JP6178528B1 - Ozone water production method and sterilization method using ozone water - Google Patents
Ozone water production method and sterilization method using ozone water Download PDFInfo
- Publication number
- JP6178528B1 JP6178528B1 JP2017008066A JP2017008066A JP6178528B1 JP 6178528 B1 JP6178528 B1 JP 6178528B1 JP 2017008066 A JP2017008066 A JP 2017008066A JP 2017008066 A JP2017008066 A JP 2017008066A JP 6178528 B1 JP6178528 B1 JP 6178528B1
- Authority
- JP
- Japan
- Prior art keywords
- water
- ozone
- ozone water
- concentration
- nonionic surfactant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Water Treatment By Electricity Or Magnetism (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Apparatus For Disinfection Or Sterilisation (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Abstract
【課題】少ない電力で高い濃度のオゾン水を製造することが可能であって、殺菌後において殺菌対象物表面にシミやべたつき等の異物付着の少なく、環境への影響も小さいオゾン水を製造する方法の提供。【解決手段】水を電気分解することによってオゾン水を製造する方法であって、該水には水溶性の非イオン性界面活性剤が0.001〜0.01質量%未満含まれている。非イオン性界面活性剤はエチレンオキサイドとプロピレンオキサイドのブロック共重合体であることが好ましく、さらには、エチレンオキサイドの重合度は10〜30であり、プロピレンオキサイドの重合度は10〜40であり、(該エチレンオキサイドのモル数)/(該プロピレンオキサイドのモル数)の値は0.3〜1であることが好ましいオゾン水製造方法。【選択図】なし[PROBLEMS] To produce ozone water having a low power and capable of producing high-concentration ozone water with little adhesion of foreign matters such as spots and stickiness to the surface of an object to be sterilized after sterilization, and also having little environmental impact. Providing a method. A method for producing ozone water by electrolyzing water, wherein the water contains less than 0.001 to 0.01% by mass of a water-soluble nonionic surfactant. The nonionic surfactant is preferably a block copolymer of ethylene oxide and propylene oxide. Further, the degree of polymerization of ethylene oxide is 10 to 30, and the degree of polymerization of propylene oxide is 10 to 40. The ozone water production method preferably has a value of (number of moles of the ethylene oxide) / (number of moles of the propylene oxide) of 0.3 to 1. [Selection figure] None
Description
本発明は、電気分解によるオゾン水製造方法及びそれによって得られたオゾン水を用いた殺菌方法に関する。 The present invention relates to a method for producing ozone water by electrolysis and a sterilization method using ozone water obtained thereby.
従来、広範な環境における殺菌消毒剤として、次亜塩素酸ナトリウム、次亜塩素酸カルシウム、ジクロロイソシアヌル酸ナトリウム等の塩素系殺菌剤が広く用いられている。しかし、これらの塩素系の殺菌剤は、残留性があることや、耐性菌を産出してしまう等の問題が生じるため、これらの代替として、近年では水にオゾンを溶解させたオゾン水による殺菌が注目されている。 Conventionally, chlorine-based disinfectants such as sodium hypochlorite, calcium hypochlorite, and sodium dichloroisocyanurate have been widely used as disinfectants in a wide range of environments. However, since these chlorine-based disinfectants have problems such as persistence and yield of resistant bacteria, as an alternative to these, disinfection with ozone water in which ozone is dissolved in water in recent years Is attracting attention.
オゾン水による殺菌方法の大きなメリットとしては、以下の点が挙げられる。
(1)オゾンから発生するOHラジカルの殺菌効果は細胞壁の酸化破壊であり無差別性のため耐性菌が存在しないといえる。
(2)塩素系材料と比較すると除菌・消臭効果が高い。
(3)残留性がない(電解法では水を原料としてオゾン水を生成し、除菌・消臭後は直ぐに酸素に戻るため、オゾン自体は全く残存しない)。
これらのことから、オゾン水は現在、工業分野をはじめ医療や食品工業等様々な分野への応用が検討されている。
The following points are mentioned as the great merit of the sterilization method using ozone water.
(1) The bactericidal effect of OH radicals generated from ozone is oxidative destruction of the cell wall, and it can be said that there are no resistant bacteria due to indiscriminateness.
(2) Higher sterilization and deodorizing effects than chlorinated materials.
(3) There is no persistence (in the electrolysis method, ozone water is generated using water as a raw material and immediately returns to oxygen after sterilization and deodorization, so ozone itself does not remain at all).
For these reasons, the application of ozone water to various fields such as the medical field and the food industry is now under consideration in the industrial field.
オゾン水の製造方法としては、放電法により一旦オゾンガスを発生させた後に水に溶け込ませるオゾンガス溶解方式と、水を直接電気分解することによって発生したオゾンを水に溶け込ませる直接電気分解方式の2種類がある。
放電法によるオゾンガス溶解式は、浄水処理、食品洗浄分野で利用されているが、以下のデメリットがある。
(1)オゾンをいったんガスとして発生させ、その後、水に溶解させる2つの工程を必要とすること。
(2)後述する電解法に比較して濃度が低いため高圧下で水中に注入し、溶解させ、製造する必要があること。
(3)発生電源が高電圧・高周波のため、小型化しにくいこと。
(4)放電によるオゾン水生成装置では、オゾンガス発生能力が安定するまでの時間(数分間の待機時間)を要し、瞬時に一定濃度のオゾン水を調製することが困難であること。
There are two types of ozone water production methods: ozone gas dissolution method in which ozone gas is once generated by the discharge method and then dissolved in water, and direct electrolysis method in which ozone generated by direct electrolysis of water is dissolved in water. There is.
The ozone gas dissolution method by the discharge method is used in the water purification treatment and food washing fields, but has the following disadvantages.
(1) Two steps of generating ozone once as a gas and then dissolving it in water are required.
(2) Since the concentration is lower than the electrolysis method described later, it is necessary to inject it into water under high pressure, dissolve it, and manufacture it.
(3) The generated power source is difficult to miniaturize because of high voltage and high frequency.
(4) The ozone water generating device by discharge requires time (a waiting time of several minutes) until the ozone gas generation ability is stabilized, and it is difficult to instantaneously prepare ozone water having a constant concentration.
これに対し直接電気分解方式は、小型化が可能であり、原理的に直流低圧電源を用いるため、瞬時応答性、安全性に優れており、小型のオゾンガス、オゾン水発生器としての利用が期待されている。 On the other hand, the direct electrolysis method can be miniaturized and, in principle, uses a DC low-voltage power supply, so it has excellent instantaneous response and safety, and is expected to be used as a small ozone gas and ozone water generator. Has been.
しかしながら、直接電気分解方式による小型のオゾン水生成装置では大電力の印加が難しく、高濃度のオゾン水生成が難しい問題点がある。このため、小型のオゾン水製造装置を殺菌等に用いる場合、殺菌に必要なオゾン濃度が得られず、十分な殺菌効果を得られないおそれがあった。こうした問題を解決すべく、小型の直接電気分解方式によるオゾン水製造装置において、オゾン濃度の高濃度化やオゾン水の殺菌力の向上のため、種々の手法が提案されている。 However, there is a problem that it is difficult to generate high-concentration ozone water because it is difficult to apply a large amount of power in a small-sized ozone water generator by direct electrolysis. For this reason, when using a small ozone water production apparatus for sterilization etc., there was a possibility that ozone concentration required for sterilization could not be obtained, and sufficient sterilization effect could not be obtained. In order to solve these problems, various techniques have been proposed for increasing the ozone concentration and improving the sterilizing power of ozone water in a small-sized direct electrolysis ozone water production apparatus.
例えば、特許文献1では、電気分解セルへの供給水を予め脱気し、その水を電気分解することによって、溶存オゾン濃度を向上させるオゾン水製造装置が提案されている。
また、特許文献2では、陰イオン性界面活性剤、非イオン性界面活性剤及び両性界面活性剤から選択される界面活性剤を0.01質量%以上4質量%以下の濃度で含有し、塩化物イオン濃度が0.03質量%以下である原料水を電気分解してオゾン水を生成させ、生成オゾン水を殺菌対象に接触させる殺菌方法が提案されている。この殺菌方法によれば、オゾン水を殺菌対象に接触させた場合、殺菌対象物に対する濡れ性が向上し、カビや細菌の細胞膜との親和性も向上するので、オゾンによる殺菌効果が向上することが記載されている。
For example, Patent Document 1 proposes an ozone water production apparatus that improves the concentration of dissolved ozone by degassing water supplied to an electrolysis cell in advance and electrolyzing the water.
In
しかしながら、特許文献1の殺菌方法では、脱気装置が必要なため装置が煩雑になり、また脱気装置の為の電力が余分に必要となるという問題がある。 However, the sterilization method of Patent Document 1 has a problem that the device is complicated because a deaeration device is required, and extra power is required for the deaeration device.
また、特許文献2の殺菌方法では、生成するオゾンが界面活性剤の酸化分解に消費されて、却って、得られるオゾン濃度は低くなるおそれがある(このことは特許文献2の表1の結果からも支持される)。また、特許文献2の殺菌方法の替りに、界面活性剤を含有しない原料水を電気分解してオゾン水を製造した後、界面活性剤を混合させ、これを殺菌に用いた方が殺菌効果が高くなるはずであり、あえて界面活性剤を含有させた水を電気分解してオゾン水を製造する意義は存在しない。さらには、特許文献2のオゾン水の製造方法によって得られるオゾン水は、比較的高濃度の界面活性剤が含有しているため、殺菌後においても殺菌対象物表面に界面活性剤が残存してしまい、そのままでは該表面においてシミやべたつきが生じるため、除去するための工程が必要になる。さらには、環境面への負荷も大きくなるといった問題もある。
Further, in the sterilization method of
本発明は、上記従来の課題に鑑み成されたものであり、少ない電力で高い濃度のオゾン水を製造することが可能であって、殺菌後において殺菌対象物表面にシミやべたつき等の異物付着が少なく、環境への影響も小さいオゾン水を製造する方法を提供することにある。 The present invention has been made in view of the above-described conventional problems, and can produce high-concentration ozone water with a small amount of electric power, and can adhere foreign matter such as spots and stickiness to the surface of an object to be sterilized after sterilization. The object of the present invention is to provide a method for producing ozone water that has little impact on the environment.
本発明者らは、非イオン性界面活性剤を含有させた水を電気分解してオゾン水を製造するという上記特許文献2の方法において、非イオン性界面活性剤の濃度と得られたオゾン水中のオゾン濃度との関係について調べた。実験前においては、製造されるオゾン水のオゾン濃度は、界面活性剤の濃度が0に近づくにしたがって、単純に、原料水に界面活性剤を含有しない場合のオゾン濃度付近に収束するであろうと予測された。
In the method of
ところが、この予想に反して、極微量の非イオン性界面活性剤を含有する原料水を電気分解して生成するオゾン水のオゾン濃度は、原料水に界面活性剤を含有しない場合のオゾン濃度よりも顕著に高くなるというピーク的効果を示す結果となった。本発明者らは、この驚くべき発見に基づいて更に研究を進め、本発明を完成するに至った。 However, contrary to this expectation, the ozone concentration of ozone water produced by electrolyzing raw water containing a very small amount of nonionic surfactant is higher than the ozone concentration when raw material water does not contain a surfactant. As a result, the peak effect of significantly increasing was obtained. Based on this surprising discovery, the present inventors have further studied and completed the present invention.
すなわち、本発明のオゾン水製造方法は、水を電気分解することによってオゾン水を製造する方法であって、該水には水溶性の非イオン性界面活性剤が0.001質量%以上0.01質量%未満含まれていることを特徴とする。 That is, the ozone water production method of the present invention is a method of producing ozone water by electrolyzing water, and the water contains a water-soluble nonionic surfactant in an amount of 0.001% by mass or more and 0.001% by mass or more. The content is less than 01% by mass.
本発明のオゾン水製造方法では、電気分解される水には0.001質量%以上0.01質量%未満という微量の水溶性の非イオン性界面活性剤が含まれている。ここで「水溶性」とは、常温(25℃)で電気分解する場合において非イオン性界面活性剤が水相と分離して別の相をなしたり、水相中に溶解せずに白濁して分散したりする場合を含まないことを意味する。この微量の水溶性の非イオン性界面活性剤の影響で、この方法で製造されたオゾン水には、単なる水を電気分解して製造したオゾン水よりもオゾン濃度が顕著に高くなる。このため、少ない電力で高い濃度のオゾン水を製造することが可能となる。また、水溶性の非イオン性界面活性剤は含まれているものの、その濃度は0.001質量%以上0.01質量%未満という極めて低濃度であるため、殺菌後において殺菌対象物表面に非イオン性界面活性剤が残っても、シミやべたつき等の原因となることはほとんどない。さらには非イオン性界面活性剤の濃度は極めて低いため、COD等の環境への影響も小さいものとなる。 In the ozone water production method of the present invention, the water to be electrolyzed contains a trace amount of a water-soluble nonionic surfactant of 0.001% by mass or more and less than 0.01% by mass. Here, “water-soluble” means that when electrolysis is performed at room temperature (25 ° C.), the nonionic surfactant separates from the aqueous phase to form another phase, or becomes cloudy without dissolving in the aqueous phase. Does not include the case of being distributed. Due to the influence of this small amount of water-soluble nonionic surfactant, the ozone water produced by this method has a significantly higher ozone concentration than ozone water produced by electrolyzing simple water. For this reason, it becomes possible to produce ozone water having a high concentration with a small amount of electric power. In addition, although a water-soluble nonionic surfactant is contained, its concentration is very low, 0.001% by mass or more and less than 0.01% by mass. Even if the ionic surfactant remains, it hardly causes spots or stickiness. Furthermore, since the concentration of the nonionic surfactant is extremely low, the influence on the environment such as COD is small.
水溶性の非イオン性界面活性剤としては、エチレンオキサイドとプロピレンオキサイドのブロック共重合体であることが好ましい。特に好ましいのは、前記エチレンオキサイドとプロピレンオキサイドのブロック共重合体における該エチレンオキサイドの重合度は10以上30以下であり、該プロピレンオキサイドの重合度は10以上40以下であり、(該エチレンオキサイドのモル数)/(該プロピレンオキサイドのモル数)の値は0.3以上1以下である。 The water-soluble nonionic surfactant is preferably a block copolymer of ethylene oxide and propylene oxide. Particularly preferably, the degree of polymerization of the ethylene oxide in the block copolymer of ethylene oxide and propylene oxide is 10 or more and 30 or less, and the degree of polymerization of the propylene oxide is 10 or more and 40 or less. The value of (number of moles) / (number of moles of propylene oxide) is 0.3 or more and 1 or less.
上述したように、本発明のオゾン水製造方法で製造したオゾン水はオゾン濃度も高く、殺菌力が高い。また、水溶性の非イオン性界面活性剤は含まれているものの、その濃度は0.001質量%以上0.01質量%未満という極めて低濃度であるため、殺菌後において殺菌対象物表面に非イオン性界面活性剤が残っても、シミやべたつき等の原因となることはほとんどない。 As described above, the ozone water produced by the ozone water production method of the present invention has a high ozone concentration and a high bactericidal power. In addition, although a water-soluble nonionic surfactant is contained, its concentration is very low, 0.001% by mass or more and less than 0.01% by mass. Even if the ionic surfactant remains, it hardly causes spots or stickiness.
本発明のオゾン水製造方法を用いることにより、少ない電力で高い濃度のオゾン水を製造することが可能となる。また、オゾン水に含まれている非イオン性界面活性剤の濃度も0.001質量%以上0.01質量%未満という極めて低濃度であるため、殺菌後において殺菌対象物表面に非イオン性界面活性剤が残っても、シミやべたつき等の原因となることはほとんどない。また、CODを高くする等の環境への悪影響も少ない。 By using the ozone water production method of the present invention, it is possible to produce ozone water having a high concentration with a small amount of electric power. In addition, since the concentration of the nonionic surfactant contained in the ozone water is also extremely low, 0.001% by mass or more and less than 0.01% by mass, the surface of the nonionic interface on the surface of the sterilization target after sterilization Even if the activator remains, it hardly causes stains or stickiness. Also, there are few adverse effects on the environment such as increasing the COD.
以下本発明について詳細に説明する。
本発明のオゾン水製造方法では、水に0.001質量%以上0.01質量%未満という極めて低濃度の非イオン性界面活性剤が添加されている。このため、非イオン性界面活性剤が添加されたことにより得られた原料水を電気分解して生成するオゾン水のオゾン濃度が、原料水に界面活性剤を含有しない場合のオゾン濃度よりも顕著に高くなる。その理由については、完全に解明された訳ではないが、以下のような作用機構によるものと推測される。
The present invention will be described in detail below.
In the ozone water production method of the present invention, a very low concentration nonionic surfactant of 0.001% by mass or more and less than 0.01% by mass is added to water. For this reason, the ozone concentration of the ozone water generated by electrolyzing the raw water obtained by adding the nonionic surfactant is more remarkable than the ozone concentration when the raw water does not contain a surfactant. To be high. The reason is not completely elucidated, but is presumed to be due to the following mechanism of action.
すなわち、原料水に添加された水溶性の非イオン性界面活性剤は、原料水の電気分解によってオゾンが生成されるとき、電極と電解液の界面の濡れ性を向上させる。このため、電気分解時に発生する酸素は電極表面から速やかに除去され、電極と電解液との接触面積が大きくなり、オゾンの発生も多くなり、オゾン濃度の高いオゾン水が得られる。一方、陰イオン性界面活性剤や、陽イオン性界面活性剤や両性界面活性剤では、イオン性を有しているため電気分解反応に関与し、界面活性剤自体が酸化もしくは還元され、同時にオゾン生成反応のための印加電力を消費してしまうので、オゾンの発生効率が低下し、その結果、オゾン濃度の高いオゾン水は得られない。 That is, the water-soluble nonionic surfactant added to the raw water improves the wettability of the interface between the electrode and the electrolyte when ozone is generated by electrolysis of the raw water. For this reason, oxygen generated at the time of electrolysis is quickly removed from the electrode surface, the contact area between the electrode and the electrolyte is increased, ozone is increased, and ozone water having a high ozone concentration is obtained. On the other hand, anionic surfactants, cationic surfactants and amphoteric surfactants are ionic and thus participate in the electrolysis reaction, and the surfactant itself is oxidized or reduced, and at the same time ozone Since the applied power for the generation reaction is consumed, the ozone generation efficiency is lowered, and as a result, ozone water having a high ozone concentration cannot be obtained.
原料水に添加する非イオン性界面剤の添加量は、水中濃度として0.001質量%以上0.01質量%未満である。添加量が0.001質量%未満では水溶性の非イオン性界面活性剤の添加によるオゾン水の濃度を高める効果が得られ難い。
一方、水溶性の非イオン性界面活性剤の濃度が0.01質量%を超えると、生成したオゾンが界面活性剤の酸化分解に消費される割合が大きくなり、オゾン発生の電解効率が悪くなる。また、得られたオゾン水中に含まれる非イオン活性剤の濃度が高くなるため、このオゾン水を殺菌に用いた場合、殺菌対象物表面を乾燥させたとき、非イオン性界面活性剤が残留してシミやべたつきを生じさせるおそれがある。このため、さらに殺菌対象表面を水で洗浄する等の非イオン性界面活性剤の除去工程が必要となる。
The addition amount of the nonionic interfacial agent added to the raw water is 0.001% by mass or more and less than 0.01% by mass as the concentration in water. When the addition amount is less than 0.001% by mass, it is difficult to obtain the effect of increasing the concentration of ozone water by adding a water-soluble nonionic surfactant.
On the other hand, when the concentration of the water-soluble nonionic surfactant exceeds 0.01% by mass, the ratio of the generated ozone consumed for the oxidative decomposition of the surfactant increases, and the electrolysis efficiency of ozone generation deteriorates. . Further, since the concentration of the nonionic surfactant contained in the obtained ozone water becomes high, when this ozone water is used for sterilization, the nonionic surfactant remains when the surface of the object to be sterilized is dried. May cause spots and stickiness. For this reason, the removal process of nonionic surfactant, such as wash | cleaning the surface to be disinfected further with water, is needed.
本発明に用いられる非イオン性界面活性剤は、水溶性であれば特に制限はなく、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシアルキレンアルケニルエーテル、ポリオキシアルキレンアルキルエーテル、エチレンオキサイドとプロピレンオキサイドのブロック共重合体等のポリオキシアルキレン誘導体、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、グリセリン脂肪酸エステル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレンアルキルアミン等の一般に知られている非イオン性の界面活性剤を用いることができるが、特にエチレンオキサイドとプロピレンオキサイドのブロック共重合体を使用することが好ましい。 The nonionic surfactant used in the present invention is not particularly limited as long as it is water-soluble. For example, polyoxyethylene alkyl ether, polyoxyalkylene alkenyl ether, polyoxyalkylene alkyl ether, block of ethylene oxide and propylene oxide Polyoxyalkylene derivatives such as copolymers, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene sorbitol fatty acid esters, glycerin fatty acid esters, polyoxyethylene fatty acid esters, polyoxyethylene alkylamines and other generally known nonionic A surfactant can be used, but it is particularly preferable to use a block copolymer of ethylene oxide and propylene oxide.
非イオン性界面活性剤としてエチレンオキサイドとプロピレンオキサイドのブロック共重合体を用いる場合、エチレンオキサイドの重合度は10以上30以下であり、プロピレンオキサイドの重合度は10以上40以下であり、(該エチレンオキサイドのモル数)/(該プロピレンオキサイドのモル数)の値は0.3以上1以下であることが好ましい。エチレンオキサイドのモル数がプロピレンオキサイドのモル数に対して0.3未満の場合はブロック共重合体の疎水性が増大するため原料水へ溶解し難くなる。
また、エチレンオキサイドのモル数がプロピレンオキサイドのモル数に対して1を超える場合、得られるオゾン中のオゾン濃度が低下する。この原因については完全には明確にはなっていないが、エチレンオキサイドのモル数がプロピレンオキサイドのモル数に対して1を超える場合、親水基の割合が多くなるため、これが電気分解反応に何らかの影響を与え、オゾンの発生効率が低下するものと推測される。
When a block copolymer of ethylene oxide and propylene oxide is used as the nonionic surfactant, the degree of polymerization of ethylene oxide is 10 or more and 30 or less, and the degree of polymerization of propylene oxide is 10 or more and 40 or less (the ethylene The value of (number of moles of oxide) / (number of moles of propylene oxide) is preferably 0.3 or more and 1 or less. When the number of moles of ethylene oxide is less than 0.3 with respect to the number of moles of propylene oxide, the hydrophobicity of the block copolymer increases, making it difficult to dissolve in raw material water.
Moreover, when the mole number of ethylene oxide exceeds 1 with respect to the mole number of propylene oxide, the ozone concentration in the obtained ozone falls. The cause of this is not completely clear, but when the number of moles of ethylene oxide exceeds 1 with respect to the number of moles of propylene oxide, the ratio of hydrophilic groups increases, which has some effect on the electrolysis reaction. It is estimated that ozone generation efficiency decreases.
電気分解に用いられる水には、特に電解質を添加する必要はなく、一般の水道水や、それを浄水器に通した浄水を使用できるが、より高濃度のオゾン水を得るためには、蒸留水、又は逆浸透膜(RO膜)やイオン交換膜を通して調製したイオン交換水等の純水を主原料とすることが好ましい。この純水の水質は導電率として表わすと、1μS/cm以下が好ましく、更には0.1μS/cm以下がより好ましい。
純水に非イオン性活性剤のみを添加した電解液を用いた場合、得られるオゾン水は微量の水溶性非イオン性界面活性剤を含むのみであり、環境や人体への負荷が少なく、かつ高い殺菌力を有している。このため、こうして得られたオゾン水を室内、水回り、食器、衣類等の家庭用あるいは業務用の消臭、殺菌、漂白に用いたり、例えば手指等の人体の殺菌、消毒等に広く使用することができる。
The water used for electrolysis does not require any particular addition of electrolytes, and can be used with general tap water or purified water that has been passed through a water purifier, but in order to obtain higher-concentration ozone water, distillation is required. It is preferable to use water or pure water such as ion exchange water prepared through a reverse osmosis membrane (RO membrane) or an ion exchange membrane as a main raw material. The water quality of this pure water is preferably 1 μS / cm or less, and more preferably 0.1 μS / cm or less, in terms of conductivity.
When using an electrolytic solution in which only a nonionic active agent is added to pure water, the resulting ozone water contains only a small amount of a water-soluble nonionic surfactant, and the load on the environment and human body is small. Has high sterilizing power. For this reason, the ozone water thus obtained is used for deodorization, sterilization, bleaching for home or business use such as indoors, water, tableware, clothing, etc., and widely used for sterilization, disinfection of human bodies such as fingers. be able to.
本発明に用いる電気分解法には特に制限はないが、原料水の電気伝導度が低い場合には、オーム損による電力の無駄な消費を低減させるために、固体電解質を用いたSPE電解法を用いることが好ましい。また、電気分解を行うための陽極には、白金、二酸化鉛、導電性ダイヤモンドといった一般にオゾン発生用電極として用いられている電極を使用できるが、電極のオゾン発生能力や、溶出した際の安全性により、導電性ダイヤモンドを使用することが好ましい。また、固体電解質としては、プロトン伝導性のある固体電解質膜を用いることが好ましい。固体電解質膜の材質は、フッ素樹脂系、炭化水素樹脂系のいずれでも良いが、オゾンや過酸化物耐食性の面で前者が好ましい。固体電解質膜は、前述の通り、陽極、陰極で生成した物質が反対の電極で消費されるのを防止するとともに、液の電導度の低い場合でも電気分解反応を速やかに進行させる機能を有するため、伝導性の乏しい純水等を原料として利用する場合には必須となる。固体電解質膜としては、Dupont社のNafion(登録商標)等が使用できる。 The electrolysis method used in the present invention is not particularly limited. However, when the electrical conductivity of the raw material water is low, an SPE electrolysis method using a solid electrolyte is used in order to reduce wasteful power consumption due to ohmic loss. It is preferable to use it. Electrodes that are generally used as electrodes for ozone generation, such as platinum, lead dioxide, and conductive diamond, can be used as the anode for electrolysis, but the electrode's ability to generate ozone and safety when it is eluted Therefore, it is preferable to use conductive diamond. As the solid electrolyte, it is preferable to use a solid electrolyte membrane having proton conductivity. The material of the solid electrolyte membrane may be either a fluororesin or a hydrocarbon resin, but the former is preferable in terms of ozone and peroxide corrosion resistance. As described above, the solid electrolyte membrane has a function of preventing the substances generated at the anode and the cathode from being consumed at the opposite electrode and promptly causing the electrolysis reaction to proceed even when the liquid conductivity is low. It is essential when using pure water with poor conductivity as a raw material. As a solid electrolyte membrane, Dupont Nafion (registered trademark) or the like can be used.
また、固体電解質として固体のイオン交換能を有する多孔性材料(固体高分子電解質)を電極間に充填してもよい。多孔性材料の例としては、市販のイオン交換樹脂粒子があり、炭化水素系樹脂としてはスチレン系、アクリル酸系、芳香族重合体等があるが、耐食性の面からはフッ素樹脂製が好ましい。また適当な多孔性支持部材にイオン交換能を有する成分を形成することも可能である。ウェブ状に繊維化した材料も利用しやすい。材料の空隙率としては液の均一な分散と抵抗率の考慮から20〜90%が好ましい。孔或いは材料粒子のサイズは0.1〜10mmが好ましい。 Moreover, you may fill with a porous material (solid polymer electrolyte) which has solid ion exchange capacity as a solid electrolyte between electrodes. Examples of the porous material include commercially available ion exchange resin particles. Examples of the hydrocarbon-based resin include styrene-based, acrylic acid-based, and aromatic polymers, but a fluororesin is preferable from the viewpoint of corrosion resistance. It is also possible to form a component having ion exchange capacity on a suitable porous support member. It is also easy to use materials that are fiberized into a web. The porosity of the material is preferably 20 to 90% in consideration of uniform dispersion of the liquid and resistivity. The size of the holes or material particles is preferably 0.1 to 10 mm.
また、本発明における電気分解において陰極で行われる反応は主に水素発生であり、陰極には水素に対して脆化しない電極触媒の使用が好ましい。例えば、白金族金属、ニッケル、ステンレス、チタン、ジルコニウム、金、銀、カーボン等が使用できる。 In the electrolysis in the present invention, the reaction carried out at the cathode is mainly hydrogen generation, and it is preferable to use an electrode catalyst that does not become brittle with respect to hydrogen at the cathode. For example, platinum group metals, nickel, stainless steel, titanium, zirconium, gold, silver, carbon and the like can be used.
また、電極モジュールの材料は、電気分解反応時に発生するオゾンや過酸化物と接触するため、酸化耐性に優れた材料の使用が好ましい。本発明に使用できる電極モジュールとして、例えばデノラ・ペルメレック(株)社製のスパイラル式ダイヤモンド電極 型番:Y5672が挙げられる。 Moreover, since the material of an electrode module contacts the ozone and peroxide which generate | occur | produce at the time of an electrolysis reaction, use of the material excellent in oxidation resistance is preferable. As an electrode module that can be used in the present invention, for example, a spiral diamond electrode manufactured by Denora Permerek Co., Ltd. Model No .: Y5672 can be mentioned.
本発明において、原料水の温度は、オゾンガスの溶解性から0℃以上60℃未満とすることが好ましく、さらには0℃以上40℃未満とすることが好ましい。原料水の温度が高い場合、オゾンガスが十分に水に溶解できず気化するため、生成したオゾン水のオゾン濃度が低下する。 In the present invention, the temperature of the raw material water is preferably 0 ° C. or more and less than 60 ° C., more preferably 0 ° C. or more and less than 40 ° C., from the solubility of ozone gas. When the temperature of the raw material water is high, ozone gas cannot be sufficiently dissolved in water and vaporizes, so that the ozone concentration of the generated ozone water decreases.
本発明において、電気分解時に印加する電圧・電流の大きさは、消臭あるいは殺菌、洗浄等の生成したオゾン水の使用目的や必要濃度、電気分解される溶液の容積等に応じて、適宜定めることが好ましい。 In the present invention, the magnitude of the voltage / current applied at the time of electrolysis is appropriately determined according to the purpose and required concentration of ozone water generated for deodorization, sterilization, washing, etc., the volume of the solution to be electrolyzed, etc. It is preferable.
本発明における電源としては直流電源を使用する。その際、定電圧駆動が好ましく、印加する電圧は1〜50V、より好ましくは5〜20Vである。印加電圧が低すぎるとオゾンの発生が行われず、電極の消耗だけでなく、ガス発生量が増大することにより電解抵抗が上昇し、発熱が生じる。 A direct current power source is used as the power source in the present invention. In that case, a constant voltage drive is preferable and the voltage to apply is 1-50V, More preferably, it is 5-20V. If the applied voltage is too low, ozone is not generated, and not only is the electrode consumed, but also the amount of gas generated increases, resulting in an increase in electrolytic resistance and heat generation.
電気分解の際の電流密度は0.01〜1A/cm2とすることが好ましい。電極間距離は抵抗損失を低下させるためになるべく小さくすべきであるが、水を供給する際の圧力損失を小さくし、流れ分布を均一に保つために0.1〜5mmにするのが好ましい。生成した過酸化物の安定性や電解モジュールへの影響から、電気分解時の温度は0℃以上60℃未満とすることが好ましい。 The current density during electrolysis is preferably 0.01 to 1 A / cm 2 . The distance between the electrodes should be as small as possible in order to reduce the resistance loss, but is preferably 0.1 to 5 mm in order to reduce the pressure loss when supplying water and keep the flow distribution uniform. The temperature during electrolysis is preferably 0 ° C. or higher and lower than 60 ° C. from the stability of the generated peroxide and the influence on the electrolytic module.
次に本発明によるオゾン水生成に関する実施例を比較例と比較しつつ説明するが、本発明はこれらの実施例に限定されるものではない。 Next, examples relating to ozone water generation according to the present invention will be described in comparison with comparative examples, but the present invention is not limited to these examples.
(1)オゾン水製造装置
実施例及び比較例に用いた電気分解式オゾン水製造装置の模式図を図1に示す。容器1中の原料水2をポンプ3によって電解モジュール4が入った電解セル5に供給し、電気分解され生成したオゾン水が得られる構成となっている。容器1、ポンプ3及び電解セル5は5mmφのシリコンチューブ6により接続されており、原料水はシリコンチューブ6内を通り、電解セルにより電気分解された後、吐出される。電気分解のための電力は直流電源7によって供給される。
本実施例及び比較例では、電極モジュール4として、デノラ・ペルメレック(株)社製のスパイラル式ダイヤモンド電極 型番:Y5672を用いた。この電解モジュール4は図2に示すように、導電性ダイヤモンド触媒を担持した金属棒である陽極8の周囲に、イオン交換膜から成る隔膜9の帯を巻き、この隔膜9の周囲に金属線から成る陰極10を巻き付けて構成されている。図2では陽極8の周囲に巻き付けた隔膜9の間隔が一定になっていないが、等間隔にしても良い。
(1) Ozone water production apparatus The schematic diagram of the electrolysis type ozone water production apparatus used for the Example and the comparative example is shown in FIG. The
In this example and comparative example, a spiral diamond electrode manufactured by Denora Permerek Co., Ltd. Model number: Y5672 was used as the
(2)オゾン水製造試験
(実施例1)
原料水として、純水に非イオン性界面活性剤として、エチレンオキサイドとプロピレンオキサイドのブロック共重合体(ADEKA製プルロニックL−62、EO=モル10、PO=30モル)を0.005質量%となるように溶解させたものを用い、原料水を流量20mL/minで電解モジュールへ供給し、0.7Aの電流で電気分解を行い、得られたオゾン水のオゾン濃度を測定した。
(2) Ozone water production test (Example 1)
As a raw material water, 0.005% by mass of a block copolymer of ethylene oxide and propylene oxide (ADEKA Pluronic L-62, EO =
(実施例2)
原料水として、純水に非イオン性界面活性剤として、エチレンオキサイドとプロピレンオキサイドのブロック共重合体(ADEKA製プルロニックL−64、EO=モル25、PO=30モル)を0.001質量%となるように溶解させたものを用い、実施例1と同条件で電気分解を行い、オゾン濃度を測定した。
(Example 2)
As raw material water, pure water and nonionic surfactant, ethylene oxide and propylene oxide block copolymer (ADEKA Pluronic L-64, EO = mol 25, PO = 30 mol) and 0.001% by mass Using what was dissolved in such a manner, electrolysis was performed under the same conditions as in Example 1, and the ozone concentration was measured.
(実施例3)
原料水として、純水に非イオン性界面活性剤として、エチレンオキサイドとプロピレンオキサイドのブロック共重合体(ADEKA製プルロニックL−64、EO=モル25、PO=30モル)を0.005質量%となるように溶解させたものを用い、実施例1と同条件で電気分解を行い、オゾン濃度を測定した。
(Example 3)
As raw material water, pure water, nonionic surfactant, ethylene oxide / propylene oxide block copolymer (ADEKA Pluronic L-64, EO = mol 25, PO = 30 mol) and 0.005 mass% Using what was dissolved in such a manner, electrolysis was performed under the same conditions as in Example 1, and the ozone concentration was measured.
(実施例4)
原料水として、純水に非イオン性界面活性剤として、エチレンオキサイドとプロピレンオキサイドのブロック共重合体(ADEKA製プルロニックL−64、EO=モル25、PO=30モル)を0.008質量%となるように溶解させたものを用い、実施例1と同条件で電気分解を行い、オゾン濃度を測定した。
Example 4
As raw material water, pure water and nonionic surfactant, block copolymer of ethylene oxide and propylene oxide (ADEKA Pluronic L-64, EO = mol 25, PO = 30 mol) and 0.008% by mass Using what was dissolved in such a manner, electrolysis was performed under the same conditions as in Example 1, and the ozone concentration was measured.
(実施例5)
原料水として、純水に非イオン性界面活性剤としてポリオキシエチレンアルキルエーテル(花王製エマルゲン1135S−70)を0.008質量%となるように溶解させたものを用い、実施例1と同条件で電気分解を行い、オゾン濃度を測定した。
(Example 5)
As raw material water, the same conditions as in Example 1 were used, in which polyoxyethylene alkyl ether (Emulgen 1135S-70 manufactured by Kao) was dissolved in pure water so as to be 0.008% by mass in pure water. Was subjected to electrolysis and the ozone concentration was measured.
(実施例6)
原料水として、純水に非イオン性界面活性剤として、ポリエチレングリコールモノラウレート(花王製エマノーン1112)を0.008質量%となるように溶解させたものを用い、実施例1と同条件で電気分解を行い、オゾン濃度を測定した。
(Example 6)
As raw material water, polyethylene glycol monolaurate (Kao-made Emanon 1112) dissolved in pure water as a nonionic surfactant was dissolved at 0.008% by mass under the same conditions as in Example 1. Electrolysis was performed and the ozone concentration was measured.
(比較例1)
原料水として、純水を用い、実施例1と同条件で電気分解を行い、オゾン濃度を測定した。
(Comparative Example 1)
Pure water was used as raw material water, electrolysis was performed under the same conditions as in Example 1, and the ozone concentration was measured.
(比較例2)
原料水として、純水に非イオン性界面活性剤として、エチレンオキサイドとプロピレンオキサイドのブロック共重合体(ADEKA製プルロニックL−64、EO=モル25、PO=30モル)を0.0005質量%となるように溶解させたものを用い、実施例1と同条件で電気分解を行い、オゾン濃度を測定した。
(Comparative Example 2)
As raw material water, pure water and nonionic surfactant, ethylene oxide and propylene oxide block copolymer (ADEKA Pluronic L-64, EO = mol 25, PO = 30 mol) and 0.0005 mass% Using what was dissolved in such a manner, electrolysis was performed under the same conditions as in Example 1, and the ozone concentration was measured.
(比較例3)
原料水として、純水に非イオン性界面活性剤として、エチレンオキサイドとプロピレンオキサイドのブロック共重合体(ADEKA製プルロニックL−64、EO=モル25、PO=30モル)を0.01質量%となるように溶解させたものを用い、実施例1と同条件で電気分解を行い、オゾン濃度を測定した。
(Comparative Example 3)
0.01% by mass of raw material water, pure water and nonionic surfactant, block copolymer of ethylene oxide and propylene oxide (Adeka Pluronic L-64, EO = mol 25, PO = 30 mol) Using what was dissolved in such a manner, electrolysis was performed under the same conditions as in Example 1, and the ozone concentration was measured.
(比較例4)
原料水として、純水に非イオン性界面活性剤として、エチレンオキサイドとプロピレンオキサイドのブロック共重合体(ADEKA製プルロニックL−64、EO=モル25、PO=30モル)を0.1質量%となるように溶解させたものを用い、実施例1と同条件で電気分解を行い、オゾン濃度を測定した。
(Comparative Example 4)
As raw material water, 0.1% by mass of pure water and nonionic surfactant, block copolymer of ethylene oxide and propylene oxide (Pluronic L-64 manufactured by ADEKA, EO = mol 25, PO = 30 mol) Using what was dissolved in such a manner, electrolysis was performed under the same conditions as in Example 1, and the ozone concentration was measured.
(比較例5)
原料水として、純水に非イオン性界面活性剤として、エチレンオキサイドとプロピレンオキサイドのブロック共重合体(ADEKA製プルロニックL−64、EO=モル25、PO=30モル)を1.0質量%となるように溶解させたものを用い、実施例1と同条件で電気分解を行い、オゾン濃度を測定した。
(Comparative Example 5)
As raw material water, pure water and nonionic surfactant, ethylene oxide and propylene oxide block copolymer (ADEKA Pluronic L-64, EO = mol 25, PO = 30 mol) and 1.0 mass% Using what was dissolved in such a manner, electrolysis was performed under the same conditions as in Example 1, and the ozone concentration was measured.
(比較例6)
原料水として、純水に非イオン性界面活性剤として、エチレンオキサイドとプロピレンオキサイドのブロック共重合体(ADEKA製プルロニックL−71、EO=モル5、PO=35モル)を0.008質量%となるように添加したものを用い、実施例1と同条件で電気分解を行い、オゾン濃度を測定した。なお、L−71は原料水に完全には溶解せず、添加後の原料水は白濁した。
(Comparative Example 6)
As raw material water, pure water and nonionic surfactant, ethylene oxide and propylene oxide block copolymer (ADEKA Pluronic L-71, EO =
(比較例7)
原料水として、純水に陰イオン性界面活性剤として、ポリオキシエチレンラウリル硫酸ナトリウム(花王製エマール20C)を0.008質量%となるように溶解させたものを用い、実施例1と同条件で電気分解を行い、オゾン濃度を測定した。
(Comparative Example 7)
As raw material water, the same conditions as in Example 1 were used, in which polyoxyethylene sodium lauryl sulfate (Emal 20C manufactured by Kao) was dissolved in pure water so as to be 0.008% by mass as an anionic surfactant. Was subjected to electrolysis and the ozone concentration was measured.
(3)評 価
1)オゾン濃度測定
吐出されたオゾン水を採取後、ヨウ素滴定法によりオゾン濃度を測定した。オゾン濃度の測定結果を表1に示す。
(3) Evaluation 1) Ozone concentration measurement After collecting the discharged ozone water, the ozone concentration was measured by the iodine titration method. Table 1 shows the measurement results of the ozone concentration.
表1の結果から、非イオン性界面活性剤を0.001質量%以上0.01質量%未満で溶解させた実施例1〜実施例6では、原料水が純水のみ(比較例1)の場合と比較して、明らかにオゾン濃度が高いオゾン水が得られることが分かった。特に、非イオン性界面活性剤としてエチレンオキサイドとプロピレンオキサイドのブロック共重合体を用いた実施例1〜4では、オゾン濃度の高いオゾン水を得ることができた。
一方、陰イオン性界面活性剤を用いた比較例7では、純水のみの比較例1と比較してオゾン濃度が低下した。また、非イオン性界面活性剤の添加量を0.001質量%未満とした比較例2では、純水のみの比較例1とほぼ同等のオゾン濃度であり、、0.01質量%以上とした比較例3〜5では、純水のみの比較例1と比較してオゾン濃度が低下した。さらに、非イオン性界面活性剤が完全には溶解せずに白濁した比較例6においても、純水のみの比較例1と比較してオゾン濃度が低下した。
From the results of Table 1, in Examples 1 to 6 in which the nonionic surfactant was dissolved at 0.001% by mass or more and less than 0.01% by mass, the raw material water was pure water only (Comparative Example 1). It was found that ozone water with a clearly higher ozone concentration was obtained than in the case. In particular, in Examples 1 to 4 using a block copolymer of ethylene oxide and propylene oxide as the nonionic surfactant, ozone water having a high ozone concentration could be obtained.
On the other hand, in Comparative Example 7 using an anionic surfactant, the ozone concentration decreased compared to Comparative Example 1 using pure water alone. Further, in Comparative Example 2 in which the addition amount of the nonionic surfactant was less than 0.001% by mass, the ozone concentration was almost the same as that of Comparative Example 1 with pure water alone, and was 0.01% by mass or more. In Comparative Examples 3 to 5, the ozone concentration decreased compared to Comparative Example 1 with pure water only. Further, in Comparative Example 6 in which the nonionic surfactant was not completely dissolved and became cloudy, the ozone concentration was lower than that in Comparative Example 1 containing pure water alone.
2)殺菌効果試験
実施例1〜6及び比較例1〜7のオゾン水、並びに水道水について、手指を対象とした殺菌試験を実施した。オゾン水又は水道水の50mLを手指に噴きかけ、30秒間待った後、手指の表面をウエスでふき取り、SCDLP寒天培地を用いてスタンプ試験を行った。採取した菌は、インキュベーターを用いて35℃で24時間培養し、コロニー数をカウントした。結果を表2に示す。表2における「ND」は未検出の意味である。なお、オゾン水又は水道水を手指に噴きかけないで、そのまま手指の表面をウエスでふき取り、SCDLP寒天培地を用いてスタンプ試験を行ったものをブランクとした。
2) Bactericidal effect test
About the ozone water of Examples 1-6 and Comparative Examples 1-7, and tap water, the bactericidal test which made object the finger was implemented. After spraying 50 mL of ozone water or tap water on the fingers and waiting for 30 seconds, the surface of the fingers was wiped with a waste cloth, and a stamp test was performed using an SCDLP agar medium. The collected bacteria were cultured at 35 ° C. for 24 hours using an incubator, and the number of colonies was counted. The results are shown in Table 2. “ND” in Table 2 means undetected. In addition, without spraying ozone water or tap water on a finger, the surface of the finger was wiped off with a waste cloth, and a stamp test using an SCDLP agar medium was used as a blank.
3)殺菌対象物表面のべたつき感触試験
実施例1〜6並びに比較例1〜7のオゾン水を5名のモニターの手指にそれぞれ50mL噴きかけ、1分間待った後、手指のべたつき感の有無を評価した。その結果を表2に示す。5名全員がべたつき感を感じた場合は「5/5」、5名全員がべたつき感を感じなかった場合は「0/5」と表記した。
3) Stickiness touch test on the surface of the sterilization target 50 ml of ozone water of each of Examples 1 to 6 and Comparative Examples 1 to 7 was sprayed on the fingers of five monitors, and after waiting for 1 minute, the presence or absence of stickiness of the fingers was evaluated. did. The results are shown in Table 2. When all 5 people felt sticky, “5/5” was written, and when all 5 people did not feel sticky, “0/5” was written.
表2より、菌数については、ブランクでは1000cfu/10cm2以上の菌が検出されたが、実施例1〜6では未検出又は3cfu/10cm2以下となり、比較例1〜7と比べ良好な結果となった。
また、実施例1〜6では、殺菌効果が高く、かつ、べたつき感も感じられないことが示された。
From Table 2, the number of bacteria was 1000 cfu / 10 cm 2 or more in the blank, but in Examples 1 to 6 it was not detected or 3 cfu / 10 cm 2 or less, which is a better result than Comparative Examples 1 to 7. It became.
Moreover, in Examples 1-6, it was shown that the bactericidal effect is high and a sticky feeling is not felt.
Claims (2)
該水には水溶性の非イオン性界面活性剤が0.001質量%以上0.01質量%未満含まれており、
該水溶性の非イオン性界面活性剤はエチレンオキサイドとプロピレンオキサイドのブロック共重合体であり、
該エチレンオキサイドとプロピレンオキサイドのブロック共重合体における該エチレンオキサイドの重合度は10以上30以下であり、該プロピレンオキサイドの重合度は10以上40以下であり、(該エチレンオキサイドのモル数)/(該プロピレンオキサイドのモル数)の値は0.3以上1以下であることを特徴とするオゾン水製造方法。 A method for producing ozone water by electrolyzing water,
The water contains 0.001% by mass or more and less than 0.01% by mass of a water-soluble nonionic surfactant,
The water-soluble nonionic surfactant is a block copolymer of ethylene oxide and propylene oxide,
The degree of polymerization of the ethylene oxide in the block copolymer of ethylene oxide and propylene oxide is 10 or more and 30 or less, and the degree of polymerization of the propylene oxide is 10 or more and 40 or less, (the number of moles of the ethylene oxide) / ( The ozone water production method, wherein the value of the number of moles of propylene oxide is from 0.3 to 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017008066A JP6178528B1 (en) | 2017-01-20 | 2017-01-20 | Ozone water production method and sterilization method using ozone water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017008066A JP6178528B1 (en) | 2017-01-20 | 2017-01-20 | Ozone water production method and sterilization method using ozone water |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6178528B1 true JP6178528B1 (en) | 2017-08-09 |
JP2018114474A JP2018114474A (en) | 2018-07-26 |
Family
ID=59559226
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017008066A Active JP6178528B1 (en) | 2017-01-20 | 2017-01-20 | Ozone water production method and sterilization method using ozone water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6178528B1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0780423A (en) * | 1993-09-16 | 1995-03-28 | Kao Corp | Cleaning |
JPH07328638A (en) * | 1994-06-09 | 1995-12-19 | Tatsuo Okazaki | Electrolytic oxidized water |
JP2004130264A (en) * | 2002-10-11 | 2004-04-30 | Kao Corp | Method for producing electrolytic water |
JP2006068354A (en) * | 2004-09-03 | 2006-03-16 | Lion Corp | Oral cavity sterilization article |
JP2006346203A (en) * | 2005-06-16 | 2006-12-28 | Permelec Electrode Ltd | Method of sterilization and electrolyzed water spraying device |
WO2015153159A1 (en) * | 2014-04-03 | 2015-10-08 | Novartis Ag | System for disinfecting contact lenses |
-
2017
- 2017-01-20 JP JP2017008066A patent/JP6178528B1/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0780423A (en) * | 1993-09-16 | 1995-03-28 | Kao Corp | Cleaning |
JPH07328638A (en) * | 1994-06-09 | 1995-12-19 | Tatsuo Okazaki | Electrolytic oxidized water |
JP2004130264A (en) * | 2002-10-11 | 2004-04-30 | Kao Corp | Method for producing electrolytic water |
JP2006068354A (en) * | 2004-09-03 | 2006-03-16 | Lion Corp | Oral cavity sterilization article |
JP2006346203A (en) * | 2005-06-16 | 2006-12-28 | Permelec Electrode Ltd | Method of sterilization and electrolyzed water spraying device |
WO2015153159A1 (en) * | 2014-04-03 | 2015-10-08 | Novartis Ag | System for disinfecting contact lenses |
Also Published As
Publication number | Publication date |
---|---|
JP2018114474A (en) | 2018-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4410155B2 (en) | Electrolyzed water ejection device | |
JP4980016B2 (en) | Electrolyzed water ejection device and sterilization method | |
US9297085B2 (en) | Membrane-electrode assembly, electrolytic cell employing the same, electrolytic-water sprayer, and method of sterilization | |
JP5544181B2 (en) | Electrochemical synthesis of ozone fine bubbles | |
JP4723627B2 (en) | Membrane-electrode assembly, electrolytic cell using the same, electrolytic water spray device, and sterilization method | |
JP5913693B1 (en) | Electrolytic device and electrolytic ozone water production device | |
JP2009125628A (en) | Membrane-electrode assembly, electrolytic cell using the same, ozone water generator, and sterilization method | |
CN101686689A (en) | Disinfectant based on aqueous, hypochlorous acid (hoci)-containing solutions, method for the production thereof, and use thereof | |
JP5098050B2 (en) | Membrane-electrode assembly, electrolysis unit using the same, electrolyzed water ejection device, and sterilization method | |
JP6170266B1 (en) | Ozone water production apparatus, ozone water production method, and sterilization method using ozone water | |
CN216337991U (en) | Self-generating sterilized water generating device | |
JP6178528B1 (en) | Ozone water production method and sterilization method using ozone water | |
JP5876431B2 (en) | Small electrolyzed water generator | |
WO2004076363A1 (en) | Method for producing mixed electrolyzed water | |
US20140190820A1 (en) | Reusable apparatus with sparingly soluble solid for cleaning and/or disinfecting | |
JP2004313780A (en) | Electrolytic synthesis method of peracetic acid, and method and apparatus for sterilization wash | |
US20220153613A1 (en) | Ultra-high alkaline electrolyzed water generation system | |
JP2015196871A (en) | Apparatus and method for production of radical oxygen water | |
JP2015196873A (en) | Apparatus and method for production of radical oxygen water | |
CN220327716U (en) | Clothes sterilizer | |
JP3970426B2 (en) | Method for producing electrolyzed sterilized water | |
JP2018086617A (en) | Reduced hydrogen water generator | |
WO2013103827A1 (en) | Reusable apparatus with sparingly soluble solid for cleaning and/or disinfecting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20170502 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170516 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170610 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170711 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170713 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6178528 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |