ)を2.5MPa以上とすることで、外観美麗な押出発泡体が得られる。発泡圧力が2.5MPaより低い場合、ダイ内部での発泡が生じてしまい、表面美麗な押出発泡体が得られないばかりか、安定した押出発泡成形が出来ない。
尚、本発明における発泡直前とは、ダイ出口から300mm以内のことを指す。
In the present invention, an extruded foam with a beautiful appearance can be obtained by setting the resin pressure inside the die immediately before foaming (hereinafter referred to as “foaming pressure”) to 2.5 MPa or more. When the foaming pressure is lower than 2.5 MPa, foaming occurs inside the die, and an extruded foam having a beautiful surface cannot be obtained, and stable extrusion foaming cannot be performed.
In the present invention, “immediately before foaming” means within 300 mm from the die outlet.

本発明に係るスチレン系樹脂押出発泡体は、スチレン系樹脂及び発泡剤を用いて押出発泡して得られるスチレン系樹脂押出発泡体であって、グラファイトをスチレン系樹脂100重量部に対して1.0重量部以上3.5重量部以下含み、見掛け密度が25kg/m以上35kg/m未満であり、且つ、製造直後の平面圧縮強度Fと見掛け密度Dとが以下の式(1)を満たし、
F≦2.52×D−55.3・・・・・式(1)
熱伝導率が0.0245W/mK以下であることを特徴とする、スチレン系樹脂押出発泡体である。
The styrene resin extruded foam according to the present invention is a styrene resin extruded foam obtained by extrusion foaming using a styrene resin and a foaming agent. It includes 0 parts by weight or more and 3.5 parts by weight or less, the apparent density is 25 kg / m 3 or more and less than 35 kg / m 3 , and the plane compressive strength F and the apparent density D immediately after production are expressed by the following formula (1): Meet,
F ≦ 2.52 × D-55.3 Equation (1)
It is a styrene resin extruded foam characterized by having a thermal conductivity of 0.0245 W / mK or less.

本発明に係るスチレン系樹脂押出発泡体は、25年後の長期熱伝導率がJIS A 9511で規定されている0.028W/mKを満足することを考慮して、製造後1週間の熱伝導率が0.0245W/mK以下であることが好ましい。   In consideration of the fact that the long-term thermal conductivity after 25 years satisfies 0.028 W / mK defined in JIS A 9511, the styrene resin extruded foam according to the present invention has a thermal conductivity of 1 week after production. The rate is preferably 0.0245 W / mK or less.

本発明に係るスチレン系樹脂押出発泡体は、例えば建築用断熱材や保冷庫用又は保冷車用の断熱材として機能することを考慮した断熱性および、軽量性の観点から、押出発泡体の見掛け密度が25kg/m以上35kg/m未満であることが好ましく、より好ましくは28kg/m以上33kg/m未満である。 The styrene-based resin extruded foam according to the present invention is an appearance of an extruded foam from the viewpoint of heat insulation and lightness considering that it functions as, for example, a heat insulating material for buildings, a cold storage or a cold car. The density is preferably 25 kg / m 3 or more and less than 35 kg / m 3 , more preferably 28 kg / m 3 or more and less than 33 kg / m 3 .

本発明に係るスチレン系樹脂押出発泡体は、JIS A 9511に準拠する方法にて測定した製造直後の平面圧縮強度が以下(1)式を満たすことで、優れた断熱性を発揮することが出来る。
F≦2.52×D−55.3・・・・・式(1)
※F:平面圧縮強度、D:見掛け密度
製造直後の平面圧縮強度と見掛け密度の関係が、式(1)の範囲を満たさない場合、断熱性を付与するために多量の熱線輻射抑制剤や高密度化が必要となり、本発明の求める軽量且つ高断熱のスチレン系樹脂押出発泡体が得られない。
The styrene-based resin extruded foam according to the present invention can exhibit excellent heat insulating properties when the plane compressive strength immediately after production measured by a method according to JIS A 9511 satisfies the following formula (1). .
F ≦ 2.52 × D-55.3 Equation (1)
* F: Plane compressive strength, D: Apparent density If the relationship between the plain compressive strength immediately after production and the apparent density does not satisfy the range of formula (1), a large amount of heat ray radiation inhibitor or high Densification is required, and a lightweight and highly heat-insulated styrenic resin extruded foam required by the present invention cannot be obtained.

尚、本発明における製造直後とは、スチレン系樹脂押出発泡体が押出機のダイから出て押出発泡されてから、90分以内を指す。   The term “immediately after production” in the present invention refers to within 90 minutes after the styrene resin extruded foam comes out of the die of the extruder and is extruded and foamed.

本発明に係るスチレン系樹脂押出発泡体における厚みは特に限定はないが、例えば建築用断熱材や保冷庫用又は保冷車用の断熱材として機能することを考慮した断熱性、曲げ強度及び圧縮強度の観点から、10mm以上150mm以下であることが好ましく、より好ましくは15mm以上120mm以下であり、特に好ましくは20mm以上100mm以下である。   The thickness of the styrene-based resin extruded foam according to the present invention is not particularly limited, but for example, heat insulation, bending strength, and compressive strength in consideration of functioning as a heat insulator for a building, a cold storage, or a cold car. In view of the above, it is preferably 10 mm or more and 150 mm or less, more preferably 15 mm or more and 120 mm or less, and particularly preferably 20 mm or more and 100 mm or less.

かくして、本発明により、軽量、且つ、優れた断熱性および難燃性を有し、高性能で経済的なスチレン系樹脂押出発泡体を容易に得ることができる。   Thus, according to the present invention, it is possible to easily obtain a high-performance and economical styrene resin extruded foam having light weight, excellent heat insulation and flame retardancy.

以下、本発明の実施例について説明する。なお、本発明が以下の実施例に限定されないことは勿論である。また、以下の実施例および比較例においては、特に断られない限り、「部」は「重量部」、「%」は「重量%」を表すものとする。   Examples of the present invention will be described below. Needless to say, the present invention is not limited to the following examples. In the following Examples and Comparative Examples, “parts” represents “parts by weight” and “%” represents “% by weight” unless otherwise specified.

実施例および比較例において使用した原料は、次の通りである。
○基材樹脂
・スチレン系樹脂A [PSジャパン(株)製、G9401;MFR2.2g/10分]
・スチレン系樹脂B [PSジャパン(株)製、680;MFR7.0g/10分]
○熱線輻射抑制剤
・グラファイトA [(株)丸豊鋳材製作所製、M−88;鱗(片)状黒鉛、一次粒径8.5μm、固定炭素分89%]
・グラファイトB [(株)丸豊鋳材製作所製、M−885;鱗(片)状黒鉛、一次粒径5.5μm、固定炭素分89%]
・グラファイトC [伊藤黒鉛工業(株)製、X−10;鱗(片)状黒鉛、一次粒径10μm、固定炭素分98%]
・酸化チタン [堺化学工業(株)製、R−7E;一次粒径0.23nm]
○難燃剤
・テトラブロモビスフェノールA−ビス(2、3−ジブロモ−2−メチルプロピル)エーテル、及びテトラブロモビスフェノールA−ビス(2、3−ジブロモプロピル)エーテル の混合臭素系難燃剤[第一工業(株)製、GR−125P]
・臭素化スチレン−ブタジエンブロックポリマー [ケムチュラ製、EMERALD INNOVATION #3000]
・ヘキサブロモシクロドデカン [アルベマール(株)製、HP900]
○難燃助剤
・トリス(トリブチルネオペンチル)ホスフェート [大八化学工業(株)製、CR−900]
・トリフェニルホスフィンオキシド [住友商事ケミカル]
・ポリ−1,4−ジイソプロピルベンゼン [UNITED INITIATORS製、CCPIB]
○安定剤
・ビスフェノール−A−グリシジルエーテル [(株)ADEKA製、EP−13]
・クレゾールノボラック型エポキシ樹脂 [ハンツマンジャパン製、ECN−1280]
・ジペンタエリスリトール−アジピン酸反応混合物 [味の素ファインテクノ製、プレンライザーST210]
・ペンタエリトリトールテトラキス[3−(3’,5’−ジ−tert−ブチル−4’−ヒドロキシフェニル)プロピオネート] [ケムチュラ製、ANOX20]
・3,9−ビス(2,4−ジ−tert−ブチルフェノキシ)−2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5.5]ウンデカン [ケムチュラ製、Ultranox626]
・トリエチレングリコール−ビス−3−(3−t−ブチルー4−ヒドロキシ−5−メチルフェニル)プロピオネート [Songwon Japan(株)製、ソンノックス2450FF]
○その他添加剤
・タルク [林化成(株)製、タルカンパウダーPK−Z]
・ステアリン酸カルシウム [堺化学工業(株)製、SC−P]
・ベントナイト [(株)ホージュン製、ベンゲルブライトK11]
・シリカ [エボニックデグサジャパン(株)製、カープレックスBS−304F]
○発泡剤
・イソブタン [三井化学(株)製]
・ジメチルエーテル [三井化学(株)製]
・水 [大阪府摂津市水道水]。
The raw materials used in the examples and comparative examples are as follows.
○ Base resin / styrene resin A [manufactured by PS Japan, G9401; MFR 2.2 g / 10 min]
Styrenic resin B [manufactured by PS Japan, 680; MFR 7.0 g / 10 min]
○ Heat radiation inhibitor / graphite A [manufactured by Maruhyo Casting Mfg. Co., Ltd., M-88; scale (flaky) graphite, primary particle size 8.5 μm, fixed carbon content 89%]
Graphite B [manufactured by Maruyo Casting Mfg. Co., Ltd., M-885; scale (flaky) graphite, primary particle size 5.5 μm, fixed carbon content 89%]
Graphite C [manufactured by Ito Graphite Industries Co., Ltd., X-10; scale-like graphite, primary particle size 10 μm, fixed carbon content 98%]
Titanium oxide [manufactured by Sakai Chemical Industry Co., Ltd., R-7E; primary particle size 0.23 nm]
○ Flame retardants • Mixed brominated flame retardants of tetrabromobisphenol A-bis (2,3-dibromo-2-methylpropyl) ether and tetrabromobisphenol A-bis (2,3-dibromopropyl) ether [Daiichi Kogyo Manufactured by GR-125P]
-Brominated styrene-butadiene block polymer [Chemura, EMERALD INNOVATION # 3000]
-Hexabromocyclododecane [Albemarle, HP900]
○ Flame retardant aid, Tris (tributylneopentyl) phosphate [Daihachi Chemical Industry Co., Ltd., CR-900]
・ Triphenylphosphine oxide [Sumitomo Corporation Chemical]
・ Poly-1,4-diisopropylbenzene [manufactured by UNITED INITIATORS, CCPIB]
○ Stabilizer, bisphenol-A-glycidyl ether [manufactured by ADEKA, EP-13]
-Cresol novolac epoxy resin [manufactured by Huntsman Japan, ECN-1280]
Dipentaerythritol-adipic acid reaction mixture [Ajinomoto Fine-Techno, Pleniser ST210]
Pentaerythritol tetrakis [3- (3 ′, 5′-di-tert-butyl-4′-hydroxyphenyl) propionate] [manufactured by Chemtura, ANOX20]
・ 3,9-bis (2,4-di-tert-butylphenoxy) -2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane [manufactured by Chemtura, Ultranox 626]
Triethylene glycol-bis-3- (3-t-butyl-4-hydroxy-5-methylphenyl) propionate [Songwon Japan, Sonnox 2450FF]
○ Other additives
・ Talc [Hayashi Kasei Co., Ltd., Talcan powder PK-Z]
・ Calcium stearate [manufactured by Sakai Chemical Industry Co., Ltd., SC-P]
Bentonite [Hogel Jungle, Wengel Bright K11]
Silica [Evonik Degussa Japan Co., Ltd., Carplex BS-304F]
○ Foaming agent, isobutane [Mitsui Chemicals, Inc.]
・ Dimethyl ether [Mitsui Chemicals, Inc.]
・ Water [Tapzu City, Osaka Prefecture].

実施例および比較例について、以下の手法に従って見掛け密度、発泡剤残存量、熱伝導率、燃焼性、平面圧縮密度を評価した。   About an Example and a comparative example, apparent density, foaming agent residual amount, thermal conductivity, combustibility, and plane compression density were evaluated according to the following methods.

(1)見掛け密度(kg/m
得られたスチレン系樹脂押出発泡体の重量を測定すると共に、長さ寸法、幅寸法、厚み寸法を測定した。
(1) Apparent density (kg / m 3 )
While measuring the weight of the obtained styrene resin extruded foam, the length dimension, the width dimension, and the thickness dimension were measured.

測定された重量および各寸法から、以下の式に基づいて発泡体密度を求め、単位をkg/mに換算した。
見掛け密度(g/cm)=発泡体重量(g)/発泡体体積(cm
(2)製造直後の平面圧縮強度
発泡体の製造直後の平面圧縮強度は、以下に記載した条件を除いて、JIS A 9511に準拠する方法にて測定した。
得られたスチレン系樹脂押出発泡体を、JIS K 7100に規定された標準温度状態3級(23℃±5℃)、及び標準湿度状態3級(50+20、−10%R.H.)の条件下に30分以上静置した後、試験片を切削し、ノギス[(株)ミツトヨ製、M型標準ノギスN30]を用いて寸法を測定し、製造から90分以内にオートグラフ AG−20kNG[(株)島津製作所製]にて測定した。
From the measured weight and each dimension, the foam density was calculated | required based on the following formula | equation, and the unit was converted into kg / m < 3 >.
Apparent density (g / cm 3 ) = foam weight (g) / foam volume (cm 3 )
(2) Plane compressive strength immediately after manufacture The plane compressive strength immediately after manufacture of a foam was measured by the method based on JIS A 9511 except the conditions described below.
The obtained styrene-based resin extruded foam was subjected to a standard temperature state grade 3 (23 ° C. ± 5 ° C.) and a standard humidity state grade 3 (50 + 20, −10 % RH) as defined in JIS K 7100. After standing for 30 minutes or more under the conditions, the test piece was cut and measured for dimensions using a caliper [Mittoyo Co., Ltd., M-type standard caliper N30], and within 90 minutes of production, Autograph AG-20kNG [Measured by Shimadzu Corporation].

試験片は、幅方向片端を1点目、もう一方の端を5点目として幅方向で等間隔に5点とし(例えば、幅が910mmの製品であれば、試験片を幅方向50mm×長さ方向50mmとした場合、隣り合う試験片同士の幅方向中央部間距離が215mmとなるように)、全ての試験片の平面圧縮強度の平均値を「製造直後の平面圧縮強度」とした。   The test piece has one end in the width direction as the first point and the other end as the fifth point, and has 5 points at equal intervals in the width direction (for example, if the product has a width of 910 mm, the test piece is 50 mm in the width direction × long The average value of the plane compressive strengths of all the test pieces was defined as “plane compressive strength immediately after manufacture” so that the distance between the center portions in the width direction of adjacent test pieces was 215 mm when the length direction was 50 mm.

(3)式(1)の充足性
得られたスチレン系樹脂押出発泡体の見かけ密度と製造直後の平面圧縮強度の関係を下記の基準で評価した。
○:見かけ密度と製造直後の平面圧縮強度の関係が、式(1)を満たしている。
×:見かけ密度と製造直後の平面圧縮強度の関係が、式(1)を満たしていない。
(3) Satisfiability of Formula (1) The relationship between the apparent density of the obtained styrene resin extruded foam and the plane compressive strength immediately after production was evaluated according to the following criteria.
○: The relationship between the apparent density and the plane compressive strength immediately after production satisfies the formula (1).
X: The relationship between the apparent density and the plane compressive strength immediately after production does not satisfy the formula (1).

(4)熱伝導率(W/mK)
発泡体の熱伝導率は、JIS A 9511に準拠する方法で測定した。
(4) Thermal conductivity (W / mK)
The thermal conductivity of the foam was measured by a method based on JIS A 9511.

発泡体の熱伝導率は、25年後の長期熱伝導率がJIS A 9511で規定されている0.028W/mKを満足することを考慮して、JIS K 7100に規定された標準温度状態3級(23℃±5℃)、及び標準湿度状態3級(50+20、−10%R.H.)の条件下に静置し、製造から1週間後、発泡体おける熱伝導率を下記の基準で評価した。
○(合格):熱伝導率が0.0245W/mK以下。
×(不合格):熱伝導率が0.0245W/mKより大きい。
In consideration of the fact that the long-term thermal conductivity after 25 years satisfies 0.028 W / mK specified in JIS A 9511, the thermal conductivity of the foam is a standard temperature state 3 specified in JIS K 7100. After standing for 1 week after production, the thermal conductivity of the foam was measured as follows: (23 ° C. ± 5 ° C.), and standard humidity level 3 (50 + 20, −10 % RH) Evaluated by criteria.
○ (Pass): Thermal conductivity is 0.0245 W / mK or less.
X (failure): Thermal conductivity is larger than 0.0245 W / mK.

(5)イソブタン残存量
得られたスチレン系樹脂押出発泡体をJIS K 7100に規定された標準温度状態3級(23℃±5℃)、及び標準湿度状態3級(50+20、−10%R.H.)の条件下に静置し、製造から1週間後にイソブタン残存量を以下の設備、手順にて評価した。
a)使用機器;ガスクロマトグラフ GC−2014 [(株)島津製作所製]
b)使用カラム;G−Column G−950 25UM [化学物質評価研究機構製]
c)測定条件;
・注入口温度:65℃
・カラム温度:80℃
・検出器温度:100℃
・キャリーガス:高純度窒素
・キャリーガス流量:30mL/分
・検出器:TCD
・電流:120mA
約130ccの密閉可能なガラス容器(以下、「密閉容器」と言う)に、発泡体から切り出した見掛け密度により異なるが約1.2gの試験片を入れ、真空ポンプにより密閉容器内の空気抜きを行った。その後、密閉容器を170℃で10分間加熱し、発泡体中の発泡剤を密閉容器内に取り出した。密閉容器が常温に戻った後、密閉容器内にヘリウムを導入して大気圧に戻した後、マイクロシリンジにより40μLのヘリウム、イソブタン、ジメチルエーテル、空気の混合気体を取り出し、上記a)〜c)の使用機器、測定条件にて評価した。
(5) Residual amount of isobutane The obtained styrene resin extruded foam was classified into standard temperature state class 3 (23 ° C. ± 5 ° C.) and standard humidity state class 3 (50 + 20, −10 % R) specified in JIS K 7100. H.), and the remaining amount of isobutane was evaluated by the following equipment and procedure one week after the production.
a) Equipment used: Gas chromatograph GC-2014 [manufactured by Shimadzu Corporation]
b) Column used: G-Column G-950 25UM [Chemicals Evaluation and Research Institute]
c) Measurement conditions;
・ Inlet temperature: 65 ℃
-Column temperature: 80 ° C
-Detector temperature: 100 ° C
-Carry gas: High purity nitrogen-Carry gas flow rate: 30 mL / min-Detector: TCD
・ Current: 120mA
Put about 1.2g of test piece into an approximately 130cc sealable glass container (hereinafter referred to as "sealed container"), depending on the apparent density cut out from the foam, and evacuate the sealed container with a vacuum pump. It was. Thereafter, the sealed container was heated at 170 ° C. for 10 minutes, and the foaming agent in the foam was taken out into the sealed container. After the airtight container returns to room temperature, helium is introduced into the airtight container to return to atmospheric pressure, and then 40 μL of a mixed gas of helium, isobutane, dimethyl ether, and air is taken out by a microsyringe, and a) to c) above. Evaluation was performed using the equipment used and the measurement conditions.

(6)JIS燃焼性
JIS A 9511に準じて、厚さ10mm×長さ200mm×幅25mmの試験片を用い、以下の基準で評価した。測定は、スチレン系樹脂押出発泡体の製造後、前記寸法の試験片に切削し、JIS K 7100に規定された標準温度状態3級(23℃±5℃)、及び標準湿度状態3級(50+20、−10%R.H.)の条件下に静置し、製造から1週間後に行った。
○(合格):3秒以内に炎が消えて、残じんがなく、燃焼限界指示線を超えて燃焼しないとの基準を満たす。
×(不合格):上記基準を満たさない。
(6) JIS Flammability According to JIS A 9511, a test piece having a thickness of 10 mm, a length of 200 mm, and a width of 25 mm was used, and the evaluation was made according to the following criteria. Measurements were made after manufacturing a styrene-based resin extruded foam, and cut into a test piece having the above dimensions, and the standard temperature state class 3 (23 ° C. ± 5 ° C.) and standard humidity state class 3 (50 +20, −10 % RH), and one week after production.
○ (Pass): Satisfies the standard that the flame disappears within 3 seconds, there is no residue, and the combustion limit indicator line is not combusted.
X (failed): The above criteria are not satisfied.

(7)成形性
押出発泡体を目視し、下記の評価基準によって評価した。
○(合格):押出発泡体の表面に、ボイド・シワ・突起物・異物が見られず、外観良好な押出発泡体である。
×(不合格):押出発泡体の表面に、ボイド・シワ・突起物・異物が顕著に存在し、外観の悪い押出発泡体である。
(7) Formability The extruded foam was visually observed and evaluated according to the following evaluation criteria.
○ (Accepted): The extruded foam has a good appearance with no voids, wrinkles, protrusions or foreign matters on the surface of the extruded foam.
X (failed): A void, wrinkle, protrusion, or foreign matter is remarkably present on the surface of the extruded foam, and the extruded foam has a poor appearance.

(実施例1)
[樹脂混合物の作製]
スチレン系樹脂A[PSジャパン(株)製、G9401]100重量部に対して、熱線輻射抑制剤としてグラファイトB[(株)丸豊鋳材製作所製、M−885]2.5重量部、酸化チタン[堺化学工業(株)製、R−7E]1.5重量部、難燃剤として、テトラブロモビスフェノールA−ビス(2、3−ジブロモ−2−メチルプロピル)エーテル、及びテトラブロモビスフェノールA−ビス(2、3−ジブロモプロピル)エーテル の混合臭素系難燃剤[第一工業(株)製、GR−125P]3.0重量部、難燃剤助剤としてトリフェニルホスフィンオキシド [住友商事ケミカル]1.0重量部、安定剤として、ビスフェノール−A−グリシジルエーテル[(株)ADEKA製、EP−13]0.20重量部、トリエチレングリコール−ビス−3−(3−t−ブチルー4−ヒドロキシ−5−メチルフェニル)プロピオネート[Songwon Japan(株)製、ソンノックス2450FF]0.20重量部、ジペンタエリスリトール−アジピン酸反応混合物[味の素ファインテクノ製、プレンライザーST210]0.10重量部、気泡径調整剤として、タルク[林化成(株)製、タルカンパウダーPK−Z]0.50重量部、滑剤としてステアリン酸カルシウム[堺化学工業(株)製、SC−P]0.20重量部、吸水媒体として、ベントナイト[(株)ホージュン製、ベンゲルブライトK11]0.40重量部、シリカ[エボニックデグサジャパン(株)製、カープレックスBS−304F]0.40重量部をドライブレンドした。ただし、前記グラファイト、酸化チタンは、あらかじめスチレン系樹脂のマスターバッチの形態として投入した。マスターバッチの混合濃度は、スチレン系樹脂/グラファイトを50重量%/50重量%とし、スチレン系樹脂/酸化チタンを40重量%/60重量%とした。
Example 1
[Preparation of resin mixture]
Styrenic resin A [manufactured by PS Japan Co., Ltd., G9401] 100 parts by weight, graphite B [manufactured by Marufou Casting Co., Ltd., M-885] 2.5 parts by weight as a heat radiation inhibitor Titanium [manufactured by Sakai Chemical Industry Co., Ltd., R-7E] 1.5 parts by weight, as a flame retardant, tetrabromobisphenol A-bis (2,3-dibromo-2-methylpropyl) ether, and tetrabromobisphenol A- Mixed brominated flame retardant of bis (2,3-dibromopropyl) ether [Daiichi Kogyo Co., Ltd., GR-125P] 3.0 parts by weight, triphenylphosphine oxide [Sumitomo Corporation Chemical] 1 as a flame retardant auxiliary 0.02 part by weight, as stabilizer, bisphenol-A-glycidyl ether [manufactured by ADEKA, EP-13] 0.20 part by weight, triethylene glycol-bis- 3- (3-t-butyl-4-hydroxy-5-methylphenyl) propionate [Songwon Japan, Sonnox 2450FF] 0.20 parts by weight, dipentaerythritol-adipic acid reaction mixture [manufactured by Ajinomoto Fine Techno, Plenizer ST210] 0.10 parts by weight, as a cell diameter regulator, talc [manufactured by Hayashi Kasei Co., Ltd., Talcan powder PK-Z] 0.50 parts by weight, as a lubricant, calcium stearate [manufactured by Sakai Chemical Industry Co., Ltd.] SC-P] 0.20 parts by weight, as a water-absorbing medium, bentonite [manufactured by Hojun Co., Ltd., Bengelbright K11] 0.40 parts by weight, silica [Evonik Degussa Japan Co., Ltd., Carplex BS-304F]. 40 parts by weight were dry blended. However, the graphite and titanium oxide were added in advance as a master batch of a styrene resin. The mixing concentration of the master batch was 50% by weight / 50% by weight of styrene resin / graphite and 40% / 60% by weight of styrene resin / titanium oxide.

[押出発泡体の作製]
得られた樹脂混合物を口径150mmの単軸押出機(第一押出機)と口径200mmの単軸押出機(第二押出機)、及び冷却機を直列に連結した押出機へ、約900kg/hrで供給した。
[Production of extruded foam]
About 900 kg / hr of the obtained resin mixture to a single screw extruder (first extruder) having a diameter of 150 mm, a single screw extruder (second extruder) having a diameter of 200 mm, and an extruder in which a cooling machine is connected in series. Supplied with.

第一押出機に供給した樹脂混合物を、樹脂温度240℃に加熱して溶融ないし可塑化、混練し、発泡剤(スチレン系樹脂100重量部に対して、水(水道水)0.7重量部、イソブタン3.5重量部およびジメチルエーテル2.2重量部を第一押出機の先端付近で樹脂中に圧入した。その後、第一押出機に連結された第二押出機及び冷却機中にて、樹脂温度を122℃に冷却し、冷却機先端に設けた厚さ6mm×幅400mmの長方形断面の口金(スリットダイ)より、発泡圧力3.4MPaにて大気中へ押出発泡させた後、口金に密着させて設置した成形金型とその下流側に設置した成形ロールにより、厚さ59mm×幅1000mmである断面形状の押出発泡板を得、カッターにて厚み50mm×幅910mm×長さ1820mmにカットした。得られた発泡体の評価結果を表1に示す。   The resin mixture supplied to the first extruder is heated to a resin temperature of 240 ° C. to be melted or plasticized, kneaded, and foaming agent (0.7 parts by weight of water (tap water) with respect to 100 parts by weight of styrene resin) Then, 3.5 parts by weight of isobutane and 2.2 parts by weight of dimethyl ether were pressed into the resin near the tip of the first extruder, and then in a second extruder and a cooler connected to the first extruder, The resin temperature was cooled to 122 ° C., and extruded and foamed into the atmosphere at a foaming pressure of 3.4 MPa from a die having a rectangular cross section (slit die) having a thickness of 6 mm × width of 400 mm provided at the tip of the cooler. An extruded foam plate having a cross-sectional shape of 59 mm in thickness and 1000 mm in width is obtained by a molding die placed in close contact with a molding roll installed on the downstream side, and cut into a thickness of 50 mm × width of 910 mm × length of 1820 mm with a cutter. And. Table 1 shows the evaluation results of the resulting foam.

(実施例2〜20)
表1に示すように、各種配合剤の種類・添加量、及び製造条件を変更した以外は、実施例1と同様の操作により、発泡体を得た。押出発泡成形安定性(成形性)および、得られた発泡体の物性を表1に示す。
(Examples 2 to 20)
As shown in Table 1, a foam was obtained in the same manner as in Example 1 except that the types and addition amounts of various compounding agents and the production conditions were changed. Table 1 shows the extrusion foaming stability (moldability) and the physical properties of the obtained foam.

(比較例1〜4)
表2に示すように、各種配合剤の種類・添加量、及び製造条件を変更した以外は、実施例1と同様の操作により、発泡体を得た。押出発泡成形安定性(成形性)および、得られた発泡体の物性を表2に示す。
(Comparative Examples 1-4)
As shown in Table 2, a foam was obtained in the same manner as in Example 1 except that the types and addition amounts of various compounding agents and the production conditions were changed. Table 2 shows the extrusion foaming stability (moldability) and the physical properties of the obtained foam.

尚、実施例1〜20、及び比較例1〜4の見掛け密度と製造直後の平面圧縮強度の関係は図1に示した。(図1中、●プロットは実施例、×プロットは比較例を示す)   In addition, the relationship between the apparent density of Examples 1-20 and Comparative Examples 1-4 and the plane compressive strength immediately after manufacture was shown in FIG. (In FIG. 1, the ● plots are examples, and the x plots are comparative examples)

Figure 0006181522
Figure 0006181522

Figure 0006181522
Figure 0006181522

実施例1〜20と比較例1〜4を比較して明らかなように、熱伝導率が0.0245W/mK以下と高い断熱性を保持しつつ、軽量で断熱性および難燃性に優れた、高性能且つ経済的なスチレン系樹脂押出発泡体を容易に得られることがわかる。   As is clear by comparing Examples 1 to 20 and Comparative Examples 1 to 4, the heat conductivity is 0.0245 W / mK or less and maintains high heat insulating properties, while being lightweight and excellent in heat insulating properties and flame retardancy. It can be seen that a high-performance and economical styrene resin extruded foam can be easily obtained.

Claims (1)

スチレン系樹脂及び発泡剤を用いて押出発泡して得られるスチレン系樹脂押出発泡体であって、グラファイトをスチレン系樹脂100重量部に対して1.0重量部以上3.5重量部以下含み、見掛け密度が25kg/m3以上35kg/m3未満であり、且つ、製造直後の平面圧縮強度Fと見掛け密度Dとが以下の式(1)を満たし、
F≦2.52×D−55.3・・・・・式(1)
熱伝導率が0.0245W/mK以下であることを特徴とする、スチレン系樹脂押出発泡体製造方法であって、
スリットダイ出口の厚み方向開度aと得られるスチレン系樹脂押出発泡体の厚みAから計算される厚み拡大比A/aが12以下、且つ、発泡直前の金型内部の樹脂圧力が2.5MPa以上であることを特徴とする、スチレン系樹脂押出発泡体の製造方法。
A styrene resin extruded foam obtained by extrusion foaming using a styrene resin and a foaming agent, comprising 1.0 to 3.5 parts by weight of graphite with respect to 100 parts by weight of styrene resin, The apparent density is 25 kg / m 3 or more and less than 35 kg / m 3 , and the plane compressive strength F and the apparent density D immediately after production satisfy the following formula (1):
F ≦ 2.52 × D-55.3 Equation (1)
A method for producing a styrene resin extruded foam, wherein the thermal conductivity is 0.0245 W / mK or less,
The thickness expansion ratio A / a calculated from the opening a in the thickness direction at the exit of the slit die and the thickness A of the styrene resin extruded foam obtained is 12 or less, and the resin pressure inside the mold immediately before foaming is 2.5 MPa. It is the above, The manufacturing method of the styrene resin extruded foam characterized by the above-mentioned.
JP2013228959A 2013-11-05 2013-11-05 Styrenic resin extruded foam and method for producing the same Active JP6181522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013228959A JP6181522B2 (en) 2013-11-05 2013-11-05 Styrenic resin extruded foam and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013228959A JP6181522B2 (en) 2013-11-05 2013-11-05 Styrenic resin extruded foam and method for producing the same

Publications (2)

Publication Number Publication Date
JP2015089892A JP2015089892A (en) 2015-05-11
JP6181522B2 true JP6181522B2 (en) 2017-08-16

Family

ID=53193587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013228959A Active JP6181522B2 (en) 2013-11-05 2013-11-05 Styrenic resin extruded foam and method for producing the same

Country Status (1)

Country Link
JP (1) JP6181522B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170183471A1 (en) * 2014-05-09 2017-06-29 Kaneka Corporation Method for producing extruded polystyrene foam
JP6588245B2 (en) * 2015-06-15 2019-10-09 株式会社ジェイエスピー Method for producing polystyrene resin foam
JP6854672B2 (en) * 2017-03-08 2021-04-07 株式会社カネカ A masterbatch, a method for producing the same, and a method for producing foamable thermoplastic resin particles.

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007314643A (en) * 2006-05-25 2007-12-06 Kaneka Corp Extrusion foamed styrene resin
JP5087587B2 (en) * 2009-04-23 2012-12-05 ダウ化工株式会社 Styrene resin extruded foam
JP5642365B2 (en) * 2009-08-27 2014-12-17 ダウ化工株式会社 Styrene resin extruded foam
JP2013221110A (en) * 2012-04-18 2013-10-28 Kaneka Corp Extruded styrene resin foam and method for producing the same

Also Published As

Publication number Publication date
JP2015089892A (en) 2015-05-11

Similar Documents

Publication Publication Date Title
JP5892300B2 (en) Styrenic resin extruded foam and method for producing the same
JP6650466B2 (en) Extruded styrene resin foam and method for producing the same
JP6588428B2 (en) Styrene resin extruded foam manufacturing method
JP6722753B2 (en) Styrenic resin extruded foam and method for producing the same
JP2015113416A (en) Styrenic resin extrusion foam and production method therefor
JP6181522B2 (en) Styrenic resin extruded foam and method for producing the same
US11312834B2 (en) Styrene resin extruded foam body and method for producing same
JP2018150474A (en) Styrenic resin extruded foam and method for producing the same
JP7080714B2 (en) Styrene resin extruded foam
JP6348723B2 (en) Styrenic resin extruded foam
WO2018117224A1 (en) Styrene-based resin extruded foam and method for producing same
JP7011422B2 (en) Styrene-based resin extruded foam and its manufacturing method
JP2016199674A (en) Styrenic resin extruded foam and method for producing the same
JP6639517B2 (en) Extruded styrene resin foam and method for producing the same
JP6609636B2 (en) Styrenic resin extruded foam and method for producing the same
JP7479175B2 (en) Method for producing extruded styrene resin foam
JP7532196B2 (en) Styrenic resin extruded foam and its manufacturing method
JP2018184563A (en) Method for producing styrenic resin extruded foamed body
JP2024142607A (en) Styrenic resin extruded foam and method for producing same
JP2022145216A (en) Method for manufacturing styrenic resin extruded foam
JP2018100352A (en) Styrenic resin extrusion foam and method for producing the same
JP2023062653A (en) Styrenic resin extrusion foam, and metho for producing the same
JP2020164732A (en) Styrene-based resin extruded foam and method for producing the same
JP2018184562A (en) Styrenic resin extruded foamed body and method for producing the same
JP2018150450A (en) Method for producing styrenic resin extruded foam

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170720

R150 Certificate of patent or registration of utility model

Ref document number: 6181522

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250