JP6169888B2 - Radioactivity measuring device - Google Patents

Radioactivity measuring device Download PDF

Info

Publication number
JP6169888B2
JP6169888B2 JP2013100587A JP2013100587A JP6169888B2 JP 6169888 B2 JP6169888 B2 JP 6169888B2 JP 2013100587 A JP2013100587 A JP 2013100587A JP 2013100587 A JP2013100587 A JP 2013100587A JP 6169888 B2 JP6169888 B2 JP 6169888B2
Authority
JP
Japan
Prior art keywords
variable
pseudo
uncertainty
function
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013100587A
Other languages
Japanese (ja)
Other versions
JP2014219360A (en
Inventor
英輔 板津
英輔 板津
Original Assignee
セイコー・イージーアンドジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコー・イージーアンドジー株式会社 filed Critical セイコー・イージーアンドジー株式会社
Priority to JP2013100587A priority Critical patent/JP6169888B2/en
Publication of JP2014219360A publication Critical patent/JP2014219360A/en
Application granted granted Critical
Publication of JP6169888B2 publication Critical patent/JP6169888B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Measurement Of Radiation (AREA)

Description

この発明は、放射能測定装置に関する。   The present invention relates to a radioactivity measurement apparatus.

従来、放射線検出器に対して、複数の標準線源を用いて複数のエネルギーの全吸収ピークのピーク効率を測定し、複数の測定点に所定の関数を適合させてピーク効率曲線を算出する方法が知られている(例えば、非特許文献1参照)。   Conventionally, for a radiation detector, a method for measuring the peak efficiency of all absorption peaks of a plurality of energy using a plurality of standard radiation sources and calculating a peak efficiency curve by fitting a predetermined function to a plurality of measurement points Is known (see, for example, Non-Patent Document 1).

「放射能測定法シリーズ 7 ゲルマニウム半導体検出器によるガンマ線スペクトロメトリー」、文部科学省、平成4年、p.95"Radioactivity measurement series 7 Gamma-ray spectrometry using germanium semiconductor detector", Ministry of Education, Culture, Sports, Science and Technology, 1992, p.95.

ところで、上記従来技術に係る方法においては、ピーク効率曲線を用いた放射線検出器の効率較正を伴う放射能定量の不確かさを評価することが望まれている。
本発明は上記事情に鑑みてなされたもので、試料の放射能定量の不確かさを適切に評価することが可能な放射能測定装置を提供することを目的としている。
By the way, in the method according to the above-described prior art, it is desired to evaluate the uncertainty of the radioactivity determination accompanied by the efficiency calibration of the radiation detector using the peak efficiency curve.
This invention is made | formed in view of the said situation, and it aims at providing the radioactivity measuring apparatus which can evaluate appropriately the uncertainty of radioactivity determination of a sample.

上記課題を解決して係る目的を達成するために、本発明は以下の態様を採用した。
(1)本発明の一態様に係る放射能測定装置は、試料から放出される放射線を検出する放射線検出器(例えば、実施形態での放射線検出器15)と、前記試料の情報と、前記放射線検出器によって検出された前記放射線のエネルギースペクトルの全吸収ピークとから、前記全吸収ピークのエネルギーでのピーク効率および該ピーク効率の不確かさを算出するピーク効率算出手段(例えば、実施形態での演算部23)と、前記ピーク効率算出手段によって算出された前記ピーク効率と、前記全吸収ピークのエネルギーとに応じて、前記ピーク効率のエネルギー依存性を示すピーク効率関数を生成するピーク効率関数生成手段(例えば、実施形態での演算部23が兼ねる)と、前記ピーク効率の不確かさに応じたピーク効率範囲に所定の確率密度関数を設定し、該確率密度関数に従う乱数を発生させて、該乱数に応じた疑似ピーク効率を模擬的に生成する疑似ピーク効率生成手段(例えば、実施形態での演算部23が兼ねる)と、前記疑似ピーク効率生成手段によって各前記乱数毎に生成された前記疑似ピーク効率と、前記全吸収ピークのエネルギーとに応じて、前記疑似ピーク効率のエネルギー依存性を示す疑似ピーク効率関数を各前記乱数毎に生成する疑似ピーク効率関数生成手段(例えば、実施形態での演算部23が兼ねる)と、前記疑似ピーク効率関数生成手段によって生成された複数の前記乱数に対応する複数の前記疑似ピーク効率関数によって、適宜のエネルギーでの前記疑似ピーク効率関数の値の度数分布を生成し、該度数分布に基づいて前記適宜のエネルギーでの前記疑似ピーク効率関数の値の不確かさを設定し、該不確かさを前記適宜のエネルギーでの前記ピーク効率関数の値の不確かさとする不確かさ設定手段(例えば、実施形態での演算部23が兼ねる)と、を備える。
In order to solve the above problems and achieve the object, the present invention employs the following aspects.
(1) A radioactivity measurement apparatus according to an aspect of the present invention includes a radiation detector that detects radiation emitted from a sample (for example, the radiation detector 15 in the embodiment), information on the sample, and the radiation. Peak efficiency calculation means for calculating the peak efficiency at the energy of the total absorption peak and the uncertainty of the peak efficiency from the total absorption peak of the energy spectrum of the radiation detected by the detector (for example, calculation in the embodiment) Unit 23), the peak efficiency function generating means for generating a peak efficiency function indicating the energy dependence of the peak efficiency according to the peak efficiency calculated by the peak efficiency calculating means and the energy of the total absorption peak (For example, the calculation unit 23 in the embodiment also serves as a predetermined probability density in the peak efficiency range corresponding to the uncertainty of the peak efficiency) Set a number, generate a random number according to the probability density function, and generate pseudo peak efficiency according to the random number in a simulated manner (for example, the calculation unit 23 in the embodiment also serves), According to the pseudo peak efficiency generated for each random number by the pseudo peak efficiency generating means and the energy of the total absorption peak, a pseudo peak efficiency function indicating the energy dependence of the pseudo peak efficiency is represented by each random number. A plurality of pseudo peak efficiency functions corresponding to the plurality of random numbers generated by the pseudo peak efficiency function generation unit (for example, the calculation unit 23 in the embodiment also serves as the generation unit) To generate a frequency distribution of the value of the pseudo peak efficiency function at an appropriate energy, and based on the frequency distribution, the frequency at the appropriate energy Uncertainty setting means for setting the uncertainty of the value of the similar peak efficiency function and setting the uncertainty as the uncertainty of the value of the peak efficiency function at the appropriate energy (for example, the calculation unit 23 in the embodiment also serves as) And comprising.

(2)本発明の一態様に係る放射能測定装置は、試料から放出される放射線を検出する放射線検出器(例えば、実施形態での放射線検出器15)と、前記試料の情報と、前記放射線検出器によって検出された前記放射線のエネルギースペクトルとから、前記放射線検出器の効率較正に係る所定エネルギーでの変数および該変数の不確かさを算出する変数算出手段(例えば、実施形態での演算部23が兼ねる)と、前記変数算出手段によって算出された前記変数と、前記所定エネルギーとに応じて、前記変数のエネルギー依存性を示す変数関数を生成す変数関数生成手段(例えば、実施形態での演算部23が兼ねる)と、前記変数の不確かさに応じた変数範囲に所定の確率密度関数を設定し、該確率密度関数に従う乱数を発生させて、該乱数に応じた疑似変数を模擬的に生成する疑似変数生成手段(例えば、実施形態での演算部23が兼ねる)と、前記疑似変数生成手段によって各前記乱数毎に生成された前記疑似変数と、前記所定エネルギーとに応じて、前記疑似変数のエネルギー依存性を示す疑似変数関数を各前記乱数毎に生成する疑似変数関数生成手段(例えば、実施形態での演算部23が兼ねる)と、前記疑似変数関数生成手段によって生成された複数の前記乱数に対応する複数の前記疑似変数関数によって、適宜のエネルギーでの前記疑似変数関数の値の度数分布を生成し、該度数分布に基づいて前記適宜のエネルギーでの前記疑似変数関数の値の不確かさを設定し、該不確かさを前記適宜のエネルギーでの前記変数関数の値の不確かさとする不確かさ設定手段(例えば、実施形態での演算部23が兼ねる)と、を備える。 (2) A radioactivity measurement apparatus according to an aspect of the present invention includes a radiation detector that detects radiation emitted from a sample (for example, the radiation detector 15 in the embodiment), information on the sample, and the radiation. Variable calculation means for calculating a variable at a predetermined energy and uncertainty of the variable related to efficiency calibration of the radiation detector (for example, the calculation unit 23 in the embodiment) from the energy spectrum of the radiation detected by the detector. And variable function generating means for generating a variable function indicating energy dependency of the variable in accordance with the variable calculated by the variable calculating means and the predetermined energy (for example, calculation in the embodiment) A predetermined probability density function in a variable range corresponding to the uncertainty of the variable, and generating a random number according to the probability density function, Pseudo-variable generating means (for example, the arithmetic unit 23 in the embodiment also serves as a pseudo-variable), the pseudo-variable generated by the pseudo-variable generating means for each random number, and the predetermined variable A pseudo variable function generating means for generating a pseudo variable function indicating the energy dependence of the pseudo variable for each random number according to energy (for example, the arithmetic unit 23 in the embodiment also serves), and the pseudo variable function A frequency distribution of values of the pseudo-variable function at an appropriate energy is generated by the plurality of pseudo-variable functions corresponding to the plurality of random numbers generated by the generating means, and the appropriate energy is generated based on the frequency distribution. Uncertainty setting means for setting the uncertainty of the value of the pseudo variable function of the variable function and setting the uncertainty as the uncertainty of the value of the variable function at the appropriate energy (for example, It comprises a doubles as) calculating unit 23 in the facilities form.

上記(1)に記載の態様に係る放射能測定装置によれば、放射線検出器による検出の統計誤差および予め既知の不確かさ(例えば、効率較正用の試料の定量の不確かさなど)などによって特定のエネルギーでのピーク効率の不確かさが算出される。この特定のエネルギーでのピーク効率の不確かさに基づき、乱数を用いたシミュレーション的な処理によって、適宜のエネルギーでのピーク効率関数の値の不確かさが設定される。これによって、放射線検出器の効率較正に係る不確かさを適正に設定することができ、試料の放射能定量の不確かさを適切に評価することができる。   According to the radioactivity measuring apparatus according to the aspect described in (1) above, it is specified by statistical errors of detection by the radiation detector and known uncertainties (for example, uncertainty of quantification of a sample for efficiency calibration). Uncertainty in peak efficiency at a given energy is calculated. Based on the uncertainty of the peak efficiency at this specific energy, the uncertainty of the value of the peak efficiency function at an appropriate energy is set by a simulation process using random numbers. As a result, the uncertainty associated with the calibration of the efficiency of the radiation detector can be set appropriately, and the uncertainty of the radioactivity quantification of the sample can be appropriately evaluated.

上記(2)に記載の態様に係る放射能測定装置によれば、放射線検出器の効率較正に係る変数として、ピーク効率における自己吸収の補正およびサム効果の補正に用いられ各種の変数などに対して、統計誤差および予め既知の不確かさなどによって特定のエネルギーでの不確かさが算出される。この特定のエネルギーでの変数の不確かさに基づき、乱数を用いたシミュレーション的な処理によって、適宜のエネルギーでの変数関数の値の不確かさが設定される。これによって、放射線検出器の効率較正に係る不確かさを適正に設定することができ、試料の放射能定量の不確かさを適切に評価することができる。   According to the radioactivity measuring apparatus according to the aspect described in (2) above, as variables related to the calibration of the efficiency of the radiation detector, various variables used for correction of self-absorption and sum effect in peak efficiency are used. Thus, the uncertainty at a specific energy is calculated based on the statistical error and the previously known uncertainty. Based on the uncertainty of the variable at this specific energy, the uncertainty of the value of the variable function at an appropriate energy is set by a simulation process using random numbers. As a result, the uncertainty associated with the calibration of the efficiency of the radiation detector can be set appropriately, and the uncertainty of the radioactivity quantification of the sample can be appropriately evaluated.

本発明の実施形態に係る放射能測定装置の構成図である。It is a block diagram of the radioactivity measuring apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る放射線検出器によって検出された全吸収ピークのピーク効率およびピーク効率の不確かさと、ピーク効率の不確かさに応じたピーク効率範囲に設定された所定の確率密度関数とを示す図である。The peak efficiency of all absorption peaks detected by the radiation detector according to the embodiment of the present invention, the uncertainty of the peak efficiency, and a predetermined probability density function set in the peak efficiency range according to the uncertainty of the peak efficiency are shown. FIG. 本発明の実施形態に係る放射能測定装置によって生成された疑似ピーク効率のエネルギー依存性を示す疑似ピーク効率関数を示す図である。It is a figure which shows the pseudo peak efficiency function which shows the energy dependence of the pseudo peak efficiency produced | generated by the radioactivity measuring apparatus which concerns on embodiment of this invention.

以下、本発明の一実施形態に係る放射能測定装置について添付図面を参照しながら説明する。
本実施形態による放射能測定装置10は、図1に示すように、入力装置11と、出力装置12と、処理装置13と、波高分析装置14と、放射線検出器15と、電源16と、を備えている。
入力装置11は、例えば操作者の入力操作に応じた信号を出力する各種のスイッチおよびキーボードなどを備え、操作者の入力操作に応じた各種の指令信号を処理装置13へ送信する。
出力装置12は、例えばスピーカおよび表示装置などを備え、処理装置13から受信した各種の情報を出力する。
Hereinafter, a radioactivity measurement apparatus according to an embodiment of the present invention will be described with reference to the accompanying drawings.
As shown in FIG. 1, the radioactivity measuring apparatus 10 according to the present embodiment includes an input device 11, an output device 12, a processing device 13, a pulse height analyzer 14, a radiation detector 15, and a power supply 16. I have.
The input device 11 includes, for example, various switches and a keyboard that output signals according to the input operation of the operator, and transmits various command signals according to the input operation of the operator to the processing device 13.
The output device 12 includes, for example, a speaker and a display device, and outputs various types of information received from the processing device 13.

波高分析装置14は、例えばマルチチャンネルアナライザであって、放射線検出器15から出力される出力信号パルスの波高分布、つまり波高値に応じて設定された複数のチャンネル毎の計数値を算出する。例えば、試料から放出された放射線のエネルギーに応じた波高値を有する出力信号パルスが放射線検出器15から出力されると、波高分析装置14は放射線検出器15の出力信号パルスの波高分布として、エネルギースペクトルを作成する。
放射線検出器15は、例えばゲルマニウムなどの半導体検出器であり、試料から放出される放射線(例えば、γ線やX線など)を検出する。放射線検出器15は、電源16から電力が供給されている。
The wave height analyzer 14 is, for example, a multi-channel analyzer, and calculates the wave height distribution of the output signal pulse output from the radiation detector 15, that is, the count value for each of a plurality of channels set according to the wave height value. For example, when an output signal pulse having a peak value corresponding to the energy of radiation emitted from the sample is output from the radiation detector 15, the pulse height analyzer 14 uses the energy distribution as the pulse height distribution of the output signal pulse of the radiation detector 15. Create a spectrum.
The radiation detector 15 is a semiconductor detector such as germanium, and detects radiation (for example, γ-rays, X-rays, etc.) emitted from the sample. The radiation detector 15 is supplied with power from a power source 16.

処理装置13は、通信部21と、記憶部22と、演算部23と、を備えている。
通信部21は、処理装置13と波高分析装置14との間の各種の信号の送受信をおこなう。
記憶部22は、例えば、予め設定された各種のデータと、演算部23の演算結果のデータと、波高分析装置14から出力されるデータとなどを記憶する。
The processing device 13 includes a communication unit 21, a storage unit 22, and a calculation unit 23.
The communication unit 21 transmits and receives various signals between the processing device 13 and the wave height analyzer 14.
The storage unit 22 stores, for example, various types of preset data, calculation result data of the calculation unit 23, data output from the wave height analyzer 14, and the like.

演算部23は、効率較正用の試料の情報と、放射線検出器15によって検出された放射線のエネルギースペクトルの全吸収ピークの計数値(ピーク面積)とから、全吸収ピークのエネルギーでのピーク効率およびピーク効率の不確かさを算出する。効率較正用の試料の情報は、試料の形状、寸法、材質、重量、および放射能の量などの情報と、各情報に対して予め設定された不確かさの情報と、である。
例えば、図2に示すように、演算部23は、複数の異なるエネルギーE(例えば、E1,…,E9)の全吸収ピークのピーク効率εの検出値s(例えば、s1,…,s9)と 、ピーク効率εの検出値sの不確かさu(例えば、u1,…,u9)と、を算出する。演算部23は、算出したピーク効率εの検出値sと、全吸収ピークのエネルギーEとに応じて、所定関数の適合によって、ピーク効率εの検出値sのエネルギー依存性を示すピーク効率関数f(E)を生成する。
The calculation unit 23 calculates the peak efficiency at the energy of the total absorption peak from the information of the sample for efficiency calibration and the count value (peak area) of the total absorption peak of the energy spectrum of the radiation detected by the radiation detector 15. Calculate the uncertainty of the peak efficiency. Information on the sample for efficiency calibration includes information on the shape, size, material, weight, and amount of radioactivity of the sample, and information on uncertainty set in advance for each piece of information.
For example, as illustrated in FIG. 2, the calculation unit 23 calculates the detected value s (for example, s1,..., S9) of the peak efficiency ε of all absorption peaks of a plurality of different energies E (for example, E1,..., E9). Then, the uncertainty u (for example, u1,..., U9) of the detected value s of the peak efficiency ε is calculated. The computing unit 23 adapts a predetermined function according to the calculated detection value s of peak efficiency ε and the energy E of all absorption peaks, and shows a peak efficiency function f indicating the energy dependence of the detection value s of peak efficiency ε. (E) is generated.

演算部23は、各全吸収ピーク毎に、ピーク効率の不確かさに応じたピーク効率範囲に所定の確率密度関数を設定し、この確率密度関数に従う乱数を発生させて、乱数に応じた疑似ピーク効率を模擬的に生成する。各乱数毎に生成した疑似ピーク効率と、全吸収ピークのエネルギーとに応じて、疑似ピーク効率のエネルギー依存性を示す疑似ピーク効率関数を生成する。
例えば、図2に示すように、演算部23は、各全吸収ピーク毎に、ピーク効率εの検出値sの不確かさuが95%信頼水準によって規定されている場合には、ピーク効率εが検出値sを中央値とするピーク効率範囲(s±u)内に発生する確率が95%となるような正規分布関数などの確率密度関数g(ε)を設定する。そして、各全吸収ピーク毎に、確率密度関数g(ε)に従う乱数Rj(j=1,…,N;Nは統計的に十分な数であって、例えば10000など)を発生させる。この確率密度関数g(ε)は、乱数Rj(j=1,…,N)に応じたピーク効率εの中央値Mに対する95%信頼区間(M±2σ;σ=標準偏差)がピーク効率範囲(s±u)に対応するような関数となる。
The calculation unit 23 sets a predetermined probability density function in a peak efficiency range corresponding to the uncertainty of the peak efficiency for each total absorption peak, generates a random number according to the probability density function, and generates a pseudo peak corresponding to the random number. Simulate efficiency. A pseudo peak efficiency function indicating the energy dependence of the pseudo peak efficiency is generated according to the pseudo peak efficiency generated for each random number and the energy of all absorption peaks.
For example, as shown in FIG. 2, when the uncertainty u of the detection value s of the peak efficiency ε is defined by the 95% confidence level for each total absorption peak, the calculation unit 23 determines that the peak efficiency ε is A probability density function g (ε) such as a normal distribution function is set such that the probability of occurrence within the peak efficiency range (s ± u) with the detected value s as the median value is 95%. Then, for each total absorption peak, a random number Rj (j = 1,..., N; N is a statistically sufficient number, for example, 10,000) according to the probability density function g (ε) is generated. The probability density function g (ε) has a 95% confidence interval (M ± 2σ; σ = standard deviation) with respect to the median value M of the peak efficiency ε according to the random number Rj (j = 1,..., N). The function corresponds to (s ± u).

演算部23は、例えば任意の自然数k(例えば、k=1,…,9など)に対して、全吸収ピークの各エネルギーEk毎に、各ピーク効率範囲(sk±uk)に設定した確率密度関数g(ε)kに従う乱数Rj(k)を発生させる。これによって、図3に示すように、全吸収ピークの各エネルギーEk(E1,…,E9)毎に異なる乱数Rj(k)を発生させ、各乱数Rj(k)のうちのi番目の乱数Ri(k)によって、疑似ピーク効率r1(i),…,rk(i),…,r9(i)が模擬的に生成される。つまり、乱数Ri(k)は自然数kによる参照の都度異なる乱数であって、例えば、エネルギーE1の乱数Rj(1)(j(1)=1,…,N)のi番目の乱数Ri(1)によって疑似ピーク効率r1(i)が生成され、エネルギーE2の乱数Rj(2)(j(2)=1,…,N)のi番目の乱数Ri(2)によって疑似ピーク効率r2(i)が生成され、以下同様にして、各疑似ピーク効率r3(i),…,r9(i)が生成される。
演算部23は、これらの疑似ピーク効率r1(i),…,rk(i),…,r9(i)に対する所定関数の適合によって、疑似ピーク効率r1(i),…,rk(i),…,r9(i)のエネルギー依存性を示す疑似ピーク効率関数f(E,i)を生成する。演算部23は、複数の乱数Rj(k)のそれぞれ(つまり、各R1(k),…,RN(k))に対して疑似ピーク効率関数f(E,j)(j=1,…,N)を生成する。
演算部23は、複数の乱数Rj(k)に対応する複数の疑似ピーク効率関数f(E,j)(j=1,…,N)によって、適宜のエネルギーExでの疑似ピーク効率関数f(Ex,j)(j=1,…,N)の値の度数分布を生成し、この度数分布の標準偏差などに基づいて、適宜のエネルギーExでの疑似ピーク効率関数の値の不確かさを設定し、この不確かさを適宜のエネルギーExでのピーク効率関数f(Ex)の値の不確かさとする。
For example, for the arbitrary natural number k (for example, k = 1,..., 9), the calculation unit 23 sets the probability density set in each peak efficiency range (sk ± uk) for each energy Ek of all absorption peaks. A random number Rj (k) according to the function g (ε) k is generated. As a result, as shown in FIG. 3, a different random number Rj (k) is generated for each energy Ek (E1,..., E9) of all absorption peaks, and the i-th random number Ri of each random number Rj (k). By (k), pseudo peak efficiencies r1 (i), ..., rk (i), ..., r9 (i) are generated in a simulated manner. That is, the random number Ri (k) is a different random number for each reference by the natural number k. For example, the i-th random number Ri (1) of the random number Rj (1) (j (1) = 1,..., N) of the energy E1. ) Generates a pseudo peak efficiency r1 (i), and a pseudo peak efficiency r2 (i) by an i-th random number Ri (2) of random numbers Rj (2) (j (2) = 1,..., N) of energy E2. In the same manner, pseudo peak efficiencies r3 (i),..., R9 (i) are generated.
The calculation unit 23 matches the pseudo peak efficiencies r1 (i),..., Rk (i),. ..., a pseudo peak efficiency function f (E, i) indicating the energy dependence of r9 (i) is generated. The calculation unit 23 performs pseudo peak efficiency function f (E, j) (j = 1,..., For each of the plurality of random numbers Rj (k) (that is, each R1 (k),..., RN (k)). N).
The calculation unit 23 uses a plurality of pseudo peak efficiency functions f (E, j) (j = 1,..., N) corresponding to a plurality of random numbers Rj (k) to obtain a pseudo peak efficiency function f () at an appropriate energy Ex. Ex, j) (j = 1,..., N) value frequency distribution is generated, and the uncertainty of the value of the pseudo peak efficiency function at an appropriate energy Ex is set based on the standard deviation of the frequency distribution. This uncertainty is defined as the uncertainty of the value of the peak efficiency function f (Ex) at an appropriate energy Ex.

上述したように、本実施の形態による放射能測定装置10によれば、放射線検出器15による検出の統計誤差および予め既知の不確かさ(例えば、効率較正用の試料の定量の不確かさなど)などによって特定のエネルギー(つまり、全吸収ピークの各エネルギーE)でのピーク効率の不確かさが算出される。この特定のエネルギーでのピーク効率の不確かさに基づき、乱数Rj(j=1,…,N)を用いたシミュレーション的な処理によって、適宜のエネルギーExでのピーク効率関数f(Ex)の値の不確かさが設定される。これによって、例えば誤差伝播の煩雑な演算などを実行する必要無しに、放射線検出器15の効率較正に係る不確かさを適正に設定することができ、試料の放射能定量などの不確かさを適切に評価することができる。   As described above, according to the radioactivity measurement apparatus 10 according to the present embodiment, statistical errors in detection by the radiation detector 15 and previously known uncertainties (for example, uncertainties in quantification of a sample for efficiency calibration, etc.) To calculate the uncertainty of the peak efficiency at a specific energy (that is, each energy E of all absorption peaks). Based on the uncertainty of the peak efficiency at this specific energy, the value of the peak efficiency function f (Ex) at an appropriate energy Ex is obtained by a simulation process using random numbers Rj (j = 1,..., N). Uncertainty is set. Thereby, for example, the uncertainty related to the efficiency calibration of the radiation detector 15 can be set appropriately without the need for performing complicated calculation of error propagation, and the uncertainty such as the radioactivity quantification of the sample can be appropriately set. Can be evaluated.

なお、上述した実施形態において、演算部23は、シミュレーション的な処理によって、適宜のエネルギーExでのピーク効率関数f(Ex)の値の不確かさを設定するとしたが、これに限定されず、試料の自己吸収の補正およびサム効果の補正などの各種の演算処理で用いられる変数に対して、上述したシミュレーション的な処理によって、適宜のエネルギーExでの不確かさを設定することができる。
つまり、演算部23は、放射線検出器15によって検出された放射線のエネルギースペクトルの全吸収ピークの計数値(ピーク面積)とから、放射線検出器15の効率較正に係る適宜の変数および変数の不確かさを算出し、変数のエネルギー依存性を示す変数関数を生成する。そして、変数の不確かさに応じた変数範囲に所定の確率密度関数を設定し、この確率密度関数に従う乱数を発生させて、乱数に応じた疑似変数を模擬的に生成し、疑似変数のエネルギー依存性を示す疑似変数関数を各乱数毎に生成する。そして、複数の乱数に対応する複数の疑似変数関数によって、適宜のエネルギーでの疑似変数関数の値の度数分布を生成し、この度数分布に基づいて適宜のエネルギーでの疑似変数関数の値の不確かさを設定し、この不確かさを適宜のエネルギーでの変数関数の値の不確かさとする。
In the above-described embodiment, the calculation unit 23 sets the uncertainty of the value of the peak efficiency function f (Ex) at an appropriate energy Ex by simulation processing. However, the present invention is not limited to this. Uncertainty at an appropriate energy Ex can be set by the above-described simulation processing for variables used in various arithmetic processing such as correction of self-absorption and correction of the sum effect.
That is, the calculation unit 23 calculates appropriate variables and uncertainty of variables related to the efficiency calibration of the radiation detector 15 from the count value (peak area) of the total absorption peak of the energy spectrum of the radiation detected by the radiation detector 15. And a variable function indicating the energy dependence of the variable is generated. Then, a predetermined probability density function is set in the variable range corresponding to the uncertainty of the variable, a random number according to this probability density function is generated, a pseudo variable corresponding to the random number is generated in a simulated manner, and the energy dependence of the pseudo variable A pseudo variable function indicating the sex is generated for each random number. Then, by using a plurality of pseudo variable functions corresponding to a plurality of random numbers, a frequency distribution of values of the pseudo variable function at an appropriate energy is generated, and the uncertainty of the value of the pseudo variable function at an appropriate energy is based on the frequency distribution. The uncertainty is set as the uncertainty of the value of the variable function at an appropriate energy.

なお、上述した実施形態において、放射線検出器15をゲルマニウムなどの半導体検出器としたが、これに限定されず、シンチレーション検出器などの他の検出器であってもよい。   In the above-described embodiment, the radiation detector 15 is a semiconductor detector such as germanium. However, the detector is not limited to this and may be another detector such as a scintillation detector.

10…放射能測定装置 11…入力装置 12…出力装置 13…処理装置 14…波高分析装置 15…放射線検出器 16…電源 21…通信部 22…記憶部 23…演算部(ピーク効率算出手段、ピーク効率関数生成手段、疑似ピーク効率生成手段、疑似ピーク効率関数生成手段、不確かさ設定手段、変数算出手段、変数関数生成手段、疑似変数生成手段、疑似変数関数生成手段) DESCRIPTION OF SYMBOLS 10 ... Radioactivity measuring device 11 ... Input device 12 ... Output device 13 ... Processing device 14 ... Wave height analyzer 15 ... Radiation detector 16 ... Power supply 21 ... Communication part 22 ... Memory | storage part 23 ... Calculation part (peak efficiency calculation means, peak Efficiency function generating means, pseudo peak efficiency generating means, pseudo peak efficiency function generating means, uncertainty setting means, variable calculating means, variable function generating means, pseudo variable generating means, pseudo variable function generating means)

Claims (3)

効率校正用の試料から放出される放射線を検出する放射線検出器と、
前記試料の形状、寸法、材質、重量、放射能の量を含む情報と、前記情報に対してあらかじめ設定された不確かさ情報と、前記放射線検出器によって検出された前記放射線のエネルギースペクトルの全吸収ピークとから、前記全吸収ピークのエネルギーでのピーク効率および該ピーク効率の不確かさを算出するピーク効率算出手段と、
前記ピーク効率算出手段によって算出された前記ピーク効率と、前記全吸収ピークのエネルギーとに応じて、前記ピーク効率のエネルギー依存性を示すピーク効率関数を生成するピーク効率関数生成手段と、
前記ピーク効率の不確かさに応じたピーク効率範囲に所定の確率密度関数を設定し、該確率密度関数に従う乱数を発生させて、該乱数に応じた疑似ピーク効率を模擬的に生成する疑似ピーク効率生成手段と、
前記疑似ピーク効率生成手段によって前記乱数毎に生成された前記疑似ピーク効率と、前記全吸収ピークのエネルギーとに応じて、前記疑似ピーク効率のエネルギー依存性を示す疑似ピーク効率関数を前記乱数毎に生成する疑似ピーク効率関数生成手段と、
前記疑似ピーク効率関数生成手段によって生成された複数の前記乱数に対応する複数の前記疑似ピーク効率関数によって、適宜のエネルギーでの前記疑似ピーク効率関数の値の度数分布を生成し、該度数分布に基づいて前記適宜のエネルギーでの前記疑似ピーク効率関数の値の不確かさを設定し、該不確かさを前記適宜のエネルギーでの前記ピーク効率関数の値の不確かさとする不確かさ設定手段と、
を備えることを特徴とする放射能測定装置。
A radiation detector for detecting radiation emitted from the sample for efficiency calibration ;
Information including the shape, dimensions, material, weight, and amount of radioactivity of the sample, uncertainty information preset for the information, and total absorption of the energy spectrum of the radiation detected by the radiation detector Peak efficiency calculation means for calculating the peak efficiency at the energy of the total absorption peak and the uncertainty of the peak efficiency from the peak;
Peak efficiency function generating means for generating a peak efficiency function indicating energy dependency of the peak efficiency according to the peak efficiency calculated by the peak efficiency calculating means and the energy of the total absorption peak;
A pseudo peak efficiency that sets a predetermined probability density function in a peak efficiency range according to the uncertainty of the peak efficiency, generates a random number according to the probability density function, and generates a pseudo peak efficiency according to the random number in a simulated manner Generating means;
Wherein a pseudo peak efficiency generated for each prior Symbol random number by the pseudo peak efficiency generating means, in response to said energy of the whole peak, a pseudo peak efficiency function representing the energy dependence of the pseudo peak efficiency before Pseudo peak efficiency function generating means for generating each random number;
A frequency distribution of the values of the pseudo peak efficiency function at an appropriate energy is generated by the plurality of pseudo peak efficiency functions corresponding to the plurality of random numbers generated by the pseudo peak efficiency function generating means, and the frequency distribution An uncertainty setting means for setting the uncertainty of the value of the pseudo-peak efficiency function at the appropriate energy based on the uncertainty and setting the uncertainty as the uncertainty of the value of the peak efficiency function at the appropriate energy;
A radioactivity measurement apparatus comprising:
効率校正用の試料から放出される放射線を検出する放射線検出器と、
前記試料の形状、寸法、材質、重量、放射能の量を含む情報と、前記情報に対してあらかじめ設定された不確かさ情報と、前記放射線検出器によって検出された前記放射線のエネルギースペクトルとから、前記放射線検出器の効率較正に係る所定エネルギーでの変数および該変数の不確かさを算出する変数算出手段と、
前記変数算出手段によって算出された前記変数と、前記所定エネルギーとに応じて、前記変数のエネルギー依存性を示す変数関数を生成する変数関数生成手段と、
前記変数の不確かさに応じた変数範囲に所定の確率密度関数を設定し、該確率密度関数に従う乱数を発生させて、該乱数に応じた疑似変数を模擬的に生成する疑似変数生成手段と、
前記疑似変数生成手段によって前記乱数毎に生成された前記疑似変数と、前記所定エネルギーとに応じて、前記疑似変数のエネルギー依存性を示す疑似変数関数を前記乱数毎に生成する疑似変数関数生成手段と、
前記疑似変数関数生成手段によって生成された複数の前記乱数に対応する複数の前記疑似変数関数によって、適宜のエネルギーでの前記疑似変数関数の値の度数分布を生成し、該度数分布に基づいて前記適宜のエネルギーでの前記疑似変数関数の値の不確かさを設定し、該不確かさを前記適宜のエネルギーでの前記変数関数の値の不確かさとする不確かさ設定手段と、
を備えることを特徴とする放射能測定装置。
A radiation detector for detecting radiation emitted from the sample for efficiency calibration ;
From the information including the shape, dimensions, material, weight, and radioactivity of the sample, uncertainty information preset for the information, and the energy spectrum of the radiation detected by the radiation detector, Variable calculation means for calculating a variable at a predetermined energy and an uncertainty of the variable according to efficiency calibration of the radiation detector;
Variable function generating means for generating a variable function indicating energy dependence of the variable according to the variable calculated by the variable calculating means and the predetermined energy;
A pseudo variable generating means for setting a predetermined probability density function in a variable range corresponding to the uncertainty of the variable, generating a random number according to the probability density function, and generating a pseudo variable corresponding to the random number;
And the pseudo variables generated before each Symbol random number by the pseudo variable generation unit, wherein in accordance with the predetermined energy, quasi for generating a pseudo-variable function showing the energy dependence of the pseudo-variable before each Symbol random number Variable function generation means;
A plurality of pseudo variable functions corresponding to the plurality of random numbers generated by the pseudo variable function generating means generate a frequency distribution of the values of the pseudo variable function at an appropriate energy, and based on the frequency distribution Uncertainty setting means for setting the uncertainty of the value of the pseudo variable function at an appropriate energy, and making the uncertainty an uncertainty of the value of the variable function at the appropriate energy;
A radioactivity measurement apparatus comprising:
効率校正用の試料から放出される放射線を検出する放射線検出器と、A radiation detector for detecting radiation emitted from the sample for efficiency calibration;
前記試料の形状、寸法、材質、重量、放射能の量を含む情報と、前記情報に対してあらかじめ設定された不確かさ情報と、前記放射線検出器によって検出された前記放射線のエネルギースペクトルの全吸収ピークとから、前記放射線検出器の効率較正に係る所定エネルギーでの変数および該変数の不確かさを算出する変数算出手段と、Information including the shape, dimensions, material, weight, and amount of radioactivity of the sample, uncertainty information preset for the information, and total absorption of the energy spectrum of the radiation detected by the radiation detector Variable calculation means for calculating a variable at a predetermined energy related to the efficiency calibration of the radiation detector and an uncertainty of the variable from the peak;
前記変数算出手段によって算出された前記変数と、前記全吸収ピークのエネルギーとに応じて、前記変数のエネルギー依存性を示す変数関数を生成する変数関数生成手段と、Variable function generating means for generating a variable function indicating the energy dependence of the variable according to the variable calculated by the variable calculating means and the energy of the total absorption peak;
前記変数の不確かさに応じた変数範囲に所定の確率密度関数を設定し、該確率密度関数に従う乱数を発生させて、該乱数に応じた疑似変数を模擬的に生成する疑似変数生成手段と、A pseudo variable generating means for setting a predetermined probability density function in a variable range corresponding to the uncertainty of the variable, generating a random number according to the probability density function, and generating a pseudo variable corresponding to the random number;
前記疑似変数生成手段によって前記乱数毎に生成された前記疑似変数と、前記全吸収ピークのエネルギーとに応じて、前記疑似変数のエネルギー依存性を示す疑似変数関数を前記乱数毎に生成する疑似変数関数生成手段と、A pseudo variable that generates, for each random number, a pseudo variable function indicating the energy dependence of the pseudo variable in accordance with the pseudo variable generated for each random number by the pseudo variable generating means and the energy of the total absorption peak. Function generation means;
前記疑似変数関数生成手段によって生成された複数の前記乱数に対応する複数の前記疑似変数関数によって、適宜のエネルギーでの前記疑似変数関数の値の度数分布を生成し、該度数分布に基づいて前記適宜のエネルギーでの前記疑似変数関数の値の不確かさを設定し、該不確かさを前記適宜のエネルギーでの前記変数関数の値の不確かさとする不確かさ設定手段と、A plurality of pseudo variable functions corresponding to the plurality of random numbers generated by the pseudo variable function generating means generate a frequency distribution of the values of the pseudo variable function at an appropriate energy, and based on the frequency distribution Uncertainty setting means for setting the uncertainty of the value of the pseudo variable function at an appropriate energy, and making the uncertainty an uncertainty of the value of the variable function at the appropriate energy;
を備えることを特徴とする放射能測定装置。A radioactivity measurement apparatus comprising:
JP2013100587A 2013-05-10 2013-05-10 Radioactivity measuring device Active JP6169888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013100587A JP6169888B2 (en) 2013-05-10 2013-05-10 Radioactivity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013100587A JP6169888B2 (en) 2013-05-10 2013-05-10 Radioactivity measuring device

Publications (2)

Publication Number Publication Date
JP2014219360A JP2014219360A (en) 2014-11-20
JP6169888B2 true JP6169888B2 (en) 2017-07-26

Family

ID=51937925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013100587A Active JP6169888B2 (en) 2013-05-10 2013-05-10 Radioactivity measuring device

Country Status (1)

Country Link
JP (1) JP6169888B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6670017B2 (en) * 2015-09-14 2020-03-18 国立研究開発法人産業技術総合研究所 Radiation measuring instrument with uncertainty evaluation function and program
US10050783B2 (en) 2016-05-31 2018-08-14 Eyl Inc. Quantum random pulse generator
KR101699810B1 (en) * 2016-05-31 2017-01-26 주식회사 이와이엘 Quantum random pulse generator
KR102066353B1 (en) * 2018-07-02 2020-01-14 한양대학교 산학협력단 Method for quantifying radioactivity using Compton camera

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4682035A (en) * 1985-04-23 1987-07-21 Bioscan, Inc. Solid state counting system for high energy beta and gamma decay isotopes
JPS6291881A (en) * 1985-10-17 1987-04-27 Mitsubishi Heavy Ind Ltd Determining method for detection efficiency of radiation measuring system
JP2002098768A (en) * 2000-09-25 2002-04-05 Japan Atom Energy Res Inst Method of measuring radioactivity in volume sample by germanium semiconductor detector
JP4903654B2 (en) * 2006-08-30 2012-03-28 セイコー・イージーアンドジー株式会社 Radiation detection apparatus and efficiency calibration method thereof

Also Published As

Publication number Publication date
JP2014219360A (en) 2014-11-20

Similar Documents

Publication Publication Date Title
ATLAS Collaboration atlas. publications@ cern. ch et al. Measurement of the muon reconstruction performance of the ATLAS detector using 2011 and 2012 LHC proton–proton collision data
Di Valentino et al. Probing nuclear rates with Planck and BICEP2
Song et al. Energy estimation of UHE cosmic rays using the atmospheric fluorescence technique
JP6169888B2 (en) Radioactivity measuring device
WO2016185818A1 (en) Soft error rate calculation device and calculation method for semiconductor large scale integration (lsi)
CN103091699A (en) Device and method for measuring strong gamma ray energy spectrum using scattering method
Maurchev et al. RUSCOSMIC-the new software toolbox for detailed analysis of cosmic ray interactions with matter
CN103985423A (en) Method for monitoring 16N leaking from nuclear power reactor vapor generator
Xu et al. Modeling of X‐ray emissions produced by stepping lightning leaders
Tian et al. Self-attenuation corrections calculated by LabSOCS Simulations for gamma-spectrometric measurements with HPGe detectors
Gaganov Calculation of neutron spectra produced in neutron generator target: Code testing
Dörschel et al. Variation of the track etch rate along the trajectories of light ions in CR-39
Bedogni et al. Testing Bonner sphere spectrometers in the JRC-IRMM mono-energetic neutron beams
JP5756826B2 (en) Server device and radioactivity measurement system
Malik et al. Unifying cordic and box-muller algorithms: An accurate and efficient gaussian random number generator
Juste et al. 6 and 15 MeV photon spectra reconstruction using an unfolding depth dose gradient methodology
Sangang et al. Development and application of a Monte Carlo virtual detector—A novel nuclear pulse signal generator
Mosorov Strategy for fitting source strength and reconstruction procedure in radioactive particle tracking
Lengar et al. Activation material selection for multiple foil activation detectors in JET TT campaign
Dhibar et al. True coincidence summing correction in scintillations detectors: measurements and simulations
Jemii et al. Simulation of the dose rate using a GEANT 4 code
Askari et al. Energy broadening model for BGO array crystal from 0.059 to 1.332 MeV
Gonzalez et al. Mass composition sensitivity of combined arrays of water cherenkov and scintillation detectors in the EeV range
Alekseev et al. An investigation into the sensitivity of various albedo neutron dosimeters aimed at correcting the readings
Rodríguez-Romo et al. Computational model of gamma irradiation room at ININ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170629

R150 Certificate of patent or registration of utility model

Ref document number: 6169888

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250