JP6174976B2 - Protective structure - Google Patents

Protective structure Download PDF

Info

Publication number
JP6174976B2
JP6174976B2 JP2013236460A JP2013236460A JP6174976B2 JP 6174976 B2 JP6174976 B2 JP 6174976B2 JP 2013236460 A JP2013236460 A JP 2013236460A JP 2013236460 A JP2013236460 A JP 2013236460A JP 6174976 B2 JP6174976 B2 JP 6174976B2
Authority
JP
Japan
Prior art keywords
cylindrical
cylindrical member
protective structure
building
members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013236460A
Other languages
Japanese (ja)
Other versions
JP2015096744A (en
Inventor
敏光 高木
敏光 高木
晴久 井上
晴久 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shikoku Electric Power Co Inc
Original Assignee
Shikoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikoku Electric Power Co Inc filed Critical Shikoku Electric Power Co Inc
Priority to JP2013236460A priority Critical patent/JP6174976B2/en
Publication of JP2015096744A publication Critical patent/JP2015096744A/en
Application granted granted Critical
Publication of JP6174976B2 publication Critical patent/JP6174976B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Vibration Dampers (AREA)
  • Building Environments (AREA)

Description

本発明は、保護構造物に関する。さらに詳しくは、ビルや倉庫、重油タンク、給水タンクなどの建造物などを外部からの衝撃から保護するために使用される保護構造物に関する。   The present invention relates to a protective structure. More specifically, the present invention relates to a protective structure used to protect buildings, warehouses, heavy oil tanks, water tanks, and other buildings from external impacts.

日本では、例年、台風の接近や上陸に伴って強風が発生し、この強風により建造物や樹木の倒壊などの被害が生じている。
しかし、台風による強風は、最大風速が60m/s以上となる場合があるものの、この程度の強風では、家屋や樹木の倒壊は生じても、倒壊した建造物の構造物(例えば鉄骨等)の重量物を飛散させるだけのエネルギーは無い。
このため、従来、日本における強風対策は、防風林等により建造物に吹き付ける風を弱めたり、建造物の強度を高くして風圧による倒壊を防止したりすることが主流であった。
In Japan, strong winds are usually generated with the approach and landing of typhoons, and this strong wind causes damage such as the collapse of buildings and trees.
However, although strong winds caused by typhoons may have a maximum wind speed of 60 m / s or more, even if such strong winds cause collapse of houses and trees, the structure of a collapsed building (such as a steel frame) There is not enough energy to scatter heavy objects.
For this reason, conventionally, strong wind countermeasures in Japan have been mainly to weaken the wind blown to the building by windbreak forests or to increase the strength of the building to prevent collapse due to wind pressure.

一方、竜巻が発生した場合、台風以上のエネルギーを有する場合があり、その風速が70m/s以上(F3以上の竜巻)となれば、倒壊した建造物の構造物や自動車が飛散する可能性がある。アメリカ等では、毎年、大型の竜巻が発生しており、大型の竜巻により飛散した建造物などによる大きな被害が発生している。   On the other hand, when a tornado occurs, it may have more energy than a typhoon, and if the wind speed is 70 m / s or more (F3 or more tornado), there is a possibility that the structure or automobile of a collapsed building will be scattered. is there. In the United States and the like, a large tornado occurs every year, and a large damage is caused by buildings scattered by the large tornado.

日本でも竜巻の発生は見られるものの、これまで発生していた竜巻は比較的規模が小さいこともあり、竜巻に対する特別な対策は講じられていないのが実情である。   Although tornadoes are seen in Japan, the tornadoes that have occurred so far are relatively small in scale, and no special measures have been taken against tornadoes.

しかし、近年、日本でも大型の竜巻が発生するようになり、竜巻による大きな被害が発生している。例えば、竜巻によって建造物の構造物(例えば屋根や壁材)や自動車等が巻き上げられ、その構造物や自動車等が建造物に衝突して建造物が倒壊したり損傷したりする災害が発生している。このため、日本でも、大型の竜巻が発生し建造物の構造物等が飛散した場合において、飛散した構造物等(以下飛来物という)が建造物などに衝突して建造物倒壊や破損等の被害を防止する対策が必要となってきている。   However, in recent years, large-scale tornadoes have been generated in Japan, and the tornadoes have caused great damage. For example, a tornado rolls up a structure of a building (for example, a roof or wall material) or a car, and the structure or the car collides with the building, causing a disaster that causes the building to collapse or be damaged. ing. For this reason, even in Japan, when a large tornado occurs and the structure of the building is scattered, the scattered structure, etc. (hereinafter referred to as a flying object) collides with the building, etc. Measures to prevent damage are needed.

かかる対策として、飛来物が建造物等に衝突することを防ぐことが考えられる。例えば、建造物等の周囲に落石防止用ネットなどを設けて、この落石防止用ネットによって飛来物を受け止めて、飛来物が建造物等に衝突することを防ぐ方法が考えられる。   As such a countermeasure, it is conceivable to prevent a flying object from colliding with a building or the like. For example, a method for preventing a falling object from colliding with a building or the like by providing a falling rock prevention net or the like around the building or the like and receiving the flying object by the falling rock prevention net can be considered.

この方法の場合、飛来物が建造物等に衝突することを直接防止するので、建造物等を保護する効果が高いものの、落石防止用ネットが建造物等を使用する際の邪魔になる可能性がある。また、建造物等が重油タンク等であれば、消防法の規定から、建造物等の周囲に落石防止用ネットを設けることはできない。   This method directly prevents the flying object from colliding with the building, etc., so it is highly effective in protecting the building, but the rock fall prevention net may interfere with the use of the building. There is. Further, if the building or the like is a heavy oil tank or the like, a rock fall prevention net cannot be provided around the building or the like because of the Fire Service Act.

一方、建造物等に、飛来物が衝突した際の衝撃力を吸収する構造物を設ければ、建造物等に飛来物が衝突しても、建造物等の損傷を最小限に抑えることができると考える。
しかし、現状では、上述したような構造物、つまり、飛来物が衝突した際の衝撃力を吸収する構造物であって建造物等に設置される構造物は開発されていない。
On the other hand, if a structure that absorbs the impact force when a flying object collides is provided in a building, etc., even if the flying object collides with the building, damage to the building can be minimized. I think I can.
However, at present, a structure as described above, that is, a structure that absorbs an impact force when a flying object collides and is installed in a building or the like has not been developed.

ところで、自動車などでは、衝突時の衝撃力を吸収する技術が多数開発されている(例えば、特許文献1〜4)。
特許文献1〜4などには、筒状の構造物に対して軸方向からの荷重を加えた場合、筒状の構造物が蛇腹状に変形する現象(非特許文献1参照)を利用して、衝突時の衝撃力を吸収する技術が開示されている。
By the way, in the automobile etc., many techniques which absorb the impact force at the time of a collision are developed (for example, patent documents 1-4).
Patent Documents 1 to 4 and the like utilize a phenomenon (see Non-Patent Document 1) that a cylindrical structure is deformed into a bellows shape when a load from the axial direction is applied to the cylindrical structure. A technique for absorbing impact force at the time of collision is disclosed.

特開2009−96261号公報JP 2009-96261 A 特開2011−111113号公報JP 2011-111113 A 特開2012−35771号公報JP 2012-35771 A 特開2013−87880号公報JP2013-87880A

三石洋之、“薄肉構造部材の軸圧潰時におけるエネルギー吸収特性“、自動車研究、第20巻第11号27〜32頁Hiroyuki Mitsuishi, “Energy Absorption Characteristics of Thin-Structured Members during Axial Crushing”, Automobile Research, Vol.

しかるに、特許文献1〜4の技術は、自動車同士または自動車と壁面などの衝突を想定したものであり、鋼材のように貫通力の高い飛来物が建造物等に衝突する場合における衝撃吸収は想定していない。
つまり、特許文献1〜4の技術を鋼材のように貫通力の高い飛来物が建造物等に衝突した際の衝撃力を吸収する構造物として採用したとしても、飛来物が衝突する際の衝撃力を吸収することは到底不可能である。
However, the techniques of Patent Documents 1 to 4 are based on the assumption of collision between automobiles or between an automobile and a wall surface, and shock absorption is assumed when a flying object with a high penetration force such as a steel material collides with a building or the like. Not done.
In other words, even if the techniques of Patent Documents 1 to 4 are adopted as a structure that absorbs the impact force when a flying object having a high penetrating force collides with a building or the like like steel, the impact when the flying object collides. It is impossible to absorb power.

上述したように、貫通力の高い飛来物が衝突した際の衝撃力を吸収する構造物であって建造物等に設置されるものは現在のところ開発されておらず、かかる構造物の開発が望まれている。   As described above, structures that absorb impact force when a projectile with high penetrating force collide and that are installed in a building have not been developed at present. It is desired.

本発明は上記事情に鑑み、飛来物が衝突した際の衝撃力を吸収することができる保護構造物を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide a protective structure that can absorb an impact force when a flying object collides.

第1発明の保護構造物は、断面円形の筒状部材を複数有する筒状部を備えており、該複数の筒状部材は、その中心軸が互いに平行となり、内方に位置する内側筒状部材の外面と外方に位置する外側筒状部材の内面との間に隙間が形成されるように、互いに入れ子状態となるように配設されており、前記内側筒状部材の外面と前記外側筒状部材の内面との間に両者間の隙間を維持するスペーサーが設けられており、該スペーサーは、前記筒状部の軸方向から該筒状部を圧縮する力が加わると前記内側筒状部材および前記外側筒状部材とともに軸圧潰する部材であることを特徴とする。
第2発明の保護構造物は、第1発明において、対向する2壁を有する箱状の部材と、該箱状の部材の2壁の間に配置された複数の前記筒状部と、を備えており、前記複数の筒状部は、その両端が前記箱状の部材の2壁にそれぞれ接するように配置されていることを特徴とする。
第3発明の保護構造物は、第1または第2発明において、保護対象物が建造物であり、前記複数の筒状部材が前記建造物の表面に沿って並ぶように配置されていることを特徴とする。
第4発明の保護構造物は、第1、第2または第3発明において、前記筒状部は、長さの異なる複数の筒状部材から構成されていることを特徴とする。
第5発明の保護構造物は、第1、第2、第3または第4発明において、前記複数の筒状部材は、軸方向から圧縮する力が加わると蛇腹状に変形可能であり、内方に位置する筒状部材の外面と外方に位置する筒状部材の内面との間の隙間が、該軸方向から前記筒状部材を圧縮する力が加わり前記複数の筒状部材が蛇腹状に変形した際に、内方に位置する筒状部材の外面と外方に位置する筒状部材の内面とが非接触状態に保たれるように配設されていることを特徴とする。
第6発明の保護構造物は、第1、第2、第3、第4または第5発明において、前記筒状部が、一対の筒状部材から形成されており、外方に位置する外側筒状部材は、外径が80mm、内径が72〜74mmのアルミパイプであり、内方に位置する内側筒状部材は、外径が50mm、内径が44〜46mmのアルミパイプであることを特徴とする。
The protection structure of the first invention includes a cylindrical portion having a plurality of cylindrical members having a circular cross section, and the plurality of cylindrical members have inner cylindrical shapes whose central axes are parallel to each other and located inward. The outer cylindrical member is disposed so as to be nested between the outer surface of the inner cylindrical member and the outer surface of the outer cylindrical member positioned outward. A spacer is provided between the inner surface of the cylindrical member to maintain a gap between the two, and the spacer is configured such that when a force is applied to compress the cylindrical portion from the axial direction of the cylindrical portion, the inner cylindrical shape is applied. The member is a member that is axially crushed together with the member and the outer cylindrical member .
A protective structure according to a second aspect of the present invention includes, in the first aspect, a box-shaped member having two opposing walls, and the plurality of cylindrical portions arranged between the two walls of the box-shaped member. The plurality of cylindrical portions are arranged such that both ends thereof are in contact with two walls of the box-shaped member.
The protection structure of the third invention is that in the first or second invention, the protection object is a building, and the plurality of cylindrical members are arranged along the surface of the building. Features.
The protection structure according to a fourth aspect of the present invention is characterized in that, in the first, second or third aspect , the cylindrical portion is composed of a plurality of cylindrical members having different lengths.
The protection structure according to a fifth aspect of the present invention is the first, second, third, or fourth aspect, wherein the plurality of cylindrical members can be deformed into an accordion shape when a compressing force is applied from the axial direction. The gap between the outer surface of the cylindrical member positioned at the outer surface and the inner surface of the cylindrical member positioned at the outer side is applied with a force for compressing the cylindrical member from the axial direction, so that the plurality of cylindrical members are in a bellows shape. When deformed, the outer surface of the cylindrical member positioned inward and the inner surface of the cylindrical member positioned outward are disposed in a non-contact state.
A protection structure according to a sixth aspect of the present invention is the first, second, third, fourth, or fifth aspect, wherein the cylindrical portion is formed of a pair of cylindrical members, and is an outer cylinder positioned outward. The cylindrical member is an aluminum pipe having an outer diameter of 80 mm and an inner diameter of 72 to 74 mm, and the inner cylindrical member positioned inward is an aluminum pipe having an outer diameter of 50 mm and an inner diameter of 44 to 46 mm. To do.

第1発明によれば、飛来物が軸方向から衝突するように筒状部を建造物等に設置すれば、筒状部に飛来物が衝突した際に、筒状部の複数の筒状部材が蛇腹状に変形して飛来物の衝突エネルギーを吸収する。したがって、飛来物が建造物等に衝突しても、建造物等の本体が損傷することを防ぐことができ、建造物等に加わる力も軽減することができる。しかも、筒状部を複数の筒状部材で形成しているので、筒状部材の組み合わせを調整すれば、建造物等や想定される飛来物に合わせて、吸収できる衝突エネルギーを調整できる。そして、スペーサーを設けているので、内側筒状部材と外側筒状部材の相対的な位置がズレることを防ぐことができる。しかも、筒状部を複数設けた場合に、どの筒状部もほぼ同じ状態とできるので、どの筒状部もほぼ同じ状況で軸圧潰させることができる。
第2発明によれば、箱状の部材の内部に複数の筒状部が保持されているので、箱状の部材を保護対象の前に並べれば、飛散物などの衝突から保護対象を保護することができる。
第3発明によれば、建造物の表面に加わる力を軽減することができる。
第4発明によれば、衝突初期の荷重ピークを低く抑えることができるので、建造物等に加わる力を軽減する効果を高くすることができる。
第5発明によれば、複数の筒状部材が蛇腹状に変形した際に、各筒状部材をスムースに変形させることができるので、衝突エネルギーを吸収する効率を高くすることができる。
第6発明によれば、保護構造物がなければ建造物等に加わる衝撃力が30G程度のところ、保護構造物を設置することにより建造物等に加わる衝撃力を2G以下まで低減することができる。したがって、風速100m/s程度の竜巻により飛来物が建造物等に衝突しても、建造物等の損傷を抑制することができる。
According to the first invention, when the cylindrical portion is installed in a building or the like so that the flying object collides from the axial direction, when the flying object collides with the cylindrical portion, the plurality of cylindrical members of the cylindrical portion. Transforms into a bellows shape and absorbs the impact energy of flying objects. Therefore, even if a flying object collides with a building or the like, the main body of the building or the like can be prevented from being damaged, and the force applied to the building or the like can be reduced. And since the cylindrical part is formed with the several cylindrical member, if the combination of a cylindrical member is adjusted, the collision energy which can be absorbed can be adjusted according to a building etc. or a flying object assumed. And since the spacer is provided, it can prevent that the relative position of an inner side cylindrical member and an outer side cylindrical member shifts | deviates. In addition, when a plurality of cylindrical portions are provided, any cylindrical portion can be in substantially the same state, so that any cylindrical portion can be axially crushed in substantially the same situation.
According to the second invention, since the plurality of cylindrical portions are held inside the box-shaped member, if the box-shaped members are arranged in front of the object to be protected, the object to be protected is protected from collisions such as scattered objects. be able to.
According to the 3rd invention, the force added to the surface of a building can be reduced.
According to the fourth invention , since the load peak at the initial stage of the collision can be kept low, the effect of reducing the force applied to the building or the like can be enhanced.
According to the fifth aspect of the present invention , when the plurality of cylindrical members are deformed in a bellows shape, each cylindrical member can be smoothly deformed, so that the efficiency of absorbing collision energy can be increased.
According to the sixth invention , if there is no protective structure, the impact force applied to the building or the like is about 30 G, but the impact force applied to the building or the like can be reduced to 2 G or less by installing the protective structure. . Therefore, even if a flying object collides with a building or the like by a tornado having a wind speed of about 100 m / s, damage to the building or the like can be suppressed.

本実施形態の保護構造物1における筒状部10の概略説明図であり、(A)は平面図であり、(B)は側面図であり、(C)は軸圧潰後の概略側面図である。It is a schematic explanatory drawing of the cylindrical part 10 in the protection structure 1 of this embodiment, (A) is a top view, (B) is a side view, (C) is a schematic side view after axial crushing. is there. 本実施形態の保護構造物1における筒状部10の軸圧潰状況の概略説明図であり、(A)は筒状部10に荷重Fが加わった初期の概略断面図であり、(B)は筒状部10が軸圧潰した後の概略断面図であり、(C)は軸圧潰した後の筒状部10の概略平面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic explanatory drawing of the axial crushing condition of the cylindrical part 10 in the protection structure 1 of this embodiment, (A) is an initial schematic sectional drawing in which the load F was added to the cylindrical part 10, (B) is It is a schematic sectional drawing after the cylindrical part 10 is axially crushed, (C) is a schematic plan view of the cylindrical part 10 after axially crushed. (A)は本実施形態の保護構造物1を設けた重油タンクTの概略外観図であり、(B)は(A)のB−B線概略断面図である。(A) is a schematic external view of the heavy oil tank T which provided the protection structure 1 of this embodiment, (B) is a BB schematic sectional drawing of (A). (A)は本実施形態の保護構造物1を設けた重油タンクTの概略縦断面図あり、(B)は(A)の要部概略拡大図である。(A) is a schematic longitudinal cross-sectional view of the heavy oil tank T which provided the protection structure 1 of this embodiment, (B) is a principal part schematic enlarged view of (A). 内側筒状部材12が外側筒状部材11よりも軸長が短い場合において、保護構造物1に荷重Fが加わった状況の概略説明図である。FIG. 6 is a schematic explanatory diagram of a situation where a load F is applied to the protective structure 1 when the inner cylindrical member 12 has a shorter axial length than the outer cylindrical member 11. (A)、(B)はスペーサー15を設けた筒状部10の概略説明図であり、(C)、(D)は内側筒状部材12が偏心した状態の筒状部10の概略説明図である。(A), (B) is a schematic explanatory drawing of the cylindrical part 10 which provided the spacer 15, (C), (D) is a schematic explanatory drawing of the cylindrical part 10 in the state where the inner side cylindrical member 12 was eccentric. It is. 本実施形態の保護構造物1を利用した防護プレート20の概略説明図であり、(A)は概略斜視図であり、(B)は概略拡大断面図である。It is a schematic explanatory drawing of the protection plate 20 using the protection structure 1 of this embodiment, (A) is a schematic perspective view, (B) is a schematic expanded sectional view. (A)は実施例の実験装置の写真であり、(B)は筒状部を圧縮する状況を示した写真である。(A) is a photograph of the experimental apparatus of the example, and (B) is a photograph showing a situation in which the cylindrical portion is compressed. 実施例の実験結果を示したグラフである。It is the graph which showed the experimental result of the Example. 実施例の実験結果を示したグラフである。It is the graph which showed the experimental result of the Example. 実施例の実験結果を示したグラフである。It is the graph which showed the experimental result of the Example. 実施例の実験結果を示したグラフである。It is the graph which showed the experimental result of the Example.

本発明の保護構造物は、火力発電所や原子力発電所、製造プラントなどにおける建造物の壁面等に設置されるものであり、飛来物などが建造物の壁面等に衝突した際に、その衝撃を吸収して建造物の損傷を防ぐものである。   The protective structure of the present invention is installed on the wall surface of a building in a thermal power plant, nuclear power plant, manufacturing plant, etc., and when a flying object collides with the wall surface of the building, the impact It absorbs and prevents damage to the building.

なお、本発明の保護構造物が取り付けられる建造物等はとくに限定されない。例えば、鉄骨造建屋の鉄骨表面部や鉄筋コンクリート建屋壁面表面などを挙げることができる。とくに、重油などの可燃性燃料を収納するタンクなどのように、消防法の規定などにより、建造物等の周囲に落石防止用ネットなどの防護構造物を設けることできない建造物等に適している。   In addition, the building etc. in which the protection structure of this invention is attached are not specifically limited. For example, the steel frame surface part of a steel structure building, the reinforced concrete building wall surface, etc. can be mentioned. Especially suitable for buildings such as tanks that store flammable fuels such as heavy oil, etc., where a protective structure such as a rockfall prevention net cannot be provided around buildings due to regulations of the Fire Service Act, etc. .

以下では、本発明の保護構造物が取り付けられる建造物が重油タンクの場合を代表として説明する。   Below, the case where the structure where the protection structure of this invention is attached is a heavy oil tank is demonstrated as a representative.

(本実施形態の保護構造物1)
図3および図4において、符号Tは、本実施形態の保護構造物1を設置した重油タンクを示している。この重油タンクTは、筒状の本体部TBと、本体部TBの両端に設けられた一対の鏡板TM,TMとから構成されている。
そして、図3および図4に示すように、重油タンクTには、本体部TBの表面(下部を除いた部分)および一対の鏡板TM,TMの表面に、本実施形態の保護構造物1が設けられている。以下では、本実施形態の保護構造物1が設けられる表面、つまり、本体部TBの表面および一対の鏡板TM,TMの表面を、単に設置面という。
(Protective structure 1 of this embodiment)
In FIG. 3 and FIG. 4, the code | symbol T has shown the heavy oil tank which installed the protection structure 1 of this embodiment. This heavy oil tank T is comprised from the cylindrical main-body part TB and a pair of end plate TM and TM provided in the both ends of the main-body part TB.
As shown in FIGS. 3 and 4, the heavy oil tank T is provided with the protective structure 1 of the present embodiment on the surface of the main body TB (portion excluding the lower part) and the surfaces of the pair of end plates TM and TM. Is provided. Hereinafter, the surface on which the protective structure 1 of the present embodiment is provided, that is, the surface of the main body portion TB and the surfaces of the pair of end plates TM and TM are simply referred to as an installation surface.

なお、図3および図4では、本体部TBの表面下部には本実施形態の保護構造物1が設けられていないが(図3(B)参照)、もちろん、本体部TBの表面下部にも本実施形態の保護構造物1を設けてもよい。しかし、本体部TBの表面下部は、重油タンクTを土台Bに固定する脚BMが設けられるので保護構造物1を設置しにくく、また、その前面(外方)には、通常、鉄筋コンクリート製の防油堤が設けられており、飛散物が衝突する可能性が低いと考えられる。したがって、重油タンクTを設置する場所の立地条件などを考慮して、本体部TBの表面下部に、適宜、本実施形態の保護構造物1を取り付ければよい。   In FIGS. 3 and 4, the protective structure 1 of the present embodiment is not provided at the lower surface of the main body portion TB (see FIG. 3B). Of course, the lower surface of the main body portion TB is also provided. You may provide the protective structure 1 of this embodiment. However, the lower part of the surface of the main body TB is provided with legs BM for fixing the heavy oil tank T to the base B, so that it is difficult to install the protective structure 1, and the front (outside) is usually made of reinforced concrete. There is an oil breakwater and it is considered that there is a low possibility of flying objects colliding. Therefore, the protective structure 1 of the present embodiment may be appropriately attached to the lower surface of the main body portion TB in consideration of the location conditions of the place where the heavy oil tank T is installed.

(保護構造物1)
図3および図4に示すように、本実施形態の保護構造物1は、基礎部材2と、外面部材3と、複数の筒状部10と、を備えている。
(Protective structure 1)
As shown in FIGS. 3 and 4, the protective structure 1 according to this embodiment includes a base member 2, an outer surface member 3, and a plurality of cylindrical portions 10.

(基礎部材2および外面部材3)
基礎部材2は設置面に固定される板状の部材であり、その形状が設置面と同じ形状となるように形成されている。同じ形状とは、設置面が上述した本体部TBの表面や一対の鏡板TM,TMの表面は曲面の場合、保護構造物1を設置面に設置したときに、基礎部材2の表面が設置面と略平行曲面となる形状を意味している。
(Basic member 2 and outer member 3)
The base member 2 is a plate-like member fixed to the installation surface, and is formed so that the shape thereof is the same as that of the installation surface. The same shape means that the surface of the base member 2 is the installation surface when the protective structure 1 is installed on the installation surface when the installation surface is a curved surface on the surface of the main body TB or the pair of end plates TM, TM described above. And a shape that is a substantially parallel curved surface.

外面部材3も板状の部材であり、その形状は基礎部材2と同じ形状となるように形成されている。つまり、外面部材3は、その表面が基礎部材2の表面と平行曲面となるように形成されている。言い換えれば、外面部材3は、保護構造物1を設置面に設置したときに、その表面が設置面と平行曲面となる形状に形成されているのである。   The outer surface member 3 is also a plate-like member, and is formed so as to have the same shape as the base member 2. That is, the outer surface member 3 is formed so that the surface thereof is a curved surface parallel to the surface of the base member 2. In other words, the outer surface member 3 is formed in a shape whose surface becomes a curved surface parallel to the installation surface when the protective structure 1 is installed on the installation surface.

(筒状部10)
そして、基礎部材2と外面部材3との間には、複数の筒状部10が設けられている。この複数の筒状部10は、その軸方向の一端(基端)が基礎部材2の外面(設置面と対向する面と逆側の面)に連結されており、その軸方向の他端(先端)が外面部材3の内面(基礎部材2と対向する面)に連結されている。言い換えれば、基礎部材2と外面部材3は、複数の筒状部10によって互いに連結されているのである。
(Cylindrical part 10)
A plurality of cylindrical portions 10 are provided between the base member 2 and the outer surface member 3. One end (base end) in the axial direction of the plurality of cylindrical portions 10 is connected to the outer surface of the base member 2 (the surface opposite to the surface facing the installation surface), and the other end in the axial direction ( The tip is connected to the inner surface of the outer member 3 (the surface facing the base member 2). In other words, the base member 2 and the outer surface member 3 are connected to each other by the plurality of cylindrical portions 10.

図1に示すように、各筒状部10は、断面円形に形成された中空な外側筒状部材11と、断面円形に形成された中空な内側筒状部材12と、から構成されている。各筒状部10は、外側筒状部材11と内側筒状部材12が互いに入れ子状態となるように配設されている。具体的には、各筒状部10は、外側筒状部材11の中空な空間内に、内側筒状部材12が外側筒状部材11と同軸となるように配設されている。つまり、各筒状部10は、外側筒状部材11と内側筒状部材12によって、断面形状が同心円状となるように形成された二重管となっているのである。   As shown in FIG. 1, each cylindrical part 10 is comprised from the hollow outer cylindrical member 11 formed in the cross-sectional circle shape, and the hollow inner cylindrical member 12 formed in the cross-sectional circle shape. Each tubular portion 10 is disposed such that the outer tubular member 11 and the inner tubular member 12 are nested with each other. Specifically, each cylindrical portion 10 is disposed in a hollow space of the outer cylindrical member 11 so that the inner cylindrical member 12 is coaxial with the outer cylindrical member 11. That is, each tubular portion 10 is a double tube formed by the outer tubular member 11 and the inner tubular member 12 so that the cross-sectional shape is concentric.

そして、各筒状部10は、その軸方向が基礎部材2の表面の法線方向(言い換えれば外面部材3内面の法線nv方向)と一致するように配設されており、しかも、隣接する筒状部10同士の間隔がほぼ同じ距離となるように配列されている。例えば、基礎部材2の表面の法線nv方向から見たときに、複数の筒状部10は、格子状や千鳥状に配列されているのである。   And each cylindrical part 10 is arrange | positioned so that the axial direction may correspond with the normal line direction (in other words normal line nv direction of the outer surface member 3 inner surface) of the surface of the base member 2, and it adjoins. It arrange | positions so that the space | interval of the cylindrical parts 10 may become the substantially same distance. For example, when viewed from the normal nv direction of the surface of the base member 2, the plurality of cylindrical portions 10 are arranged in a lattice shape or a zigzag shape.

本実施形態の保護構造物1は、以上のごとき構成を有しているので、保護構造物1を重油タンクTの設置面に設けておけば、飛来物が重油タンクTに向かって飛来してきても、以下の理由により、重油タンクTに加わる力を軽減でき、重油タンクTの損傷を防ぐことができる。   Since the protective structure 1 of the present embodiment has the above-described configuration, if the protective structure 1 is provided on the installation surface of the heavy oil tank T, flying objects will fly toward the heavy oil tank T. However, the force applied to the heavy oil tank T can be reduced for the following reasons, and damage to the heavy oil tank T can be prevented.

まず、本実施形態の保護構造物1を重油タンクTの設置面に設ければ、重油タンクTの表面が保護構造物1によって覆われ、外面部材3が最外面に位置するようになる。この重油タンクTに向かって飛来物が飛来してきても、飛来物はまず保護構造物1の外面部材3に衝突する状況となる。飛来物が外面部材3に衝突すると、外面部材3には衝突エネルギーが加わり、外面部材3を変形させる力および外面部材3を重油タンクTに向かって移動させようとする力が発生する。   First, when the protective structure 1 of the present embodiment is provided on the installation surface of the heavy oil tank T, the surface of the heavy oil tank T is covered with the protective structure 1, and the outer surface member 3 is positioned on the outermost surface. Even if a flying object comes to the heavy oil tank T, the flying object first collides with the outer surface member 3 of the protective structure 1. When the flying object collides with the outer surface member 3, collision energy is applied to the outer surface member 3, and a force for deforming the outer surface member 3 and a force for moving the outer surface member 3 toward the heavy oil tank T are generated.

一方、保護構造物1では、外面部材3の内側に複数の筒状部10が設けられているので、外面部材3に加わる上記力は、飛来物が外面部材3に衝突した位置近傍の筒状部10(以下被加圧筒状部10という)に加わることとなる。このとき、複数の筒状部10は、その軸方向が外面部材3内面の法線方向と一致するように設けられているので、上記力は、主として、被加圧筒状部10の軸方向から被加圧筒状部10を軸方向に沿って圧縮するように加わる。   On the other hand, in the protective structure 1, since the plurality of cylindrical portions 10 are provided inside the outer surface member 3, the force applied to the outer surface member 3 is a cylindrical shape near the position where the flying object collides with the outer surface member 3. Part 10 (hereinafter referred to as a pressurized cylindrical part 10) is added. At this time, since the plurality of cylindrical portions 10 are provided such that the axial direction thereof coincides with the normal direction of the inner surface of the outer surface member 3, the force is mainly generated in the axial direction of the pressurized cylindrical portion 10. The pressurized cylindrical portion 10 is added so as to be compressed along the axial direction.

すると、被加圧筒状部10の軸方向から加わる力の大きさが、被加圧筒状部10に軸圧潰を生じさせる力(座屈を生じさせる力)以上となると、筒状部10の外側筒状部材11および内側筒状部材12は軸圧潰を生じる(図2(A)参照)。すると、外側筒状部材11と内側筒状部材12は座屈を繰り返しながら蛇腹状に折りたたまれて軸方向の長さが短くなるように変形する(図1(C)、図2(B)参照)。つまり、被加圧筒状部10に加わるエネルギーは、外側筒状部材11と内側筒状部材12が軸圧潰する際に被加圧筒状部10に吸収されるので、飛来物が外面部材3に衝突した際の衝突エネルギーは被加圧筒状部10によって吸収されることになる。   Then, when the magnitude of the force applied from the axial direction of the pressurized cylindrical portion 10 becomes equal to or greater than the force causing axial crush in the pressurized cylindrical portion 10 (the force causing buckling), the cylindrical portion 10. The outer cylindrical member 11 and the inner cylindrical member 12 cause axial crushing (see FIG. 2A). Then, the outer cylindrical member 11 and the inner cylindrical member 12 are folded in a bellows shape while repeating buckling, and deformed so that the length in the axial direction is shortened (see FIGS. 1C and 2B). ). That is, since the energy applied to the pressurized cylindrical portion 10 is absorbed by the pressurized cylindrical portion 10 when the outer cylindrical member 11 and the inner cylindrical member 12 are axially crushed, the flying object is the outer surface member 3. The collision energy at the time of collision is absorbed by the pressurized cylindrical portion 10.

以上のごとく、本実施形態の保護構造物1を設けた場合、飛来物が重油タンクTに向かって飛来してきても、保護構造物1の被加圧筒状部10の変形によって衝突エネルギーを吸収できるので、重油タンクTに加わる力を軽減でき、重油タンクTの損傷を防ぐことができるのである。   As described above, when the protection structure 1 according to the present embodiment is provided, even if the flying object flies toward the heavy oil tank T, the collision energy is absorbed by the deformation of the pressurized tubular portion 10 of the protection structure 1. Therefore, the force applied to the heavy oil tank T can be reduced, and damage to the heavy oil tank T can be prevented.

しかも、本実施形態の保護構造物1は、筒状部10を複数の筒状部材(上記例では一対の筒状部材12,13)によって形成しているので、単に筒状部材を衝撃吸収材として使用した場合に比べて、衝撃吸収効果を改善することができる。例えば、一対の筒状部材12,13の合計板厚と同じ板厚の筒状部材(単管)を使用した場合に比べて、一対の筒状部材12,13からなる筒状部10を有する本実施形態の保護構造物1は、衝撃吸収効果を改善することができるのである。つまり、本実施形態の保護構造物1は、筒状部10を複数の筒状部材が入れ子状態となるように形成しただけであるが、単純に筒状部材(単管)を衝撃吸収材として使用する場合に比べて、衝撃吸収効果を改善することができるのである。
なお、本明細書において、合計板厚とは、筒状部10を構成する全ての筒状部材の板厚を足しあわせたものを意味している。
Moreover, in the protection structure 1 of the present embodiment, the cylindrical portion 10 is formed by a plurality of cylindrical members (a pair of cylindrical members 12 and 13 in the above example). As compared with the case where it is used as a shock absorbing effect, it can be improved. For example, it has the cylindrical part 10 which consists of a pair of cylindrical members 12 and 13 compared with the case where the cylindrical member (single tube) of the same board thickness as the total board thickness of a pair of cylindrical members 12 and 13 is used. The protective structure 1 of this embodiment can improve the impact absorption effect. That is, the protective structure 1 of the present embodiment is simply formed with the tubular portion 10 so that a plurality of tubular members are nested, but the tubular member (single tube) is simply used as the shock absorber. The impact absorption effect can be improved compared to the case of using it.
In the present specification, the total plate thickness means the sum of the plate thicknesses of all the cylindrical members constituting the cylindrical portion 10.

例えば、約100kgの鉄骨材が風速100m/sクラスの竜巻の風によって飛来物として衝突する場合を考えると、この場合、飛来物が建造物等に衝突する際の衝突力は30G程度になる。
かかる場合に、外径80mmかつ板厚か5〜7mmのアルミ製のパイプ(単管、長さ170mm)を衝撃吸収部材として使用した場合には、重油タンクTに加わる衝撃力を2G以下に低減することはできない。
一方、被加圧筒状部10の内側筒状部材12として、アルミ製のパイプ(外径50mm、内径44〜46mm(板厚t=2〜3mm)、長さ170mm)のものを使用し、外側筒状部材11として、アルミ製のパイプ(外径80mm、内径72〜74mm(板厚t=3〜4mm)、長さ170mm)のものを使用する。すると、被加圧筒状部10の合計板厚は上記単管と同じであっても、衝突エネルギーを保護構造物1で吸収し、重油タンクTに加わる衝突力を2G以下程度まで低減することができる。
For example, considering a case where about 100 kg of steel frame collides as a flying object due to a wind of 100 m / s class tornado, in this case, the collision force when the flying object collides with a building or the like is about 30G.
In such a case, when an aluminum pipe (single pipe, length 170 mm) having an outer diameter of 80 mm and a thickness of 5 to 7 mm is used as an impact absorbing member, the impact force applied to the heavy oil tank T is reduced to 2 G or less. I can't do it.
On the other hand, as the inner tubular member 12 of the pressurized tubular portion 10, an aluminum pipe (outer diameter 50 mm, inner diameter 44 to 46 mm (plate thickness t = 2 to 3 mm), length 170 mm) is used. As the outer cylindrical member 11, an aluminum pipe (outer diameter 80 mm, inner diameter 72 to 74 mm (plate thickness t = 3 to 4 mm), length 170 mm) is used. Then, even if the total plate | board thickness of the to-be-pressurized cylindrical part 10 is the same as the said single pipe | tube, collision energy is absorbed with the protective structure 1, and the collision force added to the heavy oil tank T is reduced to about 2G or less. Can do.

そして、筒状部10を複数の筒状部材が入れ子状態となるように形成した場合、蛇腹状に軸圧潰する際に、筒状部材(単管)の場合に比べて、荷重変動の幅を小さくできる(図9(B)参照)。上記のごとき筒状部10を設計する場合、筒状部10の変形(軸圧潰)の際の荷重変動(つまり吸収性能)を数値計算により確認するが、かかる数値計算では、通常、変形(軸圧潰)過程における荷重は一定値となるものとして仮定して数値計算が実施される。このため、軸圧潰の際の荷重変動の幅が小さくなれば(荷重変動がなめらかになれば)、実機と数値計算の結果(設計)との差を小さくできる。つまり、筒状部10を複数の筒状部材が入れ子状態となるように形成した場合、筒状部材(単管)の場合に比べて荷重変動の幅が小さくなるので、実機における筒状部10の性能を設計段階でより精度よく評価できる。言い換えれば、筒状部10を複数の筒状部材が入れ子状態となるように形成した場合には、筒状部10をより設計に近い性能のものとすることができるので、筒状部10に所望の性能を発揮させることができるという利点も得られる。   And when the cylindrical part 10 is formed so that a plurality of cylindrical members are in a nested state, when the shaft is crushed in a bellows shape, the width of the load fluctuation is larger than that of the cylindrical member (single pipe). It can be made smaller (see FIG. 9B). When designing the cylindrical portion 10 as described above, load fluctuation (that is, absorption performance) at the time of deformation (axial crushing) of the cylindrical portion 10 is confirmed by numerical calculation. The numerical calculation is performed assuming that the load in the crushing process is a constant value. For this reason, if the width of the load fluctuation at the time of shaft crushing becomes small (if the load fluctuation becomes smooth), the difference between the actual machine and the result of numerical calculation (design) can be reduced. That is, when the cylindrical portion 10 is formed so that a plurality of cylindrical members are nested, the width of the load fluctuation is smaller than that of the cylindrical member (single tube), and thus the cylindrical portion 10 in the actual machine is used. Can be evaluated more accurately at the design stage. In other words, when the cylindrical portion 10 is formed so that a plurality of cylindrical members are nested, the cylindrical portion 10 can be made to have a performance closer to the design. The advantage that desired performance can be exhibited is also obtained.

(内側筒状部材12と外側筒状部材11の配置)
なお、内側筒状部材12および外側筒状部材11は、その外径(内径)や板厚はとくに限定されず、内側筒状部材12を外側筒状部材11内に配置したときに、両者間にある程度の隙間ができるように配設できればよい。両者間にある程度の隙間ができるとは、外側筒状部材11と内側筒状部材12が蛇腹状に変形できる程度の隙間を意味している。つまり、「両者間にある程度の隙間」が形成されている場合は、上述したように、内側筒状部材12と外側筒状部材11が同軸となるように配置され、内側筒状部材12の外面と外側筒状部材11の内面との間に均等な隙間が形成されるようになっている場合に限られない。
(Arrangement of the inner cylindrical member 12 and the outer cylindrical member 11)
The inner cylindrical member 12 and the outer cylindrical member 11 are not particularly limited in outer diameter (inner diameter) and plate thickness, and when the inner cylindrical member 12 is disposed in the outer cylindrical member 11, it is between It suffices if it can be arranged so that a certain gap is formed. “A certain amount of gap between the two” means that the outer cylindrical member 11 and the inner cylindrical member 12 can be deformed into a bellows shape. That is, when “a certain amount of gap is formed between the two”, as described above, the inner cylindrical member 12 and the outer cylindrical member 11 are arranged so as to be coaxial, and the outer surface of the inner cylindrical member 12 is arranged. The present invention is not limited to the case where a uniform gap is formed between the outer cylindrical member 11 and the inner surface of the outer cylindrical member 11.

例えば、内側筒状部材12の外面と外側筒状部材11の内面は接触していないが、周方向の位置によって隙間の大きさが異なる状態も、「両者間にある程度の隙間」が形成されている場合に該当する。また、内側筒状部材12の外面と外側筒状部材11の内面の一部が接触していても、両者が接触していない部分(隙間)が形成されており、内側筒状部材12が蛇腹状に変形できるのであれば、その状態も本明細書における「両者間にある程度の隙間」が形成されている場合に該当する(図6(C)、(D)参照)。   For example, the outer surface of the inner cylindrical member 12 and the inner surface of the outer cylindrical member 11 are not in contact with each other. This is applicable. Moreover, even if the outer surface of the inner cylindrical member 12 and a part of the inner surface of the outer cylindrical member 11 are in contact with each other, a portion (gap) that is not in contact with each other is formed. If it can be deformed into a shape, that state also corresponds to the case where “a certain amount of gaps” are formed in this specification (see FIGS. 6C and 6D).

なお、内側筒状部材12と外側筒状部材11は、両者間の隙間が、内側筒状部材12および外側筒状部材11が軸圧潰したときに、両者が接触しない程度の隙間となるように配設されていることが望ましい。つまり、内側筒状部材12および外側筒状部材11が軸圧潰しても、内側筒状部材12の外面と外側筒状部材11の内面が非接触状態に保たれる程度の隙間となるように、外側筒状部材11内に内側筒状部材12が配設されていることが望ましい(図1(C)、図2(B)、(C)参照)。すると、内側筒状部材12と外側筒状部材11が軸圧潰した際に、両者ともスムースに変形させることができるので、衝突エネルギーを吸収する効率を高くすることができるという利点が得られる。   In addition, when the inner cylindrical member 12 and the outer cylindrical member 11 are axially crushed, the inner cylindrical member 12 and the outer cylindrical member 11 have a gap so that they do not contact each other. It is desirable that they are arranged. That is, even if the inner cylindrical member 12 and the outer cylindrical member 11 are axially crushed, the outer cylindrical surface of the inner cylindrical member 12 and the inner surface of the outer cylindrical member 11 have a gap that is maintained in a non-contact state. It is desirable that the inner cylindrical member 12 is disposed in the outer cylindrical member 11 (see FIGS. 1C, 2B, and 2C). Then, when the inner cylindrical member 12 and the outer cylindrical member 11 are crushed axially, both can be smoothly deformed, so that an advantage that the efficiency of absorbing collision energy can be increased.

また、内側筒状部材12と外側筒状部材11の相対的な位置を保っておくため、または、内側筒状部材12と外側筒状部材11の相対的な位置を正確に位置決めするために、内側筒状部材12と外側筒状部材11の間の隙間にスペーサーを設けてもよい。かかるスペーサーを設ければ、筒状部10を複数設けた場合に、どの筒状部10もほぼ同じ状態とできるので、どの筒状部10もほぼ同じ状況で軸圧潰させることができる。そして、スペーサーを設ければ、筒状部10を設置する際に、内側筒状部材12と外側筒状部材11の相対的な位置がズレることを防ぐことができるので、筒状部10の設置作業が行い易くなるという利点も得られる。かかるスペーサーの形状などはとくに限定されず、内側筒状部材12と外側筒状部材11が軸圧潰する邪魔とならなければよい。例えば、薄い波板を内側筒状部材12と外側筒状部材11の間に配置して、スペーサー15とすることができる(図6(A)、(B)参照)。この場合、スペーサー15を設ける位置はとくに限定されず、図6(A)、(B)に示すように、スペーサー15を3箇所設けてもよいし、上下方向の中間のスペーサー15bだけを設けたり、上下の二箇所のスペーサー15a,cだけを設けたりしてもよい。 In order to keep the relative positions of the inner cylindrical member 12 and the outer cylindrical member 11 or to accurately position the relative positions of the inner cylindrical member 12 and the outer cylindrical member 11, A spacer may be provided in the gap between the inner cylindrical member 12 and the outer cylindrical member 11. If such a spacer is provided, any cylindrical part 10 can be in substantially the same state when a plurality of cylindrical parts 10 are provided, so that any cylindrical part 10 can be axially collapsed in substantially the same situation. If the spacer is provided, the relative positions of the inner cylindrical member 12 and the outer cylindrical member 11 can be prevented from shifting when the cylindrical portion 10 is installed. There is also an advantage that the work becomes easier. The shape of the spacer and the like are not particularly limited, and it is sufficient that the inner cylindrical member 12 and the outer cylindrical member 11 do not interfere with axial crushing. For example, a thin corrugated plate can be disposed between the inner cylindrical member 12 and the outer cylindrical member 11 to form the spacer 15 (see FIGS. 6A and 6B). In this case, the position at which the spacer 15 is provided is not particularly limited. As shown in FIGS. 6A and 6B, three spacers 15 may be provided, or only the intermediate spacer 15b in the vertical direction may be provided. Only the upper and lower spacers 15a and 15c may be provided.

(筒状部10の材料について)
なお、筒状部10の内側筒状部材12および外側筒状部材11は、中空な円筒状の部材であって、軸方向から加圧された際に軸圧潰して蛇腹状に変形するものであればよく、とくに限定されない。例えば、上述したようなアルミ製のパイプや鋼管、ステンレス管を、内側筒状部材12および外側筒状部材11として使用することができる。
(About the material of the cylindrical part 10)
The inner cylindrical member 12 and the outer cylindrical member 11 of the cylindrical portion 10 are hollow cylindrical members that are deformed into a bellows shape by being axially crushed when pressurized from the axial direction. There is no particular limitation as long as it is present. For example, the above-described aluminum pipe, steel pipe, and stainless steel pipe can be used as the inner cylindrical member 12 and the outer cylindrical member 11.

とくに、内側筒状部材12や外側筒状部材11として、市販のアルミ製のパイプを使用すれば、安価かつ迅速に保護構造物1を重油タンクT等に設置できるという利点も得られる。例えば、重油タンクTに保護構造物1を設ける場合には、上述した性能(30Gの衝突力を2G程度以下に低減する性能)を維持するには、筒状部10を4万本程度設けなければならない。すると、市販品以外のもの(特注品など)を使用した場合、製品の納期が非常に長くなり、また、製品のコストも非常に高くなる。しかし、市販のアルミ製のパイプなどを使用すれば、入手が容易でありしかも安価に入手できるので、安価かつ迅速に保護構造物1を重油タンクT等に設置できる。   In particular, if a commercially available aluminum pipe is used as the inner cylindrical member 12 or the outer cylindrical member 11, the advantage that the protective structure 1 can be installed in the heavy oil tank T or the like at a low cost is also obtained. For example, when the protective structure 1 is provided in the heavy oil tank T, about 40,000 cylindrical portions 10 must be provided in order to maintain the above-described performance (performance that reduces the collision force of 30 G to about 2 G or less). I must. Then, when a non-commercial product (such as a custom-made product) is used, the delivery time of the product becomes very long, and the cost of the product becomes very high. However, if a commercially available aluminum pipe or the like is used, the protection structure 1 can be installed in the heavy oil tank T or the like inexpensively and quickly because it can be easily obtained at low cost.

また、上記例では、筒状部10の内側筒状部材12と外側筒状部材11は、内径以外は同じものを使用しているが、内径以外(例えば素材や板厚など)が異なるものを使用してもよい。   Further, in the above example, the inner cylindrical member 12 and the outer cylindrical member 11 of the cylindrical portion 10 are the same except for the inner diameter, but those other than the inner diameter (for example, material, plate thickness, etc.) are different. May be used.

(軸長変更)
また、重油タンクTに加わる衝突力を低減する上では、内側筒状部材12と外側筒状部材11の長さが異なるものとするほうが望ましい。
(Axis length change)
In order to reduce the collision force applied to the heavy oil tank T, it is desirable that the inner cylindrical member 12 and the outer cylindrical member 11 have different lengths.

飛来物が保護構造物1に衝突した際において、飛来物が保護構造物1に衝突した後、被加圧筒状部10が変形を開始する前(変形前期間)の期間は、被加圧筒状部10は剛体のように機能するので、保護構造物1に加わった力は、被加圧筒状部10を介してそのまま重油タンクTに加わる。そして、変形前期間は、飛来物から保護構造物1に加わる力が増加するので、重油タンクTに加わる力も増加する(図9参照)。とくに、変形前期間の終了直前は、通常、変形前期間と被加圧筒状部10が蛇腹状に変形している期間(変形期間)を含めて最大の力が重油タンクTに加わる。したがって、飛来物が保護構造物1に衝突したのち、できるだけ低い荷重で被加圧筒状部10が変形を開始するようになっていることが望ましい。   When a projectile collides with the protective structure 1, after the projectile collides with the protective structure 1, the period before the pressurized cylindrical portion 10 starts to deform (pre-deformation period) is pressurized. Since the cylindrical part 10 functions like a rigid body, the force applied to the protective structure 1 is directly applied to the heavy oil tank T via the pressurized cylindrical part 10. And in the period before a deformation | transformation, since the force added to the protection structure 1 from a flying object increases, the force added to the heavy oil tank T also increases (refer FIG. 9). In particular, immediately before the end of the pre-deformation period, the maximum force is usually applied to the heavy oil tank T including the pre-deformation period and the period (deformation period) in which the pressurized tubular portion 10 is deformed in a bellows shape. Therefore, after the flying object collides with the protective structure 1, it is preferable that the pressurized cylindrical portion 10 starts to be deformed with the lowest possible load.

上述したように、内側筒状部材12と外側筒状部材11の長さを異なるものとすれば、飛来物が保護構造物1に衝突した際には、一方の筒状部材だけに力が加わる。すると、筒状部材の変形を低い荷重で開始させることができるので、変形前期間に重油タンクTに加わる力を小さくすることができ、この期間に重油タンクTが損傷することを防ぐことができる。   As described above, if the lengths of the inner cylindrical member 12 and the outer cylindrical member 11 are different, when a flying object collides with the protective structure 1, a force is applied only to one cylindrical member. . Then, since the deformation of the cylindrical member can be started with a low load, the force applied to the heavy oil tank T during the first period of deformation can be reduced, and the heavy oil tank T can be prevented from being damaged during this period. .

例えば、図5に示すように、外側筒状部材11を内側筒状部材12よりも長くする。この場合、飛来物が衝撃した際の力Fは、まず、外側筒状部材11にのみ加わる。すると、外側筒状部材11のみが力Fを受けるので、内側筒状部材12と外側筒状部材11の両方に力が加わる場合に比べて、小さい力で外側筒状部材11の軸圧潰が発生する(図5(B))。したがって、変形前期間において重油タンクTに加わる力を小さくすることができる。   For example, as shown in FIG. 5, the outer cylindrical member 11 is made longer than the inner cylindrical member 12. In this case, the force F when the flying object impacts is first applied only to the outer cylindrical member 11. Then, since only the outer cylindrical member 11 receives the force F, axial crushing of the outer cylindrical member 11 occurs with a smaller force than when the force is applied to both the inner cylindrical member 12 and the outer cylindrical member 11. (FIG. 5B). Therefore, the force applied to the heavy oil tank T in the pre-deformation period can be reduced.

なお、上記構成(外側筒状部材11が内側筒状部材12よりも長い)の場合、外側筒状部材11が小さい力で変形してしまうので、外側筒状部材11のみが変形している期間に吸収できる衝突エネルギーは小さい。しかし、外側筒状部材11が変形して内側筒状部材12と同じ長さになれば、それ以降は外側筒状部材11と内側筒状部材12の両方が変形し、両者の軸圧潰によって衝突エネルギーを吸収できる(図5(C)参照)。したがって、外側筒状部材11を内側筒状部材12よりも長くしても、外側筒状部材11と内側筒状部材12とが同じ長さである場合と同等程度の大きさの衝突エネルギーを吸収することができる。   In the case of the above configuration (the outer cylindrical member 11 is longer than the inner cylindrical member 12), since the outer cylindrical member 11 is deformed with a small force, only the outer cylindrical member 11 is deformed. Can absorb less energy. However, if the outer cylindrical member 11 is deformed to have the same length as the inner cylindrical member 12, thereafter, both the outer cylindrical member 11 and the inner cylindrical member 12 are deformed and collide by axial crushing of both. Energy can be absorbed (see FIG. 5C). Therefore, even if the outer cylindrical member 11 is longer than the inner cylindrical member 12, it absorbs collision energy having a magnitude equivalent to that when the outer cylindrical member 11 and the inner cylindrical member 12 have the same length. can do.

また、上記例では、外側筒状部材11が内側筒状部材12よりも長い場合を説明したが、内側筒状部材12を外側筒状部材11よりも長くしても、同様の効果を得ることができる。   In the above example, the case where the outer cylindrical member 11 is longer than the inner cylindrical member 12 has been described. However, even if the inner cylindrical member 12 is longer than the outer cylindrical member 11, the same effect can be obtained. Can do.

(配列の他の例)
上記例では、複数の筒状部10が、保護構造物1の規則的に配列されている場合を説明したが、複数の筒状部10の配列方法はとくに限定されず、ランダムに配列してもよい。また、保護構造物1の場所によって配列方法や密度を変化させてもよい。この場合、構造物の強度や保護する部分の重要度に合わせて、その部分に適した保護構造物1を形成することができる。例えば、重要度の低い部分や強度の高い部分の表面に設置する保護構造物1では、複数の筒状部10を設置する密度を低くする(数を減らす)、また、複数の筒状部10の筒状部材の板厚を薄くする等にすれば、保護構造物1を軽量化できるし製造コストを低減することができる。
(Other examples of arrays)
In the above example, the case where the plurality of cylindrical portions 10 are regularly arranged in the protective structure 1 has been described, but the arrangement method of the plurality of cylindrical portions 10 is not particularly limited, and is arranged at random. Also good. Further, the arrangement method and the density may be changed depending on the location of the protective structure 1. In this case, the protective structure 1 suitable for the portion can be formed in accordance with the strength of the structure and the importance of the portion to be protected. For example, in the protective structure 1 installed on the surface of a less important part or a higher strength part, the density of installing the plurality of cylindrical parts 10 is reduced (the number is reduced), and the plurality of cylindrical parts 10 If the thickness of the cylindrical member is reduced, the protective structure 1 can be reduced in weight and the manufacturing cost can be reduced.

(異なる筒状部10)
また、複数の筒状部10は、全て同じ構造の筒状部10を使用する必要はなく、異なる構造の筒状部10を使用してもよい。重要度の低い部分や強度の高い部分の表面に設置する保護構造物1では、初期荷重に対する変形性を低下させたものを使用してもよい。例えば、内側筒状部材12や外側筒状部材11の板厚を厚くすれば、衝突初期における筒状部10の変形性を低下させる(軸圧潰の開始を遅くする)ことができる。逆に、初期荷重に対する変形性を向上させるのであれば、内側筒状部材12や外側筒状部材11の板厚を薄くすれば、衝突初期から軸圧潰を迅速に進めることができる。
(Different cylindrical part 10)
Moreover, the plurality of cylindrical portions 10 do not need to use the cylindrical portions 10 having the same structure, and may use the cylindrical portions 10 having different structures. In the protective structure 1 installed on the surface of the less important part or the higher strength part, one having reduced deformability with respect to the initial load may be used. For example, if the plate thickness of the inner cylindrical member 12 or the outer cylindrical member 11 is increased, the deformability of the cylindrical portion 10 at the initial stage of the collision can be reduced (start of axial crushing is delayed). On the contrary, if the deformability with respect to the initial load is improved, the axial crush can be rapidly advanced from the initial stage of the collision by reducing the thickness of the inner cylindrical member 12 or the outer cylindrical member 11.

(多重管)
また、上記例では、筒状部10が、内側筒状部材12と外側筒状部材11を有する二重管の場合を説明したが、筒状部10は、筒状部材を3本以上入れ子状態にした多重管としてもよい。この場合でも、筒状部材の本数を調整すれば、保護構造物1を設置する建造物等や想定される飛来物の種類に合わせて、保護構造物1に吸収させる衝突エネルギーを調整できる。また、上述した二重管の場合と同様に、長さの異なる筒状部材を設ければ、衝突初期から軸圧潰を迅速に進めることができる。さらに、各筒状部材の板厚などの組み合わせを調整すれば、保護構造物1を設置する建造物等や想定される飛来物の種類に合わせて、保護構造物1に吸収させる衝突エネルギーを調整できる。
(Multiple pipe)
In the above example, the case where the tubular portion 10 is a double tube having the inner tubular member 12 and the outer tubular member 11 has been described. However, the tubular portion 10 has three or more tubular members nested therein. It is good also as the multiple tube made. Even in this case, if the number of cylindrical members is adjusted, the collision energy absorbed by the protective structure 1 can be adjusted in accordance with the type of building or the like where the protective structure 1 is installed or the expected flying object. Further, as in the case of the double pipe described above, if cylindrical members having different lengths are provided, the axial crush can be rapidly advanced from the initial stage of the collision. Furthermore, if the combination of the thickness of each cylindrical member is adjusted, the collision energy absorbed by the protective structure 1 is adjusted according to the type of building or the like where the protective structure 1 is installed or the expected flying object. it can.

(保護部材1の設置例)
なお、上記例では設置面が曲面の場合を説明したが、設置面が平面の場合であれば、基礎部材2や外面部材3は、その表面が設置面と平行面となるように形成すればよい。
(Installation example of protective member 1)
In the above example, the case where the installation surface is a curved surface has been described. However, if the installation surface is a flat surface, the foundation member 2 and the outer surface member 3 may be formed so that the surfaces thereof are parallel to the installation surface. Good.

また、基礎部材2や外面部材3は、必ずしもその表面が設置面と平行面や平行曲面となっていなくてもよく、設置対象の形状や周囲の状況に応じて適切な形状とすればよい。例えば、設置対象の近傍に障害物(木や他の構造物)がある場合には、その構造物と接触しないように基礎部材2や外面部材3の形状を調整すればよい。
しかし、基礎部材2や外面部材3の表面が設置面と平行面や平行曲面となるように形成されていれば、設置面への保護構造物1の設置が容易になるし、保護構造物1を設置面に安定した状態で固定することができる。また、衝撃荷重を均等に被保護設備に伝えるという点でも好ましい。
Moreover, the surface of the base member 2 and the outer surface member 3 does not necessarily have to be a parallel surface or a parallel curved surface with the installation surface, and may be an appropriate shape according to the shape of the installation target and the surrounding situation. For example, when there is an obstacle (a tree or other structure) in the vicinity of the installation target, the shape of the base member 2 or the outer surface member 3 may be adjusted so as not to contact the structure.
However, if the surface of the foundation member 2 or the outer surface member 3 is formed so as to be a parallel surface or a parallel curved surface with the installation surface, the protection structure 1 can be easily installed on the installation surface, and the protection structure 1 Can be fixed to the installation surface in a stable state. Moreover, it is also preferable in that the impact load is evenly transmitted to the protected equipment.

さらに、保護部材1は、他の部材に設置せず、単独で使用してもよい。例えば、複数の保護部材1を、基礎部材2と外面部材3によって平面が形成されるように並べて板状や箱状の部材を形成すれば、複数の保護部材1からなる防護プレートを形成することができる。   Furthermore, you may use the protection member 1 independently, without installing in another member. For example, when a plurality of protection members 1 are arranged so that a plane is formed by the base member 2 and the outer surface member 3 to form a plate-like or box-like member, a protection plate composed of the plurality of protection members 1 is formed. Can do.

また、基礎部材2と外面部材3を設けずに、筒状部10を保護部材1として直接対象物の表面に取り付けてもよい。この場合には、基礎部材2や外面部材3を設ける場合に比べて保護部材1を軽量化できるので、保護部材1を設置する建造物等への負担を軽減できるという利点が得られる。   Moreover, you may attach the cylindrical part 10 to the surface of a target object directly as the protection member 1, without providing the base member 2 and the outer surface member 3. FIG. In this case, since the protective member 1 can be reduced in weight compared with the case where the base member 2 and the outer surface member 3 are provided, an advantage that the burden on the building or the like where the protective member 1 is installed can be reduced.

さらに、図7に示すように、中空な箱状の部材23の中に、保護部材1として筒状部10だけを収容して防護部材22を形成してもよい。具体的には、箱状の部材23の対向する2壁23a,23bの間に、2壁23a,23bの法線方向と筒状部10の軸方位が平行となるように、複数の筒状部10を並べて配置する。すると、防護部材22に対して、2壁23a,23bの法線方向から他の物体が衝突すると、複数の筒状部10が軸圧潰して、衝突エネルギーを吸収することができる。例えば、図7に示すように、井桁状に形成された枠21を設け、この枠21に防護部材22を取り付ければ、複数の防護部材22を有する防護プレート20を形成することができる。かかる防護プレート20を保護したい壁面などの前に設置すれば、飛散物などの衝突から壁面などを保護することができる。   Further, as shown in FIG. 7, the protective member 22 may be formed by accommodating only the tubular portion 10 as the protective member 1 in the hollow box-shaped member 23. Specifically, a plurality of cylindrical shapes are provided between the two opposing walls 23a and 23b of the box-shaped member 23 so that the normal direction of the two walls 23a and 23b and the axial direction of the cylindrical portion 10 are parallel to each other. The parts 10 are arranged side by side. Then, when another object collides with the protection member 22 from the normal direction of the two walls 23a and 23b, the plurality of cylindrical portions 10 are axially crushed and can absorb the collision energy. For example, as shown in FIG. 7, a protection plate 20 having a plurality of protection members 22 can be formed by providing a frame 21 formed in a cross beam shape and attaching a protection member 22 to the frame 21. If the protective plate 20 is installed in front of a wall surface to be protected, the wall surface can be protected from collision with scattered objects.

さらに、筒状部10と基礎部材2だけ、または、筒状部10と外面部材3だけで、保護部材1を構成してもよい。筒状部10と基礎部材2だけで保護部材1を構成した場合には、保護部材1の設置を容易にしつつ軽量化が可能となるという利点が得られる。また、筒状部10と外面部材3だけで保護部材1を構成した場合には、軽量化しつつ筒状部10がむき出しの場合に比べてエネルギーを分散して複数の筒状部に吸収させることができるし外観を向上させることができるという利点が得られる。   Furthermore, you may comprise the protection member 1 only with the cylindrical part 10 and the base member 2, or only the cylindrical part 10 and the outer surface member 3. FIG. When the protection member 1 is configured only by the tubular portion 10 and the base member 2, there is an advantage that the protection member 1 can be easily installed and reduced in weight. Further, when the protective member 1 is configured only by the cylindrical portion 10 and the outer surface member 3, energy is dispersed and absorbed by a plurality of cylindrical portions as compared with the case where the cylindrical portion 10 is exposed while being reduced in weight. And the appearance can be improved.

本発明の保護部材の衝突エネルギー吸収性能を確認するために、保護部材を構成する筒状部に軸方向から荷重を加えた場合における、筒状部の変形と荷重との関係を確認した。   In order to confirm the collision energy absorption performance of the protective member of the present invention, the relationship between the deformation of the cylindrical portion and the load when a load was applied from the axial direction to the cylindrical portion constituting the protective member was confirmed.

実験では、種々の筒状部を形成し、各筒状部を軸方向から荷重を加えて加圧圧縮して、筒状部の変形(圧縮量)と筒状部に加える荷重との関係を測定した(図8参照)。
実験には、圧縮試験機(島津製作所製:油圧式RH竪型)に筒状部を取り付けて、圧縮荷重を加えた。圧縮試験中の圧縮量および荷重は、圧縮試験機に設けられているロードセル及びダイヤルゲージによって測定した。
In the experiment, various cylindrical parts were formed, and each cylindrical part was pressurized and compressed by applying a load from the axial direction, and the relationship between the deformation (compression amount) of the cylindrical part and the load applied to the cylindrical part was determined. Measurement was performed (see FIG. 8).
In the experiment, a cylindrical part was attached to a compression tester (manufactured by Shimadzu Corporation: hydraulic RH vertical type), and a compression load was applied. The amount of compression and the load during the compression test were measured with a load cell and a dial gauge provided in the compression tester.

試験は、以下の4通りの試験を行った。
(1)2重管の挙動を確認する試験
(2)板厚の相違の影響を確認する試験
(3)軸長を変化させた場合の影響を確認する試験
(4)スペーサーの影響を確認する試験
The following four tests were performed.
(1) Test to confirm the behavior of the double pipe (2) Test to confirm the effect of difference in plate thickness (3) Test to confirm the effect when changing the axial length (4) Confirm the effect of spacer test

(1)2重管の挙動を確認する試験
筒状部として2重管を使用した場合において、軸方向から荷重を加えて加圧圧縮した場合における圧縮量および荷重の変化を比較した。
(1) Test for confirming the behavior of the double pipe When a double pipe was used as the cylindrical portion, the amount of compression and the change of the load when pressure was applied by applying a load from the axial direction were compared.

筒状部は、アルミ製のパイプ(外径80mm、板厚3mm、長さ170mm)内に、アルミ製のパイプ(外径50mm、板厚3mm、長さ170mm)を入れて2重管(合計板厚6mm)としたもの(実施例1)と、アルミ製のパイプ(外径80mm、板厚3mm、長さ170mm)内に、アルミ製のパイプ(外径50mm、板厚2mm、長さ170mm)を入れて2重管(合計板厚5mm)としたもの(実施例2)を使用した。
比較対象となる1重管には、アルミ製のパイプ(外径80mm、板厚5mm、長さ170mm、比較例1)のものと、アルミ製のパイプ(外径80mm、板厚4mm、長さ170mm、比較例2)のものを使用した。
The cylindrical part is made of an aluminum pipe (outer diameter 80 mm, plate thickness 3 mm, length 170 mm) and an aluminum pipe (outer diameter 50 mm, plate thickness 3 mm, length 170 mm). (Example 1) and an aluminum pipe (outer diameter 80 mm, plate thickness 3 mm, length 170 mm) in an aluminum pipe (outer diameter 50 mm, plate thickness 2 mm, length 170 mm) ) Was used to make a double pipe (total thickness 5 mm) (Example 2).
The single pipes to be compared include an aluminum pipe (outer diameter 80 mm, plate thickness 5 mm, length 170 mm, comparative example 1) and an aluminum pipe (outer diameter 80 mm, plate thickness 4 mm, length). 170 mm, Comparative Example 2) was used.

図9(A)に結果を示す。
なお、いずれの場合も圧縮量110mm以降に荷重が急激に増加しているのは、それ以上圧縮できない状況(図1(C)の状態)となったからである。
FIG. 9A shows the result.
In any case, the reason why the load increases rapidly after the compression amount of 110 mm is that it is not possible to compress any more (the state shown in FIG. 1C).

図9(A)に示すように、実施例1および比較例1、2とも、圧縮量の増加に伴って、荷重が波形に変動することが確認できる。そして、実施例1は、ピークの荷重が、比較例1、2の間の大きさとなるように変動している。
実施例1のパイプは、個々のパイプの厚さが比較例1,2よりも薄いが合計の厚さが比較例1,2よりも厚いことを考慮すれば、上記結果は、パイプの組み合わせを調整すれば、荷重に対する所望の挙動を示す筒状部を形成できる可能性があることを示していると考えられる。
As shown in FIG. 9A, in both Example 1 and Comparative Examples 1 and 2, it can be confirmed that the load varies in a waveform as the compression amount increases. In Example 1, the peak load fluctuates so as to have a magnitude between Comparative Examples 1 and 2.
Considering that the pipe of Example 1 is thinner than Comparative Examples 1 and 2 but the total thickness is larger than Comparative Examples 1 and 2, the above results indicate that the pipe combination If adjusted, it is considered that there is a possibility that a cylindrical portion exhibiting a desired behavior with respect to the load may be formed.

また、図9(B)に示すように、実施例2の合計板厚と比較例1の板厚は同じであるが、その挙動は異なっている。
まず、最初のピークの荷重は、実施例2の方が若干小さくまた早期に座屈を開始している。つまり、合計板厚が同じであれば、単管パイプに比べて、多重管は、初期荷重に対する衝撃吸収性能が高いことが確認できる。
つぎに、最初のピーク後の挙動を比較すると、比較例1に比べて実施例2は変動周期が短い。しかも、各周期の山となる部分の荷重は、実施例2は、比較例1のピーク荷重に比べて20〜30%程度小さくなっている。しかも、比較例1では、各周期の山となる部分の荷重が最初のピークの荷重と同程度であるのに対し、実施例2では、各周期の山となる部分の荷重が最初のピークの荷重よりも30〜40%程度小さくなっている。このことから、座屈が生じた後、蛇腹状に変形していく過程において、合計板厚が同じであれば、単管パイプに比べて、多重管は、小さくかつなめらかな荷重変動で衝撃を吸収していることが確認できる。
そして、最終的な圧縮量では、比較例1に比べて実施例2は15mm以上大きく圧縮されている。つまり、合計板厚が同じであれば、多重管は、トータルでの衝撃吸収量が大きくなることが確認できる。
Further, as shown in FIG. 9B, the total plate thickness of Example 2 and the plate thickness of Comparative Example 1 are the same, but the behavior is different.
First, the load at the first peak is slightly smaller in Example 2, and buckling starts earlier. That is, if the total plate thickness is the same, it can be confirmed that the multi-tube has higher impact absorption performance with respect to the initial load than the single-pipe pipe.
Next, when the behavior after the first peak is compared, the fluctuation period of Example 2 is shorter than that of Comparative Example 1. And the load of the part used as the peak of each period is about 20 to 30% smaller in Example 2 than the peak load in Comparative Example 1. Moreover, in Comparative Example 1, the load at the peak of each cycle is about the same as the load at the first peak, whereas in Example 2, the load at the peak of each cycle is at the first peak. It is about 30 to 40% smaller than the load. From this, in the process of deforming into a bellows after buckling occurs, if the total plate thickness is the same, the multiple pipe is smaller and smoother than the single pipe, and the impact is affected by smooth load fluctuations. It can confirm that it has absorbed.
And in the final compression amount, compared with the comparative example 1, Example 2 is compressed 15 mm or more largely. That is, if the total plate thickness is the same, it can be confirmed that the total shock absorption amount of the multiple tube is increased.

以上のように、合計板厚と同じ板厚を有する単管パイプに比べて、多重管では、総合的に衝撃吸収性能が高いことが確認できる。   As described above, it can be confirmed that the shock absorption performance of the multiple pipe is generally higher than that of the single pipe having the same thickness as the total thickness.

(2)板厚の相違の影響を確認する試験
筒状部として2重管を使用した場合であって、各管の板厚が衝撃吸収に与える影響を確認した。実験では、2つの管の合計板厚を同じにして、各管の板厚を変化させて比較した。
(2) Test for confirming the effect of difference in plate thickness When a double tube was used as the cylindrical portion, the effect of the plate thickness of each tube on impact absorption was confirmed. In the experiment, the total thickness of the two tubes was the same, and the thickness of each tube was changed for comparison.

以下の実施例3、4では、合計板厚が6mmとなるように調整した。
筒状部(実施例3)は、アルミ製のパイプ(外径80mm、板厚3mm、長さ170mm)内に、アルミ製のパイプ(外径50mm、板厚3mm、長さ170mm)を入れて2重管としたものを使用した。
筒状部(実施例4)は、アルミ製のパイプ(外径80mm、板厚4mm、長さ170mm)内に、アルミ製のパイプ(外径50mm、板厚2mm、長さ170mm)を入れて2重管としたものを使用した。
In Examples 3 and 4 below, the total plate thickness was adjusted to 6 mm.
The cylindrical portion (Example 3) is obtained by placing an aluminum pipe (outer diameter 50 mm, plate thickness 3 mm, length 170 mm) in an aluminum pipe (outer diameter 80 mm, plate thickness 3 mm, length 170 mm). A double tube was used.
The cylindrical portion (Example 4) is obtained by placing an aluminum pipe (outer diameter 50 mm, plate thickness 2 mm, length 170 mm) in an aluminum pipe (outer diameter 80 mm, plate thickness 4 mm, length 170 mm). A double tube was used.

以下の実施例5、6では、合計板厚が7mmとなるように調整した。
筒状部(実施例5)は、アルミ製のパイプ(外径80mm、板厚4mm、長さ170mm)内に、アルミ製のパイプ(外径50mm、板厚3mm、長さ170mm)を入れて2重管としたものを使用した。
筒状部(実施例6)は、アルミ製のパイプ(外径80mm、板厚5mm、長さ170mm)内に、アルミ製のパイプ(外径50mm、板厚2mm、長さ170mm)を入れて2重管としたものを使用した。
In Examples 5 and 6 below, the total plate thickness was adjusted to 7 mm.
The cylindrical portion (Example 5) is obtained by placing an aluminum pipe (outer diameter 50 mm, plate thickness 3 mm, length 170 mm) in an aluminum pipe (outer diameter 80 mm, plate thickness 4 mm, length 170 mm). A double tube was used.
The cylindrical portion (Example 6) is obtained by placing an aluminum pipe (outer diameter 50 mm, plate thickness 2 mm, length 170 mm) in an aluminum pipe (outer diameter 80 mm, plate thickness 5 mm, length 170 mm). A double tube was used.

図10(A)、(B)に結果を示す。   The results are shown in FIGS. 10 (A) and 10 (B).

図10(A)に示すように、実施例3、4は、変動周期や谷となる荷重に差は見られるものの、最初のピーク荷重以降は、ピーク荷重はほぼ同じであり、近似した挙動を示していることが確認できる。   As shown in FIG. 10A, in Examples 3 and 4, although there are differences in the load that becomes the fluctuation cycle and the valley, the peak load is substantially the same after the first peak load, and the behavior is similar. This can be confirmed.

一方、図10(B)に示すように、実施例5、6では、両者間においてピーク荷重に大きな差が生じており、板厚5mmのパイプを使用した実施例6では、実施例5に比べて、全てのピークでピーク荷重が大幅に大きくなっている。また、実施例6では、圧縮量が105mm程度となったときに荷重が急激に増加している。実施例5では、荷重が増加するタイミングが圧縮量110mm以降であることを考慮すると、実施例6では、圧縮できる量も少なくなっていることが確認できる。   On the other hand, as shown in FIG. 10B, in Examples 5 and 6, there is a large difference in peak load between the two, and in Example 6 using a pipe having a thickness of 5 mm, compared to Example 5. Thus, the peak load is greatly increased at all peaks. Moreover, in Example 6, when the amount of compression becomes about 105 mm, the load increases rapidly. In Example 5, considering that the timing at which the load increases is the compression amount of 110 mm or later, it can be confirmed that the amount that can be compressed is reduced in Example 6.

以上の結果を考慮すると、組わせるパイプの板厚が同程度であれば、合計板厚を同じにすれば、圧縮したときに近似した挙動を生じることが確認できた。
一方、板厚が厚いパイプ(つまり圧縮荷重に対する強度が高いパイプ)を使用すると、板厚が厚いパイプの性質の影響を強く受けるので、合計板厚が同じでも、圧縮したとき挙動が異なってくることが確認できた。
Considering the above results, it was confirmed that if the thicknesses of the pipes to be assembled are approximately the same, if the total thickness is the same, a behavior approximated when compressed is produced.
On the other hand, if a pipe with a large plate thickness (that is, a pipe with high strength against compressive load) is used, it is strongly affected by the properties of the pipe with a large plate thickness. I was able to confirm.

参考までに、合計板厚が7mmとなるように、筒状部を3重管とした場合の結果を図11(A)に示す。3重管としても、軸方向の荷重を加えれば荷重が波形に変動し、各パイプは蛇腹状に変形することが確認できる。
一方、合計板厚が同じでも、3重管では、ピーク荷重などが実施例5、6(2重管)と若干相違する。これは、合計板厚を同じにしても、筒状部を構成する管の本数や板厚を調整すれば、荷重に対する所望の挙動を示す筒状部を形成できる可能性があることを示していると考えられる。
For reference, FIG. 11A shows the result when the cylindrical portion is a triple tube so that the total plate thickness is 7 mm. Even in the case of a triple pipe, it can be confirmed that if an axial load is applied, the load changes into a waveform, and each pipe is deformed into a bellows shape.
On the other hand, even if the total plate thickness is the same, the peak load and the like in the triple pipe are slightly different from those in Examples 5 and 6 (double pipe). This indicates that even if the total plate thickness is the same, if the number of tubes constituting the cylindrical part and the plate thickness are adjusted, it is possible to form a cylindrical part that exhibits the desired behavior with respect to the load. It is thought that there is.

(3)軸長を変化させた場合の影響を確認する試験
筒状部として2重管を使用した場合であって、軸長の異なるパイプを使用した場合における衝撃吸収の状況を確認した。
(3) Test for confirming the effect when the axial length is changed When the double pipe is used as the cylindrical portion and the pipe having a different axial length is used, the state of shock absorption was confirmed.

筒状部(実施例7)は、アルミ製のパイプ(外径80mm、板厚3mm、長さ170mm)内に、アルミ製のパイプ(外径50mm、板厚3mm、長さ165mm)を入れて2重管としたものを使用した。つまり、内側の管が短くなったものを使用した。   The cylindrical portion (Example 7) is obtained by placing an aluminum pipe (outer diameter 50 mm, plate thickness 3 mm, length 165 mm) in an aluminum pipe (outer diameter 80 mm, plate thickness 3 mm, length 170 mm). A double tube was used. That is, the inner tube was shortened.

図11(B)に結果を示す。
比較のために、実施例1の結果を同じグラフに記載している。
図11(B)に示すように、実施例7では、実施例1に比べて初期のピーク荷重が小さくなっており、パイプの変形が小さい荷重で早く始まっていることが確認できる。
一方、圧縮量が5mmを超えると、それ以降は実施例1と実施例6の挙動はほぼ同じ挙動を示している。
FIG. 11B shows the result.
For comparison, the results of Example 1 are shown in the same graph.
As shown in FIG. 11B, in Example 7, the initial peak load is smaller than in Example 1, and it can be confirmed that the deformation of the pipe starts earlier with a small load.
On the other hand, when the amount of compression exceeds 5 mm, the behavior of Example 1 and Example 6 shows almost the same behavior thereafter.

以上の結果より、2重管の軸長を変化させると、荷重が加わった初期における衝撃吸収性能を高くすることができることが確認できた。   From the above results, it was confirmed that when the axial length of the double pipe is changed, the impact absorbing performance in the initial stage when the load is applied can be improved.

(4)スペーサーの影響を確認する試験
2重管とした場合において、横断面における外側の管と内側の管の位置が衝撃吸収の状況に与える影響を確認した。
(4) Test for confirming the influence of the spacer In the case of a double pipe, the influence of the positions of the outer pipe and the inner pipe in the cross section on the state of shock absorption was confirmed.

実験では、実施例1と同じパイプを使用し、波板(板厚0.4mm)をスペーサーとして外側の管と内側の管の隙間に配置した場合(実施例8、9、図6(A)、(B)参照)と、内側の管が外側の管に接触するように配置した場合(実施例10、図6(C)、(D)参照)と、について、圧縮した場合の挙動を確認した。
なお、実施例8ではスペーサーはパイプの軸方向の中間に一枚だけ配置し、実施例9ではスペーサーはパイプの軸方向の上下に一枚ずつ(合計2枚)配置した。
In the experiment, the same pipe as in Example 1 was used, and the corrugated plate (plate thickness 0.4 mm) was used as a spacer in the gap between the outer tube and the inner tube (Examples 8 and 9, FIG. 6A). , (B)) and when the inner tube is arranged so as to contact the outer tube (see Example 10, FIGS. 6C and 6D), the behavior when compressed is confirmed. did.
In Example 8, only one spacer was disposed in the middle of the pipe in the axial direction, and in Example 9, one spacer was disposed above and below the pipe in the axial direction (two in total).

図12に結果を示す。
図12に示すように、実施例8〜10は、ほとんど同じ挙動を示していることが確認できる。また、実施例1の挙動(図9(A)参照)と比較しても、ほとんど同じ挙動であることがわかる。
The results are shown in FIG.
As shown in FIG. 12, it can be confirmed that Examples 8 to 10 show almost the same behavior. Further, even when compared with the behavior of Example 1 (see FIG. 9A), it can be seen that the behavior is almost the same.

以上の結果より、各管が蛇腹状に変形できるのであれば、外側の管と内側の管の位置やスペーサーは、衝撃吸収性能への影響を小さいことが確認できた。
ただし、実施例10では、圧縮量が100mm以降において、他の実施例に比べて荷重が高くなっているので、内側の管と外側の管が接触している場合には、若干、衝撃吸収性能に影響が生じると推察される。
From the above results, it was confirmed that if each tube can be deformed in a bellows shape, the positions of the outer tube and the inner tube and the spacers have little influence on the shock absorbing performance.
However, in Example 10, since the load is higher than the other examples after the compression amount is 100 mm or more, when the inner tube and the outer tube are in contact with each other, the impact absorbing performance is slightly increased. It is assumed that there will be an impact on

本発明の保護構造物は、ビルや倉庫、重油タンク、給水タンクなどの建造物の壁面などの設置に適している。   The protective structure of the present invention is suitable for installation on the wall surface of buildings such as buildings, warehouses, heavy oil tanks, and water tanks.

1 保護構造物
2 基礎部材
3 外面部材
10 筒状部
11 外側筒状部材
12 内側筒状部材
15 スペーサー
20 防護プレート
T 重油タンク
DESCRIPTION OF SYMBOLS 1 Protective structure 2 Foundation member 3 Outer surface member 10 Cylindrical part 11 Outer cylindrical member 12 Inner cylindrical member 15 Spacer 20 Protection plate T Heavy oil tank

Claims (6)

断面円形の筒状部材を複数有する筒状部を備えており、
該複数の筒状部材は、
その中心軸が互いに平行となり、内方に位置する内側筒状部材の外面と外方に位置する外側筒状部材の内面との間に隙間が形成されるように、互いに入れ子状態となるように配設されており、
前記内側筒状部材の外面と前記外側筒状部材の内面との間に両者間の隙間を維持するスペーサーが設けられており、
該スペーサーは、
前記筒状部の軸方向から該筒状部を圧縮する力が加わると前記内側筒状部材および前記外側筒状部材とともに軸圧潰する部材である
ことを特徴とする保護構造物。
It has a cylindrical portion having a plurality of circular cylindrical members,
The plurality of cylindrical members are:
The central axes are parallel to each other so that a gap is formed between the outer surface of the inner cylindrical member positioned inward and the inner surface of the outer cylindrical member positioned outward. Arranged ,
A spacer is provided between the outer surface of the inner cylindrical member and the inner surface of the outer cylindrical member to maintain a gap therebetween.
The spacer is
The protective structure according to claim 1, which is a member that axially collapses together with the inner cylindrical member and the outer cylindrical member when a force for compressing the cylindrical portion is applied from an axial direction of the cylindrical portion .
対向する2壁を有する箱状の部材と、  A box-shaped member having two opposing walls;
該箱状の部材の2壁の間に配置された複数の前記筒状部と、を備えており、A plurality of the cylindrical portions disposed between two walls of the box-shaped member,
前記複数の筒状部は、The plurality of cylindrical portions are
その両端が前記箱状の部材の2壁にそれぞれ接するように配置されているThe both ends are arranged so as to be in contact with the two walls of the box-shaped member.
ことを特徴とする請求項1記載の保護構造物。The protective structure according to claim 1.
保護対象物が建造物であり、  The object to be protected is a building,
前記複数の筒状部材が前記建造物の表面に沿って並ぶように配置されているThe plurality of cylindrical members are arranged along the surface of the building.
ことを特徴とする請求項1または2記載の保護構造物。The protective structure according to claim 1 or 2, wherein
前記筒状部は、
長さの異なる複数の筒状部材から構成されてい
ことを特徴とする請求項1、2または3記載の保護構造物。
The cylindrical part is
Claim 1, 2 or 3 protection structure, wherein the <br/> that is composed of a plurality of tubular members having different lengths.
前記複数の筒状部材は、
軸方向から圧縮する力が加わると蛇腹状に変形可能であり、
内方に位置する筒状部材の外面と外方に位置する筒状部材の内面との間の隙間が、該軸方向から前記筒状部材を圧縮する力が加わり前記複数の筒状部材が蛇腹状に変形した際に、内方に位置する筒状部材の外面と外方に位置する筒状部材の内面とが非接触状態に保たれるように配設されている
ことを特徴とする請求項1、2、3または4記載の保護構造物。
The plurality of cylindrical members are:
When a force compressing from the axial direction is applied, it can be deformed into a bellows shape,
A gap between the outer surface of the cylindrical member positioned inward and the inner surface of the cylindrical member positioned outward adds a force for compressing the cylindrical member from the axial direction, and the plurality of cylindrical members are bellows. when deformed into Jo, claims, characterized in that the inner surface of the tubular member located on an outer surface and an outer tubular member positioned inwardly are disposed so as to maintain a non-contact state Item 5. A protective structure according to item 1, 2, 3 or 4 .
前記筒状部が、一対の筒状部材から形成されており、
外方に位置する外側筒状部材は、外径が80mm、内径が72〜74mmのアルミパイプであり、
内方に位置する内側筒状部材は、外径が50mm、内径が44〜46mmのアルミパイプである
ことを特徴とする請求項1、2、3、4または5記載の保護構造物。
The cylindrical portion is formed of a pair of cylindrical members;
The outer cylindrical member located outside is an aluminum pipe having an outer diameter of 80 mm and an inner diameter of 72 to 74 mm.
6. The protective structure according to claim 1, wherein the inner cylindrical member positioned inward is an aluminum pipe having an outer diameter of 50 mm and an inner diameter of 44 to 46 mm.
JP2013236460A 2013-11-15 2013-11-15 Protective structure Active JP6174976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013236460A JP6174976B2 (en) 2013-11-15 2013-11-15 Protective structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013236460A JP6174976B2 (en) 2013-11-15 2013-11-15 Protective structure

Publications (2)

Publication Number Publication Date
JP2015096744A JP2015096744A (en) 2015-05-21
JP6174976B2 true JP6174976B2 (en) 2017-08-02

Family

ID=53374125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013236460A Active JP6174976B2 (en) 2013-11-15 2013-11-15 Protective structure

Country Status (1)

Country Link
JP (1) JP6174976B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS522198Y2 (en) * 1972-02-24 1977-01-19
JPS57184338U (en) * 1981-05-20 1982-11-22
JPS6326439A (en) * 1986-07-16 1988-02-04 Kobe Steel Ltd Shock absorber
JP2000240707A (en) * 1999-02-23 2000-09-05 Showa Alum Corp Metallic shock-absorbing hollow member
JP4362953B2 (en) * 2000-07-03 2009-11-11 日本軽金属株式会社 Bumpy stay
JP4007834B2 (en) * 2002-03-19 2007-11-14 住友軽金属工業株式会社 Bellows-shaped deforming part and manufacturing method thereof
JP2005162027A (en) * 2003-12-03 2005-06-23 Honda Motor Co Ltd Energy absorbing structure for vehicle
JP2007161128A (en) * 2005-12-15 2007-06-28 Nippon Sharyo Seizo Kaisha Ltd Shock absorbing structure for railway vehicle
JP5145186B2 (en) * 2008-09-30 2013-02-13 株式会社日立製作所 Rail vehicle with collision mitigation device
JP2013117291A (en) * 2011-12-05 2013-06-13 Hiroshima Aluminum Industry Co Ltd Shock absorbing member

Also Published As

Publication number Publication date
JP2015096744A (en) 2015-05-21

Similar Documents

Publication Publication Date Title
Xiang et al. Comparative analysis of energy absorption capacity of polygonal tubes, multi-cell tubes and honeycombs by utilizing key performance indicators
Alkhatib et al. Collapse behavior of thin-walled corrugated tapered tubes under oblique impact
Alberdi et al. Performance evaluation of sandwich panel systems for blast mitigation
US10035525B2 (en) Energy-absorbing device, in particular for a rail-car
Smith et al. Quasi-static axial compression of concentric expanded metal tubes
Ferdynus et al. Energy absorption capability numerical analysis of thin-walled prismatic tubes with corner dents under axial impact
Xu et al. An efficient energy absorber based on fourfold-tube nested circular tube system
KR20100138870A (en) Load bearing material
CN113775682B (en) Adjustable circular tube energy absorption/storage mechanism based on paper-cut structure
JP6174976B2 (en) Protective structure
CN203174822U (en) Skeleton light explosion venting wall
JP6494054B1 (en) Seismic isolation structure
CN109098351B (en) Multi-disaster-species combined protection function concrete filled steel tube structure based on deformation energy absorption principle
CN202647053U (en) Throwing and impacting resisting limit piece for pipeline of nuclear power plant
Smith et al. Energy absorption characteristics of coiled expanded metal tubes under axial compression
JP6518412B2 (en) Protective structure
RU2019115830A (en) PROTECTION SYSTEM OF BUILDINGS AGAINST AIRCRAFT CRASHING INTO THEM
Lotfi1a et al. Blast behavior of steel infill panels with various thickness and stiffener arrangement
CN109577507B (en) Drum-bend energy-consumption type metal damper
JP6067622B2 (en) Outdoor installation protection device
CN215890931U (en) Self-locking thin-wall tube structure energy absorption system with negative Poisson ratio effect
US20060208134A1 (en) Triggering system for the plastic collapse of a metal structural element
WO2018084702A1 (en) Blast protection wall
JP6602442B2 (en) Protective structure
KR101475733B1 (en) Energy absorber system and Rockfall protection fence using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170707

R150 Certificate of patent or registration of utility model

Ref document number: 6174976

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250