JP6175890B2 - Anti-counterfeit medium and method for reading anti-counterfeit medium - Google Patents

Anti-counterfeit medium and method for reading anti-counterfeit medium Download PDF

Info

Publication number
JP6175890B2
JP6175890B2 JP2013104886A JP2013104886A JP6175890B2 JP 6175890 B2 JP6175890 B2 JP 6175890B2 JP 2013104886 A JP2013104886 A JP 2013104886A JP 2013104886 A JP2013104886 A JP 2013104886A JP 6175890 B2 JP6175890 B2 JP 6175890B2
Authority
JP
Japan
Prior art keywords
region
volume hologram
counterfeit medium
medium
wavelength region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013104886A
Other languages
Japanese (ja)
Other versions
JP2014223768A (en
Inventor
岸本 康
康 岸本
牛腸 智
智 牛腸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2013104886A priority Critical patent/JP6175890B2/en
Publication of JP2014223768A publication Critical patent/JP2014223768A/en
Application granted granted Critical
Publication of JP6175890B2 publication Critical patent/JP6175890B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、センサによる機械読取りにて真偽判定を行なう偽造防止媒体および偽造防止媒体の読取方法に関する。   The present invention relates to an anti-counterfeit medium and a method for reading an anti-counterfeit medium that perform authenticity determination by machine reading by a sensor.

従来、紙幣、株券、商品券さらにはクレジットカード等の有価証券類の他、商品用の封印シールやタグ類に至るまで、偽造や複製による不正使用を防止するため、精巧な印刷技術による印刷等が施されているのが一般的であったが、近年の偽造や複製による不正使用の頻発に鑑み、これら精巧な印刷等に加え特殊なインキによる偽造防止策が施される様になってきた。   Conventionally, in addition to banknotes, stock certificates, gift certificates, and other securities such as credit cards, printing with sophisticated printing technology to prevent unauthorized use due to counterfeiting and duplication, such as seals and tags for products However, in view of the frequent occurrence of unauthorized use due to counterfeiting and duplication in recent years, in addition to these fine prints, forgery prevention measures using special inks have come to be implemented. .

たとえば、紫外光を照射することで可視光域にて発光する蛍光インキ、目視角度によって色や明るさが変わるOVD(Optically Variable Device)インキ等を紙面上に印刷することで、カラーコピー等の複写機で簡単に偽造できない方法が施されている。   For example, fluorescent ink that emits light in the visible light region when irradiated with ultraviolet light, OVD (Optically Variable Device) ink whose color and brightness change depending on the viewing angle, etc., are printed on paper, making copies such as color copies. There are methods that cannot be easily counterfeited by machine.

しかしながら、最近の偽造品は、カラーコピーに加えて上記蛍光インキやOVDを模倣したものを付加した精巧な偽造品が出回ってきている。これらの偽造品は、正品との比較、専門家が見れば容易に判別つくが、偽造品のみを一般の人が見ても簡単に真贋判定することは難しい。   However, as for the recent counterfeit products, elaborate counterfeit products in which a product imitating the above-described fluorescent ink or OVD is added in addition to the color copy. These counterfeit products can be easily discriminated if compared with genuine products and viewed by experts, but it is difficult to determine whether the counterfeit products are genuine or not even by ordinary people.

そこで、目視による真偽判定に加えて、センサによる機械読取りにて真偽判定を行なう偽造防止策を併用している有価証券類も多い。これは目視による真偽判定ができない、たとえば、自動販売機の紙幣鑑別器などにも有効である。機械読取りによる偽造防止策として、目視ではその機能性が見えないが、機能性を検知できるセンサで反応する材料をインキ中に混入させる方法が一般的である。たとえば、インキ中に磁性粉を混入させた磁気インキは目視では黒色のインキに見えているだけだが、MR(Magneto Resistive)センサにて磁性の存在の有無がわかる。   Therefore, in addition to visual determination of authenticity, there are many securities that use anti-counterfeit measures that perform authenticity determination by machine reading using sensors. This is also effective for a bill discriminator of a vending machine, for example, in which true / false judgment cannot be made visually. As a measure for preventing counterfeiting by machine reading, there is a general method in which a material that reacts with a sensor that can detect the functionality is mixed into the ink, although the functionality cannot be seen with the naked eye. For example, a magnetic ink in which magnetic powder is mixed in the ink is visually visible as a black ink, but an MR (Magneto Resistive) sensor can determine the presence or absence of magnetism.

また、赤外線とくに近赤外線に着目し、近赤外線領域の一部を吸収もしくは透過するインキを使用した偽造防止策がある。たとえば、プロセスインキの墨インキであるカーボンブラックを主成分とした黒色のインキと近赤外線領域に吸収のない黒色インキを組合わせる方法、可視光域に特定の吸収がほとんど無く、近赤外線域の一部に吸収のあるインキを用いる方法、さらに前記近赤外線域の一部に吸収のあるインキを他のプロセスインキ(墨以外)に混入させることによる方法等が挙げられる。   In addition, there is a forgery prevention measure using ink that absorbs or transmits a part of the near infrared region, focusing on infrared rays, particularly near infrared rays. For example, there is a method of combining black ink, which is mainly composed of carbon black, which is a process ink, and black ink, which has no absorption in the near-infrared region. Examples thereof include a method using an ink having absorption in the part, and a method in which an ink having absorption in a part of the near infrared region is mixed into another process ink (other than black).

しかしながら、これらセンサによる機械読取りを行なうためには、機器導入のための費用が発生するという問題点がある。また、安価なセンサもしくは読取点が少ない真偽判定を行なう場合、偽造品まで正品と判別してしまう恐れがある。   However, in order to perform machine reading by these sensors, there is a problem that costs for introducing the equipment are generated. Further, when authenticity determination is performed with an inexpensive sensor or a small number of reading points, there is a possibility that even a forged product may be determined as a genuine product.

前記近赤外線域の特徴点のみをセンサで検知して真偽判定を行なう場合、特徴点のみを真似した偽造品と区別が付かなくなる。そのため、複数の特徴点を検知して真偽判定を行なうことで、簡単な偽造に対する対抗措置をとることができる。   In the case where only the feature point in the near infrared region is detected by the sensor and the authenticity determination is performed, it cannot be distinguished from a counterfeit product imitating only the feature point. Therefore, it is possible to take a countermeasure against simple counterfeiting by detecting a plurality of feature points and performing authenticity determination.

さらに、近赤外線域に特徴を持つインキも複数種の光学的機能性材料を混入させることで、複雑な分光波形となり、それらの特徴点を検知すれば、偽造が非常に困難な偽造防止媒体になり得る。   In addition, inks with characteristics in the near infrared region can be mixed with multiple types of optical functional materials, resulting in complex spectral waveforms. If these feature points are detected, it becomes a forgery prevention medium that is extremely difficult to counterfeit. Can be.

上記に掲げた偽造防止策は、目視による真偽判定に加えて行なう場合は有効であるが、目視による真偽判定をせず、機械読取りだけで真偽判定を行なう場合には、偽造防止インキの分光波形を複雑にしても真似される恐れがある。たとえば、光学多層膜にて光の制御を行なえば、媒体の製造コストおよび外観を度返しすれば類似の波形を作ることができる。この場合、目視での確認ができれば、偽造品と一目で分かるが、機械読取りだけで真偽判定する物品には不向きである。   The anti-counterfeiting measures listed above are effective when performed in addition to visual authenticity determination. However, when anti-counterfeit determination is performed only by machine reading without performing visual authenticity determination, anti-counterfeit ink Even if the spectral waveform is complicated, it may be imitated. For example, if the light is controlled by the optical multilayer film, a similar waveform can be created if the manufacturing cost and appearance of the medium are repeated. In this case, if it can be visually confirmed, it can be recognized as a counterfeit product at a glance, but it is not suitable for an article whose authenticity is determined only by machine reading.

特開2005−74641号公報JP 2005-74641 A 特開平7−37027号公報JP-A-7-37027 特許第3246017号公報Japanese Patent No. 3246017 特開2009−149068号公報JP 2009-149068 A

本発明が解決しようとする課題は、機械読取りにて真偽判定を行なう偽造防止媒体において、偽造困難性が高く、真偽判定精度をより向上できる偽造防止媒体および偽造防止媒体の読取方法を提供することである。   The problem to be solved by the present invention is to provide an anti-counterfeit medium and a forgery-preventing medium reading method that are highly difficult to counterfeit and can improve the accuracy of authenticity determination in an anti-counterfeit medium that performs authenticity determination by machine reading. It is to be.

本発明の請求項1に係る偽造防止媒体は、基材の一方の面に、近赤外線波長域の少なくとも一部に反射波長域を持つ体積型ホログラム層、および、近赤外線波長域の少なくとも一部に吸収を持つ近赤外線吸収層が順に積層されてなる偽造防止媒体において、前記体積型ホログラム層は、第1の回折光反射方向を有する2つの第1の領域と、前記第1の回折光反射方向とは異なる第2の回折光反射方向を有する1つの第2の領域とを含み、前記体積型ホログラム層では、1つの方向において前記第2の領域が前記第1の領域に挟まれるとともに、前記第1の領域と前記第2の領域とが隣接し、前記近赤外線吸収層は、前記近赤外線波長域において第1の吸収波長域を有する第1の領域と、前記近赤外線波長域において前記第1の吸収波長域とは異なる第2の吸収波長域を有する第2の領域とを含み、前記体積ホログラム層と前記近赤外線吸収層とが積層される方向において、一方の前記体積型ホログラム層の前記第1の領域と、前記近赤外線吸収層の前記第1の領域とが重なり、かつ、他方の前記体積型ホログラム層の前記第1の領域と、前記近赤外線吸収層の前記第2の領域とが重なることを特徴とする。 The anti-counterfeit medium according to claim 1 of the present invention is a volume hologram layer having a reflection wavelength region in at least a part of the near-infrared wavelength region, and at least a part of the near-infrared wavelength region on one surface of the substrate. in the medium for preventing forgery near-infrared absorption layer are laminated in this order with the absorption in the volume hologram layer, and two first regions having a first diffraction light reflection direction, the first diffracted light And a second region having a second diffracted light reflection direction different from the reflection direction. In the volume hologram layer, the second region is sandwiched between the first regions in one direction. The first region and the second region are adjacent to each other, and the near-infrared absorbing layer includes a first region having a first absorption wavelength region in the near-infrared wavelength region, and the near-infrared wavelength region. What is the first absorption wavelength range? A first region of one of the volume hologram layers in a direction in which the volume hologram layer and the near-infrared absorption layer are laminated, and a second region having a second absorption wavelength region The first region of the near-infrared absorbing layer overlaps, and the first region of the other volume hologram layer and the second region of the near-infrared absorbing layer overlap. To do.

本発明の請求項に係る偽造防止媒体の読取方法は、請求項1記載の偽造防止媒体に対し、所定の位置から近赤外線波長域の複数の波長の光を照射する光源を配置するとともに、前記体積型ホログラム層の前記第1の回折光反射方向および前記第2の回折光反射方向のそれぞれに受光素子を配置して、前記各受光素子で反射率を測定し、この各測定値から前記偽造防止媒体の真偽判定を行なうことを特徴とする。 The method of reading the medium for preventing forgery according to claim 2 of the present invention, with respect to forgery prevention medium Motomeko 1 Symbol placement, placing a light source for irradiating light of a plurality of wavelengths in the near infrared wavelength range from the predetermined position In addition, a light receiving element is disposed in each of the first diffracted light reflecting direction and the second diffracted light reflecting direction of the volume hologram layer , and the reflectance is measured by each of the light receiving elements. From the above, the authenticity determination of the forgery prevention medium is performed.

本発明の請求項に係る偽造防止媒体の読取方法は、請求項1記載の偽造防止媒体に対し、所定の位置から近赤外線波長域の複数の波長の光を照射する光源を配置するとともに、前記体積型ホログラム層の前記第1の回折光反射方向および前記第2の回折光反射方向のそれぞれに受光素子を配置して、前記1つの方向に前記偽造防止媒体を移動しながら、前記各受光素子で反射率の増減を測定し、それぞれの受光素子の出力波形を比較することで前記偽造防止媒体の真偽判定を行なうことを特徴とする。 The method of reading the medium for preventing forgery according to claim 3 of the present invention, with respect to forgery prevention medium Motomeko 1 Symbol placement, placing a light source for irradiating light of a plurality of wavelengths in the near infrared wavelength range from the predetermined position In addition, a light receiving element is disposed in each of the first diffracted light reflecting direction and the second diffracted light reflecting direction of the volume hologram layer , and while moving the anti-counterfeit medium in the one direction, It is characterized in that the authenticity of the anti-counterfeit medium is determined by measuring the increase / decrease in reflectance at each light receiving element and comparing the output waveforms of the respective light receiving elements.

本発明によれば、異なる回折光反射方向の体積型ホログラムと、特徴的な分光波形を持つセキュリティ部とを組合せ、空間上の特徴点の反射率を複数点読取ることで真偽判定を行ない、さらに偽造防止媒体が移動することで、異なる回折光反射方向における反射率の増減を測定し、かつ、それぞれの受光素子の出力波形を比較することで、機械読取りにて真偽判定を行なう偽造防止媒体において、偽造困難性が高く、真偽判定精度をより向上できる偽造防止媒体および偽造防止媒体の読取方法を提供できる。   According to the present invention, a combination of a volume hologram having different diffracted light reflection directions and a security unit having a characteristic spectral waveform, and performing authenticity determination by reading a plurality of reflectances of feature points in space, In addition, the anti-counterfeit medium moves and measures the increase or decrease of the reflectivity in different diffracted light reflection directions, and compares the output waveform of each light receiving element, and makes anti-counterfeit judgment by machine reading It is possible to provide an anti-counterfeit medium and a forgery-preventing medium reading method that are highly difficult to counterfeit and can improve the accuracy of authenticity determination.

本発明の実施形態に係る体積型ホログラムの作製方法を説明する概念図。The conceptual diagram explaining the manufacturing method of the volume type hologram which concerns on embodiment of this invention. 図1に示した体積型ホログラムの読取方法を説明する概念図。The conceptual diagram explaining the reading method of the volume type hologram shown in FIG. 本発明の実施形態に係る反射方向が異なる体積型ホログラムの作製方法を説明する概念図。The conceptual diagram explaining the preparation methods of the volume hologram which differs in the reflection direction which concerns on embodiment of this invention. 図3に示した反射方向が異なる体積型ホログラムの読取方法を説明する概念図。The conceptual diagram explaining the reading method of the volume type hologram from which the reflection direction shown in FIG. 3 differs. 本発明の実施形態に係る領域を複数個配置した偽造防止媒体の読取方法を説明する概念図で、(a)図はX方向から見た図、(b)図はZ方向から見た図。4A and 4B are conceptual diagrams illustrating a method for reading a forgery prevention medium in which a plurality of regions according to an embodiment of the present invention are arranged, where FIG. 5A is a diagram viewed from the X direction, and FIG. 5B is a diagram viewed from the Z direction. 実施形態におけるセンサの輝度入力の例を示すグラフ。The graph which shows the example of the brightness | luminance input of the sensor in embodiment. 本発明の実施形態に係る体積型ホログラム層と近赤外線吸収層の分光特性の一例を示すグラフ。The graph which shows an example of the spectral characteristic of the volume type hologram layer which concerns on embodiment of this invention, and a near-infrared absorption layer. 本発明の実施形態に係る領域を異なる方向に複数個配置した偽造防止媒体の読取方法を説明する概念図で、(a)図はX方向から見た図、(b)図はZ方向から見た図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a conceptual diagram for explaining a method of reading a forgery prevention medium in which a plurality of areas according to an embodiment of the present invention are arranged in different directions; (a) a diagram viewed from the X direction; Figure. 本発明の実施形態に係る体積型ホログラム層と近赤外線吸収層の分光特性の一例を示すグラフ。The graph which shows an example of the spectral characteristic of the volume type hologram layer which concerns on embodiment of this invention, and a near-infrared absorption layer. 実施形態におけるセンサの輝度測定の一例を示すグラフ。The graph which shows an example of the brightness | luminance measurement of the sensor in embodiment. 本発明の実施形態に係る偽造防止媒体の構成の一例を示す縦断側面図。The longitudinal section side view showing an example of the composition of the forgery prevention medium concerning the embodiment of the present invention.

以下、本発明の実施形態について図面を参照して説明する。
図1は、本発明の実施形態に係る体積型ホログラムの作製方法を説明する概念図である。レーザ光源(図示せず)からのレーザビームを、ビーム10とビーム12に分け、ビーム10はレンズ11により拡げられ、入射角αで記録材料15に照射する。ビーム12はレンズ13により拡げられ、拡散板14を照射する。拡散板14で拡散した光は記録材料15の反対側より入射角βで入射する。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a conceptual diagram illustrating a volume hologram manufacturing method according to an embodiment of the present invention. A laser beam from a laser light source (not shown) is divided into a beam 10 and a beam 12, and the beam 10 is expanded by a lens 11 and irradiates the recording material 15 at an incident angle α. The beam 12 is expanded by a lens 13 and irradiates a diffusion plate 14. The light diffused by the diffusion plate 14 enters at an incident angle β from the opposite side of the recording material 15.

図2は、図1に示した体積型ホログラムの読取方法を説明する概念図である。図1の配置で記録材料15に干渉縞を記録して作製した体積型ホログラム20は、図2に示すように照明光源21からの光により照明すると、図1で図示した拡散板14があった位置から光が射出するような方向に反射する。照明光源21との射出角度はα+βとなる。ここで、センサ22をこの射出位置に配置することで、反射光の強度を測定することができる。   FIG. 2 is a conceptual diagram illustrating a method for reading the volume hologram shown in FIG. The volume hologram 20 produced by recording the interference fringes on the recording material 15 in the arrangement shown in FIG. 1 has the diffusion plate 14 shown in FIG. 1 when illuminated by the light from the illumination light source 21 as shown in FIG. Reflected in the direction in which light exits from the position. The emission angle with the illumination light source 21 is α + β. Here, the intensity of the reflected light can be measured by arranging the sensor 22 at the emission position.

ところで、体積型ホログラムでの再生(反射)波長は、記録材料の収縮がなく干渉縞のピッチに変化がなければ、基本的に記録したときの波長となるため、近赤外線波長域で反射させるためには、近赤外線のレーザを使用する。   By the way, the reproduction (reflection) wavelength in the volume hologram is basically the wavelength at which recording is performed unless the recording material is contracted and the pitch of the interference fringes is changed, so that it is reflected in the near infrared wavelength region. For this, a near-infrared laser is used.

また、記録材料によっては干渉縞のピッチを変化させる方法もあり、長波長側に波長シフトするような方法をとれば、赤色のレーザでの記録も可能となる。さらに、このような波長シフトの方法によると、再生波長のバンド幅が広がる傾向があるため、反射波長のバンド幅を広くしたい場合には有効である。   Further, depending on the recording material, there is a method of changing the pitch of the interference fringes. If a method of shifting the wavelength to the long wavelength side is employed, recording with a red laser is possible. Further, according to such a wavelength shift method, since the bandwidth of the reproduction wavelength tends to be widened, it is effective when it is desired to widen the bandwidth of the reflection wavelength.

図3は、本発明の実施形態に係る反射方向が異なる体積型ホログラムの作製方法を説明する概念図である。レーザ光源(図示せず)からのレーザビームを、ビーム30とビーム32に分け、ビーム30はレンズ31により拡げられ、入射角αで記録材料35に照射する。ビーム32はレンズ33により拡げられ、拡散板34を照射する。拡散板34で拡散した光は記録材料35の反対側より垂直に入射する。   FIG. 3 is a conceptual diagram illustrating a method for producing a volume hologram having different reflection directions according to an embodiment of the present invention. A laser beam from a laser light source (not shown) is divided into a beam 30 and a beam 32. The beam 30 is expanded by a lens 31 and irradiates the recording material 35 at an incident angle α. The beam 32 is expanded by a lens 33 and irradiates a diffusion plate 34. Light diffused by the diffusion plate 34 enters perpendicularly from the opposite side of the recording material 35.

図4は、図3に示した反射方向が異なる体積型ホログラムの読取方法を説明する概念図である。図3の配置で記録材料35に干渉縞を記録して作製した体積型ホログラム40は、図4に示すように照明光源21からの光により照明すると、図3で図示した拡散板34があった位置から光が射出するような方向に反射する。照明光源21は、図2に示した体積型ホログラム20と照明光源21の位置関係と同等な配置で、図4での射出角度はαとなる。ここで、センサ41をこの射出位置に配置することで、反射光の強度を測定することができる。   FIG. 4 is a conceptual diagram illustrating a reading method of the volume hologram having different reflection directions shown in FIG. The volume hologram 40 produced by recording the interference fringes on the recording material 35 in the arrangement shown in FIG. 3 has the diffuser plate 34 shown in FIG. 3 when illuminated by the light from the illumination light source 21 as shown in FIG. Reflected in the direction in which light exits from the position. The illumination light source 21 has an arrangement equivalent to the positional relationship between the volume hologram 20 and the illumination light source 21 shown in FIG. 2, and the emission angle in FIG. Here, the intensity of the reflected light can be measured by arranging the sensor 41 at the emission position.

図5は、本発明の実施形態に係る領域を複数個配置した偽造防止媒体の読取方法を説明する概念図である。体積型ホログラム51は、XY平面上に面積のある領域51a〜51eをY方向に複数個配置したものである。領域51a、51c、51eは図4で示した方向に反射光が射出する領域で、領域51b、51dは図2で示した方向に反射光が射出する領域である。次に、照明光源21により体積型ホログラム51を照射する。この際に、体積型ホログラム51の複数の領域の1個にのみ照明光が照射するようにマスク50を用いる。   FIG. 5 is a conceptual diagram illustrating a method for reading a forgery prevention medium in which a plurality of areas according to the embodiment of the present invention are arranged. The volume hologram 51 is formed by arranging a plurality of areas 51a to 51e having areas on the XY plane in the Y direction. The areas 51a, 51c, and 51e are areas where the reflected light is emitted in the direction shown in FIG. 4, and the areas 51b and 51d are areas where the reflected light is emitted in the direction shown in FIG. Next, the volume hologram 51 is irradiated by the illumination light source 21. At this time, the mask 50 is used so that only one of the plurality of regions of the volume hologram 51 is irradiated with illumination light.

図5に示した状態では、領域51cに照明光が照射されているので、領域51cからの反射光は、センサ41に入射する。ここで、体積型ホログラム51をY軸方向に移動すると、別の領域に照明光が照射される。領域51bに入射するように移動すると、反射光はセンサ22に入射する。   In the state shown in FIG. 5, since the illumination light is irradiated to the region 51 c, the reflected light from the region 51 c enters the sensor 41. Here, when the volume hologram 51 is moved in the Y-axis direction, illumination light is irradiated to another region. When moving so as to enter the region 51 b, the reflected light enters the sensor 22.

図6は、実施形態におけるセンサの輝度入力の例を示すグラフである。領域51a〜領域51eで移動させたときのセンサ22とセンサ41の輝度入力を示す。   FIG. 6 is a graph illustrating an example of luminance input of the sensor in the embodiment. The brightness | luminance input of the sensor 22 and the sensor 41 when making it move in the area | region 51a-the area | region 51e is shown.

センサ22は、領域51aでは輝度入力がなく、領域51bで入力がある。さらに、領域51cでは輝度入力がなく、領域51dでは入力があり、領域51eでは入力がない。つまり、領域51a〜領域51eを連続して移動することで、図6に示すような波形データ60を得ることができる。同様に、センサ41でも、領域51a〜領域51eで移動することで、図6に示すような波形データ61を得ることができる。   The sensor 22 has no luminance input in the area 51a and has an input in the area 51b. Further, there is no luminance input in the region 51c, there is input in the region 51d, and there is no input in the region 51e. That is, waveform data 60 as shown in FIG. 6 can be obtained by continuously moving the region 51a to the region 51e. Similarly, the waveform data 61 as shown in FIG. 6 can also be obtained by moving the sensor 41 in the areas 51a to 51e.

図7は、本発明の実施形態に係る体積型ホログラム層と近赤外線吸収層の分光特性の一例を示すグラフである。分光曲線71は、近赤外線波長域で反射する体積型ホログラムの分光曲線である。また、分光曲線72は、近赤外線波長域に特徴的な吸収を持つ近赤外線吸収層Aの分光曲線を示す。さらに、分光曲線73は、異なる特徴的な吸収を持つ近赤外線吸収層Bの分光曲線を示す。   FIG. 7 is a graph showing an example of spectral characteristics of the volume hologram layer and the near infrared absorption layer according to the embodiment of the present invention. The spectral curve 71 is a spectral curve of a volume hologram that reflects in the near-infrared wavelength region. The spectral curve 72 shows the spectral curve of the near-infrared absorbing layer A having characteristic absorption in the near-infrared wavelength region. Further, the spectral curve 73 shows a spectral curve of the near-infrared absorbing layer B having different characteristic absorption.

図8は、本発明の実施形態に係る領域を異なる方向に複数個配置した偽造防止媒体の読取方法を説明する概念図である。体積型ホログラム81は、XY平面上に面積のある領域aから領域eをX方向に配置したものである。体積型ホログラム81は、図4で示した方向と、図2で示した方向に反射光が射出する領域が交互に配置してある。領域81a、81c、81eは図4で示した正面方向に反射光が射出する領域で、領域81b、81dは図2で示した斜め方向に反射光が射出する領域である。照明光源82、照明光源83、照明光源84によりマスク80を用いて体積型ホログラム81を照射し、各領域からの反射光を、センサ85、センサ86で読取る。   FIG. 8 is a conceptual diagram illustrating a method for reading a forgery prevention medium in which a plurality of areas according to the embodiment of the present invention are arranged in different directions. The volume hologram 81 is obtained by arranging a region e to a region e having an area on the XY plane in the X direction. In the volume hologram 81, areas where reflected light is emitted are alternately arranged in the direction shown in FIG. 4 and the direction shown in FIG. The areas 81a, 81c, 81e are areas where the reflected light is emitted in the front direction shown in FIG. 4, and the areas 81b, 81d are areas where the reflected light is emitted in the oblique direction shown in FIG. The volume hologram 81 is irradiated by the illumination light source 82, the illumination light source 83, and the illumination light source 84 using the mask 80, and the reflected light from each region is read by the sensor 85 and sensor 86.

ここで、図5に示した読取方法とは体積ホログラムの移動方向が90°異なるようにしている。これは、このような方向で移動することで、体積ホログラムに入射する再生光の入射角度の変化が少なく、センサでの読取波形の最大値部分が平坦となり、より安定した読取を実現することができる。   Here, the moving direction of the volume hologram is different from that of the reading method shown in FIG. By moving in this direction, the change in the incident angle of the reproduction light incident on the volume hologram is small, the maximum value portion of the read waveform at the sensor becomes flat, and more stable reading can be realized. it can.

また、体積型ホログラム81の前面に、図7で示した近赤外線波長域に特徴的な吸収を持つ近赤外線吸収層を設けてあり、領域81aは近赤外線吸収層Aの分光曲線72を、領域81cは近赤外線吸収層Bの分光曲線73の特徴を持つ近赤外線吸収層としている。   Further, a near-infrared absorbing layer having characteristic absorption in the near-infrared wavelength region shown in FIG. 7 is provided on the front surface of the volume hologram 81, and the region 81a shows the spectral curve 72 of the near-infrared absorbing layer A as a region. Reference numeral 81c denotes a near-infrared absorbing layer having the characteristic of the spectral curve 73 of the near-infrared absorbing layer B.

図9は、本発明の実施形態に係る体積型ホログラム層と近赤外線吸収層の分光特性の一例を示すグラフである。体積型ホログラム層と近赤外線吸収層は重ねて観察することから、実際にセンサで感知する分光曲線は、これら2つの分光の合成された分光曲線となる。分光曲線91は、図7で示した体積型ホログラム層の分光曲線71と近赤外線吸収層の分光曲線72を合成したもので、分光曲線92は、図7で示した体積型ホログラム層の分光曲線71と近赤外線吸収層の分光曲線73を合成したものである。   FIG. 9 is a graph showing an example of spectral characteristics of the volume hologram layer and the near infrared absorption layer according to the embodiment of the present invention. Since the volume hologram layer and the near-infrared absorbing layer are superposed and observed, the spectral curve that is actually sensed by the sensor is a combined spectral curve of these two spectra. The spectral curve 91 is a combination of the spectral curve 71 of the volume hologram layer shown in FIG. 7 and the spectral curve 72 of the near-infrared absorbing layer, and the spectral curve 92 is the spectral curve of the volume hologram layer shown in FIG. 71 and a spectral curve 73 of the near-infrared absorbing layer are synthesized.

ここで、図8の照明光源82、照明光源83、照明光源84のそれぞれの中心波長を、図9で示す中心波長93、中心波長94、中心波長95としている。また、読取のセンサ85、センサ86は、これら3種の中心波長で感度があるセンサを用いている。   Here, the center wavelengths of the illumination light source 82, illumination light source 83, and illumination light source 84 in FIG. 8 are the center wavelength 93, center wavelength 94, and center wavelength 95 shown in FIG. The reading sensor 85 and sensor 86 are sensors having sensitivity at these three central wavelengths.

いま、照明光源82で観察すると、図9の中心波長93と分光曲線との交点より、近赤外線吸収層Aが約40%、近赤外線吸収層Bが約40%の反射率となる。同様に、照明光源83で観察すると、近赤外線吸収層Aが約90%、近赤外線吸収層Bが約75%の反射率となる。さらに、照明光源84で観察すると、近赤外線吸収層Aが約90%、近赤外線吸収層Bが約50%の反射率となる。   Now, when observing with the illumination light source 82, the near-infrared absorption layer A has a reflectance of about 40% and the near-infrared absorption layer B has a reflectance of about 40% from the intersection of the center wavelength 93 and the spectral curve in FIG. Similarly, when observed with the illumination light source 83, the near-infrared absorbing layer A has a reflectance of about 90% and the near-infrared absorbing layer B has a reflectance of about 75%. Further, when observed with the illumination light source 84, the near-infrared absorbing layer A has a reflectance of about 90% and the near-infrared absorbing layer B has a reflectance of about 50%.

図10は、実施形態におけるセンサの輝度測定の一例を示すグラフである。図8で体積型ホログラム81に照明光源82、照明光源83、照明光源84で照明し、領域aから領域eまで移動しながら各領域からの反射光を、センサ85、センサ86で測定した波形である。波形100は光源82で照明し、センサ85で測定した波形である。波形101は、同じく光源82で照明し、センサ86で測定した波形である。   FIG. 10 is a graph illustrating an example of luminance measurement of the sensor in the embodiment. In FIG. 8, the volume hologram 81 is illuminated with the illumination light source 82, illumination light source 83, and illumination light source 84, and the reflected light from each region is measured with the sensors 85 and 86 while moving from the region a to the region e. is there. A waveform 100 is a waveform that is illuminated by the light source 82 and measured by the sensor 85. A waveform 101 is a waveform similarly illuminated by the light source 82 and measured by the sensor 86.

波形102は光源83で照明し、センサ85で測定した波形、波形103はセンサ86で測定した波形である。波形104は光源84で照明し、センサ85で測定した波形、波形105はセンサ86で測定した波形である。   A waveform 102 is illuminated by the light source 83 and measured by the sensor 85, and a waveform 103 is a waveform measured by the sensor 86. A waveform 104 is illuminated by the light source 84 and is measured by the sensor 85, and a waveform 105 is a waveform measured by the sensor 86.

ここで、これら波形で着目する部分としては、領域aと領域cでの最大輝度値で、照明光源82では、どちらも50%、照明光源83では、領域aが90%、領域cが75%で、さらに、照明光源84では、領域aが90%、領域cが50%となる。   Here, the portions to be focused on in these waveforms are the maximum luminance values in the regions a and c. The illumination light source 82 is 50% for both, the illumination light source 83 is 90% for the region a, and 75% for the region c. Further, in the illumination light source 84, the area a is 90% and the area c is 50%.

これらの波形の特徴点を読出すことで、真偽判定を行うことが可能となる。さらに、近赤外線吸収層を他の領域に設けたり、異なる分光曲線をもった近赤外線吸収層を設けたり、体積型ホログラムの反射方向、反射角度、それらの組合せを変化させたり、多くすることで、より複雑な波形を作ることができ、これらの波形を比較して真偽判定を行うことで、より厳密な真偽判定ができると同時に、偽造が非常に困難な偽造防止媒体となる。   By reading out the feature points of these waveforms, it is possible to determine authenticity. Furthermore, by providing a near-infrared absorbing layer in another region, providing a near-infrared absorbing layer with a different spectral curve, changing the reflection direction, reflection angle, and combination of volume holograms, and increasing More complex waveforms can be created, and by comparing these waveforms to determine authenticity, a more accurate authenticity determination can be performed, and at the same time, a forgery prevention medium that is very difficult to counterfeit is obtained.

図11は、本発明の実施形態に係る偽造防止媒体の構成の一例を示すものである。偽造防止媒体96は、基材97の一方の面の少なくとも一部に、体積型ホログラム98を設け、さらにその上面に近赤外線波長域の少なくとも一部に特徴的な吸収を持つ近赤外線吸収層99を設けてある。   FIG. 11 shows an example of the configuration of the forgery prevention medium according to the embodiment of the present invention. The anti-counterfeit medium 96 is provided with a volume hologram 98 on at least a part of one surface of a base 97, and a near-infrared absorbing layer 99 having a characteristic absorption in at least a part of the near-infrared wavelength region on the upper surface. Is provided.

本発明の偽造防止媒体および偽造防止媒体の読取方法は、異なる回折光反射方向の体積型ホログラムと、特徴的な分光波形を持つセキュリティ部とを組合せ、空間上の特徴点の反射率を複数点読取ることで真偽判定を行い、さらに媒体が移動することで、異なる回折光反射方向における反射率の増減を検出し、かつ、それぞれのセンサの出力波形を比較することで、真偽判定精度をより向上できる。   The anti-counterfeit medium and the anti-counterfeit medium reading method of the present invention combine volume holograms with different diffracted light reflection directions and a security part having a characteristic spectral waveform, and provide a plurality of reflectances of feature points in space. Authenticity determination is performed by reading, and further, the medium moves, and the increase / decrease in reflectivity in different diffracted light reflection directions is detected, and the output waveform of each sensor is compared, thereby increasing the accuracy of true / false determination. It can be improved.

10,12,30,32…ビーム、11,13,31,33…レンズ、14,34…拡散板、15,35…記録材料、20,40,51,81,98…体積型ホログラム、21,82,83,84…照明光源、22,41,85,86…センサ、50,80…マスク、51a,51b,51c…領域、51d,51e…領域、81a,81b,81c…領域、81d,81e…領域、96…偽造防止媒体、97…基材、99…近赤外線吸収層、α,β…入射角。   10, 12, 30, 32 ... beam, 11, 13, 31, 33 ... lens, 14, 34 ... diffuser plate, 15, 35 ... recording material, 20, 40, 51, 81, 98 ... volume hologram, 21, 82, 83, 84 ... illumination light source, 22, 41, 85, 86 ... sensor, 50, 80 ... mask, 51a, 51b, 51c ... area, 51d, 51e ... area, 81a, 81b, 81c ... area, 81d, 81e ... Area, 96 ... Anti-counterfeit medium, 97 ... Base material, 99 ... Near infrared absorbing layer, [alpha], [beta] ... Incident angle.

Claims (3)

基材の一方の面に、近赤外線波長域の少なくとも一部に反射波長域を持つ体積型ホログラム層、および、近赤外線波長域の少なくとも一部に吸収を持つ近赤外線吸収層が順に積層されてなる偽造防止媒体において、
前記体積型ホログラム層は、第1の回折光反射方向を有する2つの第1の領域と、前記第1の回折光反射方向とは異なる第2の回折光反射方向を有する1つの第2の領域とを含み、
前記体積型ホログラム層では、1つの方向において前記第2の領域が前記第1の領域に挟まれるとともに、前記第1の領域と前記第2の領域とが隣接し、
前記近赤外線吸収層は、前記近赤外線波長域において第1の吸収波長域を有する第1の領域と、前記近赤外線波長域において前記第1の吸収波長域とは異なる第2の吸収波長域を有する第2の領域とを含み、
前記体積型ホログラム層と前記近赤外線吸収層とが積層される方向において、一方の前記体積型ホログラム層の前記第1の領域と、前記近赤外線吸収層の前記第1の領域とが重なり、かつ、他方の前記体積型ホログラム層の前記第1の領域と、前記近赤外線吸収層の前記第2の領域とが重なることを特徴とする偽造防止媒体。
On one side of the substrate, a volume hologram layer having a reflection wavelength range to at least a portion of the near infrared wavelength region, and near-infrared absorption layer is laminated in this order with absorption on at least part of the near-infrared wavelength region In the anti-counterfeit medium,
The volume hologram layer includes two first regions having a first diffracted light reflection direction and one second region having a second diffracted light reflection direction different from the first diffracted light reflection direction. Including
In the volume hologram layer, the second region is sandwiched between the first region in one direction, and the first region and the second region are adjacent to each other,
The near infrared absorption layer includes a first region having a first absorption wavelength region in the near infrared wavelength region, and a second absorption wavelength region different from the first absorption wavelength region in the near infrared wavelength region. A second region having,
In the direction in which the volume hologram layer and the near infrared absorption layer are laminated, the first region of one of the volume hologram layers and the first region of the near infrared absorption layer overlap, and The anti-counterfeit medium , wherein the first area of the other volume hologram layer and the second area of the near-infrared absorbing layer overlap .
求項1記載の偽造防止媒体に対し、所定の位置から近赤外線波長域の複数の波長の光を照射する光源を配置するとともに、前記体積型ホログラム層の前記第1の回折光反射方向および前記第2の回折光反射方向のそれぞれに受光素子を配置して、前記各受光素子で反射率を測定し、この各測定値から前記偽造防止媒体の真偽判定を行なうことを特徴とする偽造防止媒体の読取方法。 To medium for preventing forgery Motomeko 1 Symbol placement, as well as placing a light source for irradiating light of a plurality of wavelengths of near-infrared wavelength region from a predetermined position, said first diffracted light reflection direction of the volume hologram layer In addition , a light receiving element is disposed in each of the second diffracted light reflection directions , the reflectance is measured by each of the light receiving elements, and the authenticity determination of the anti-counterfeit medium is performed from each measured value. A method for reading an anti-counterfeit medium. 求項1記載の偽造防止媒体に対し、所定の位置から近赤外線波長域の複数の波長の光を照射する光源を配置するとともに、前記体積型ホログラム層の前記第1の回折光反射方向および前記第2の回折光反射方向のそれぞれに受光素子を配置して、前記1つの方向に前記偽造防止媒体を移動しながら、前記各受光素子で反射率の増減を測定し、それぞれの受光素子の出力波形を比較することで前記偽造防止媒体の真偽判定を行なうことを特徴とする偽造防止媒体の読取方法。 To medium for preventing forgery Motomeko 1 Symbol placement, as well as placing a light source for irradiating light of a plurality of wavelengths of near-infrared wavelength region from a predetermined position, said first diffracted light reflection direction of the volume hologram layer In addition , a light receiving element is disposed in each of the second diffracted light reflection directions, and the increase / decrease in reflectance is measured by each of the light receiving elements while moving the anti-counterfeit medium in the one direction. A method for reading an anti-counterfeit medium, wherein the authenticity determination of the anti-counterfeit medium is performed by comparing the output waveforms.
JP2013104886A 2013-05-17 2013-05-17 Anti-counterfeit medium and method for reading anti-counterfeit medium Active JP6175890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013104886A JP6175890B2 (en) 2013-05-17 2013-05-17 Anti-counterfeit medium and method for reading anti-counterfeit medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013104886A JP6175890B2 (en) 2013-05-17 2013-05-17 Anti-counterfeit medium and method for reading anti-counterfeit medium

Publications (2)

Publication Number Publication Date
JP2014223768A JP2014223768A (en) 2014-12-04
JP6175890B2 true JP6175890B2 (en) 2017-08-09

Family

ID=52122855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013104886A Active JP6175890B2 (en) 2013-05-17 2013-05-17 Anti-counterfeit medium and method for reading anti-counterfeit medium

Country Status (1)

Country Link
JP (1) JP6175890B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6751569B2 (en) * 2016-02-23 2020-09-09 グローリー株式会社 Method for detecting the document identification device, the document processor, the image sensor unit, and the optical variable element region

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050174620A1 (en) * 2004-02-05 2005-08-11 Woontner Marc O. Tinted holographic printing material

Also Published As

Publication number Publication date
JP2014223768A (en) 2014-12-04

Similar Documents

Publication Publication Date Title
JP4961944B2 (en) Display and printed matter
KR0169517B1 (en) Transparent hologram seal
JP4613178B2 (en) Valuables that make up the moire pattern
CN105358766B (en) Safety element including volume hologram
JP4420138B2 (en) Display and printed information
US6061122A (en) Optical identification system using cholesteric liquid crystals
JPH08286593A (en) Optical information recording medium
JP6550338B2 (en) Security device
CN101855093A (en) Banknote with edge windows
JP6707926B2 (en) Identification system, identification method and program
US8020776B2 (en) Multilayer element with an identification which can be read optically by a machine
JP5082378B2 (en) Display and printed matter
CN113835322B (en) Light modulation element and information recording medium
JP2013095055A (en) Indicator and authenticity judging method thereof
JP2009276518A (en) Optical element, adhesive label, transfer foil, article with label and discrimination device
WO2016067755A1 (en) Device for determining authenticity of security medium that includes reflection-type volume hologram, method for determining authenticity of security medium that includes reflection-type volume hologram, and security medium that includes reflection-type volume hologram
JP2015068849A (en) Display medium and articles with labels
WO2017149284A1 (en) Security elements and security documents
JP6175890B2 (en) Anti-counterfeit medium and method for reading anti-counterfeit medium
KR20150004824A (en) Security element and document including such an element
JP2004078620A (en) Method and device for discriminating authenticity
JP6131729B2 (en) Reading method of anti-counterfeit medium
JP5710443B2 (en) Identification device and identification method
JP2010231002A (en) Display body and article with label
JP2011175374A (en) Display body, adhesive sticker, transfer foil, and article with label

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170626

R150 Certificate of patent or registration of utility model

Ref document number: 6175890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250