JP6168291B2 - Optical member, lighting device, and method of manufacturing optical member - Google Patents

Optical member, lighting device, and method of manufacturing optical member Download PDF

Info

Publication number
JP6168291B2
JP6168291B2 JP2013140696A JP2013140696A JP6168291B2 JP 6168291 B2 JP6168291 B2 JP 6168291B2 JP 2013140696 A JP2013140696 A JP 2013140696A JP 2013140696 A JP2013140696 A JP 2013140696A JP 6168291 B2 JP6168291 B2 JP 6168291B2
Authority
JP
Japan
Prior art keywords
particles
coating film
optical member
mass
member according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013140696A
Other languages
Japanese (ja)
Other versions
JP2015013411A (en
Inventor
崇則 伊豆
崇則 伊豆
加津己 渡辺
加津己 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2013140696A priority Critical patent/JP6168291B2/en
Publication of JP2015013411A publication Critical patent/JP2015013411A/en
Application granted granted Critical
Publication of JP6168291B2 publication Critical patent/JP6168291B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、光学部材に関し、特に照明装置に用いられる光学部材に関する。   The present invention relates to an optical member, and more particularly to an optical member used in a lighting device.

照明装置に用いられる光学部材に光学性能を向上させる塗膜や波長制御機能を有する塗膜を形成し、光学部材に機能を付加する技術が知られている。   A technique is known in which a coating film that improves optical performance or a coating film having a wavelength control function is formed on an optical member used in an illumination device, and a function is added to the optical member.

照明装置に用いられる光学部材の一例として、シーリングライト用のグローブが挙げられる。シーリングライト用のグローブは、厚さ数mmの熱可塑性樹脂板を160℃以上に加熱して軟化させ、圧縮空気を送ることによって軟化した熱可塑性樹脂板をグローブの金型(成形機)に沿わせることによって成形される。   As an example of the optical member used in the illumination device, a globe for a ceiling light can be given. The globe for ceiling light is made by heating a thermoplastic resin plate with a thickness of several millimeters to 160 ° C or higher and softening it by sending compressed air along the mold (molding machine) of the globe. It is formed by making it.

特開2010−202714号公報JP 2010-202714 A 特開2010−222177号公報JP 2010-222177 A 特開2004−137261号公報JP 2004-137261 A 特開2004−143145号公報JP 2004-143145 A

上記のような塗膜を熱可塑性樹脂板に形成したグローブを成形する場合、熱可塑性樹脂板が軟化したときに熱可塑性樹脂板の塗膜を形成した面が成形機に貼り付いてしまうことがある。このような場合、成形後のグローブを成形機から取り外す際に、グローブの塗膜に傷や異物が付着してしまうことが課題である。   When molding a glove in which a coating film as described above is formed on a thermoplastic resin plate, the surface on which the coating film of the thermoplastic resin plate is formed may stick to the molding machine when the thermoplastic resin plate is softened. is there. In such a case, when removing the molded glove from the molding machine, it is a problem that scratches and foreign matter adhere to the coating film of the glove.

そこで、本発明は、成形時に塗膜に傷や異物が付着しにくい光学部材を提供することを目的とする。   Then, an object of this invention is to provide the optical member with which a crack and a foreign material do not adhere easily to a coating film at the time of shaping | molding.

本発明の一態様に係る光学部材は、表面に塗膜が形成された基材からなり、前記塗膜には、前記塗膜の表面よりも外気側に突出した複数の粒子が含まれる。   The optical member which concerns on 1 aspect of this invention consists of a base material with which the coating film was formed on the surface, and the said coating film contains the some particle | grains which protruded in the external air rather than the surface of the said coating film.

また、例えば、前記基材は、熱可塑性樹脂であり、加熱されることによって成形され、前記複数の粒子は、所定の温度以上の耐熱性を有してもよい。   Further, for example, the base material may be a thermoplastic resin, and may be molded by being heated, and the plurality of particles may have heat resistance equal to or higher than a predetermined temperature.

また、例えば、前記複数の粒子は、160℃以上の耐熱性を有してもよい。   For example, the plurality of particles may have heat resistance of 160 ° C. or higher.

また、例えば、前記塗膜には、前記塗膜の樹脂成分の固形分100質量部に対して5〜50質量部の前記複数の粒子が含まれてもよい。   Further, for example, the coating film may include 5 to 50 parts by mass of the plurality of particles with respect to 100 parts by mass of the solid content of the resin component of the coating film.

また、例えば、前記塗膜には、前記塗膜の樹脂成分の固形分100質量部に対して10〜40質量部の前記複数の粒子が含まれてもよい。   Further, for example, the coating film may include 10 to 40 parts by mass of the plurality of particles with respect to 100 parts by mass of the solid content of the resin component of the coating film.

また、例えば、前記複数の粒子の平均粒径は、前記塗膜の膜厚よりも大きくてもよい。   For example, the average particle diameter of the plurality of particles may be larger than the film thickness of the coating film.

また、例えば、前記複数の粒子の平均粒径は、前記塗膜の膜厚よりも小さく、前記塗膜には、前記塗膜の樹脂成分の固形分100質量部に対して10〜50質量部の前記粒子が含まれてもよい。   Moreover, for example, the average particle diameter of the plurality of particles is smaller than the film thickness of the coating film, and the coating film has 10 to 50 parts by mass with respect to 100 parts by mass of the solid content of the resin component of the coating film. Of said particles may be included.

また、例えば、前記複数の粒子それぞれは、前記塗膜よりも表面自由エネルギーが小さくてもよい。   For example, each of the plurality of particles may have a surface free energy smaller than that of the coating film.

また、例えば、前記複数の粒子それぞれは、前記塗膜よりも比重が小さくてもよい。   For example, each of the plurality of particles may have a specific gravity smaller than that of the coating film.

また、例えば、前記複数の粒子それぞれの形状は、非球形であり、前記複数の粒子それぞれは、当該粒子内において比重の偏りを有し、当該粒子の少なくとも一部は、前記塗膜よりも比重が小さくてもよい。   Further, for example, each of the plurality of particles has a non-spherical shape, each of the plurality of particles has a specific gravity bias in the particle, and at least a part of the particles has a specific gravity higher than that of the coating film. May be small.

また、例えば、前記複数の粒子は、前記塗膜に溶解または反応しなくてもよい。   For example, the plurality of particles may not be dissolved or reacted with the coating film.

また、例えば、前記基材および前記塗膜は、透光性を有してもよい。   For example, the base material and the coating film may have translucency.

また、例えば、前記光学部材は、照明装置に用いられ、前記照明装置が有する光源からの光を透過してもよい。   In addition, for example, the optical member may be used in a lighting device and transmit light from a light source included in the lighting device.

本発明の一態様に係る照明装置は、上記いずれかの態様の光学部材と、光源とを備える。   An illumination device according to one embodiment of the present invention includes any one of the optical members described above and a light source.

本発明の一態様に係る光学部材の製造方法は、複数の粒子が含まれる塗料を板状の基材の少なくとも一方の主面に塗布することによって、前記少なくとも一方の主面に前記複数の粒子の少なくとも一部が表面よりも外気側に突出した塗膜を形成し、前記塗膜が形成された前記基材を加熱成形して光学部材を生成する。   The manufacturing method of the optical member which concerns on 1 aspect of this invention applies the coating material containing a some particle | grain to at least one main surface of a plate-shaped base material, The said several particle | grains on said at least one main surface An optical member is generated by forming a coating film in which at least a part of the film protrudes to the outside air side from the surface and thermoforming the base material on which the coating film is formed.

本発明によれば、成形機から取り外す際に塗膜に傷や異物が付着しにくい光学部材が実現される。   ADVANTAGE OF THE INVENTION According to this invention, when removing from a molding machine, the optical member which a damage | wound and a foreign material cannot adhere easily to a coating film is implement | achieved.

図1は、光学部材の成形方法を説明するための模式図である。FIG. 1 is a schematic diagram for explaining a method of molding an optical member. 図2は、光学部材の成形方法を説明するための模式断面図である。FIG. 2 is a schematic cross-sectional view for explaining a method for molding an optical member. 図3は、実施の形態1に係る照明装置の外観斜視図である。FIG. 3 is an external perspective view of the lighting apparatus according to Embodiment 1. FIG. 図4は、実施の形態1に係るグローブの構成を説明するための模式断面図である。FIG. 4 is a schematic cross-sectional view for explaining the configuration of the globe according to the first embodiment. 図5は、グローブの実施例と、粒子の添加量との関係を示す表である。FIG. 5 is a table showing the relationship between globe examples and the amount of particles added. 図6は、各実施例に係るグローブの構成を示す模式断面図である。FIG. 6 is a schematic cross-sectional view illustrating a configuration of a glove according to each example. 図7は、グローブの製造方法のフローチャートである。FIG. 7 is a flowchart of a method for manufacturing a glove. 図8は、非球形の粒子を用いたグローブの構成を示す模式断面図である。FIG. 8 is a schematic cross-sectional view showing a configuration of a globe using non-spherical particles.

(本発明の基礎となった知見)
背景技術で説明したように、光学部材の成形時に、光学部材の塗膜が成形機に貼り付いてしまい、塗膜に傷や異物が付着してしまうという課題がある。
(Knowledge that became the basis of the present invention)
As described in the background art, when the optical member is molded, there is a problem that the coating film of the optical member sticks to the molding machine, and scratches and foreign matters adhere to the coating film.

図1は、光学部材の成形方法を説明するための模式図である。図2は、光学部材の成形方法を説明するための模式断面図である。   FIG. 1 is a schematic diagram for explaining a method of molding an optical member. FIG. 2 is a schematic cross-sectional view for explaining a method for molding an optical member.

図1に示されるように成形機200aには、塗膜140が形成された熱可塑性樹脂板50が、塗膜140と、成形機200aとが直接接するように配置される。   As shown in FIG. 1, in the molding machine 200a, the thermoplastic resin plate 50 on which the coating film 140 is formed is arranged so that the coating film 140 and the molding machine 200a are in direct contact with each other.

ここで、成形機200aに成形機200bを重ね合わせた状態で、熱可塑性樹脂板50を160℃程度に加熱して軟化させる。そして、成形機200a側から成形機200aおよび成形機200bの内部に圧縮空気を送り込むことにより、熱可塑性樹脂板50は、成形機200aおよび成形機200bによって定まる型に沿った形状に成形される。   Here, in a state where the molding machine 200b is superimposed on the molding machine 200a, the thermoplastic resin plate 50 is heated to about 160 ° C. and softened. Then, by sending compressed air from the molding machine 200a side into the molding machine 200a and the molding machine 200b, the thermoplastic resin plate 50 is molded into a shape along a mold determined by the molding machine 200a and the molding machine 200b.

最後に、成形後の熱可塑性樹脂板50を成形機200aおよび成形機200bから取り外すことにより、光学部材30が得られる。   Finally, the optical member 30 is obtained by removing the molded thermoplastic resin plate 50 from the molding machine 200a and the molding machine 200b.

ここで、成形後の光学部材30(または、成形前の熱可塑性樹脂板50)は、図2に示されるように、塗膜140が成形機200aと接触している。よって、成形機200aから光学部材30を取り外す際に、光学部材30の塗膜140に傷や異物が付着してしまうことが課題である。   Here, as shown in FIG. 2, the optical member 30 after molding (or the thermoplastic resin plate 50 before molding) has the coating film 140 in contact with the molding machine 200a. Therefore, when removing the optical member 30 from the molding machine 200a, the problem is that scratches and foreign matter adhere to the coating film 140 of the optical member 30.

ここで、特許文献1には、熱可塑性樹脂板50に帯電防止剤や離型剤と呼ばれる材料を添加することで、熱可塑性樹脂板50の成形性や離型性を向上させる技術が開示されている。   Here, Patent Document 1 discloses a technique for improving the moldability and releasability of the thermoplastic resin plate 50 by adding a material called an antistatic agent or a release agent to the thermoplastic resin plate 50. ing.

ところが、図2に示されるような場合、成形機200aには塗膜が接触しているため、熱可塑性樹脂板50に含まれる帯電防止剤や離型剤の効果は得られない。   However, in the case as shown in FIG. 2, since the coating film is in contact with the molding machine 200a, the effects of the antistatic agent and the release agent contained in the thermoplastic resin plate 50 cannot be obtained.

また、離型性を向上させる技術として、離型剤コーティング(特許文献2)や、離型性を向上させる添加剤(特許文献3、4)などが知られている。しかしながら、これらの技術では、塗膜140と成形機200aとの接触を防ぐことができず、塗膜140に傷や異物が付着することを防ぐことができない。   Further, as a technique for improving the releasability, a release agent coating (Patent Document 2), an additive for improving the releasability (Patent Documents 3 and 4), and the like are known. However, these techniques cannot prevent contact between the coating film 140 and the molding machine 200a, and cannot prevent the coating film 140 from being damaged or adhered to foreign matter.

そこで、本願発明者らは、塗膜140と成形機200aの物理的な接触面積を減少させ、光学部材30の離型性を向上させることによって塗膜の傷を防止する構成を見出した。   Accordingly, the inventors of the present application have found a configuration in which scratches on the coating film are prevented by reducing the physical contact area between the coating film 140 and the molding machine 200a and improving the releasability of the optical member 30.

以下、本発明の実施の形態について、図面を参照しながら具体的に説明する。なお、各図は、模式図であり、必ずしも厳密に図示したものではない。   Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings. Each figure is a schematic diagram and is not necessarily illustrated exactly.

なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。   It should be noted that each of the embodiments described below shows a comprehensive or specific example. Numerical values, shapes, materials, components, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. In addition, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims indicating the highest concept are described as optional constituent elements.

(実施の形態1)
まず、実施の形態1に係る照明装置について説明する。
(Embodiment 1)
First, the lighting apparatus according to Embodiment 1 will be described.

図3は、実施の形態1に係る照明装置の外観斜視図である。   FIG. 3 is an external perspective view of the lighting apparatus according to Embodiment 1. FIG.

図3に示されるように、照明装置100(照明器具)は、器具本体110と、発光モジュール120(光源)と、グローブ130(光学部材)とを備える。   As shown in FIG. 3, the lighting device 100 (lighting fixture) includes a fixture main body 110, a light emitting module 120 (light source), and a globe 130 (optical member).

照明装置100は、円形のシーリングライトである。   The illumination device 100 is a circular ceiling light.

器具本体110は、発光モジュール120に電力を供給し、発光モジュール120を消灯および点灯させる機能を有する。器具本体110は、天井に取り付けられる。器具本体110には、グローブ130が取り付けられる。   The instrument main body 110 has a function of supplying power to the light emitting module 120 to turn off and turn on the light emitting module 120. The instrument body 110 is attached to the ceiling. A glove 130 is attached to the instrument body 110.

発光モジュール120は、円環状の基板上に、発光素子であるLED(Light Emitting Diode)が複数実装されたCOB(Cnip On Board)型の発光モジュールである。   The light emitting module 120 is a COB (Cnip On Board) type light emitting module in which a plurality of LEDs (Light Emitting Diodes) as light emitting elements are mounted on an annular substrate.

なお、発光モジュール120は、このような態様に限定されるものではない。発光モジュール120は、例えば、凹部を有する樹脂製の容器と、凹部の中に実装されたLEDチップと、凹部内に封入された封止部材(蛍光体含有樹脂)とを備えるSMD(Surface Mount Device)型の発光素子を用いた発光モジュールであってもよい。また、発光モジュール120は、発光素子として、半導体レーザ等の半導体発光素子、または、有機EL(Electro Luminescence)や無機EL等のEL素子等その他の固体発光素子を用いたものでもよい。また、発光モジュール120に代えて、環状のLEDランプや蛍光灯などの照明用光源が用いられてもよい。   The light emitting module 120 is not limited to such a mode. The light emitting module 120 includes, for example, a SMD (Surface Mount Device) including a resin container having a recess, an LED chip mounted in the recess, and a sealing member (phosphor-containing resin) sealed in the recess. ) Type light emitting module may be used. The light emitting module 120 may be a light emitting element using a semiconductor light emitting element such as a semiconductor laser, or another solid light emitting element such as an EL element such as an organic EL (Electro Luminescence) or an inorganic EL. Further, instead of the light emitting module 120, an illumination light source such as an annular LED lamp or a fluorescent lamp may be used.

グローブ130は、照明装置100に用いられ、照明装置100が有する発光モジュール120(光源)からの光を透過する光学部材であり、発光モジュール120を覆うカバーとしても機能する。グローブ130は、発光モジュール120から放出される光をランプ外部に取り出すために透光性を有する材料によって構成される。なお、透光性を有する材料には、透明な材料のみならず、その材料を通して向こう側の形状等を明確に認識できないが、光は透過する材料も含まれる。   The globe 130 is an optical member that is used in the lighting device 100 and transmits light from the light emitting module 120 (light source) included in the lighting device 100, and also functions as a cover that covers the light emitting module 120. The globe 130 is made of a light-transmitting material in order to extract the light emitted from the light emitting module 120 to the outside of the lamp. Note that the light-transmitting material includes not only a transparent material but also a material that transmits light, although the shape on the other side cannot be clearly recognized through the material.

グローブ130は、上述の図1を用いて説明した方法で成形される。なお、図1の方法で成形したグローブ130においては、グローブ130の内側の面に塗膜が形成されるが、成形機200aおよび成形機200bの構造によっては、グローブ130の外側の面に塗膜が形成される場合もある。また、グローブ130の内側および外側の両方の面に塗膜140が形成されていてもよい。   The globe 130 is formed by the method described with reference to FIG. In the glove 130 molded by the method of FIG. 1, a coating film is formed on the inner surface of the globe 130, but depending on the structure of the molding machine 200a and the molding machine 200b, the coating film is formed on the outer surface of the globe 130. May be formed. Moreover, the coating film 140 may be formed on both the inner surface and the outer surface of the globe 130.

実施の形態1に係るグローブ130は、塗膜に粒子が含まれることが特徴である。図4は、グローブ130の構成を説明するための模式断面図である。   Globe 130 according to Embodiment 1 is characterized in that the coating film contains particles. FIG. 4 is a schematic cross-sectional view for explaining the configuration of the globe 130.

図4に示されるように、グローブ130は、表面に塗膜が形成された基材150からなり、塗膜140には、塗膜140の表面よりも外気側に突出した複数の粒子160が含まれる。そして、複数の粒子160のうち少なくとも一部の粒子160の一部分は、塗膜140の表面よりも外気側(塗膜140の基材150との接触面と反対側)に突出している。   As shown in FIG. 4, the globe 130 includes a base material 150 having a coating film formed on the surface thereof, and the coating film 140 includes a plurality of particles 160 that protrude to the outside of the surface of the coating film 140. It is. A part of at least some of the plurality of particles 160 protrudes to the outside air side (the side opposite to the contact surface of the coating film 140 with the substrate 150) from the surface of the coating film 140.

これにより、塗膜140と成形機200aとの物理的な接触面積が減少するため、成形機200aから光学部材30を取り外す際に、光学部材30の塗膜140に傷や異物が付着する危険性を低減できる。   As a result, the physical contact area between the coating film 140 and the molding machine 200a is reduced, so that when the optical member 30 is removed from the molding machine 200a, there is a risk that scratches or foreign substances adhere to the coating film 140 of the optical member 30. Can be reduced.

以下、グローブ130を構成する部材の具体例について詳細に説明する。   Hereinafter, specific examples of members constituting the globe 130 will be described in detail.

[基材]
基材150は、熱可塑性樹脂であれば特に限定されるものではない。基材150は、例えば、アクリル樹脂(PMMA:Poly Methyl Methacrylate)やポリカーボネート、ポリプロピレン、PET(Polyethyleneterephthalate)樹脂、フッ素樹脂、ポリ塩化ビニルなどである。また、基材150は、透光性を有する。
[Base material]
The base material 150 is not particularly limited as long as it is a thermoplastic resin. The base material 150 is, for example, an acrylic resin (PMMA), polycarbonate, polypropylene, PET (Polyethylene terephthalate) resin, fluororesin, polyvinyl chloride, or the like. Moreover, the base material 150 has translucency.

[塗膜]
塗膜140は、熱可塑性樹脂であり、基材150と密着するものであれば特に限定されるものではない。塗膜140は、例えば、アクリル樹脂、ニトロセルロース樹脂などである。また、塗膜140は、透光性を有する。
[Coating]
The coating film 140 is a thermoplastic resin and is not particularly limited as long as it is in close contact with the substrate 150. The coating film 140 is, for example, an acrylic resin or a nitrocellulose resin. Moreover, the coating film 140 has translucency.

[粒子]
粒子160は、有機・無機材料に関わらず、特に限定されるものではない。粒子160は、例えば、有機系粒子であれば、シリコーン、PMMA、MMA(Methyl Methacrylate)、スチレン、ベンゾグアナミン、ジビニルベンゼン等の粒子である。また、粒子160は、無機系粒子であれば、シリカ、アルミナ、ジルコニア、マグネシア、チタニアなどの粒子である。
[particle]
The particles 160 are not particularly limited regardless of whether they are organic or inorganic materials. The particles 160 are, for example, particles of silicone, PMMA, MMA (Methyl Methacrylate), styrene, benzoguanamine, divinylbenzene, or the like as long as they are organic particles. The particles 160 are particles of silica, alumina, zirconia, magnesia, titania or the like if they are inorganic particles.

なお、粒子160は、所定の温度以上の耐熱性を有し、基材150の熱成形時に上記所定の温度で溶解または変形しないことが望ましい。より具体的には、粒子160は、160℃以上の耐熱性(粒子160が溶解または変形し始める温度が160℃以上であること)を有することが望ましい。上述のように、基材150の成形時には、基材150は加熱されるが、加熱時の温度の上限は、一般的には160℃を少し超える程度(160℃〜180℃)である。したがって、粒子160が160℃以上の耐熱性を有することにより、グローブ130の成形時に粒子160が変形せずその形状が維持され、粒子160による傷防止効果を確実に得ることができる。   It is desirable that the particles 160 have heat resistance equal to or higher than a predetermined temperature and do not melt or deform at the predetermined temperature when the base material 150 is thermoformed. More specifically, the particles 160 desirably have heat resistance of 160 ° C. or higher (the temperature at which the particles 160 start to melt or deform is 160 ° C. or higher). As described above, when the base material 150 is molded, the base material 150 is heated, but the upper limit of the temperature during heating is generally slightly over 160 ° C. (160 ° C. to 180 ° C.). Therefore, when the particle 160 has a heat resistance of 160 ° C. or higher, the shape of the particle 160 is not deformed when the globe 130 is formed, and the damage preventing effect by the particle 160 can be reliably obtained.

また、粒子160は、塗膜140に溶解または反応しないものであることが望ましい。しかしながら、粒子160が塗膜140の表面よりも外気側に突出していれば、粒子160の一部が塗膜140に溶解または反応していてもよい。なお、ここでの「溶解または反応」は、塗膜140(塗料)に化学的に溶解し、または反応することを意味し、必ずしも粒子160が熱によって溶解し、または反応することを意味するものではない。   The particles 160 are preferably those that do not dissolve or react with the coating film 140. However, a part of the particles 160 may be dissolved or reacted in the coating film 140 as long as the particles 160 protrude to the outside of the surface of the coating film 140. Here, “dissolution or reaction” means that the coating film 140 (paint) is chemically dissolved or reacts, and that the particles 160 are necessarily dissolved or reacted by heat. is not.

次に、グローブ130における、粒子160の大きさ、性質、および添加量のより好ましい例について、説明する。   Next, a more preferable example of the size, properties, and addition amount of the particles 160 in the globe 130 will be described.

図5は、グローブ130の実施例と、粒子の添加量との関係を示す表である。   FIG. 5 is a table showing a relationship between an example of the globe 130 and the amount of particles added.

図5では、粒子160の大きさおよび性質の4つの実施例(実施例1〜4)について、粒子160の添加量ごとに、成形機200aから取り外したときの塗膜140の状態が示されている。ここで、塗膜140の状態は、具体的には、基材150を塗膜140が形成された面が成形機200aと接触するように成形機200aに設置し、続いて基材150を加熱してグローブ130に成形し、さらにグローブ130を取り外したときの塗膜の状態である。また、塗膜140の状態は、塗膜140への傷や付着物の有無を意味する。   FIG. 5 shows the state of the coating film 140 when the particle 160 is removed from the molding machine 200a for each of the four examples (Examples 1 to 4) of the size and properties of the particle 160 for each addition amount of the particle 160. Yes. Here, the state of the coating film 140 is specifically set in the molding machine 200a so that the surface on which the coating film 140 is formed contacts the molding machine 200a, and then the substrate 150 is heated. Then, it is the state of the coating film when it is molded into the glove 130 and the glove 130 is further removed. Further, the state of the coating film 140 means the presence or absence of scratches or deposits on the coating film 140.

以下、4つ実施例のそれぞれについて上記図5および図6を用いて詳細に説明する。   Hereinafter, each of the four embodiments will be described in detail with reference to FIG. 5 and FIG.

[実施例1]
まず、実施例1について説明する。図6の(a)は、実施例1に係るグローブ130aの構成を示す模式断面図である。
[Example 1]
First, Example 1 will be described. FIG. 6A is a schematic cross-sectional view illustrating the configuration of the globe 130a according to the first embodiment.

実施例1において、基材150は、厚さ1.4mmのPMMA板である。   In Example 1, the base material 150 is a PMMA plate having a thickness of 1.4 mm.

実施例1において、塗膜140は、アクリル樹脂に、近紫外線域の波長の光を吸収する機能を持ったナフタレン系ベンゾキサゾイル誘導体と、複数の粒子160aとが添加された塗料がスプレーによって基材150に塗布されることで形成される。ナフタレン系ベンゾキサゾイル誘導体は、塗膜140の樹脂成分の固形分100質量部に対して30質量部添加されている。   In Example 1, the coating film 140 is formed by spraying a base material 150 by spraying a paint in which a naphthalene-based benzoxazoyl derivative having a function of absorbing light having a wavelength in the near ultraviolet region and a plurality of particles 160a are added to an acrylic resin. It is formed by applying to. 30 parts by mass of the naphthalene-based benzoxazoyl derivative is added to 100 parts by mass of the solid content of the resin component of the coating film 140.

塗膜140の膜厚(塗膜140の厚み)は、8μmである。また、複数の粒子160aは、平均粒径11μmのシリコーン微粒子である。つまり、複数の粒子160aの平均粒径は、塗膜140の膜厚の1.4倍程度である。   The film thickness of the coating film 140 (thickness of the coating film 140) is 8 μm. The plurality of particles 160a are silicone fine particles having an average particle diameter of 11 μm. That is, the average particle diameter of the plurality of particles 160 a is about 1.4 times the film thickness of the coating film 140.

以上のように、実施例1では、塗膜140の膜厚よりも粒子160aの平均粒径のほうが大きい。したがって、図6の(a)に示されるように、粒子160aの一部分は、塗膜140の表面よりも外気側に突出する。粒子160aの外気側への突出によって、塗膜140と成形機200aとの接触面積が減少するため、塗膜140への傷や付着物を減少させる効果が得られる。   As described above, in Example 1, the average particle diameter of the particles 160 a is larger than the film thickness of the coating film 140. Therefore, as shown in FIG. 6A, a part of the particles 160 a protrudes to the outside air side from the surface of the coating film 140. Since the contact area between the coating film 140 and the molding machine 200a is reduced by the protrusion of the particles 160a toward the outside air, the effect of reducing scratches and deposits on the coating film 140 can be obtained.

実施例1における好適な粒子の添加量は、図5の「実施例1」の欄に示される。塗膜140の樹脂成分の固形分100質量部に対して粒子160aの添加量を変更した場合、粒子160aの添加量が5〜50質量部のときは、塗膜140への傷は、目視で確認し難い程度で少なく、傷防止効果が高い。特に、粒子160aの添加量が10〜40質量部のときは、ほとんど塗膜140に傷がつかず、傷防止効果がさらに高い。   The preferred amount of particles added in Example 1 is shown in the column “Example 1” in FIG. When the addition amount of the particles 160a is changed with respect to 100 parts by mass of the solid content of the resin component of the coating film 140, when the addition amount of the particles 160a is 5 to 50 parts by mass, the scratches on the coating film 140 are visually observed. There is little to the extent that it is difficult to confirm, and the effect of preventing scratches is high. In particular, when the addition amount of the particles 160a is 10 to 40 parts by mass, the coating film 140 is hardly scratched, and the scratch prevention effect is further enhanced.

[実施例2]
次に、実施例2について説明する。図6の(b)は、実施例2に係るグローブ130bの構成を示す模式断面図である。
[Example 2]
Next, Example 2 will be described. FIG. 6B is a schematic cross-sectional view illustrating the configuration of the globe 130b according to the second embodiment.

実施例2において、基材150は、厚さ1.4mmのPMMA板である。   In Example 2, the base material 150 is a PMMA plate having a thickness of 1.4 mm.

実施例2において、塗膜140は、アクリル樹脂に、近紫外線域の波長の光を吸収する機能を持ったナフタレン系ベンゾキサゾイル誘導体と、複数の粒子160bとが添加された塗料がスプレーによって基材150に塗布されることで形成される。ナフタレン系ベンゾキサゾイル誘導体は、塗膜140の樹脂成分の固形分100質量部に対して30質量部添加されている。   In Example 2, the coating film 140 is formed by spraying a base material 150 by spraying a paint in which a naphthalene-based benzoxazoyl derivative having a function of absorbing light having a wavelength in the near ultraviolet region and a plurality of particles 160b are added to an acrylic resin. It is formed by applying to. 30 parts by mass of the naphthalene-based benzoxazoyl derivative is added to 100 parts by mass of the solid content of the resin component of the coating film 140.

塗膜140の膜厚は、8μmである。また、複数の粒子160bは、平均粒径4.3μmのシリコーン微粒子である。つまり、複数の粒子160bの平均粒径は、塗膜140の膜厚の50%程度である。   The film thickness of the coating film 140 is 8 μm. The plurality of particles 160b are silicone fine particles having an average particle size of 4.3 μm. That is, the average particle diameter of the plurality of particles 160 b is about 50% of the film thickness of the coating film 140.

以上のように、実施例2では、塗膜140の膜厚よりも粒子160bの平均粒径のほうが小さい。しかしながら、図6の(b)に示されるように、上記塗料を基材150に塗布すれば、粒子160b同士が重なり合うなどして、複数の粒子160bのうち少なくとも一部の粒子160bの一部分は、自ずと塗膜140の表面よりも外気側に突出する。粒子160bの外気側への突出によって、塗膜140と成形機200aとの接触面積が減少するため、塗膜140への傷や付着物を減少させる効果が得られる。   As described above, in Example 2, the average particle diameter of the particles 160 b is smaller than the film thickness of the coating film 140. However, as shown in FIG. 6B, when the paint is applied to the substrate 150, the particles 160b overlap each other, and at least some of the particles 160b among the plurality of particles 160b It naturally protrudes to the outside air side from the surface of the coating film 140. Since the contact area between the coating film 140 and the molding machine 200a is reduced by the protrusion of the particles 160b toward the outside air, the effect of reducing scratches and deposits on the coating film 140 can be obtained.

実施例2における好適な粒子の添加量は、図5の「実施例2」の欄に示される。塗膜140の樹脂成分の固形分100質量部に対して粒子160bの添加量を変更した場合、粒子160bの添加量が10〜50質量部のときは、塗膜140への傷は、目視で確認し難い程度で少なく、傷防止効果が高い。特に、粒子160bの添加量が20〜40質量部のときは、ほとんど塗膜140に傷がつかず、傷防止効果がさらに高い。   Suitable addition amount of the particles in Example 2 is shown in the column of “Example 2” in FIG. When the addition amount of the particles 160b is changed with respect to 100 parts by mass of the solid content of the resin component of the coating film 140, when the addition amount of the particles 160b is 10 to 50 parts by mass, the scratches on the coating film 140 are visually observed. There is little to the extent that it is difficult to confirm, and the effect of preventing scratches is high. In particular, when the addition amount of the particles 160b is 20 to 40 parts by mass, the coating film 140 is hardly scratched, and the scratch prevention effect is even higher.

[実施例3]
次に、実施例3について説明する。図6の(c)は、実施例3に係るグローブ130cの構成を示す模式断面図である。
[Example 3]
Next, Example 3 will be described. FIG. 6C is a schematic cross-sectional view illustrating the configuration of the globe 130 c according to the third embodiment.

実施例3において、基材150は、厚さ1.4mmのPMMA板である。   In Example 3, the base material 150 is a PMMA plate having a thickness of 1.4 mm.

実施例3において、塗膜140は、アクリル樹脂に、近紫外線域の波長の光を吸収する機能を持ったナフタレン系ベンゾキサゾイル誘導体と、複数の粒子160cとが添加された塗料がスプレーによって基材150に塗布されることで形成される。ナフタレン系ベンゾキサゾイル誘導体は、塗膜140の樹脂成分の固形分100質量部に対して30質量部添加されている。   In Example 3, the coating film 140 is formed by spraying a base material 150 by spraying a paint in which a naphthalene-based benzoxazoyl derivative having a function of absorbing light having a wavelength in the near ultraviolet region and a plurality of particles 160c are added to an acrylic resin. It is formed by applying to. 30 parts by mass of the naphthalene-based benzoxazoyl derivative is added to 100 parts by mass of the solid content of the resin component of the coating film 140.

塗膜140の膜厚は、8μmである。また、複数の粒子160cは、平均粒径8μmの疎水性シリカ粒子である。   The film thickness of the coating film 140 is 8 μm. The plurality of particles 160c are hydrophobic silica particles having an average particle diameter of 8 μm.

以上のように、実施例3では、塗膜140の膜厚と、粒子160cの粒径は、同等であるが、粒子160cは、疎水性である。言い換えれば、粒子160cは、塗膜140よりも小さい表面自由エネルギー(単位面積あたりのエネルギー:mJ/m)を有する。 As described above, in Example 3, the film thickness of the coating film 140 and the particle size of the particles 160c are the same, but the particles 160c are hydrophobic. In other words, the particle 160 c has a surface free energy (energy per unit area: mJ / m 2 ) smaller than that of the coating film 140.

したがって、図6の(c)に示されるように、上記塗料を基材150に塗布すれば、粒子160cは、塗膜140の表面よりも外気側に突出する。粒子160cの外気側への突出によって、塗膜140と成形機200aとの接触面積が減少するため、塗膜140への傷や付着物を減少させる効果が得られる。   Therefore, as shown in FIG. 6C, when the paint is applied to the base material 150, the particles 160 c protrude from the surface of the coating film 140 to the outside air side. Since the contact area between the coating film 140 and the molding machine 200a is reduced by the protrusion of the particles 160c toward the outside air, an effect of reducing scratches and deposits on the coating film 140 can be obtained.

実施例3における好適な粒子の添加量は、図5の「実施例3」の欄に示される。塗膜140の樹脂成分の固形分100質量部に対して粒子160cの添加量を変更した場合、粒子160cの添加量が5〜50質量部のときは、塗膜140への傷は、目視で確認し難い程度で少なく、傷防止効果が高い。特に、粒子160cの添加量が10〜40質量部のときは、ほとんど塗膜140に傷がつかず、傷防止効果がさらに高い。   The preferred amount of added particles in Example 3 is shown in the column “Example 3” in FIG. When the addition amount of the particles 160c is changed with respect to 100 parts by mass of the solid content of the resin component of the coating film 140, when the addition amount of the particles 160c is 5 to 50 parts by mass, the scratches on the coating film 140 are visually observed. There is little to the extent that it is difficult to confirm, and the effect of preventing scratches is high. In particular, when the addition amount of the particles 160c is 10 to 40 parts by mass, the coating film 140 is hardly scratched, and the scratch prevention effect is even higher.

[実施例4]
次に、実施例4について説明する。図6の(d)は、実施例4に係るグローブ130dの構成を示す模式断面図である。
[Example 4]
Next, Example 4 will be described. FIG. 6D is a schematic cross-sectional view illustrating a configuration of a globe 130d according to the fourth embodiment.

実施例4において、基材150は、厚さ1.4mmのPMMA板である。   In Example 4, the base material 150 is a PMMA plate having a thickness of 1.4 mm.

実施例4において、塗膜140は、アクリル樹脂に、近紫外線域の波長の光を吸収する機能を持ったナフタレン系ベンゾキサゾイル誘導体と、複数の粒子160dとが添加された塗料がスプレーによって基材150に塗布されることで形成される。ナフタレン系ベンゾキサゾイル誘導体は、塗膜140の樹脂成分の固形分100質量部に対して30質量部添加されている。   In Example 4, the coating film 140 is formed by spraying a base material 150 by spraying a paint in which a naphthalene-based benzoxazoyl derivative having a function of absorbing light having a wavelength in the near ultraviolet region and a plurality of particles 160d are added to an acrylic resin. It is formed by applying to. 30 parts by mass of the naphthalene-based benzoxazoyl derivative is added to 100 parts by mass of the solid content of the resin component of the coating film 140.

塗膜140の膜厚は、8μmである。また、複数の粒子160cは、平均粒径8μmの架橋ポリメタクリル酸ブチルの真球状微粒子である。   The film thickness of the coating film 140 is 8 μm. The plurality of particles 160c are true spherical fine particles of crosslinked polybutyl methacrylate having an average particle diameter of 8 μm.

以上のように、実施例4では、塗膜140の膜厚と、粒子160dの粒径は、同等であるが、粒子160cは、塗膜140の樹脂成分よりも比重が小さい(比重が軽い)。   As described above, in Example 4, the film thickness of the coating film 140 and the particle size of the particles 160d are the same, but the particle 160c has a specific gravity smaller than the resin component of the coating film 140 (the specific gravity is light). .

したがって、図6の(d)に示されるように、上記塗料を基材150に塗布すれば、粒子160dは、塗膜140の表面よりも外気側に突出する。粒子160dの外気側への突出によって、塗膜140と成形機200aとの接触面積が減少するため、塗膜140への傷や付着物を減少させる効果が得られる。   Therefore, as shown in FIG. 6D, when the coating material is applied to the base material 150, the particles 160 d protrude from the surface of the coating film 140 to the outside air side. Since the contact area between the coating film 140 and the molding machine 200a is reduced by the protrusion of the particles 160d toward the outside air, the effect of reducing scratches and deposits on the coating film 140 can be obtained.

実施例4における好適な粒子の添加量は、図5の「実施例4」の欄に示される。塗膜140の樹脂成分の固形分100質量部に対して粒子160dの添加量を変更した場合、粒子160dの添加量が5〜50質量部のときは、塗膜140への傷は、目視で確認し難い程度で少なく、傷防止効果が高い。特に、粒子160dの添加量が10〜40質量部のときは、ほとんど塗膜140に傷がつかず、傷防止効果がさらに高い。   The preferred amount of added particles in Example 4 is shown in the column “Example 4” in FIG. When the addition amount of the particles 160d is changed with respect to 100 parts by mass of the solid content of the resin component of the coating film 140, when the addition amount of the particles 160d is 5 to 50 parts by mass, the scratches on the coating film 140 are visually observed. There is little to the extent that it is difficult to confirm, and the effect of preventing scratches is high. In particular, when the addition amount of the particles 160d is 10 to 40 parts by mass, the coating film 140 is hardly scratched, and the scratch prevention effect is even higher.

以上、グローブ130における、粒子160の大きさ、性質、および添加量のより好ましい例について、説明した。続いて、グローブ130の製造方法について説明する。   Heretofore, more preferable examples of the size, nature, and addition amount of the particles 160 in the globe 130 have been described. Next, a method for manufacturing the globe 130 will be described.

図7は、グローブ130の製造方法のフローチャートである。   FIG. 7 is a flowchart of a method for manufacturing the globe 130.

まず、複数の粒子160が含まれる塗料を板状の基材150の少なくとも一方の主面に塗布することによって、複数の粒子160の少なくとも一部が表面よりも外気側に突出した塗膜140を形成する(S101)。   First, by applying a paint containing a plurality of particles 160 to at least one main surface of the plate-like substrate 150, the coating film 140 in which at least a part of the plurality of particles 160 protrudes to the outside of the surface is formed. Form (S101).

このとき、一般的には、一方の主面が重力上方向を向くように基材150を配置し、スプレーによって、基材150の当該一方の主面に複数の粒子160が含まれる塗料を塗布する。   At this time, in general, the base material 150 is arranged so that one main surface faces upward in the direction of gravity, and a paint containing a plurality of particles 160 is applied to the one main surface of the base material 150 by spraying. To do.

ここで、粒子160の平均粒径よりも薄く塗料を塗布すれば、図6の(a)に示されるように複数の粒子160の少なくとも一部を表面よりも外気側に突出させることができる。また、粒子160の平均粒径よりも厚く塗料を塗布した場合であっても、図6の(b)に示されるように複数の粒子160が重なり合うなどして、複数の粒子160の少なくとも一部を表面よりも外気側に突出させることができる。   Here, if the paint is applied thinner than the average particle diameter of the particles 160, at least a part of the plurality of particles 160 can be protruded from the surface to the outside as shown in FIG. Further, even when the paint is applied thicker than the average particle diameter of the particles 160, at least a part of the plurality of particles 160 is overlapped as shown in FIG. Can be protruded to the outside side of the surface.

また、粒子160の比重が塗膜140の比重よりも小さい場合や、粒子160の表面自由エネルギーが塗膜140よりも小さいような場合は、粒子160が重力上方向に浮きあがる。このため、図6の(c)および(d)に示されるように複数の粒子160の少なくとも一部を表面よりも外気側に突出させることができる。   Further, when the specific gravity of the particle 160 is smaller than the specific gravity of the coating film 140 or when the surface free energy of the particle 160 is smaller than that of the coating film 140, the particle 160 floats up in the direction of gravity. For this reason, as shown in (c) and (d) of FIG. 6, at least a part of the plurality of particles 160 can protrude from the surface to the outside air side.

そして、塗料が完全に乾燥し、塗膜140が形成された基材150を、成形機200aおよび200bで加熱成形して光学部材を生成する(S102)。   Then, the base material 150 on which the paint is completely dried and the coating film 140 is formed is heat-molded by the molding machines 200a and 200b to generate an optical member (S102).

具体的には、例えば、図1に示されるように成形機200aに、塗膜140と、成形機200aとが直接接するように基材150を配置する。そして、成形機200aに成形機200bを重ね合わせた状態で、基材150を160℃程度に加熱して軟化させる。そして、成形機200a側から成形機200aおよび成形機200bの内部に圧縮空気を送り込むことにより、熱可塑性樹脂板50は、成形機200aおよび成形機200bによって定まる型に沿った形状に成形され、グローブ130が生成される。   Specifically, for example, as shown in FIG. 1, the base material 150 is disposed on the molding machine 200a so that the coating film 140 and the molding machine 200a are in direct contact with each other. Then, in a state where the molding machine 200b is superimposed on the molding machine 200a, the base material 150 is heated to about 160 ° C. and softened. Then, by sending compressed air into the molding machine 200a and the molding machine 200b from the molding machine 200a side, the thermoplastic resin plate 50 is molded into a shape along the mold determined by the molding machine 200a and the molding machine 200b. 130 is generated.

最後に、グローブ130を成形機200aおよび成形機200bから取り外す。このとき、成形機200aと塗膜140との接触面積は、粒子160によって低減されるため、成形機200aから生成されたグローブ130を取り外す際に塗膜140に傷や異物が付着しにくく、外観不良の発生が抑制される。   Finally, the globe 130 is removed from the molding machine 200a and the molding machine 200b. At this time, since the contact area between the molding machine 200a and the coating film 140 is reduced by the particles 160, when removing the glove 130 generated from the molding machine 200a, scratches and foreign matter are less likely to adhere to the coating film 140, and the appearance The occurrence of defects is suppressed.

なお、上記成形機200aおよび200bは、圧縮空気注入方式の成形機であるが、成形機は、加熱プレス型の成形機などその他の成形機であってもよい。   The molding machines 200a and 200b are compressed air injection molding machines, but the molding machine may be other molding machines such as a hot press type molding machine.

以上、実施の形態1に係るグローブ130(グローブ130a〜130d)およびその製造方法、並びにグローブ130(グローブ130a〜130d)を備える照明装置100について説明した。   Heretofore, the globe 130 (the globes 130a to 130d) and the manufacturing method thereof according to the first embodiment, and the lighting device 100 including the globe 130 (the globes 130a to 130d) have been described.

実施の形態1に係るグローブ130は、塗膜140の表面から粒子160が外気側に突出しているため、成形機200aと塗膜140との接触面積が小さく、成形機200aから取り外す際に塗膜に傷や異物が付着しにくい。すなわち、グローブ130によれば、高品質な照明装置100が実現される。   Since globe 160 according to Embodiment 1 has particles 160 protruding from the surface of coating film 140 toward the outside air, the contact area between molding machine 200a and coating film 140 is small, and the coating film is removed when removed from molding machine 200a. Scratches and foreign objects are difficult to adhere to. That is, according to the globe 130, the high-quality lighting device 100 is realized.

なお、実施の形態1では、粒子160は、球状であるとして説明されたが、粒子160の形状は、球状に限定されない。粒子160の形状は、その他の形状であっても、粒子160が塗膜の表面から外気側に突出していれば、傷防止効果が得られる。   In Embodiment 1, the particle 160 has been described as being spherical, but the shape of the particle 160 is not limited to being spherical. Even if the shape of the particle 160 is other shapes, the scratch preventing effect can be obtained as long as the particle 160 protrudes from the surface of the coating film to the outside air side.

図8は、非球形の粒子を用いたグローブの構成を示す模式断面図である。   FIG. 8 is a schematic cross-sectional view showing a configuration of a globe using non-spherical particles.

図8に示されるグローブ130eでは、粒子160eは、楕円体(ラグビーボール形状)である。また、粒子160eは、最大粒径の方向において、一端側の比重が、他端側の比重よりも大きい。そして、粒子160eの他端側の比重は、塗膜140の比重よりも小さい。つまり、粒子160eは、最大粒径の方向において粒子160e内に比重の偏りを有し、粒子160eの少なくとも一部は、塗膜140よりも比重が小さい。   In the globe 130e shown in FIG. 8, the particle 160e is an ellipsoid (rugby ball shape). Further, the particle 160e has a specific gravity on one end side larger than that on the other end side in the direction of the maximum particle size. And the specific gravity of the other end side of the particle 160e is smaller than the specific gravity of the coating film 140. That is, the particle 160 e has a specific gravity bias in the particle 160 e in the direction of the maximum particle diameter, and at least a part of the particle 160 e has a specific gravity smaller than that of the coating film 140.

したがって、図8に示されるように、粒子160eのそれぞれは、一端側が塗膜140内に位置し、他端側が塗膜140の表面よりも外気側に突出している。このような粒子160eの突出によっても傷防止効果が得られる。   Therefore, as shown in FIG. 8, each of the particles 160 e has one end side located in the coating film 140 and the other end side protruding from the surface of the coating film 140 to the outside air side. Such a protrusion of the particles 160e can also provide a scratch preventing effect.

また、実施の形態1では、塗膜140は、主に、近紫外線域の波長の光を吸収する機能を有するものとして説明されたが、塗膜140の機能はこのような機能に限定されるものではなく、例えば、虫除け機能等であってもよい。   Moreover, in Embodiment 1, although the coating film 140 was mainly demonstrated as what has a function which absorbs the light of the wavelength of a near ultraviolet region, the function of the coating film 140 is limited to such a function. For example, an insect repellent function or the like may be used.

実施の形態1では、光学部材の一例としてグローブ130ついて説明したが、本発明は、塗膜が形成される光学部材であれば、フィルタ等、その他の光学部材にも適用可能である。なお、光学部材とは、光を透過させる部材(当該部材内を光が通過する部材)を意味する。   In the first embodiment, the globe 130 has been described as an example of the optical member. However, the present invention can be applied to other optical members such as a filter as long as it is an optical member on which a coating film is formed. The optical member means a member that transmits light (a member through which light passes).

また、実施の形態1では、照明装置100がシーリングライトであるとして説明したが、照明装置の形態は、特に限定されるものではない。照明装置は、例えば、ベースライト、ダウンライト、スポットライト、デスクスタンドなどであってもよい。   Moreover, although Embodiment 1 demonstrated as the illuminating device 100 was a ceiling light, the form of an illuminating device is not specifically limited. The lighting device may be, for example, a base light, a down light, a spot light, a desk stand, or the like.

なお、本発明は、これらの実施の形態またはその変形例に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態またはその変形例に施したもの、あるいは異なる実施の形態またはその変形例における構成要素を組み合わせて構築される形態も、本発明の範囲内に含まれる。   In addition, this invention is not limited to these embodiment or its modification. Unless it deviates from the gist of the present invention, various modifications conceived by those skilled in the art are applied to the present embodiment or the modification thereof, or a form constructed by combining different embodiments or components in the modification. It is included within the scope of the present invention.

30 光学部材
50 熱可塑性樹脂板
100 照明装置
110 器具本体
120 発光モジュール
130、130a〜130e グローブ(光学部材)
140 塗膜
150 基材
160、160a〜160e 粒子
DESCRIPTION OF SYMBOLS 30 Optical member 50 Thermoplastic resin board 100 Illuminating device 110 Instrument main body 120 Light emitting module 130, 130a-130e Globe (optical member)
140 coating film 150 base material 160, 160a to 160e particles

Claims (15)

複数の粒子が含まれる塗料を板状の透光性を有する基材の少なくとも一方の主面に塗布することによって、前記少なくとも一方の主面に前記複数の粒子の少なくとも一部が表面よりも外気側に突出した塗膜を形成し、
前記塗膜が形成された前記基材を前記塗膜が成形機に接するように配置し、
前記塗膜が形成された前記基材を前記成形機に沿った形状に加熱成形して光学部材を生成する
光学部材の製造方法。
By applying a coating material containing a plurality of particles to at least one main surface of a plate-like light-transmitting substrate, at least a part of the plurality of particles on the at least one main surface is outside air than the surface. Forming a protruding film on the side,
The base material on which the coating film is formed is arranged so that the coating film contacts a molding machine,
The manufacturing method of the optical member which produces | generates an optical member by heat-molding the said base material in which the said coating film was formed in the shape along the said molding machine.
前記基材は、熱可塑性樹脂であり、加熱されることによって成形され、
前記複数の粒子は、所定の温度以上の耐熱性を有する
請求項1に記載の光学部材の製造方法。
The base material is a thermoplastic resin and is molded by being heated,
The method for manufacturing an optical member according to claim 1, wherein the plurality of particles have heat resistance equal to or higher than a predetermined temperature.
前記複数の粒子は、160℃以上の耐熱性を有する
請求項2に記載の光学部材の製造方法。
The method for producing an optical member according to claim 2, wherein the plurality of particles have heat resistance of 160 ° C. or higher.
前記塗膜には、前記塗膜の樹脂成分の固形分100質量部に対して5〜50質量部の前記複数の粒子が含まれる
請求項1〜3のいずれか1項に記載の光学部材の製造方法。
The optical film according to any one of claims 1 to 3, wherein the coating film includes 5 to 50 parts by mass of the plurality of particles with respect to 100 parts by mass of the solid content of the resin component of the coating film. Production method.
前記塗膜には、前記塗膜の樹脂成分の固形分100質量部に対して10〜40質量部の前記複数の粒子が含まれる
請求項1〜3のいずれか1項に記載の光学部材の製造方法。
The optical film according to any one of claims 1 to 3, wherein the coating film includes 10 to 40 parts by mass of the plurality of particles with respect to 100 parts by mass of the solid content of the resin component of the coating film. Production method.
前記複数の粒子の平均粒径は、前記塗膜の膜厚よりも大きい
請求項1〜5のいずれか1項に記載の光学部材の製造方法。
The method for producing an optical member according to claim 1, wherein an average particle diameter of the plurality of particles is larger than a film thickness of the coating film.
前記複数の粒子の平均粒径は、前記塗膜の膜厚よりも小さく、
前記塗膜には、前記塗膜の樹脂成分の固形分100質量部に対して10〜50質量部の前記粒子が含まれる
請求項1〜3のいずれか1項に記載の光学部材の製造方法。
The average particle size of the plurality of particles is smaller than the film thickness of the coating film,
The method for producing an optical member according to claim 1, wherein the coating film includes 10 to 50 parts by mass of the particles with respect to 100 parts by mass of a solid content of the resin component of the coating film. .
前記複数の粒子それぞれは、前記塗膜よりも表面自由エネルギーが小さい
請求項1〜7のいずれか1項に記載の光学部材の製造方法。
The method for producing an optical member according to claim 1, wherein each of the plurality of particles has a surface free energy smaller than that of the coating film.
前記複数の粒子それぞれは、前記塗膜よりも比重が小さい
請求項1〜8のいずれか1項に記載の光学部材の製造方法。
The method for producing an optical member according to claim 1, wherein each of the plurality of particles has a specific gravity smaller than that of the coating film.
前記複数の粒子それぞれの形状は、非球形であり、
前記複数の粒子それぞれは、当該粒子内において比重の偏りを有し、当該粒子の少なくとも一部は、前記塗膜よりも比重が小さい
請求項1〜8のいずれか1項に記載の光学部材の製造方法。
Each of the plurality of particles has a non-spherical shape,
The optical particles according to any one of claims 1 to 8, wherein each of the plurality of particles has a specific gravity bias in the particles, and at least a part of the particles has a specific gravity smaller than that of the coating film. Production method.
前記複数の粒子は、前記塗膜に溶解または反応しない
請求項1〜10のいずれか1項に記載の光学部材の製造方法。
The method for producing an optical member according to claim 1, wherein the plurality of particles do not dissolve or react with the coating film.
記塗膜は、透光性を有する
請求項1〜11のいずれか1項に記載の光学部材の製造方法。
Before Kinurimaku the method for producing an optical member according to any one of claims 1 to 11 having a light-transmitting property.
前記光学部材は、照明装置の外郭を構成するグローブであり、前記照明装置が有する光源からの光を透過する
請求項1〜12のいずれか1項に記載の光学部材の製造方法。
The method for manufacturing an optical member according to any one of claims 1 to 12, wherein the optical member is a glove that constitutes an outline of the lighting device , and transmits light from a light source included in the lighting device.
表面に塗膜が形成された基材からなり、
前記塗膜には、前記塗膜の表面よりも外気側に突出した複数の粒子が含まれ、
前記複数の粒子それぞれの形状は、非球形であり、
前記複数の粒子それぞれは、当該粒子内において比重の偏りを有し、当該粒子の少なくとも一部は、前記塗膜よりも比重が小さい
光学部材。
It consists of a base material with a coating film formed on the surface,
The coating film includes a plurality of particles protruding to the outside air side from the surface of the coating film,
Each of the plurality of particles has a non-spherical shape,
Each of the plurality of particles has a specific gravity bias in the particles, and at least a part of the particles has a specific gravity smaller than that of the coating film.
請求項14に記載の光学部材と、
光源とを備える
照明装置。
The optical member according to claim 14,
A lighting device comprising a light source.
JP2013140696A 2013-07-04 2013-07-04 Optical member, lighting device, and method of manufacturing optical member Expired - Fee Related JP6168291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013140696A JP6168291B2 (en) 2013-07-04 2013-07-04 Optical member, lighting device, and method of manufacturing optical member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013140696A JP6168291B2 (en) 2013-07-04 2013-07-04 Optical member, lighting device, and method of manufacturing optical member

Publications (2)

Publication Number Publication Date
JP2015013411A JP2015013411A (en) 2015-01-22
JP6168291B2 true JP6168291B2 (en) 2017-07-26

Family

ID=52435574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013140696A Expired - Fee Related JP6168291B2 (en) 2013-07-04 2013-07-04 Optical member, lighting device, and method of manufacturing optical member

Country Status (1)

Country Link
JP (1) JP6168291B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6710949B2 (en) * 2015-12-04 2020-06-17 東ソー株式会社 Fine particle array film and antireflection film

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004030981A1 (en) * 2004-06-26 2006-01-12 Klöckner Pentaplast GmbH & Co. KG Coating based on polyvinylidene chloride, process for the preparation of a coating and its use
JP2007301784A (en) * 2006-05-10 2007-11-22 Toray Ind Inc Laminated polyarylene sulfide film
JP2009036984A (en) * 2007-08-01 2009-02-19 Gunze Ltd Light diffusion film and its manufacturing method
JP2009069742A (en) * 2007-09-18 2009-04-02 Toray Ind Inc Optical sheet
WO2012114895A1 (en) * 2011-02-21 2012-08-30 積水化成品工業株式会社 Light reflection plate, resin composition for forming light reflection plate, and method for producing light reflection plate

Also Published As

Publication number Publication date
JP2015013411A (en) 2015-01-22

Similar Documents

Publication Publication Date Title
CN104246360B (en) Lighting device
US20130033871A1 (en) Led lamp
JP2009545888A5 (en)
JP2007194132A (en) Lighting device
JP2007188059A5 (en)
EP3242074B1 (en) Lamp unit and vehicle lamp device using same
JP2012252994A (en) Light emitting device and compound lens thereof
US9897745B2 (en) Optical module, display device containing the same and method for manufacturing the same
JP6667499B2 (en) Lighting device with virtual light source
JP6168291B2 (en) Optical member, lighting device, and method of manufacturing optical member
US20140160767A1 (en) Optical lens and lighting device having same
US9115866B2 (en) LED unit with rectangular lens
KR101337502B1 (en) Led package for lamp with lens
KR102288773B1 (en) Lamp for vehicles
KR101515134B1 (en) Lamp device within resin layer for light-guide, method of manufacturing the same and LCD using the same
JP6188611B2 (en) Lighting device
CN206430041U (en) Micro-structural reinforced optical films/sheet material and LED light device
KR101756331B1 (en) Led lighting device
JP2015516670A (en) Reflector having a reflection pattern for complementing illumination characteristics of an LED package, and LED illumination including the same
TWI660206B (en) Backlight module and display device
CN103727490A (en) Lens, LED light emitting device and lamp
KR102160759B1 (en) Lighting Device
KR102034081B1 (en) Illuminating device
JP6590320B2 (en) Light guide plate, lighting device using light guide plate, and method of manufacturing light guide plate
JP4552885B2 (en) Optical filter and lighting fixture using the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150312

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170613

R151 Written notification of patent or utility model registration

Ref document number: 6168291

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees