JP6179482B2 - Method and apparatus for detecting minute irregular surface defects - Google Patents

Method and apparatus for detecting minute irregular surface defects Download PDF

Info

Publication number
JP6179482B2
JP6179482B2 JP2014162072A JP2014162072A JP6179482B2 JP 6179482 B2 JP6179482 B2 JP 6179482B2 JP 2014162072 A JP2014162072 A JP 2014162072A JP 2014162072 A JP2014162072 A JP 2014162072A JP 6179482 B2 JP6179482 B2 JP 6179482B2
Authority
JP
Japan
Prior art keywords
uneven surface
steel sheet
detecting
defect
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014162072A
Other languages
Japanese (ja)
Other versions
JP2016038307A (en
Inventor
伊藤 友彦
友彦 伊藤
淳一 四辻
淳一 四辻
腰原 敬弘
敬弘 腰原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014162072A priority Critical patent/JP6179482B2/en
Publication of JP2016038307A publication Critical patent/JP2016038307A/en
Application granted granted Critical
Publication of JP6179482B2 publication Critical patent/JP6179482B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

本発明は、鋼板に形成された微小凹凸表面欠陥の検出方法及び検出装置に関するものである。   The present invention relates to a detection method and a detection apparatus for minute uneven surface defects formed on a steel plate.

鋼板の製造プロセスでは、製造ライン内に設置されているロールに付着した異物やその異物がロールに噛み込まれることによってロール表面に形成された凹凸が鋼板に転写されることにより、ロール性欠陥が発生することがある。このロール性欠陥の中には、板厚が0.8〜1.6mmの範囲内にある薄鋼板の表面粗さRaが0.5〜2μmの範囲内にある粗面中に存在し、なだらかな輪郭(曲率半径R≧10mm)を有し、凹凸量5μm以下、面積10mm以上の微小凹凸表面欠陥がある。この微小凹凸表面欠陥の面積は10〜数十mm程度であるが、その凹凸量は5μm以下、最も小さいものにあっては1μm前後と、薄鋼板の表面粗さRaと同じオーダーの非常に小さいものである。 In the steel sheet manufacturing process, the foreign matter attached to the roll installed in the production line and the irregularities formed on the roll surface by the foreign matter being bitten into the roll are transferred to the steel plate, thereby causing roll defects. May occur. Among these roll defects, the surface roughness Ra of a thin steel plate having a thickness of 0.8 to 1.6 mm exists in a rough surface having a thickness of 0.5 to 2 μm, and is gentle. a contour having a (radius of curvature R ≧ 10 mm), irregularity 5μm or less, there is an area 10 mm 2 or more fine uneven surface defects. The area of this micro uneven surface defect is about 10 to several tens of mm 2 , but the amount of unevenness is 5 μm or less, and the smallest is around 1 μm, which is the same order as the surface roughness Ra of the thin steel plate. It is a small one.

凹凸量が比較的大きい大部分のロール性欠陥は、視認可能であるために製造ライン上での発見も容易である。しかしながら、微小凹凸表面欠陥は、凹凸量が薄鋼板の表面粗さRaと同じオーダーであり、光学的な差が小さいために、そのままの状態で観察しても発見することは難しく、製造ライン上での発見は困難である。ところが、微小凹凸表面欠陥は、薄鋼板が塗装され、塗料に埋められることによって薄鋼板の表面粗さRaが滑らかになると、明瞭に見えるようになり、外観上大きな問題となる。そのため、薄鋼板を塗装する前に微小凹凸表面欠陥を発見することは品質管理上重要な問題である。   Most roll defects having a relatively large unevenness are visible, so that they can be easily found on the production line. However, the surface irregularities of minute irregularities are in the same order as the surface roughness Ra of the thin steel sheet, and since the optical difference is small, it is difficult to find them even if they are observed as they are. It ’s difficult to discover. However, the micro uneven surface defect becomes clear when the surface roughness Ra of the thin steel plate becomes smooth when the thin steel plate is painted and buried in the paint, which is a serious problem in appearance. Therefore, it is an important problem in quality control to find minute surface irregularities before painting thin steel sheets.

微小凹凸表面欠陥の形態としては、ロール疵のような点状の疵や、線状マークや絞りマークのような薄鋼板の長手方向に続く疵がある。微小凹凸表面欠陥は、ロールに形成された凹凸が薄鋼板に転写されることによって発生し、一旦発生するとロールを交換したり、製造プロセスを改善したりするまで連続的に発生する。このため、微小凹凸表面欠陥を早期に発見して対策を講じることは、歩留向上の点からも極めて重要である。   As the form of the micro uneven surface defect, there are a dot-like wrinkle such as a roll wrinkle and a wrinkle that continues in the longitudinal direction of the thin steel plate such as a linear mark or a drawing mark. The micro uneven surface defect occurs when the unevenness formed on the roll is transferred to the thin steel plate, and once generated, it continuously occurs until the roll is replaced or the manufacturing process is improved. For this reason, it is extremely important from the standpoint of yield improvement to detect microscopic surface irregularities at an early stage and take countermeasures.

従来、微小凹凸表面欠陥を発見するために、薄鋼板の製造プロセスの各検査ラインにおいては、全てのコイルについて、操業中に薄鋼板の走行を停止し、検査員が薄鋼板に対して砥石がけを行った後に目視検査を行っている。薄鋼板に対して砥石がけを行うと、凹部に比べて凸部がより砥石にあたり、凸部の反射率が高くなり、凹の反射率と凸部の反射率との差が大きくなるために、微小凹凸表面欠陥を目視で確認することが容易になる。一般に、この作業は砥石がけ検査と呼ばれている。   Conventionally, in order to detect minute irregular surface defects, in each inspection line of the thin steel sheet manufacturing process, the traveling of the thin steel sheet is stopped during operation for all coils, and the inspector grinds the thin steel sheet. Visual inspection is performed after the inspection. When grinding a thin steel plate, the convex part hits the grindstone more than the concave part, the reflectance of the convex part becomes high, and the difference between the reflectance of the concave part and the reflectance of the convex part becomes large. It becomes easy to visually confirm minute surface irregularities. Generally, this operation is called grinding wheel inspection.

しかしながら、砥石がけ検査を行う際には、薄鋼板の走行を停止しなければならず、また目視検査に多くの時間を要するために、薄鋼板の製造効率が低下する。このような背景から、近年、微小凹凸表面欠陥を自動検出するする方法が提案されている。具体的には、特許文献1には、漏洩磁束探傷法を利用して微小凹凸表面欠陥を自動検出する技術が記載されている。詳しくは、特許文献1記載の方法を提案した発明者らは、冷延鋼板の製造中、圧延ロールによって生じる微小凹凸表面欠陥を検出するために、複数の欠陥に対してX線回折測定を行い、その物理性状を解析した。そして、解析の結果、発明者らは、微小凹凸表面欠陥にはロールから疵が転写された際に生じたと考えられる歪みが存在し、形状起因の信号のみでは微小凹凸表面欠陥を十分に検出できないが、歪みに起因する信号を併せて検出することで微小凹凸表面欠陥を検出できると提案している。   However, when the grinding wheel inspection is performed, the traveling of the thin steel plate must be stopped, and since a lot of time is required for the visual inspection, the manufacturing efficiency of the thin steel plate is lowered. Against this background, a method for automatically detecting minute uneven surface defects has been proposed in recent years. Specifically, Patent Document 1 describes a technique for automatically detecting a minute uneven surface defect using a leakage magnetic flux flaw detection method. Specifically, the inventors who proposed the method described in Patent Document 1 perform X-ray diffraction measurement on a plurality of defects in order to detect minute uneven surface defects generated by a rolling roll during the production of a cold-rolled steel sheet. The physical properties were analyzed. As a result of the analysis, the inventors have a distortion that is thought to have occurred when the wrinkle is transferred from the roll to the micro uneven surface defect, and the micro uneven surface defect cannot be sufficiently detected only by the shape-derived signal. However, it is proposed that a micro uneven surface defect can be detected by detecting a signal due to distortion.

そして、特許文献1記載の方法では、欠陥信号のS/N比を向上するための薄鋼板の磁化条件として、磁束を印加された薄鋼板の磁束密度が飽和磁束密度の75%以上95%未満である条件、又は、この条件と磁束を印加された薄鋼板の磁束密度が95%以上である条件とを組み合わせた条件、又は、薄鋼板に印加する磁場の強度が4000〜25000A/mである条件が記載されている。また、欠陥信号を検出する磁束検出素子としてホール素子を用いることが前提とされている。   And in the method of patent document 1, as a magnetization condition of the thin steel plate for improving the S / N ratio of the defect signal, the magnetic flux density of the thin steel plate to which the magnetic flux is applied is 75% or more and less than 95% of the saturation magnetic flux density. Or a combination of this condition and a condition in which the magnetic flux density of the thin steel sheet to which the magnetic flux is applied is 95% or more, or the strength of the magnetic field applied to the thin steel sheet is 4000 to 25000 A / m. Conditions are listed. Further, it is assumed that a Hall element is used as a magnetic flux detection element for detecting a defect signal.

特開2009−52903号公報JP 2009-52903 A

ところで、薄鋼板を磁化するためには通常電磁石が用いられるが、特許文献1記載の磁化条件のような大きな磁場を印加する場合には、電磁石が大型となり、また大きな電流を流す必要がある。また、電磁石をオンライン化する場合には、電磁石の固定方法を詳細に検討する必要があり、また電磁石の製作や運転のためのコストが大きくなる。   By the way, an electromagnet is usually used to magnetize a thin steel plate. However, when a large magnetic field such as the magnetization condition described in Patent Document 1 is applied, the electromagnet becomes large and a large current needs to flow. Further, when the electromagnet is brought online, it is necessary to examine in detail the fixing method of the electromagnet, and the cost for manufacturing and operating the electromagnet increases.

さらに、磁束検出素子としてホール素子を用いた場合、印加する磁化レベルの低下に伴い、欠陥信号のレベルが減少すると共に熱雑音の影響が顕著になることによって欠陥信号のS/N比が低下する。なお、このような問題を解決するために、磁束検出素子としてSQUID(Superconducting QUantum Interference Device)やMI(Magneto Impedance)素子といったホール素子と同等の磁気感度を有するセンサを用いることが考えられる。   In addition, when a Hall element is used as the magnetic flux detection element, the defect signal level decreases and the S / N ratio of the defect signal decreases as the influence of thermal noise becomes significant as the applied magnetization level decreases. . In order to solve such a problem, it is conceivable to use a sensor having a magnetic sensitivity equivalent to that of a Hall element such as a SQUID (Superconducting Quantum Interference Device) or MI (Magneto Impedance) element as a magnetic flux detection element.

しかしながら、SQUIDを用いる場合には、液体ヘリウム等の寒剤によってSQUIDを冷却する必要があるために、装置が非常に大掛かりになり、コストが増加する。また、MI素子は、温度に敏感であるため、MI素子の周囲の温度を均一に保つ等の措置が必要になり、やはりコスト面で不利である。   However, when the SQUID is used, the SQUID needs to be cooled by a cryogen such as liquid helium, so that the apparatus becomes very large and the cost increases. Further, since the MI element is sensitive to temperature, it is necessary to take measures such as keeping the temperature around the MI element uniform, which is also disadvantageous in terms of cost.

本発明は、上記課題に鑑みてなされたものであって、その目的は、多くのコストを要することなく簡単な構成で微小凹凸表面欠陥を精度高く検出可能な微小凹凸表面欠陥の検出方法及び検出装置を提供することにある。   SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and its object is to detect a micro uneven surface defect with a simple configuration without high cost and to detect a micro uneven surface defect with high accuracy, and to detect it. To provide an apparatus.

本発明に係る微小凹凸表面欠陥の検出方法は、鋼板上の微小凹凸表面欠陥を検出する微小凹凸表面欠陥の検出方法であって、鋼板に磁場を印加し、トンネル磁気抵抗素子を利用して微小凹凸表面欠陥による鋼板の歪みに起因する磁気信号を検知することによって微小凹凸表面欠陥を検出するステップを含むことを特徴とする。   A method for detecting a micro uneven surface defect according to the present invention is a method for detecting a micro uneven surface defect on a steel plate, wherein the micro uneven surface defect is detected by applying a magnetic field to the steel plate and using a tunnel magnetoresistive element. The method includes a step of detecting a minute uneven surface defect by detecting a magnetic signal caused by distortion of the steel sheet due to the uneven surface defect.

本発明に係る微小凹凸表面欠陥の検出方法は、上記発明において、前記磁場の大きさが鋼板の飽和磁束密度の75%未満の大きさであることを特徴とする。   The method for detecting a micro uneven surface defect according to the present invention is characterized in that, in the above invention, the magnitude of the magnetic field is less than 75% of the saturation magnetic flux density of the steel sheet.

本発明に係る微小凹凸表面欠陥の検出方法は、上記発明において、前記トンネル磁気抵抗素子の磁場感度方向が鋼板の表面垂直方向に略一致するように前記トンネル磁気抵抗素子を配置することを特徴とする。   The method for detecting a micro uneven surface defect according to the present invention is characterized in that, in the above invention, the tunnel magnetoresistive element is arranged so that a magnetic field sensitivity direction of the tunnel magnetoresistive element substantially coincides with a surface vertical direction of a steel sheet. To do.

本発明に係る微小凹凸表面欠陥の検出装置は、鋼板上の微小凹凸表面欠陥を検出する微小凹凸表面欠陥の検出装置であって、鋼板に磁場を印加する磁場印加手段と、微小凹凸表面欠陥による鋼板の歪みに起因する磁気信号を検知するトンネル磁気抵抗素子と、前記トンネル磁気抵抗素子によって検知された磁気信号に基づいて微小凹凸表面欠陥を検出する検出手段と、を備えることを特徴とする。   A micro uneven surface defect detecting device according to the present invention is a micro uneven surface defect detecting device for detecting micro uneven surface defects on a steel plate, and includes a magnetic field applying means for applying a magnetic field to the steel plate, and a micro uneven surface defect. A tunnel magnetoresistive element that detects a magnetic signal caused by distortion of a steel plate, and a detection unit that detects a minute uneven surface defect based on the magnetic signal detected by the tunnel magnetoresistive element.

本発明に係る微小凹凸表面欠陥の検出方法及び検出装置によれば、多くのコストを要することなく簡単な構成で微小凹凸表面欠陥を精度高く検出することができる。   According to the detection method and detection apparatus for minute uneven surface defects according to the present invention, it is possible to detect minute uneven surface defects with high accuracy with a simple configuration without requiring much cost.

図1は、本発明の一実施形態である微小凹凸表面欠陥の検出装置において用いられるトンネル磁気抵抗素子の構成を示す模式図である。FIG. 1 is a schematic diagram showing a configuration of a tunnel magnetoresistive element used in a minute uneven surface defect detection apparatus according to an embodiment of the present invention. 図2は、本発明の一実施形態である微小凹凸表面欠陥の検出装置の構成を示す回路図である。FIG. 2 is a circuit diagram showing a configuration of a minute uneven surface defect detection apparatus according to an embodiment of the present invention. 図3は、本発明の一実施形態である微小凹凸表面欠陥の検出方法を説明するための模式図である。FIG. 3 is a schematic diagram for explaining a method of detecting a micro uneven surface defect according to an embodiment of the present invention. 図4は、ロール上に付着した異物が薄鋼板に転写されることによって生じた欠陥に由来する磁気信号の一例を示す図である。FIG. 4 is a diagram illustrating an example of a magnetic signal derived from a defect caused by transfer of foreign matter attached on a roll to a thin steel plate. 図5は、薄鋼板に印加する磁束密度の大きさを変化させた際の欠陥信号及びノイズ信号のレベル変化を示す図である。FIG. 5 is a diagram showing the level change of the defect signal and the noise signal when the magnitude of the magnetic flux density applied to the thin steel plate is changed. 図6は、本実施例及び従来の欠陥信号のS/N比を示す図である。FIG. 6 is a diagram showing the S / N ratio of this embodiment and the conventional defect signal.

本発明の発明者らは、多くのコストを要することなく簡単な構成で微小凹凸表面欠陥を精度高く検出することができるように、特許文献1記載の方法における薄鋼板の磁化条件の範囲を広げ、より小さな磁場で微小凹凸表面欠陥を検出することができないか検討を行った。その結果、本発明の発明者らは、非常に高感度な磁気センサであるトンネル磁気抵抗素子を用いることによって、より小さな磁場で微小凹凸表面欠陥を検出できるという技術思想を想倒するに至った。トンネル磁気抵抗素子は、小さい磁場に対して非常に高感度であり、温度ドリフトが他の磁気センサに比べて小さいという特徴を有している。以下、図面を参照して、本発明の一実施形態である微小凹凸表面欠陥の検出装置の構成について説明する。   The inventors of the present invention have expanded the range of magnetization conditions of thin steel sheets in the method described in Patent Document 1 so that minute uneven surface defects can be detected with high accuracy with a simple configuration without requiring much cost. We investigated whether it was possible to detect surface irregularities with a small magnetic field. As a result, the inventors of the present invention have come up with the technical idea that a micro uneven surface defect can be detected with a smaller magnetic field by using a tunnel magnetoresistive element which is a very sensitive magnetic sensor. . The tunnel magnetoresistive element is very sensitive to a small magnetic field and has a feature that temperature drift is small compared to other magnetic sensors. Hereinafter, with reference to the drawings, a configuration of a minute uneven surface defect detection apparatus according to an embodiment of the present invention will be described.

〔トンネル磁気抵抗素子の構成〕
始めに、図1を参照して、本発明の一実施形態である微小凹凸表面欠陥の検出装置において用いられるトンネル磁気抵抗素子の構成について説明する。
[Configuration of tunnel magnetoresistive element]
First, a configuration of a tunnel magnetoresistive element used in a minute uneven surface defect detection apparatus according to an embodiment of the present invention will be described with reference to FIG.

図1(a),(b)は、本発明の一実施形態である微小凹凸表面欠陥の検出装置において用いられるトンネル磁気抵抗素子の構成を示す模式図である。図1(a),(b)に示すように、本発明の一実施形態である微小凹凸表面欠陥の検出装置において用いられるトンネル磁気抵抗素子1は、強磁性体薄膜により形成された固定層2a及び自由層2bと、固定層2aと自由層2bとによって挟持された絶縁膜3と、を備え、トンネル磁気抵抗素子1に磁場が印加された際の固定層2aの磁化方向B1は予め固定されている。   FIGS. 1A and 1B are schematic views showing the configuration of a tunnel magnetoresistive element used in a minute uneven surface defect detection apparatus according to an embodiment of the present invention. As shown in FIGS. 1A and 1B, a tunnel magnetoresistive element 1 used in a minute uneven surface defect detection apparatus according to an embodiment of the present invention includes a fixed layer 2a formed of a ferromagnetic thin film. And the free layer 2b and the insulating film 3 sandwiched between the fixed layer 2a and the free layer 2b, and the magnetization direction B1 of the fixed layer 2a when a magnetic field is applied to the tunnel magnetoresistive element 1 is fixed in advance. ing.

このような構成を有するトンネル磁気抵抗素子1では、図中矢印Aで示すように自由層2b側から固定層2a側に向けて電圧が印加されている状態において自由層2bに磁束が侵入すると、固定層2a及び自由層2bの磁化方向又は磁束密度の大きさに応じて磁気抵抗が変化する。   In the tunnel magnetoresistive element 1 having such a configuration, when a magnetic flux enters the free layer 2b in a state where a voltage is applied from the free layer 2b side to the fixed layer 2a side as indicated by an arrow A in the figure, The magnetoresistance changes according to the magnetization direction or the magnetic flux density of the fixed layer 2a and the free layer 2b.

すなわち、図1(a)に示すように、固定層2aの磁化方向B1と自由層2bの磁化方向B2とが同じ方向である場合、トンネル磁気抵抗素子1の磁気抵抗が減少し、電流が流れやすくなる。一方、図1(b)に示すように固定層2aの磁化方向B1と自由層2bの磁化方向B2とが異なる場合には、トンネル磁気抵抗素子1の磁気抵抗が増加し、電流が流れにくくなる。   That is, as shown in FIG. 1 (a), when the magnetization direction B1 of the fixed layer 2a and the magnetization direction B2 of the free layer 2b are the same direction, the magnetoresistance of the tunnel magnetoresistive element 1 decreases and current flows. It becomes easy. On the other hand, as shown in FIG. 1B, when the magnetization direction B1 of the fixed layer 2a and the magnetization direction B2 of the free layer 2b are different, the magnetoresistance of the tunnel magnetoresistive element 1 increases and the current hardly flows. .

〔微小凹凸表面欠陥の検出装置の構成〕
次に、図2,図3を参照して、本発明の一実施形態である微小凹凸表面欠陥の検出装置の構成について説明する。図2は、本発明の一実施形態である微小凹凸表面欠陥の検出装置の構成を示す回路図である。図3は、本発明の一実施形態である微小凹凸表面欠陥の検出方法を説明するための模式図である。
[Configuration of the micro uneven surface defect detection device]
Next, with reference to FIG. 2 and FIG. 3, the configuration of a minute uneven surface defect detection device according to an embodiment of the present invention will be described. FIG. 2 is a circuit diagram showing a configuration of a minute uneven surface defect detection apparatus according to an embodiment of the present invention. FIG. 3 is a schematic diagram for explaining a method of detecting a micro uneven surface defect according to an embodiment of the present invention.

図2に示すように、本発明の一実施形態である微小凹凸表面欠陥の検出装置(欠陥検出装置)10は、図1に示すトンネル磁気抵抗素子1と、直流電源11と、抵抗素子12と、直流電圧測定部13と、を備えている。   As shown in FIG. 2, a minute uneven surface defect detection device (defect detection device) 10 according to an embodiment of the present invention includes a tunnel magnetoresistive element 1, a DC power source 11, a resistance element 12, and the like shown in FIG. 1. , And a DC voltage measuring unit 13.

直流電源11は、トンネル磁気抵抗素子1に対して直列に接続され、トンネル磁気抵抗素子1に直流電圧を印加する。   The DC power source 11 is connected in series to the tunnel magnetoresistive element 1 and applies a DC voltage to the tunnel magnetoresistive element 1.

抵抗素子12は、トンネル磁気抵抗素子1に対して直列に接続された抵抗素子である。   The resistance element 12 is a resistance element connected in series to the tunnel magnetoresistance element 1.

直流電圧測定部13は、抵抗素子12にかかる電圧を測定することによってトンネル磁気抵抗素子1、直流電源11、及び抵抗素子12によって構成される直列回路を流れる電流を測定する。直列回路を流れる電流は、トンネル磁気抵抗素子1の磁気抵抗によって変化する。なお、図示しないが、電圧信号を増幅する増幅器や電圧信号に含まれる高周波のノイズ信号を取り除くフィルタを直流電圧測定部13に設けてもよい。   The DC voltage measuring unit 13 measures a current flowing through a series circuit constituted by the tunnel magnetoresistive element 1, the DC power source 11, and the resistive element 12 by measuring a voltage applied to the resistive element 12. The current flowing through the series circuit changes depending on the magnetoresistance of the tunnel magnetoresistive element 1. Although not shown, the DC voltage measuring unit 13 may be provided with an amplifier that amplifies the voltage signal and a filter that removes a high-frequency noise signal included in the voltage signal.

このような構成を有する欠陥検出装置10を利用して微小凹凸表面欠陥を検出する際は、図3(a)に示すように、薄鋼板Sの表面から所定のリフトオフ量だけ離間させた状態で、磁場感度方向(図2に示す双方向矢印B方向)が薄鋼板Sの表面垂直方向に略一致するようにトンネル磁気抵抗素子1を配置する。そして、直流電源11を利用してトンネル磁気抵抗素子1に直流電圧を印加する。   When detecting a micro uneven surface defect using the defect detection apparatus 10 having such a configuration, as shown in FIG. 3A, in a state separated from the surface of the thin steel sheet S by a predetermined lift-off amount. The tunnel magnetoresistive element 1 is arranged so that the magnetic field sensitivity direction (the direction of the bidirectional arrow B shown in FIG. 2) substantially coincides with the surface vertical direction of the thin steel sheet S. Then, a DC voltage is applied to the tunnel magnetoresistive element 1 using the DC power supply 11.

このような状態において薄鋼板Sに形成された微小凹凸表面欠陥によってトンネル磁気抵抗素子1の自由層2bの磁化方向又は磁束密度が変化すると、トンネル磁気抵抗素子1の磁気抵抗が変化する。トンネル磁気抵抗素子1の磁気抵抗の変化は、直流電圧測定部13によって測定される電流値の変化によって検出することができる。従って、直流電圧測定部13によって測定される電流値の変化を検出することによって、薄鋼板Sに形成された微小凹凸表面欠陥を検出することができる。   In such a state, when the magnetization direction or magnetic flux density of the free layer 2b of the tunnel magnetoresistive element 1 changes due to minute uneven surface defects formed on the thin steel sheet S, the magnetoresistance of the tunnel magnetoresistive element 1 changes. A change in the magnetoresistance of the tunnel magnetoresistive element 1 can be detected by a change in the current value measured by the DC voltage measuring unit 13. Therefore, the minute uneven surface defect formed in the thin steel sheet S can be detected by detecting a change in the current value measured by the DC voltage measuring unit 13.

なお、微小凹凸表面欠陥の検出処理において、薄鋼板Sを磁化する場合には、図3(b)に示すように、磁化器20の磁極間の中心位置に対応する位置にトンネル磁気抵抗素子1を設置する。また、この場合、所定の磁化レベルで微小凹凸表面欠陥が存在しない薄鋼板Sを磁化した際、直流電圧測定部13によって測定される電流値が磁場が0ガウスの時のトンネル磁気抵抗素子1の磁気抵抗値に対応する値となるようにトンネル磁気抵抗素子1の位置を予め調整しておく。   When the thin steel plate S is magnetized in the detection process of the micro uneven surface defect, the tunnel magnetoresistive element 1 is positioned at a position corresponding to the center position between the magnetic poles of the magnetizer 20, as shown in FIG. Is installed. Further, in this case, when the thin steel sheet S having no micro uneven surface defect is magnetized at a predetermined magnetization level, the current value measured by the DC voltage measuring unit 13 is the tunnel magnetoresistive element 1 when the magnetic field is 0 gauss. The position of the tunnel magnetoresistive element 1 is adjusted in advance so as to have a value corresponding to the magnetoresistance value.

また、実ラインにおいては広い面積の検査を同時に行うことが求められる。通板される鋼板の幅方向に対して複数のトンネル磁気抵抗素子1を1列に並べて疵検出を行うのが効率的である。こうした場合、検出が必要となる微小凹凸欠陥の大きさに対して素子の間隔が空きすぎないように配置する。薄鋼板Sに導入された歪により漏洩する磁束が拡がる範囲を考慮すると、素子間隔として許容されるのは、検出したい疵の薄鋼板表面上の大きさのおよそ2〜10倍程度の範囲であり、これは素子の感度と効率(経済性)とによって定められる。また、各素子は鋼板Sの走行方向に対して垂直方向、且つ、鋼板Sに対して平行方向に配置するのがよい。   In addition, it is required to perform a wide area inspection simultaneously on the actual line. It is efficient to detect wrinkles by arranging a plurality of tunnel magnetoresistive elements 1 in a row in the width direction of the steel plate to be passed. In such a case, the elements are arranged so that the distance between the elements is not too large with respect to the size of the minute irregularity defect that needs to be detected. Considering the range in which the magnetic flux leaking due to the strain introduced into the thin steel sheet S is expanded, the element spacing is allowed to be in the range of about 2 to 10 times the size of the surface of the steel sheet to be detected. This is determined by the sensitivity and efficiency (economic efficiency) of the device. Each element is preferably arranged in a direction perpendicular to the traveling direction of the steel sheet S and in a direction parallel to the steel sheet S.

〔薄鋼板の磁化条件〕
薄鋼板に外部から力を加えて薄鋼板全体に歪を生じさせた状態での磁化曲線(B−H曲線)と歪を加えない状態での磁化曲線とでは、飽和磁束領域よりも小さい磁化レベルの領域(回転磁化領域)において大きな差が生じる。このため、微小凹凸表面欠陥を検出する場合、微小凹凸表面欠陥による歪に起因した信号を高感度で検出するために、飽和磁束密度よりも小さい磁化レベルで薄鋼板を磁化することが望ましい。そこで、本発明の発明者らは、微小凹凸表面欠陥を高感度で検出できる磁化レベルについて検討を重ねた。なお、薄鋼板に印加する磁場の強度とは、薄鋼板を磁化する磁化器から発生している磁場の総和ではなく、薄鋼板の検査領域に直接かかっている磁場、すなわち薄鋼板の検査領域で磁化曲線を描いた時の磁界の強さHに相当する量である。
[Magnetic condition of thin steel sheet]
In the magnetization curve (BH curve) in a state in which a force is applied from the outside to the thin steel plate to cause distortion in the entire thin steel plate and the magnetization curve in a state in which no strain is applied, the magnetization level is smaller than the saturation magnetic flux region. A large difference occurs in the region (rotational magnetization region). For this reason, when detecting a micro uneven surface defect, it is desirable to magnetize a thin steel plate with a magnetization level smaller than the saturation magnetic flux density in order to detect with high sensitivity a signal caused by the strain due to the micro uneven surface defect. Therefore, the inventors of the present invention have repeatedly investigated the magnetization level that can detect a minute uneven surface defect with high sensitivity. The strength of the magnetic field applied to the thin steel sheet is not the sum of the magnetic fields generated from the magnetizer that magnetizes the thin steel sheet, but the magnetic field directly applied to the inspection area of the thin steel sheet, that is, the inspection area of the thin steel plate. This is an amount corresponding to the magnetic field strength H when the magnetization curve is drawn.

本発明の発明者らは、薄鋼板の磁化レベルを徐々に小さくしていった結果、薄鋼板を全く磁化しない場合でも微小凹凸表面欠陥による歪みに起因する磁気信号を検出できることを知見した。これは微小凹凸表面欠陥による歪みが付与された薄鋼板領域は、局所的にスピンが揃うことによって磁化されていることを意味している。但し、薄鋼板の磁化レベルを下げていくに従って欠陥信号のS/N比が低下していくので、検出したい最小欠陥の磁気信号レベルに応じて薄鋼板を磁化することが望ましい。   As a result of gradually decreasing the magnetization level of the thin steel sheet, the inventors of the present invention have found that even when the thin steel sheet is not magnetized at all, it is possible to detect a magnetic signal due to distortion due to minute uneven surface defects. This means that the thin steel plate region to which the strain due to the micro uneven surface defect is given is magnetized by locally aligning the spins. However, since the S / N ratio of the defect signal is lowered as the magnetization level of the thin steel plate is lowered, it is desirable to magnetize the thin steel plate according to the magnetic signal level of the minimum defect to be detected.

特許文献1等に見られるホール素子を磁束検出素子として用いた場合、磁化レベルの低下に伴って欠陥信号のレベルが減少すると共に熱雑音の影響が顕著になるために、欠陥信号のS/N比が低下する。これに対して、磁束検出素子としてトンネル磁気抵抗素子1を用いた場合には、熱雑音の影響が小さいので、磁化レベルの低下に伴って欠陥信号のレベルが減少しても良好なS/N比が得られる。   When the Hall element found in Patent Document 1 or the like is used as a magnetic flux detection element, the level of the defect signal decreases as the magnetization level decreases and the influence of thermal noise becomes significant. The ratio decreases. On the other hand, when the tunnel magnetoresistive element 1 is used as the magnetic flux detecting element, the influence of thermal noise is small, so that even if the level of the defect signal is reduced as the magnetization level is reduced, a good S / N is obtained. A ratio is obtained.

なお、通常、欠陥検査装置は、最終ラインでの製品検査に用いられ、欠陥発生時から検査までの間に様々な工程が存在する。これらの工程の中には、例えば欠陥発生時に生じた歪みが熱によって除去される、通板時の張力等の他のストレスによって歪が開放される等の現象が生じ、歪みが開放された状態となる工程があり、そのような工程では歪に起因した磁気信号を検出できない可能性がある。このため、微小凹凸表面欠陥を検出する場所も検討が必要となるのは通常の漏洩磁束探傷装置の場合と同様である。   Normally, the defect inspection apparatus is used for product inspection on the final line, and various processes exist from the time of defect occurrence to the inspection. In these processes, for example, a phenomenon in which the strain generated at the time of defect occurrence is removed by heat, the strain is released by other stresses such as tension during feeding, and the strain is released There is a possibility that a magnetic signal due to distortion cannot be detected in such a process. For this reason, it is the same as in the case of a normal leakage magnetic flux flaw detector that the location for detecting a minute uneven surface defect needs to be examined.

本実施例では、トンネル磁気抵抗素子1に5Vの直流電圧を印加し、抵抗素子12として1kΩの抵抗素子を用いた。直流電圧測定部13は、40dbの増幅器で電圧信号を増幅し、さらに探傷速度に応じてフィルタ定数を変更可能なローパスフィルタを用いた。トンネル磁気抵抗素子1の大きさは、幅0.9mm、厚み0.3mm、長さ0.8mmであった。薄鋼板からのリフトオフ量は漏洩磁束探傷で最適とされている1mmとした。トンネル磁気抵抗素子1の磁場感度方向は、素子の長さ方向に対して垂直方向、且つ、素子の幅方向に対して平行方向であった。   In this example, a DC voltage of 5 V was applied to the tunnel magnetoresistive element 1, and a 1 kΩ resistive element was used as the resistive element 12. The DC voltage measurement unit 13 uses a low-pass filter that amplifies the voltage signal with a 40 db amplifier and can change the filter constant according to the flaw detection speed. The tunnel magnetoresistive element 1 had a width of 0.9 mm, a thickness of 0.3 mm, and a length of 0.8 mm. The lift-off amount from the thin steel plate was set to 1 mm, which is optimal for leakage magnetic flux inspection. The magnetic field sensitivity direction of the tunnel magnetoresistive element 1 was perpendicular to the length direction of the element and parallel to the width direction of the element.

図4は、ロール上に付着した異物が薄鋼板に転写されることによって生じた欠陥に由来する磁気信号の一例を示す図である。本実施例では、欠陥の形状は直径1mm程度の円形形状であり、欠陥の断面形状は凸型形状であった。また、本実施例では、薄鋼板の磁化は行わなかった。特許文献1記載の磁化条件と同様の磁化条件で測定した欠陥信号のS/N比からすると0.00037程度の歪が生じていることが確認された。また、薄鋼板を徐々に磁化していくと欠陥信号のレベルは増大した。また、このとき、ノイズ信号も徐々に増加したが、ノイズ信号の増加率は欠陥信号の増加率に比べはるかに小さく、S/N比は増大した。   FIG. 4 is a diagram illustrating an example of a magnetic signal derived from a defect caused by transfer of foreign matter attached on a roll to a thin steel plate. In this example, the shape of the defect was a circular shape having a diameter of about 1 mm, and the cross-sectional shape of the defect was a convex shape. In this example, the thin steel plate was not magnetized. From the S / N ratio of the defect signal measured under the same magnetization conditions as those described in Patent Document 1, it was confirmed that a distortion of about 0.00037 occurred. Moreover, the level of the defect signal increased as the thin steel plate was gradually magnetized. At this time, the noise signal gradually increased, but the increase rate of the noise signal was much smaller than the increase rate of the defect signal, and the S / N ratio increased.

図5は、薄鋼板が磁気飽和した時の磁束密度(飽和磁束密度)を100%として、薄鋼板に印加する磁束密度の大きさを変化させた際の欠陥信号及びノイズ信号のレベル変化を示す図である。図6は、図5から計算された本実施の欠陥信号のS/N比及び従来の欠陥信号のS/N比を示す図である。図6に示すように、本実施例によれば、薄鋼板が磁化されていない状態であっても、欠陥信号のS/N比が8程度と従来例である特許文献1記載の方法による欠陥信号のS/N比より十分に大きくなることが確認された。また、測定した飽和磁束密度に対する磁束密度の割合が75%未満の全範囲に渡って十分なS/N比が得られることが確認された。   FIG. 5 shows the level change of the defect signal and the noise signal when the magnetic flux density (saturation magnetic flux density) when the thin steel plate is magnetically saturated is 100% and the magnitude of the magnetic flux density applied to the thin steel plate is changed. FIG. FIG. 6 is a diagram showing the S / N ratio of the defect signal of the present embodiment and the S / N ratio of the conventional defect signal calculated from FIG. As shown in FIG. 6, according to the present example, even when the thin steel sheet is not magnetized, the defect signal S / N ratio is about 8 and the defect according to the method described in Patent Document 1, which is a conventional example. It was confirmed that it was sufficiently larger than the S / N ratio of the signal. Further, it was confirmed that a sufficient S / N ratio was obtained over the entire range where the ratio of the magnetic flux density to the measured saturation magnetic flux density was less than 75%.

なお、本実施例における磁束密度の値は、予め測定した磁化曲線に基づいて磁界の強さHから求められている。磁界の強さHに関しては、薄鋼板の検査位置の近傍の空間の値を測定して用いても構わない。また、本実施例では直流の漏洩磁束を用いて微小凹凸表面欠陥を検出したが、歪に起因した信号を検知できれば、交流の漏洩磁束法や渦流探傷法であってもトンネル磁気抵抗素子を利用して微小凹凸表面欠陥を検出することができる。   In addition, the value of the magnetic flux density in the present embodiment is obtained from the magnetic field strength H based on a previously measured magnetization curve. Regarding the magnetic field strength H, the value of the space near the inspection position of the thin steel plate may be measured and used. In addition, in this embodiment, a micro uneven surface defect was detected using a DC leakage magnetic flux. However, if a signal due to distortion can be detected, a tunnel magnetoresistive element can be used even in the AC leakage magnetic flux method and the eddy current flaw detection method. Thus, it is possible to detect a minute uneven surface defect.

以上、本発明者らによってなされた発明を適用した実施の形態について説明したが、本実施形態による本発明の開示の一部をなす記述及び図面により本発明は限定されることはない。すなわち、本実施形態に基づいて当業者等によりなされる他の実施の形態、実施例、及び運用技術等は全て本発明の範疇に含まれる。   The embodiment to which the invention made by the present inventors is applied has been described above, but the present invention is not limited by the description and the drawings that constitute a part of the disclosure of the present invention. That is, other embodiments, examples, operational techniques, and the like made by those skilled in the art based on this embodiment are all included in the scope of the present invention.

1 トンネル磁気抵抗素子
2a 固定層
2b 自由層
3 絶縁膜
10 欠陥検出装置
11 直流電源
12 抵抗素子
13 直流電圧測定部
DESCRIPTION OF SYMBOLS 1 Tunnel magnetoresistive element 2a Fixed layer 2b Free layer 3 Insulating film 10 Defect detection apparatus 11 DC power supply 12 Resistance element 13 DC voltage measurement part

Claims (3)

鋼板上の微小凹凸表面欠陥を検出する微小凹凸表面欠陥の検出方法であって、
鋼板に磁場を印加し、トンネル磁気抵抗素子を利用して微小凹凸表面欠陥による鋼板の歪みに起因する磁気信号を検知することによって微小凹凸表面欠陥を検出するステップを含み、前記磁場の大きさが鋼板の飽和磁束密度の75%未満の大きさであることを特徴とする微小凹凸表面欠陥の検出方法。
A method for detecting micro uneven surface defects that detect micro uneven surface defects on a steel sheet,
The magnetic field is applied to the steel plate, it viewed including the steps of detecting a minute uneven surface defect by sensing a magnetic signal due to distortion of the steel sheet due to the minute uneven surface defect by utilizing a tunneling magneto-resistance element, the magnitude of the magnetic field Is a size of less than 75% of the saturation magnetic flux density of the steel sheet, and a method for detecting minute uneven surface defects.
前記トンネル磁気抵抗素子の磁場感度方向が鋼板の表面垂直方向に略一致するように前記トンネル磁気抵抗素子を配置することを特徴とする請求項に記載の微小凹凸表面欠陥の検出方法。 Detection method for a micro uneven surface defects according to claim 1, characterized in that the magnetic field sensitivity direction of the tunnel magneto-resistance element is disposed the tunnel magneto-resistance element such that substantially coincides with the direction perpendicular to the surface of the steel sheet. 鋼板上の微小凹凸表面欠陥を検出する微小凹凸表面欠陥の検出装置であって、
鋼板に磁場を印加する磁場印加手段と、
微小凹凸表面欠陥による鋼板の歪みに起因する磁気信号を検知するトンネル磁気抵抗素子と、
前記トンネル磁気抵抗素子によって検知された磁気信号に基づいて微小凹凸表面欠陥を検出する検出手段と、を備え
前記磁場の大きさが鋼板の飽和磁束密度の75%未満の大きさであることを特徴とする微小凹凸表面欠陥の検出装置。
A micro uneven surface defect detection device for detecting micro uneven surface defects on a steel plate,
Magnetic field applying means for applying a magnetic field to the steel sheet;
A tunnel magnetoresistive element that detects a magnetic signal caused by a distortion of a steel sheet due to a micro uneven surface defect;
Detecting means for detecting a micro uneven surface defect based on a magnetic signal detected by the tunnel magnetoresistive element ,
The apparatus for detecting minute uneven surface defects, wherein the magnitude of the magnetic field is less than 75% of the saturation magnetic flux density of the steel sheet .
JP2014162072A 2014-08-08 2014-08-08 Method and apparatus for detecting minute irregular surface defects Active JP6179482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014162072A JP6179482B2 (en) 2014-08-08 2014-08-08 Method and apparatus for detecting minute irregular surface defects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014162072A JP6179482B2 (en) 2014-08-08 2014-08-08 Method and apparatus for detecting minute irregular surface defects

Publications (2)

Publication Number Publication Date
JP2016038307A JP2016038307A (en) 2016-03-22
JP6179482B2 true JP6179482B2 (en) 2017-08-16

Family

ID=55529486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014162072A Active JP6179482B2 (en) 2014-08-08 2014-08-08 Method and apparatus for detecting minute irregular surface defects

Country Status (1)

Country Link
JP (1) JP6179482B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04269653A (en) * 1991-02-25 1992-09-25 Nippon Telegr & Teleph Corp <Ntt> Leakage magnetic flux detector
JP5186837B2 (en) * 2007-08-23 2013-04-24 Jfeスチール株式会社 Method and apparatus for detecting minute irregular surface defects
US9568567B2 (en) * 2011-05-09 2017-02-14 National University Corporation Kobe University Distribution analysis device

Also Published As

Publication number Publication date
JP2016038307A (en) 2016-03-22

Similar Documents

Publication Publication Date Title
JP5186837B2 (en) Method and apparatus for detecting minute irregular surface defects
JP2009052903A5 (en)
CN104903718A (en) Apparatus and method for detecting inner defects of steel plate
JP2011002409A (en) Leak flux flaw detecting device
WO2017008231A1 (en) Stress detection system and method based on magnetoelastic phase lag effect of ferromagnetic material
JP5550617B2 (en) Magnetic flux leakage inspection device
JP6179482B2 (en) Method and apparatus for detecting minute irregular surface defects
JP6607242B2 (en) Processing state evaluation method, processing state evaluation device, and manufacturing method of grain-oriented electrical steel sheet
US10777031B2 (en) Coin detection system
JP6248201B2 (en) Steel plate defect inspection apparatus and method
JP4893360B2 (en) Method and apparatus for detecting minute irregular surface defects
JP4724967B2 (en) Manufacturing method of hot-rolled steel sheet with information on flaw detection results
JP2013185951A (en) Magnetic flaw detection probe
US3748575A (en) Apparatus for testing magnetic characteristics of a moving metal strip utilizing a roller containing a fixed nonrotatable monitor in contact with the strip
JPH08193980A (en) Method and device for magnetic flaw detection
KR101575188B1 (en) Dual nondestructive defect detecting system combined with a local magnetic signal removal unit
Wang et al. A precise magnetic flux leakage method for the defects detection within the steel thin sheet
JP3530472B2 (en) Bar detection system
JP3950372B2 (en) Method and apparatus for detecting cracks in steel strip
KR20140084607A (en) Apparatus and method of detecting surface defect of steel plate
JPH09166582A (en) Electromagnetic flaw detection method
KR101250559B1 (en) Crack detection device
JP5003351B2 (en) Quality inspection method and apparatus for minute surface defects in magnetic metal strip
CN206161587U (en) Accurate detection device of multiple dimensioned magnetic leakage that steel pipe corrodes
CN106290551A (en) The multiple dimensioned leakage field accurate detecting method of a kind of pipe corrosion and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170703

R150 Certificate of patent or registration of utility model

Ref document number: 6179482

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250