JP6176775B2 - Imaging device - Google Patents

Imaging device Download PDF

Info

Publication number
JP6176775B2
JP6176775B2 JP2013053184A JP2013053184A JP6176775B2 JP 6176775 B2 JP6176775 B2 JP 6176775B2 JP 2013053184 A JP2013053184 A JP 2013053184A JP 2013053184 A JP2013053184 A JP 2013053184A JP 6176775 B2 JP6176775 B2 JP 6176775B2
Authority
JP
Japan
Prior art keywords
component
shading
horizontal
signal
pixels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013053184A
Other languages
Japanese (ja)
Other versions
JP2014179849A (en
Inventor
博一 河野
博一 河野
中村 和彦
和彦 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2013053184A priority Critical patent/JP6176775B2/en
Publication of JP2014179849A publication Critical patent/JP2014179849A/en
Application granted granted Critical
Publication of JP6176775B2 publication Critical patent/JP6176775B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Studio Devices (AREA)

Description

本発明は、撮像装置に関し、特に固定擬似信号の低減に関するものである。   The present invention relates to an imaging apparatus, and more particularly to reduction of fixed pseudo signals.

例えば、HDTV(High Definition TeleVision)用撮像装置では、撮像管の駆動回路の影響により、撮像する光が全くない状態でも、映像信号に特有の水平に繰り返す縦筋状の固定擬似信号が発生する。特に、(パスコンやインダクタやFPGAの温度特性で、リンギングや非一定の縦筋等の)水平シェーディングが低温起動時に緩やかに変化する。高品位の映像信号を抽出するためにはこの縦筋状の固定擬似信号と水平シェーディングとを除去する必要がある。この問題を解決するための従来の方法を説明する。   For example, in an HDTV (High Definition TeleVision) image pickup device, a vertical streak-like fixed pseudo signal that repeats horizontally, which is peculiar to a video signal, is generated even when there is no light to be imaged due to the influence of a drive circuit of an image pickup tube. In particular, horizontal shading (such as ringing and non-constant vertical streaks due to the temperature characteristics of bypass capacitors, inductors, and FPGAs) changes slowly at low temperature startup. In order to extract a high-quality video signal, it is necessary to remove this vertical streak-like fixed pseudo signal and horizontal shading. A conventional method for solving this problem will be described.

従来の方法のひとつは、撮像管を用いたHDTV用撮像装置では、垂直帰線期間の水平走査線期間(ライン)の映像を垂直方向に加算平均し、1ラインの画像データをメモリし、垂直有効期間の水平走査線期間(ライン)の映像から減算して固定パターンノイズを除去する(特許文献1参照)。また、方法のもうひとつは、オートブラック処理の過程で垂直有効期間の水平走査線期間の映像を垂直方向に加算平均し、1ラインの画像データをメモリし、垂直有効期間の水平走査線期間(ライン)の映像から減算して固定パターンノイズを除去する(特許文献2参照)。
しかし、HDTV用CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)の固体撮像素子は、垂直の光学黒(Vertical−Optical Black:V−OB)ラインが4本で、雑音の少ない有効V−OBラインが2本と少ない。UHDTV等の走査線のより多い映像用CMOS固体撮像素子もまた、雑音の少ない有効V−OBラインが1本程度と少ない。そのため、V−OBラインの映像を垂直方向に加算平均して垂直有効期間の水平走査線期間(ライン)の映像から減算しても、雑音や白キズの影響で、縦筋状の固定擬似信号の除去が不完全になってしまう。
One of the conventional methods is that in an HDTV image pickup apparatus using an image pickup tube, images in a horizontal scanning line period (line) in a vertical blanking period are added and averaged in the vertical direction, and one line of image data is stored in memory. The fixed pattern noise is removed by subtracting from the video of the effective horizontal scanning line period (line) (see Patent Document 1). In another method, the video in the horizontal scanning line period of the vertical effective period is added and averaged in the vertical direction in the process of auto black processing, one line of image data is stored, and the horizontal scanning line period of the vertical effective period ( The fixed pattern noise is removed by subtracting from the video of the line (see Patent Document 2).
However, CCD (Charge Coupled Device) and CMOS (Complementary Metal Oxide Semiconductor) solid-state imaging devices for HDTV have four vertical-optical black (V-OB) lines and are effective V- with less noise. There are few OB lines. Video CMOS solid-state imaging devices with more scanning lines such as UHDTV also have as few as one effective V-OB line with less noise. Therefore, even if the video of the V-OB line is averaged in the vertical direction and subtracted from the video in the horizontal scanning line period (line) of the vertical effective period, the vertical streak-like fixed pseudo signal is affected by noise and white scratches. Removal will be incomplete.

特開2005−094626号公報Japanese Patent Laying-Open No. 2005-094626 特開2006−287392号公報JP 2006-287392 A

本発明はこの欠点を解決するため、V−OBを有する固体撮像素子を用いた撮像装置において、縦筋状の固定擬似信号の除去の実現を目的とする。   In order to solve this drawback, an object of the present invention is to realize removal of a vertical streak-like fixed pseudo signal in an imaging apparatus using a solid-state imaging device having a V-OB.

上記の目的を解決するため、垂直の光学黒(Vertical−Optical Black:V−OB)を有する固体撮像素子を用いた撮像装置において、(各成分以外は白キズや雑音として排除するため、)V−OB信号から2の累乗ヶ画素周期の固定パターンノイズ(縦筋成分)を減算し(て画素単位のH-shading成分を除去し、0dBなら左端1%以下と5%以上で右半分0%以下と1%以上で、起動時は+36dBなら左端63%以下と315%以上で右半分0%以下と63%以上と初端が広く後半が狭く、起動後は水平鋸歯状(H-Saw)成分と水平映像立ち上がり部分の跳ね上がり(H-Top-Frame)成分と水平リンギング(H-ringing)成分の各成分に2の累乗周期縦筋の成分を加算した水平シェーディング(H-shading)に幅を持たせた)増幅度と水平シェーディング(H-shading)にあわせた第1の可変閾値の範囲外の画素信号(白キズや黒キズ)を(連続キズがなければ)左右画素の平均で補間し(連続キズがあれば)左右4画素の(重み付け平均値または3次曲線値の)計算値で補間して2の累乗周期縦筋の成分を加算してH-shading補正信号として、有効画素信号から減算することを特徴とする撮像装置である(図4Aと図4Bとの共通上位概念)。   In order to solve the above-mentioned object, in an imaging apparatus using a solid-state imaging device having vertical optical black (Vertical-Optical Black: V-OB), V (in order to eliminate other components as white scratches and noise) V -Subtract fixed pattern noise (vertical streak component) with a power-of-two pixel period from the OB signal (and remove the H-shading component in pixel units. If it is 0 dB, the left half is 1% or less and 5% or more and the right half is 0%. 1% or more, and when starting at +36 dB, the left end is 63% or less and 315% or more, the right half is 0% or less and 63% or more, the first end is wide and the second half is narrow, and after startup the horizontal sawtooth (H-Saw) The width of horizontal shading (H-shading) is calculated by adding the component of the vertical power of 2 to each component of the horizontal jumping (H-Top-Frame) and horizontal ringing (H-ringing) components. Amplification and horizontal shading (H-shading) The pixel signal outside the range of the first variable threshold (white scratch or black scratch) is interpolated with the average of the left and right pixels (if there is no continuous scratch) (if there is a continuous scratch) (the weighted average value of the left and right pixels) Alternatively, the imaging device is characterized in that it interpolates with a calculated value (of a cubic curve value) and adds a component of a power cycle vertical stripe of 2 and subtracts it from an effective pixel signal as an H-shading correction signal (FIG. 4A). And the common superordinate concept of FIG. 4B).

上記撮像装置において、(起動時は初端が広く後半が狭く、起動後はH-shading波形の上下の範囲となる)増幅度と水平シェーディング(H-shading)にあわせた第1の可変閾値の範囲の数分の1の第2の可変閾値以上と大きく異なる画素信号(暗電流異常や雑音)を左右4画素の重み付け平均値で補間してから、左右4画素の重み付け平均値と第一の可変閾値の範囲の数分の1の第2の可変閾値以上と大きく異なる画素信号を重み付け平均値で補間した信号に2の累乗周期の平均を行い、2の累乗周期縦筋の成分を加算してH-shading補正信号として、有効画素信号から減算することを特徴とする撮像装置である(図4A)。
また上記撮像装置において、増幅度とH-shading各成分にあわせた第一の可変閾値の範囲外の画素信号を左右4画素の3次曲線値で補間してから、V−OB信号を、水平鋸歯状(H-Saw)成分と水平映像立ち上がり部分の跳ね上がり(H-Top-Frame)成分と水平リンギング(H-ringing)成分の各成分に分解し、前記各成分の合成を水平シェーディング(H-shading)補正信号とすることを特徴とする、撮像装置である(図4B)。
In the imaging apparatus described above, the first variable threshold value is set in accordance with the amplification degree and horizontal shading (H-shading) (the first end is wide at the start and the second half is narrow, and the upper and lower ranges of the H-shading waveform after the start). After interpolating a pixel signal (dark current abnormality or noise) that is significantly different from the second variable threshold of a fraction of the range with the weighted average value of the left and right four pixels, the weighted average value of the left and right four pixels and the first The signal obtained by interpolating the pixel signal that is significantly different from the second variable threshold value, which is a fraction of the variable threshold range, with the weighted average value is averaged by the power cycle of 2, and the component of the power cycle vertical stripe of 2 is added. Thus, the image pickup apparatus subtracts the effective pixel signal as an H-shading correction signal (FIG. 4A).
In the imaging apparatus, after interpolating a pixel signal outside the range of the first variable threshold according to the amplification factor and the H-shading component with a cubic curve value of four left and right pixels, the V-OB signal is converted into a horizontal signal. It is decomposed into each component of sawtooth (H-Saw) component, horizontal image rising edge (H-Top-Frame) component and horizontal ringing (H-ringing) component, and the composition of each component is converted to horizontal shading (H- It is an imaging apparatus characterized by using a correction signal (shading) (FIG. 4B).

さらに上記撮像装置において、遮光しての暗部調整時や電源ターンオフ時の電源ターンオフ直前に遮光してV−OBの白キズ記憶し白キズは左右4画素の(重み付け平均値または3次曲線値の)計算値で補間することを特徴とする、撮像装置である。(図4B)   Further, in the above image pickup apparatus, V-OB white scratches are stored by shading immediately before power-off at the time of dark part adjustment or power-off at the time of light-off. White scratches are the weighted average value or cubic curve value of 4 pixels on the left and right. ) An imaging apparatus characterized by interpolating with a calculated value. (Fig. 4B)

本発明によれば、V−OBを有する固体撮像素子を用いた撮像装置において、(低温起動時に緩やかに変化する場合も高温時の白キズの多い場合も)水平周期の固定パターンノイズ(縦筋成分)が発生せず安定に水平シェーディングの除去を実現できる。   According to the present invention, in an imaging device using a solid-state imaging device having a V-OB, a fixed pattern noise (longitudinal streak) with a horizontal period (whether it changes gently at low temperature startup or has many white scratches at high temperature). It is possible to stably remove horizontal shading without generating any component.

本発明のテレビジョンカメラの一実施例を示すブロック図。The block diagram which shows one Example of the television camera of this invention. 撮像素子の画素構成を示す模式図。FIG. 3 is a schematic diagram illustrating a pixel configuration of an image sensor. 本発明の一実施例のリアルタイムの水平シェーディング補正部の構成を示すブロック図。The block diagram which shows the structure of the real-time horizontal shading correction | amendment part of one Example of this invention. 本発明の一実施例のリアルタイムの水平シェーディング成分検出部の回路構成を示すブロック図。(縦筋成分除去後の白キズ黒キズ除去用の第一の補間可変閾値と、暗電流異常と雑音除去用の第二の補間可変閾値での左右4画素の重み付け平均値補間と、2の累乗周期(8画素程度)の雑音平均部と、水平シェーディング成分平均部。)The block diagram which shows the circuit structure of the real-time horizontal shading component detection part of one Example of this invention. (Weighted average interpolation of left and right four pixels with a first interpolation variable threshold value for removing white scratches and black scratches after vertical stripe component removal, and a second interpolation variable threshold value for dark current abnormality and noise removal, (Noise average part of power cycle (about 8 pixels) and horizontal shading component average part.) 本発明の一実施例のリアルタイムの水平シェーディング成分検出部の回路構成を示すブロック図。(縦筋成分除去後の電源off等の記憶白キズ除去後に、左右4画素の3次曲線値から第二可変閾値の範囲外補間部と、リンギング周期以上(32画素程度)の雑音平均部と、H-Saw成分とH-Top-Frame成分の検出と合成)The block diagram which shows the circuit structure of the real-time horizontal shading component detection part of one Example of this invention. (After removal of white scratches such as power-off after removing vertical streak components, an interpolation unit outside the range of the second variable threshold from the cubic curve value of the left and right 4 pixels, and a noise averaging unit of the ringing period or more (about 32 pixels) , Detection and synthesis of H-Saw and H-Top-Frame components) 本発明の一実施例のリアルタイムの水平シェーディング成分検出の補間可変閾値の模式図。((a)V−OB値の模式図(b1)縦筋成分除去したV−OB波形と(白キズ黒キズ除去用の)起動時の初端が広く後半が狭い第一の補間可変閾値の模式図(b2)縦筋成分除去したV−OB波形と(白キズ黒キズ除去用の)通常時のH-Shading波形の上下の第一の補間可変閾値の模式図(c)縦筋成分除去したV−OB波形と(暗電流異常と雑音除去用の)第二の補間可変閾値の模式図(d)LPF後の波形の模式図(e)縦筋成分加算したH-Shading波形の模式図)The schematic diagram of the interpolation variable threshold value of the real-time horizontal shading component detection of one Example of this invention. ((A) Schematic diagram of V-OB value (b1) V-OB waveform from which vertical streak component has been removed, and first interpolation variable threshold value with a wide initial start point (for white scratches and black scratches) and a narrow second half Schematic diagram (b2) Schematic diagram of the first interpolation variable threshold values above and below the V-OB waveform with the vertical stripe component removed and the normal H-Shading waveform (for removing white scratches and black scratches) (c) Vertical stripe component removal (D) Schematic diagram of second interpolation variable threshold (for dark current abnormality and noise removal) (d) Schematic diagram of waveform after LPF (e) Schematic diagram of H-Shading waveform with added vertical streak component ) 本発明の一実施例のリアルタイムの水平シェーディング成分検出部の成分検出と合成を示す模式図。((a)V−OB値の模式図(b)縦筋成分除去したV−OB波形の模式図(c)縦筋成分と白キズ黒キズ除去したV−OB波形(d)H-Saw成分の模式図(e)H-Top-Frame成分の模式図(f)H-Ringing成分の模式図)The schematic diagram which shows the component detection and a synthesis | combination of the real-time horizontal shading component detection part of one Example of this invention. ((A) Schematic diagram of V-OB value (b) Schematic diagram of V-OB waveform with vertical streak component removed (c) V-OB waveform with vertical streak component and white and black scratches removed (d) H-Saw component (E) Schematic diagram of H-Top-Frame component (f) Schematic diagram of H-Ringing component) 本発明の実施例を説明するタイミングチャート。4 is a timing chart illustrating an example of the present invention. 従来のテレビジョンカメラを示すブロック図。The block diagram which shows the conventional television camera.

以下、本発明の一実施例について、本発明のテレビジョンカメラの一実施例を示すブロック図の図1と、撮像素子の画素構成を示す模式図の図2と、本発明の一実施例のリアルタイムの水平シェーディング補正部の構成を示すブロック図の図3と、本発明の一実施例のリアルタイムの水平シェーディング成分検出部の回路構成を示すブロック図(縦筋成分除去後の白キズ黒キズ除去用の第一の補間可変閾値と、暗電流異常と雑音除去用の第二の補間可変閾値での左右4画素の重み付け平均値補間と、2の累乗周期(8画素程度)の雑音平均部と、水平シェーディング成分平均部)の図4Aと、本発明の一実施例のリアルタイムの水平シェーディング成分検出部の回路構成を示すブロック図(縦筋成分除去後の電源off等の記憶白キズ除去後に、左右4画素の3次曲線値から第二可変閾値の範囲外補間部と、リンギング周期以上(32画素程度)の雑音平均部と、H-Saw成分とH-Top-Frame成分の検出と合成)の図4Bと、本発明の一実施例のリアルタイムの水平シェーディング成分検出の補間可変閾値の模式図の図5Aと、本発明の一実施例のリアルタイムの水平シェーディング成分検出部の成分検出と合成を示す模式図の図5Bと、本発明の実施例を説明するタイミングチャートの図6とを用いて説明する。   FIG. 1 is a block diagram showing an embodiment of a television camera of the present invention, FIG. 2 is a schematic diagram showing a pixel configuration of an image sensor, and an embodiment of the present invention. FIG. 3 is a block diagram showing a configuration of a real-time horizontal shading correction unit, and a block diagram showing a circuit configuration of a real-time horizontal shading component detection unit according to an embodiment of the present invention (removal of white scratches and black scratches after removal of vertical stripe components) A first interpolation variable threshold value for use, a weighted average value interpolation of left and right four pixels at a second interpolation variable threshold value for dark current abnormality and noise removal, and a noise averaging unit having a power cycle of 2 (about 8 pixels) 4A of the horizontal shading component average unit) and a block diagram showing the circuit configuration of the real-time horizontal shading component detection unit of the embodiment of the present invention (after removing the white scratches such as the power off after removing the vertical streak component, left Detection and synthesis of the second variable threshold out-of-range interpolation from the cubic curve value of the right 4 pixels, the noise averaging part above the ringing period (about 32 pixels), H-Saw component and H-Top-Frame component) FIG. 4B, FIG. 5A of a schematic diagram of an interpolation variable threshold value for real-time horizontal shading component detection of one embodiment of the present invention, and component detection and synthesis of the real-time horizontal shading component detection unit of one embodiment of the present invention. 5B of the schematic diagram shown and FIG. 6 of the timing chart explaining the Example of this invention are demonstrated.

図1と従来のテレビジョンカメラを示すブロック図の図7の相違点は、リアルタイムシェーディング補正機能付映像信号処理部の8Aに上記の目的を解決するため、撮像装置において、(各成分以外は白キズや雑音として排除するため、)1走査線程度と少ないV−OB信号から2の累乗周期縦筋の成分を減算し(て画素単位のH-shading成分を除去し)、(0dBなら左端1%以下と5%以上で右半分0%以下と1%以上で、+36dBなら左端63%以下と315%以上で右半分0%以下と63%以上と)増幅度とH-shading各成分にあわせた起動時は初端が広く後半が狭く通常時はH-Shading波形の上下の第一の可変閾値の範囲外の画素信号(白キズや黒キズ)を(連続キズがなければ)左右画素の平均で補間し(連続キズがあれば)左右4画素の重み付け平均値で補間してから、左右4画素の重み付け平均値(H-shading各成分)と第一の可変閾値の範囲の数分の1以上と大きく異なる画素信号(暗電流異常や雑音)を3次曲線値で補間した(重み付け移動平均)信号に2の累乗周期縦筋の成分を加算してH-shading補正信号とするか、1走査線程度と少ないV−OB信号を、2の累乗周期縦筋のH-shading、H-SAW、H-Top-Frame、H-Ringing、各成分に分解し、H-shading各成分の合成をH-shading補正信号とする機能、つまりリアルタイムにシェーディングを補正する機能が含まれていることである。
上記撮像装置において、遮光しての暗部調整時や電源ターンオフ時の電源ターンオフ直前に遮光して1走査線程度と少ないV−OBの白キズ記憶し白キズは左右4画素の(重み付け平均値または3次曲線値の)計算値で補間しても良い。電源ターンオフをソフト制御として、電源ターンオフ時の電源ターンオフ直前に遮光してV−OBの白キズ記憶の後に、電源ターンオフすればよい。
The difference between FIG. 1 and FIG. 7 of the block diagram showing the conventional television camera is that, in order to solve the above object, 8A of the video signal processing unit with a real-time shading correction function, In order to eliminate as scratches and noise, subtract the component of the power-cycle vertical stripe of 2 from the V-OB signal as small as about 1 scan line (and remove the H-shading component in pixel units), and if it is 0 dB, the left end 1 % And 5% or more, right half 0% or less and 1% or more, and + 36dB, left edge 63% or less and 315% and right half 0% or less and 63% or more) According to each amplification factor and H-shading component When starting up, the first end is wide and the second half is narrow. When normal, pixel signals (white scratches and black scratches) outside the first variable threshold range above and below the H-Shading waveform (if there are no continuous scratches) Interpolated on average (if there are continuous flaws), left and right 4 pixel weights After interpolating with the average value, pixel signals (dark current abnormality and noise) that are significantly different from the weighted average value of each of the left and right four pixels (each H-shading component) and more than a fraction of the first variable threshold range Add a component of the vertical power of 2 to the interpolated (weighted moving average) signal with a cubic curve value to make an H-shading correction signal, or a V-OB signal as small as about 1 scan line to a power of 2 H-shading of periodic longitudinal stripes, H-SAW, H-Top-Frame, H-Ringing, decomposed into each component, and the function of combining each component of H-shading as an H-shading correction signal, that is, shading in real time The function to correct is included.
In the above image pickup apparatus, V-OB white scratches with as little as about one scanning line are stored with light shielding immediately before dark power adjustment with light shielding or immediately before power turn-off at the time of power turn-off. You may interpolate with the calculated value (of the cubic curve value). The power supply turn-off may be set as a soft control, and the power supply may be turned off after storing the white scratch of the V-OB by shielding light immediately before the power supply turn-off at the time of power supply turn-off.

図1において、1はテレビジョンカメラ、2はレンズ、3はプリズム、4R,4G,4BはCCD、5R,5G,5BはCDS、6R,6G,6BはVGA、7R,7G,7BはA/D変換部、8Aは縦筋補正機能付映像信号処理部、9は映像信号出力部、10はTG、11はCPUである。
図1において、被写体からの入射光はレンズ部2で結像され、結像された入射光はテレビジョンカメラ1のプリズム部3で赤色光と緑色光および青色光に分解され、赤色光はCCD(Charge Coupled Device)部4Rに入射され、緑色光はCCD部4Gに入射され、青色光はCCD部4Bに入射される。
In FIG. 1, 1 is a television camera, 2 is a lens, 3 is a prism, 4R, 4G and 4B are CCD, 5R, 5G and 5B are CDS, 6R, 6G and 6B are VGA, 7R, 7G and 7B are A / A. A D conversion unit, 8A is a video signal processing unit with a vertical stripe correction function, 9 is a video signal output unit, 10 is a TG, and 11 is a CPU.
In FIG. 1, incident light from a subject is imaged by a lens unit 2, and the formed incident light is decomposed into red light, green light, and blue light by a prism unit 3 of a television camera 1. The (Charge Coupled Device) part 4R is incident, the green light is incident on the CCD part 4G, and the blue light is incident on the CCD part 4B.

CCD部4Rに入射された赤色光はCCD部4Rで光電変換されて赤色信号となる。赤色信号はCDS(correlated double sampling)部5Rで雑音等が除去され、VGA(Variable Gain Amplifier)部6Rで所定のレベルに増幅され、A/D変換部(Analog Digital converter)7Rでデジタル信号に変換されてR信号となる。CDSとVGAとA/D変換部はAFE(Analog Front End)に統合されることが多い。
同様に、CCD部4Gに入射された緑色光はCCD部4Gで光電変換されて緑色信号となる。緑色信号はAFEに統合されたCDS部5Gで雑音等が除去され、VGA部6Gで所定のレベルに増幅され、A/D変換部7Gでデジタル信号に変換されてG信号となる。
同様に、CCD部4Bに入射された青色光はCCD部4Bで光電変換されて青色信号となる。青色信号はAFEに統合されたCDS部5Bで雑音等が除去され、VGA部6Bで所定のレベルに増幅され、A/D変換部7Bでデジタル信号に変換されてB信号となる。
The red light incident on the CCD unit 4R is photoelectrically converted by the CCD unit 4R to become a red signal. The red signal is denoised by a CDS (correlated double sampling) unit 5R, amplified to a predetermined level by a VGA (variable gain amplifier) unit 6R, and converted to a digital signal by an A / D conversion unit (Analog Digital converter) 7R. As a result, an R signal is obtained. The CDS, VGA, and A / D converter are often integrated into an AFE (Analog Front End).
Similarly, the green light incident on the CCD unit 4G is photoelectrically converted by the CCD unit 4G to become a green signal. From the green signal, noise or the like is removed by the CDS unit 5G integrated with the AFE, amplified to a predetermined level by the VGA unit 6G, converted into a digital signal by the A / D conversion unit 7G, and converted into a G signal.
Similarly, the blue light incident on the CCD unit 4B is photoelectrically converted by the CCD unit 4B to become a blue signal. The blue signal is denoised by the CDS unit 5B integrated with the AFE, amplified to a predetermined level by the VGA unit 6B, converted into a digital signal by the A / D conversion unit 7B, and becomes a B signal.

R信号、G信号、B信号は、リアルタイムシェーディング補正機能付映像信号処理部の8Aで色補正、輪郭補正、ガンマ補正、ニー補正等の各種映像信号処理が行われ、映像出力部9で映像信号を出力する。
CPU(Central Processing Unit)11は、テレビジョンカメラ1の各部を制御する。また、TG(Timing Generator)10は、撮像素子4およびCDS回路5を駆動するためのタイミング信号生成部である。
The R signal, the G signal, and the B signal are subjected to various video signal processing such as color correction, contour correction, gamma correction, and knee correction in the video signal processing unit 8A with a real-time shading correction function, and the video output unit 9 performs video signal processing. Is output.
A CPU (Central Processing Unit) 11 controls each part of the television camera 1. A TG (Timing Generator) 10 is a timing signal generator for driving the image sensor 4 and the CDS circuit 5.

TG10が生成するタイミング信号が、撮像素子の4Rや4Gや4B、CDSの5Rや5Gや5Bに飛び込み、画質を劣化させる場合がある。
TG10による飛び込み信号(以下、TGノイズと表記)は、システムクロックの2ヶまたは4ヶまたは8ヶ等の)2の累乗の分周期である。TGノイズは、一般に1/8または1/4周期の信号であり、これは縦スジ状の固定パターンノイズとして映像に表れる。また、TG10において、映像信号の水平同期信号に対して非同期の分周を行っている場合には、電源起動時や、装置のモード切替えに伴うクロック信号の再投入により、TGノイズの位相が変化する。
The timing signal generated by the TG 10 may jump into 4R, 4G, or 4B of the image sensor, or 5R, 5G, or 5B of the CDS, thereby degrading the image quality.
A jump signal by TG 10 (hereinafter referred to as TG noise) is a fractional cycle of a power of 2 (such as two, four, or eight) of the system clock. The TG noise is generally a signal having a period of 1/8 or 1/4, and this appears in the video as a fixed pattern noise having a vertical stripe shape. Also, in TG10, when asynchronous frequency division is performed with respect to the horizontal sync signal of the video signal, the phase of the TG noise changes when the power is turned on or when the clock signal is turned on again when the mode of the device is switched. To do.

そこで、このパターンを抽出するために、2ヶまたは4ヶまたは8ヶ等の2の累乗の画素毎に水平加算平均を行う。これにより2ヶまたは4ヶまたは8ヶ等の2の累乗画素毎に繰り返される固定パターンが抽出され、これを元の映像から減算して縦スジを補正することにより、固定パターンノイズによる画質劣化を防止する。   Therefore, in order to extract this pattern, horizontal addition averaging is performed for each pixel of powers of 2 such as 2 or 4 or 8. This extracts a fixed pattern that is repeated every 2 power pixels, such as 2 or 4 or 8, and subtracts it from the original video to correct vertical stripes, thereby reducing image quality degradation due to fixed pattern noise. To prevent.

撮像素子4の画素構成は、図2に示すように、有効映像画素と垂直および水平のBL(ブランキング)画素で構成されている。BL画素は、OB(Optical Black)と画素が存在しない無画素部分で構成されている。   As shown in FIG. 2, the pixel configuration of the image sensor 4 is composed of effective video pixels and vertical and horizontal BL (blanking) pixels. The BL pixel is composed of an OB (Optical Black) and a non-pixel portion where no pixel exists.

通常の撮像時にも補正効果が得られるように、固定パターンの垂直(Vertical)BL画素のOB(V−OB)を利用して行う。V−OBラインが4本程度であり、雑音が少なく固定パターンノイズ抽出に使用できるV−OBは2ライン程度であり、この2ラインのV−OBから固定パターンを抽出する。   In order to obtain a correction effect even during normal imaging, OB (V-OB) of a vertical BL pixel having a fixed pattern is used. There are about four V-OB lines, and there are about two V-OBs that can be used for fixed pattern noise extraction with little noise, and a fixed pattern is extracted from these two lines of V-OBs.

以下、本発明の一実施例を図3と図4Aと図4Bと図5Aと図5Bと図6を用いて説明する。
図3はリアルタイムの水平シェーディング補正部のブロック図である。図4Aは本発明の一実施例のリアルタイムの水平シェーディング成分検出部の回路構成を示すブロック図。(縦筋成分除去後の白キズ黒キズ除去用の第一の補間可変閾値と暗電流異常と雑音除去用の第二の補間可変閾値での左右4画素の重み付け平均値補間)である。図4Bは本発明の一実施例のリアルタイムの水平シェーディング成分検出部の回路構成を示すブロック図。(縦筋成分除去後の電源off等の記憶白キズ除去後に、H-Saw成分とH-Top-Frame成分とH-Ringing成分の検出と合成)である。図5Aは、本発明の一実施例のリアルタイムの水平シェーディング成分検出の補間可変閾値の模式図である。図5Bは、本発明の一実施例のリアルタイムの水平シェーディング成分検出部の成分検出と合成を示す模式図である。図6は、本発明の実施例を説明するタイミングチャートである。
図3と図4Aと図4Bと図5Aと図5Bは1ch分のみ図示しているが、実際には同回路がRGB3ch分で構成される。
ここでは、TGノイズによる8画素の周期性固定パターンノイズを除去する例を、図3〜図4を用いて説明する。
An embodiment of the present invention will be described below with reference to FIGS. 3, 4A, 4B, 5A, 5B, and 6. FIG.
FIG. 3 is a block diagram of a real-time horizontal shading correction unit. FIG. 4A is a block diagram illustrating a circuit configuration of a real-time horizontal shading component detection unit according to an embodiment of the present invention. (Weighted average interpolation of left and right four pixels with a first interpolation variable threshold for removing white scratches and black scratches after removal of vertical streak components, and a second interpolation variable threshold for dark current abnormality and noise removal). FIG. 4B is a block diagram illustrating a circuit configuration of a real-time horizontal shading component detection unit according to an embodiment of the present invention. (Detection and synthesis of H-Saw component, H-Top-Frame component, and H-Ringing component after removal of memory white scratches such as power-off after vertical stripe component removal). FIG. 5A is a schematic diagram of an interpolation variable threshold value for real-time horizontal shading component detection according to an embodiment of the present invention. FIG. 5B is a schematic diagram illustrating component detection and synthesis of the real-time horizontal shading component detection unit according to an embodiment of the present invention. FIG. 6 is a timing chart for explaining an embodiment of the present invention.
FIGS. 3, 4A, 4B, 5A, and 5B show only one channel, but in actuality, the same circuit is composed of three RGB channels.
Here, an example of removing periodic fixed pattern noise of 8 pixels due to TG noise will be described with reference to FIGS.

図3は固定パターン補正部のブロック図である。固定パターン補正部は図1のリアルタイムシェーディング補正機能付映像信号処理部の8Aに含まれる。固定パターン補正部は加算器12a〜12c、スイッチ13a〜13b、フリップフロップ14a〜14h、平均値算出部(bit shift除算部)15、オフセット除去部16、減算器17a〜17bで構成される。
固定パターン補正部は、入力信号の垂直OB部2ラインの信号を8画素毎に加算し、その8画素毎の平均値を求めた後、オフセットを除去し、入力信号から減算することで、入力信号に重畳された8画素周期の固定パターンノイズを除去する。
以下、動作の詳細を説明する。
FIG. 3 is a block diagram of the fixed pattern correction unit. The fixed pattern correction unit is included in 8A of the video signal processing unit with a real-time shading correction function in FIG. The fixed pattern correction unit includes adders 12a to 12c, switches 13a to 13b, flip-flops 14a to 14h, an average value calculation unit (bit shift division unit) 15, an offset removal unit 16, and subtractors 17a to 17b.
The fixed pattern correction unit adds the signals of the two lines of the vertical OB part of the input signal every 8 pixels, calculates the average value for each 8 pixels, removes the offset, and subtracts it from the input signal. The fixed pattern noise with a period of 8 pixels superimposed on the signal is removed.
Details of the operation will be described below.

図6にタイミングチャートを示す。add_enableは前記加算処理を行うときにHighに制御される信号で、図3のスイッチ13aを制御する。add_enableは垂直ブランキング期間内の垂直OB部内の、有効映像期間内で有効映像部にあたる1920画素の期間Highに制御する。このとき、スイッチ13はadd_enableによりa側に制御され、加算器12により入力信号とフリップフロップ14a〜14hに格納された8画素前のデータの加算結果が、再度フリップフロップ14aに入力される。これが8画素毎に繰り返されることにより、フリップフロップ14a〜14hに8画素周期のパターンが抽出される。   FIG. 6 shows a timing chart. add_enable is a signal that is controlled to High when the addition process is performed, and controls the switch 13a in FIG. add_enable is controlled to a period High of 1920 pixels corresponding to the effective image portion in the effective image period in the vertical OB portion in the vertical blanking period. At this time, the switch 13 is controlled to the a side by add_enable, and the adder 12 adds the input signal and the result of adding the previous 8 pixels of data stored in the flip-flops 14a to 14h to the flip-flop 14a again. By repeating this every 8 pixels, a pattern of 8 pixel periods is extracted to the flip-flops 14a to 14h.

前期の加算期間以外は、add_enableはLowに制御される。このとき、スイッチ13aはadd_enableによりb側に制御され、フリップフロップ14a〜14hに格納されたデータが8画素毎にフリップフロップを周回する。この後、平均値算出部15で平均化することでランダムノイズを低減し、オフセット除去部16でオフセットを除去したのち、入力信号から減算することにより、8画素周期の固定パターンが除去された信号を得る。resetは、上記加算処理を行う1ライン前にHighになり、フリップフロップ14a〜14hをリセットする。   Add_enable is controlled to Low except during the previous addition period. At this time, the switch 13a is controlled to the b side by add_enable, and the data stored in the flip-flops 14a to 14h goes around the flip-flop every 8 pixels. Thereafter, the average noise is averaged by the average value calculator 15 to reduce the random noise, the offset is removed by the offset remover 16, and then subtracted from the input signal to remove the fixed pattern of the 8-pixel cycle. Get. “reset” becomes “High” one line before the above addition processing, and resets the flip-flops 14a to 14h.

本実施例は、8個のフリップフロップを用いたものであるが、8個用いたことにより、4画素周期のパターン、あるいは2画素周期の固定パターンノイズ(縦筋成分)も抽出、除去が可能である。
別の実施例として、4画素の周期性固定パターンノイズを除去する場合は、4個のフリップフロップを用いた構成とすることで、4画素周期のパターン、あるいは2画素周期の固定パターンノイズ(縦筋成分)が抽出、除去可能である。
In this embodiment, eight flip-flops are used, but by using eight flip-flops, it is possible to extract and remove a pattern with a 4-pixel cycle or a fixed pattern noise (vertical stripe component) with a 2-pixel cycle. It is.
As another example, when removing periodic fixed pattern noise of four pixels, a configuration using four flip-flops can be used to form a pattern of four pixel periods or a fixed pattern noise (vertical length of two pixels). Muscle component) can be extracted and removed.

また、図3のフリップフロップを増加して、16ヶや32ヶや64ヶ等の2の累乗ヶのフリップフロップを用いれば、システムクロックの16分周期や32分周期や64分周期等の2の累乗分周期つまり16ヶや32ヶや64ヶ等の2の累乗ヶの画素周期の縦スジ状の固定パターンノイズを抽出することができる。   Further, if the number of flip-flops in FIG. 3 is increased and a power of 2 such as 16, 32, or 64 is used, the system clock has a 16-minute period, a 32-minute period, a 64-minute period, or the like. Vertical streak-like fixed pattern noise having a period of a power of 2, that is, a power of 2 such as 16, 32, or 64, can be extracted.

以下、本発明の一実施例について、本発明の一実施例のリアルタイムの水平シェーディング成分検出部の2の累乗ヶ画素周期の固定パターンノイズ(縦筋成分)除去後の白キズ黒キズ除去用の第一の補間可変閾値と暗電流異常と雑音除去用の第二の補間可変閾値での左右4画素の重み付け平均値間の)回路構成を示すブロック図の図4Aと、本発明の一実施例のリアルタイムの水平シェーディング成分検出の補間可変閾値の模式図の図5Aを用いて実施例1との相違を説明する。   Hereinafter, with respect to an embodiment of the present invention, for removal of white scratches and black scratches after removal of fixed pattern noise (vertical streak component) having a power cycle of 2 in the real-time horizontal shading component detection unit of the embodiment of the present invention. FIG. 4A is a block diagram showing a circuit configuration (between the weighted average values of the left and right four pixels at the first interpolation variable threshold, dark current abnormality, and second interpolation variable threshold for noise removal), and one embodiment of the present invention A difference from the first embodiment will be described with reference to FIG. 5A of a schematic diagram of an interpolation variable threshold value for real-time horizontal shading component detection.

本発明の一実施例のリアルタイムの水平シェーディング成分検出部の回路構成を示すブロック図の図4Aにおいて、18は水平シェーディング成分検出部で、19は2の累乗ヶ画素周期の固定パターンノイズ(縦筋成分)除去後の白キズ黒キズ除去用の第一の補間可変閾値で、20は暗電流異常と雑音除去用の左右4画素の重み付け平均値から第二可変閾値の範囲外補間部で、21は第一の可変閾値判定部で、2の累乗周期(8画素程度)の雑音平均部と、水平シェーディング成分平均部である。
図4Aにおいて、14a〜14pのフリップフロップと、12a〜12rの加算器と、15のbit shift除算部とで、左右4画素の重み付け平均値補間信号を発生する。そして、21の第一の可変閾値判定部と、22の左右4画素の3次曲線値から第二可変閾値の範囲外判定部とで、左右4画素の重み付け平均値補間を制御する。また、14a〜14pのフリップフロップと、12a〜12rの加算器と、15のbit shift除算部とで、2の累乗周期(8画素程度)の雑音平均をする。
4A is a block diagram illustrating a circuit configuration of a real-time horizontal shading component detection unit according to an embodiment of the present invention. In FIG. 4A, 18 is a horizontal shading component detection unit, and 19 is a fixed pattern noise (vertical streak) having a power-of-two pixel period. Component) A first interpolation variable threshold value for removing white scratches and black scratches after removal, and 20 is an interpolation unit outside the range of the second variable threshold value from the weighted average value of the left and right four pixels for dark current abnormality and noise removal. Is a first variable threshold value determination unit, which is a noise average unit having a power cycle of 2 (about 8 pixels) and a horizontal shading component average unit.
In FIG. 4A, 14a to 14p flip-flops, 12a to 12r adders, and 15 bit shift division units generate weighted average interpolation signals of 4 pixels on the left and right. Then, the first variable threshold value determination unit 21 and the second variable threshold value out-of-range determination unit 22 control the weighted average interpolation of the left and right four pixels. The 14a-14p flip-flops, 12a-12r adders, and 15 bit shift division units average noise of 2 power cycles (about 8 pixels).

図5Aにおいて、(a)V−OB値の模式図、(b1)2の累乗ヶ画素周期の固定パターンノイズ(縦筋成分)除去したV−OB波形と(白キズ黒キズ除去用の)起動時の初端が広く後半が狭い第一の補間可変閾値の模式図、(b2)縦筋成分除去したV−OB波形と(白キズ黒キズ除去用の)通常時のH-Shading波形の上下の第一の補間可変閾値の模式図、(c)縦筋成分除去したV−OB波形と(暗電流異常と雑音除去用の)第二の補間可変閾値の模式図、(d)LPF後の波形の模式図、(e)縦筋成分加算したH-Shading波形の模式図である。   In FIG. 5A, (a) Schematic diagram of V-OB value, (b1) V-OB waveform with fixed pattern noise (vertical streak component) removed in power-of-two pixel period and activation (for removing white scratches and black scratches) Schematic diagram of the first variable interpolation threshold with the first edge wide and the second half narrow, (b2) V-OB waveform with vertical streak component removed, and upper and lower of normal H-Shading waveform (for removing white scratches and black scratches) (C) Schematic diagram of the first interpolation variable threshold value, (c) Schematic diagram of the V-OB waveform from which the vertical streak component is removed, and the second interpolation variable threshold value (for dark current abnormality and noise removal), (d) After LPF It is the schematic diagram of a waveform, (e) The schematic diagram of the H-Shading waveform which added the vertical stripe component.

図4Aと図5Aにおいて、2の累乗ヶ画素周期の固定パターンノイズ(縦筋成分)除去後に、低温での起動時は図5A(b1)のように、増幅度とH-shading各成分にあわせた起動時は初端が広く後半が狭い第一の可変閾値の範囲外補間部で、レベルの著しい白キズと黒キズとは左右4画素の重み付け平均値で補間する。通常時は図5A(b2)のように、H-Shading波形から大きく上下に離れた第一の補間可変閾値の範囲外補間部で、ほとんどの白キズと黒キズとは左右4画素の重み付け平均値で補間する。また、左右4画素の重み付け平均値から少し上下に離れた(H-Shading波形から少し上下に離れた)第二可変閾値の範囲外の暗電流異常と雑音とを除去するため、左右4画素の重み付け平均値で補間して、2の累乗周期(8画素程度)の雑音平均して、ラインメモリで加算平均し、オフセットを除去した後に、2の累乗ヶ画素周期の固定パターンノイズ(縦筋成分)を加算した信号を、水平シェーディング補正信号にする。   4A and 5A, after removing fixed pattern noise (vertical streak component) with a power-of-two pixel period, when starting at low temperature, as shown in FIG. 5A (b1), the gain and H-shading components are matched. At the time of start-up, the first variable threshold value out-of-range interpolation section having a wide initial edge and a narrow latter half interpolates white scratches and black scratches with significant levels by weighted average values of left and right four pixels. Normally, as shown in Fig. 5A (b2), this is the first interpolation variable threshold out-of-range interpolation section that is far away from the H-Shading waveform. Most white and black scratches are weighted averages of the left and right four pixels. Interpolate by value. In addition, in order to remove dark current anomalies and noises that are slightly apart from the weighted average value of the left and right four pixels (a little apart from the H-Shading waveform) and outside the second variable threshold range, Interpolated by weighted average value, averaged noise of 2 power cycles (about 8 pixels), added and averaged in line memory, and after removing offset, fixed pattern noise (vertical stripe component) of 2 power pixels cycle ) Is used as a horizontal shading correction signal.

つまり、実施例2では、低温での起動時はCCDや周辺回路の温度が低く、水平シェーディングが大きいが、白キズのレベルは低いことを活用する。CCDや周辺回路の温度が低いと、水平シェーディングが大きいが、白キズのレベルは低いので、水平シェーディング補正誤差は少ない。CCDや周辺回路の温度が高いと、水平シェーディングが小さいので、白キズのレベルは高くとも、水平シェーディング補正誤差は少ない。
CCDや周辺の温度センサ情報やV−OBの平均値からCCDや周辺回路の温度情報を取得して活用してもよい。
That is, the second embodiment utilizes the fact that the temperature of the CCD and peripheral circuits is low and the horizontal shading is large but the level of white scratches is low when starting at a low temperature. When the temperature of the CCD or the peripheral circuit is low, the horizontal shading is large, but since the level of white scratches is low, the horizontal shading correction error is small. When the temperature of the CCD or the peripheral circuit is high, the horizontal shading is small. Therefore, even if the level of white scratches is high, the horizontal shading correction error is small.
You may acquire and utilize the temperature information of CCD or a peripheral circuit from CCD, the surrounding temperature sensor information, and the average value of V-OB.

以下、本発明の一実施例について、本発明の一実施例の(2の累乗ヶ画素周期の固定パターンノイズ(縦筋成分)除去後のH-Saw成分とH-Top-Frame成分とH-Ringing成分の検出と合成の)リアルタイムの水平シェーディング成分検出部の回路構成を示すブロック図の図4Bと、本発明の一実施例のリアルタイムの水平シェーディング成分検出部の成分検出と合成を示す模式図の図5Bと、を用いて実施例2との相違を説明する。   Hereinafter, the H-Saw component, the H-Top-Frame component, and the H-Saw component after removing the fixed pattern noise (vertical stripe component) of the power-of-two pixel period of one embodiment of the present invention will be described. FIG. 4B is a block diagram showing a circuit configuration of a real-time horizontal shading component detection unit (for detecting and combining ringing components), and a schematic diagram showing component detection and synthesis of the real-time horizontal shading component detection unit according to an embodiment of the present invention. FIG. 5B is used to explain the difference from the second embodiment.

本発明の一実施例のリアルタイムの水平シェーディング成分検出部の回路構成を示すブロック図の図4Bにおいて、縦筋成分除去の後に、遮光しての暗部調整時や電源ターンオフ時の電源ターンオフ直前に遮光しての記憶した白キズ除去後に、左右4画素の3次曲線値から第二可変閾値の範囲外補間部と、リンギング周期以上(32画素程度)の雑音平均部と、水平鋸歯状(H-Saw)成分と水平映像立ち上がり部分の跳ね上がり(H-Top-Frame)成分と水平リンギング(H-ringing)成分の検出と合成で、22は左右4画素の3次曲線値から第二可変閾値の範囲外判定部で、23はH-SAW検出部である。
図4Bにおいて、14a〜14pのフリップフロップと、12a〜12iの加算器と、17a〜17fの減算器と、15のbit shift除算部とで、左右4画素の3次曲線値補間信号を発生する。そして、白キズ情報と、22の左右4画素の3次曲線値から第二可変閾値の範囲外判定部とで、左右4画素の3次曲線値補間を制御する。また、14a〜14p,14ζ〜14ηのフリップフロップと、12a〜12r,12ε〜12ηの加算器と、15のbit shift除算部とで、リンギング周期以上(32画素程度)の雑音平均をする。
In FIG. 4B of the block diagram illustrating the circuit configuration of the real-time horizontal shading component detection unit according to an embodiment of the present invention, the light is shielded immediately after the removal of the vertical streak component and before the power supply turn-off at the time of dark part adjustment or the power supply turn-off. After removing the white scratches memorized in this way, from the cubic curve value of the left and right 4 pixels, the second variable threshold out-of-range interpolation unit, the noise averaging unit more than the ringing period (about 32 pixels), horizontal sawtooth (H- Saw) component, horizontal image rising edge (H-Top-Frame) component and horizontal ringing (H-ringing) component detection and synthesis, 22 is the range of the second variable threshold from the cubic curve value of the left and right 4 pixels An external determination unit 23 is an H-SAW detection unit.
4B, 14a-14p flip-flops, 12a-12i adders, 17a-17f subtractors, and 15 bit shift division units generate cubic curve value interpolation signals of 4 pixels on the left and right. . Then, the third curve value interpolation of the left and right four pixels is controlled by the white flaw information and the second variable threshold out-of-range determination unit from the cubic curve values of 22 left and right four pixels. In addition, the flip-flops of 14a to 14p and 14ζ to 14η, the adders of 12a to 12r and 12ε to 12η, and the 15 bit shift division unit perform noise averaging over the ringing period (about 32 pixels).

図5Bにおいて、(a)V−OB値の模式図、(b) 2の累乗ヶ画素周期の固定パターンノイズ(縦筋成分)除去したV−OB波形の模式図、(c)縦筋成分と白キズ黒キズ除去したV−OB波形、(d)H-Saw成分の模式図、(e)H-Top-Frame成分の模式図、(f)H-Ringing成分の模式図である。   5B, (a) a schematic diagram of the V-OB value, (b) a schematic diagram of a V-OB waveform from which fixed pattern noise (vertical streak component) having a power of 2 pixel periods is removed, and (c) a vertical streak component and It is a V-OB waveform from which white scratches are removed, (d) a schematic diagram of an H-Saw component, (e) a schematic diagram of an H-Top-Frame component, and (f) a schematic diagram of an H-Ringing component.

図4Bと図5Bにおいて、2の累乗ヶ画素周期の固定パターンノイズ(縦筋成分)除去後に、遮光しての暗部調整時や電源ターンオフ時の電源ターンオフ直前に遮光して1走査線しかないV−OBの白キズ記憶し、白キズは左右4画素の3次曲線値で補間し、左右4画素の3次曲線値から第二可変閾値の範囲外補間して、リンギング周期以上(32画素程度)の雑音平均して、差分の平均値の定積分をHSAW成分とし、リンギング周期以上(32画素程度)の雑音平均した信号からHSAW成分を引き、水平映像立ち上がり部分の跳ね上がり(H-Top-Frame)成分を抽出し、範囲外補間した信号からHSAW成分とH-Top-Frame成分とを引いて、水平リンギング(H-ringing)成分を抽出する。   In FIG. 4B and FIG. 5B, after removing fixed pattern noise (vertical streak component) having a power-of-two pixel period, there is only one scanning line that is shielded from light before dark power adjustment during light shielding or immediately before power-off at power-off. -OB white scratches are memorized, white scratches are interpolated with a cubic curve value of 4 pixels on the left and right, and are interpolated outside the range of the second variable threshold from the cubic curve values of the 4 pixels on the left and right, and the ringing period or more (about 32 pixels) ) Noise average, the definite integral of the average of the differences is the HSAW component, the HSAW component is subtracted from the noise averaged signal longer than the ringing period (about 32 pixels), and the horizontal image rises (H-Top-Frame) ) The component is extracted, and the HSAW component and the H-Top-Frame component are subtracted from the signal interpolated outside the range to extract the horizontal ringing (H-ringing) component.

図4Bと図5Bにおいて、水平リンギング(H-ringing)成分と水平映像立ち上がり部分の跳ね上がり(H-Top-Frame)成分と水平鋸歯状(H-Saw)成分と加算して、オフセットを除去した後に、2の累乗ヶ画素周期の固定パターンノイズ(縦筋成分)を加算した信号を、水平シェーディング信号にする。   4B and 5B, after adding the horizontal ringing (H-ringing) component, the horizontal rising edge (H-Top-Frame) component, and the horizontal sawtooth (H-Saw) component to remove the offset A signal obtained by adding fixed pattern noise (vertical streak component) having a power-of-two pixel period is used as a horizontal shading signal.

1:テレビジョンカメラ、2:レンズ、3:プリズム、
4R,4G,4B:CCD、5R,5G,5B:CDS、6R,6G,6B:VGA、
7R,7G,7B:A/D変換部、
8:映像信号処理部、
8A:リアルタイムシェーディング補正機能付映像信号処理部、
9:映像信号出力部、10:TG、11:CPU、
12a〜12r,12ε〜12η:加算器、13a〜13d:スイッチ、
14a〜14p,14ζ〜14η:フリップフロップ、
15:bit shift除算部、16:オフセット除去部、17a〜17f:減算器、
18:水平シェーディング成分検出部、
19:第一の可変閾値の範囲外補間部、
20:左右4画素の重み付け平均値から第二可変閾値の範囲外補間部、
21:第一の可変閾値判定部、
22:左右4画素の3次曲線値から第二可変閾値の範囲外判定部、
23:H-SAW検出部、
1: Television camera, 2: Lens, 3: Prism,
4R, 4G, 4B: CCD, 5R, 5G, 5B: CDS, 6R, 6G, 6B: VGA,
7R, 7G, 7B: A / D converter,
8: Video signal processing unit,
8A: Video signal processing unit with a real-time shading correction function,
9: Video signal output unit, 10: TG, 11: CPU,
12a to 12r, 12ε to 12η: adders, 13a to 13d: switches,
14a-14p, 14ζ-14η: flip-flop,
15: bit shift division unit, 16: offset removal unit, 17a to 17f: subtractor,
18: Horizontal shading component detection unit,
19: a first variable threshold out-of-range interpolation unit;
20: Out of range interpolation unit of second variable threshold from weighted average value of left and right 4 pixels,
21: First variable threshold value determination unit,
22: a second variable threshold out-of-range determination unit from a cubic curve value of left and right four pixels,
23: H-SAW detector,

Claims (2)

垂直の光学黒(Vertical−Optical Black:V−OB)を有する固体撮像素子を用いた撮像装置において、
V−OB信号から2の累乗ヶ画素周期の固定パターンノイズ(縦筋成分)を減算し、増幅度と水平シェーディング(H-shading)にあわせた第一の可変閾値の範囲外の画素信号を左右4画素の(重み付け平均値または3次曲線値の)計算値で補間することで水平シェーディング(H-shading)補正信号として、有効画素信号から減算するものであり、
増幅度と水平シェーディング(H-shading)にあわせた第一の可変閾値の範囲外の画素信号を左右4画素の3次曲線値で補間してから、V−OB信号を、水平鋸歯状(H-Saw)成分と水平映像立ち上がり部分の跳ね上がり(H-Top-Frame)成分と水平リンギング(H-ringing)成分の各成分に分解し、前記各成分の合成を水平シェーディング(H-shading)補正信号とすることを特徴とする撮像装置
In an imaging device using a solid-state imaging device having vertical optical black (Vertical-Optical Black: V-OB),
Subtract fixed pattern noise (vertical streak component) with a power-of-two pixel period from the V-OB signal, and shift the pixel signal outside the first variable threshold range according to the amplification level and horizontal shading (H-shading). as a horizontal shading (H-shading) correction signal is 4 pixels (the weighted average value or cubic curve value) interpolating calculation value, which is subtracted from the effective pixel signal,
After interpolating the pixel signal outside the range of the first variable threshold according to the amplification degree and horizontal shading (H-shading) with a cubic curve value of four left and right pixels, the V-OB signal is converted into a horizontal sawtooth (H -Saw) component and horizontal image rising portion (H-Top-Frame) component and horizontal ringing (H-ringing) component are decomposed into components, and the composition of each component is converted into a horizontal shading correction signal. An imaging apparatus characterized by the above .
請求項1の撮像装置において、遮光しての暗部調整時や電源ターンオフ時の電源ターンオフ直前に遮光してV−OBの白キズを記憶し白キズは左右4画素の計算値で補間することを特徴とする撮像装置
2. The imaging apparatus according to claim 1, wherein the V-OB white scratch is stored by shading immediately before dark power adjustment when the light is shielded or immediately before the power is turned off when the power is turned off, and the white scratch is interpolated with the calculated values of the left and right pixels. An imaging device that is characterized .
JP2013053184A 2013-03-15 2013-03-15 Imaging device Active JP6176775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013053184A JP6176775B2 (en) 2013-03-15 2013-03-15 Imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013053184A JP6176775B2 (en) 2013-03-15 2013-03-15 Imaging device

Publications (2)

Publication Number Publication Date
JP2014179849A JP2014179849A (en) 2014-09-25
JP6176775B2 true JP6176775B2 (en) 2017-08-09

Family

ID=51699357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013053184A Active JP6176775B2 (en) 2013-03-15 2013-03-15 Imaging device

Country Status (1)

Country Link
JP (1) JP6176775B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4625685B2 (en) * 2004-11-26 2011-02-02 株式会社東芝 Solid-state imaging device
JP4745680B2 (en) * 2005-02-15 2011-08-10 キヤノン株式会社 Imaging apparatus and imaging method
JP5161706B2 (en) * 2008-08-27 2013-03-13 キヤノン株式会社 Imaging apparatus and control method thereof
JP5335327B2 (en) * 2008-08-29 2013-11-06 キヤノン株式会社 Defect detection and correction apparatus and defect detection and correction method
JP2011120111A (en) * 2009-12-04 2011-06-16 Sharp Corp Solid-state image pickup device and electronic information apparatus

Also Published As

Publication number Publication date
JP2014179849A (en) 2014-09-25

Similar Documents

Publication Publication Date Title
US8848063B2 (en) Image processing including image correction
KR20080101803A (en) Solid-state image capturing apparatus and electronic information device
KR100825076B1 (en) Image pickup device and noise reduction method thereof
JP2011087269A (en) Image processing apparatus, image capturing apparatus, image processing method, and program
JP6622481B2 (en) Imaging apparatus, imaging system, signal processing method for imaging apparatus, and signal processing method
KR20080085753A (en) Streaking correction signal generating circuit, streaking correction signal generating method, program, streaking correction circuit and imaging device
JP2009303139A (en) Solid-state imaging apparatus
JP2007300368A (en) Solid-state imaging device
JP2009005329A (en) Imaging apparatus, and processing method thereof
JP4367910B2 (en) Solid-state imaging device
KR101570923B1 (en) Solid-state imaging device
JP4268643B2 (en) Imaging apparatus and noise reduction method thereof
JP2004289559A (en) Solid-state imaging apparatus
US8159566B2 (en) Method and apparatus for compensating signal distortion caused by noise
JP2016167773A (en) Imaging apparatus and processing method of the same
JP4224996B2 (en) Imaging device
JP6176775B2 (en) Imaging device
JP5301302B2 (en) Imaging device
JP4932460B2 (en) Smear correction method and smear correction unit
JP2014175778A (en) Imaging apparatus and imaging method
JP6896788B2 (en) Imaging equipment, imaging methods, computer programs and storage media
JP2011250249A (en) Video signal processing apparatus and video signal processing method
JP6422500B2 (en) Imaging apparatus and imaging method
JP2004088306A (en) Solid-state image pickup device
JP2014068322A (en) Imaging apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170707

R150 Certificate of patent or registration of utility model

Ref document number: 6176775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250