JP6164011B2 - Electrode for nonaqueous electrolyte storage element - Google Patents

Electrode for nonaqueous electrolyte storage element Download PDF

Info

Publication number
JP6164011B2
JP6164011B2 JP2013202564A JP2013202564A JP6164011B2 JP 6164011 B2 JP6164011 B2 JP 6164011B2 JP 2013202564 A JP2013202564 A JP 2013202564A JP 2013202564 A JP2013202564 A JP 2013202564A JP 6164011 B2 JP6164011 B2 JP 6164011B2
Authority
JP
Japan
Prior art keywords
electrode
storage element
nonaqueous electrolyte
layer
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013202564A
Other languages
Japanese (ja)
Other versions
JP2015069819A (en
Inventor
実希 安富
実希 安富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2013202564A priority Critical patent/JP6164011B2/en
Publication of JP2015069819A publication Critical patent/JP2015069819A/en
Application granted granted Critical
Publication of JP6164011B2 publication Critical patent/JP6164011B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Description

本発明は、非水電解質蓄電素子用電極及びそれを用いた非水電解質蓄電素子に関する。   The present invention relates to an electrode for a nonaqueous electrolyte storage element and a nonaqueous electrolyte storage element using the same.

現在、リチウムイオン二次電池等に代表される非水電解質蓄電素子に使用されている負極活物質は、主に黒鉛系炭素質材料である。黒鉛質炭素材料は、炭素6原子に対してリチウム1原子を可逆的に挿入・脱離することが可能であり、その理論電気量は372mAh/gである。
近年、非水電解質蓄電素子は電気自動車の電源として用いられるようになり、電気自動車の航続距離向上のために、高容量化が求められている。
Currently, negative electrode active materials used in non-aqueous electrolyte electricity storage devices represented by lithium ion secondary batteries and the like are mainly graphite-based carbonaceous materials. Graphite carbon material can reversibly insert and desorb 1 lithium atom with respect to 6 carbon atoms, and its theoretical electricity is 372 mAh / g.
In recent years, nonaqueous electrolyte storage elements have come to be used as power sources for electric vehicles, and higher capacities are required to improve the cruising distance of electric vehicles.

非水電解質蓄電素子の更なる高容量化のためには、従来の黒鉛質炭素材料に代わる、高容量材料の開発が必要である。この様な高容量材料の例としてケイ素を含有する物質があり、代表的な物質として、ケイ素(Si)、ケイ素酸化物(SiO、xは0<x≦2)、ケイ素合金等を挙げることができる。 In order to further increase the capacity of the nonaqueous electrolyte storage element, it is necessary to develop a high-capacity material that replaces the conventional graphitic carbon material. Examples of such a high-capacity material include a substance containing silicon, and typical examples include silicon (Si), silicon oxide (SiO x , x is 0 <x ≦ 2), silicon alloy, and the like. Can do.

ケイ素を含有する物質は、理論充放電容量が大きいものの、充放電サイクルにおいてリチウム(Li)の吸蔵および放出に伴って、物質が大きく体積変化する。この体積変化による集電体からの物質粒子の脱落または剥離、物質粒子の微粉化による不可逆容量の増加等の蓄電素子特性の低下が問題となっており、これらの問題の解決に向けた取り組みが成されている。   Although the substance containing silicon has a large theoretical charge / discharge capacity, the substance undergoes a large volume change with insertion and extraction of lithium (Li) in the charge / discharge cycle. Degradation of power storage elements such as dropping or peeling of substance particles from the current collector due to this volume change, and increase in irreversible capacity due to pulverization of substance particles has become a problem, and efforts to solve these problems are in progress. It is made.

特許文献1には、「集電体となる銅基材上に、膜厚が0.1μm以上の導電性を有する有機薄膜層を形成したことを特徴とするリチウムイオン二次電池負極。」(請求項1)とすることで、サイクル特性(充放電特性)の優れたリチウムイオン二次電池負極を提供できるという技術が開示されている。
また、「前記有機薄膜層が、導電性粒子を分散したポリイミド薄膜層からなる」(請求項4)こと、「前記有機薄膜層上に、Sn系材料あるいはSi系材料からなる活物質層を形成」(請求項5)したことが記載されている。
Patent Document 1 discloses “a negative electrode for a lithium ion secondary battery in which a conductive organic thin film layer having a film thickness of 0.1 μm or more is formed on a copper base material to be a current collector.” A technique that can provide a negative electrode for a lithium ion secondary battery having excellent cycle characteristics (charge / discharge characteristics) is disclosed.
Further, “the organic thin film layer is made of a polyimide thin film layer in which conductive particles are dispersed” (Claim 4), “an active material layer made of Sn-based material or Si-based material is formed on the organic thin film layer. (Claim 5).

特許文献2には、「銅基材上に、導電性粒子とSiO粉からなる活物質とを含む有機薄膜を成膜してなることを特徴とするLiイオン二次電池負極材。」(請求項1)、「前記有機薄膜は、銅基材側から徐々に活物質濃度が高くなるような濃度勾配を有する請求項1に記載のLiイオン二次電池負極材。」(請求項2)とすることにより、活物質の剥離を防止することができるLiイオン二次電池負極材を得ることができるという技術が開示されている。   Patent Document 2 discloses “a negative electrode material for Li ion secondary battery, characterized in that an organic thin film containing conductive particles and an active material made of SiO powder is formed on a copper base material” (claim). Item 1), “The organic thin film has a concentration gradient such that the active material concentration gradually increases from the copper substrate side.” (Claim 2) Thus, a technique is disclosed in which a Li-ion secondary battery negative electrode material that can prevent peeling of the active material can be obtained.

特許文献3には、「電極原料粉末をバインダー及び溶剤と共に混練した電極合剤ペーストを集電体上に積層して電極合剤層を形成してなるものにおいて、前記電極合剤層内のバインダー濃度が前記集電体近くにおいて濃くなるようにしたことを特徴とする非水電解質二次電池用電極。」(請求項1)とすることにより、集電体と電極合剤層との密着性を低下させることなく、バインダー量を削減できて充放電特性の向上が可能となる非水電解質二次電池用電極及びその製造方法を提供することができるという技術が開示されている。
また、「さらに電極合剤層の表面近くのバインダー濃度が中心側よりも濃くなるように設定されていることを特徴とする非水電解質二次電池用電極。」(請求項2)とすること、「中心部のバインダー濃度が、集電体近くのバインダー濃度に比べて50〜90%であること」(請求項3)、が記載されている。
Patent Document 3 states that "in an electrode mixture layer formed by laminating an electrode mixture paste obtained by kneading electrode raw material powder together with a binder and a solvent on a current collector, the binder in the electrode mixture layer" An electrode for a non-aqueous electrolyte secondary battery characterized in that the concentration is increased near the current collector. "(Claim 1), whereby adhesion between the current collector and the electrode mixture layer is achieved. There is disclosed a technique capable of providing an electrode for a non-aqueous electrolyte secondary battery that can reduce the amount of binder and improve charge / discharge characteristics and a method for manufacturing the same without reducing the amount of the binder.
Further, “a nonaqueous electrolyte secondary battery electrode characterized in that the binder concentration near the surface of the electrode mixture layer is set to be higher than the center side” (Claim 2). "The binder concentration in the center is 50 to 90% compared to the binder concentration near the current collector" (Claim 3).

特開2010−272399号公報JP 2010-272399 A 特開2010−205659号公報JP 2010-205659 A 特開平10−270013号公報JP-A-10-270013

特許文献1には、集電体となる銅基材上に活物質層とは異なる導電性を有する有機薄膜層を形成すること、さらには、前記有機薄膜層が導電性粒子を分散したポリイミド薄膜層からなることが記載されている。しかしながら、実施例において活物質層に用いられている結着剤はポリフッ化ビニリデン(PVdF)であり、前記ポリイミド薄膜層とは異なる材質の結着剤であるため、充放電サイクルに伴う負極厚みの膨張を抑制する能力は十分とは言えない。   In Patent Document 1, an organic thin film layer having conductivity different from that of an active material layer is formed on a copper base material serving as a current collector, and further, a polyimide thin film in which conductive particles are dispersed in the organic thin film layer It is described that it consists of layers. However, since the binder used for the active material layer in the examples is polyvinylidene fluoride (PVdF), which is a binder made of a material different from that of the polyimide thin film layer, the thickness of the negative electrode accompanying the charge / discharge cycle is reduced. The ability to suppress expansion is not sufficient.

特許文献2には、ポリイミド液からなる結着剤、アセチレンブラックからなる導電性粒子、SiO粉からなる活物質を含む電着液を泳動電着させると共に、電着時の電流密度を順次低下させることにより、有機薄膜内に銅基材側から徐々に活物質濃度が高くなるような濃度勾配を設けることが記載されている。しかしながら、有機薄膜層の表面付近と有機薄膜層の中心部の具体的なバインダーの存在比率については不明であり、リチウムイオン二次電池の充放電サイクルに伴う負極厚みの膨張を抑制する能力は、必ずしも十分なものとは言えない。   In Patent Document 2, an electrodeposition liquid containing a binder composed of a polyimide liquid, conductive particles composed of acetylene black, and an active material composed of SiO powder is electrophoretically deposited, and the current density at the time of electrodeposition is sequentially reduced. Thus, it is described that a concentration gradient is provided in the organic thin film so that the active material concentration gradually increases from the copper substrate side. However, the specific ratio of the binder in the vicinity of the surface of the organic thin film layer and the center of the organic thin film layer is unknown, and the ability to suppress the negative electrode thickness expansion associated with the charge / discharge cycle of the lithium ion secondary battery is Not necessarily enough.

特許文献3には、電極合剤層内のバインダー濃度が一様ではなく、バインダー濃度が電極合剤層の表面近くのバインダー濃度が中心側よりも濃くなるように設定されており、そのバインダー濃度が集電体近くのバインダー濃度に比べて50〜90%であることが記載されている。しかしながら、実施例では、活物質に炭素材料、結着剤にポリフッ化ビニリデン(PVdF)を用いた例が挙げられているため、シリコン化合物の様に、充放電に伴う粒子の体積変動が、充放電前の粒子体積の4倍に達するような活物質を使用する場合においては、充放電サイクルに伴う負極厚みの膨張を抑制する能力は十分とは言えない。   In Patent Document 3, the binder concentration in the electrode mixture layer is not uniform, and the binder concentration is set so that the binder concentration near the surface of the electrode mixture layer is higher than the center side. Is 50-90% of the binder concentration near the current collector. However, in the examples, a carbon material is used as an active material and polyvinylidene fluoride (PVdF) is used as a binder. In the case of using an active material that reaches four times the particle volume before discharge, it cannot be said that the ability to suppress the expansion of the negative electrode thickness accompanying the charge / discharge cycle is sufficient.

本発明は、上記課題に鑑みてなされたものであり、充放電サイクルに伴う電極厚みの膨張性が改善された非水電解質蓄電素子用電極、及び、それを用いた非水電解質蓄電素子を提供することにある。   The present invention has been made in view of the above-described problems, and provides an electrode for a nonaqueous electrolyte storage element in which the expandability of the electrode thickness associated with a charge / discharge cycle is improved, and a nonaqueous electrolyte storage element using the same There is to do.

本発明の構成及び効果について、技術思想を交えて説明する。但し、作用機構については推定を含んでおり、その正否は、本発明を制限するものではない。なお、本発明は、その精神又は主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、後述の実施の形態若しくは実験例は、あらゆる点で単なる例示に過ぎず、限定的に解釈してはならない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、すべて本発明の範囲内のものである。   The configuration and effects of the present invention will be described with a technical idea. However, the action mechanism includes estimation, and the correctness does not limit the present invention. It should be noted that the present invention can be implemented in various other forms without departing from the spirit or main features thereof. For this reason, the following embodiments or experimental examples are merely examples in all respects and should not be interpreted in a limited manner. Further, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.

本発明は、集電体と、ケイ素を含有する物質とポリイミド系結着剤を含む合剤層を備え、前記合剤層と前記集電体との間に、厚み0.5〜5μmの、ポリイミド系樹脂からなる層を備えている、非水電解質蓄電素子用電極である。
また、本発明は、集電体と、ケイ素を含有する物質とポリイミド系結着剤を含む合剤層を備え、前記合剤層の、前記集電体とは反対側に、厚み0.5〜5μmの、ポリイミド系樹脂からなる層を備えている、非水電解質素子用電極である。

The present invention comprises a current collector, a mixture layer containing a silicon-containing substance and a polyimide binder, and a thickness of 0.5 to 5 μm between the mixture layer and the current collector , It is an electrode for a nonaqueous electrolyte electricity storage element provided with a layer made of a polyimide resin.
The present invention also includes a current collector, a mixture layer containing a silicon-containing substance and a polyimide-based binder, and a thickness of 0.5 on the side of the mixture layer opposite to the current collector. It is an electrode for nonaqueous electrolyte elements provided with a layer made of polyimide resin of ˜5 μm .

本発明によれば、充放電サイクルに伴う電極厚みの膨張性が改善された非水電解質蓄電素子用電極、及び、それを用いた非水電解質蓄電素子を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the electrode for nonaqueous electrolyte electrical storage elements with which the expansibility of the electrode thickness accompanying a charging / discharging cycle was improved, and a nonaqueous electrolyte electrical storage element using the same can be provided.

実施例1の非水電解質蓄電素子用電極の電子線マイクロアナライザ(EPMA)測定の測定結果を示す図である。FIG. 3 is a diagram showing a measurement result of electron beam microanalyzer (EPMA) measurement of the electrode for a nonaqueous electrolyte storage element of Example 1.

本発明に係る非水電解質蓄電素子用電極は、集電体と、ケイ素を含有する物質とポリイミド系結着剤を含む合剤層を備え、前記合剤層の前記集電体側或いは前記集電体とは反対側の表面に、ポリイミド系樹脂からなる層を備える、非水電解質蓄電素子用電極である。 An electrode for a nonaqueous electrolyte storage element according to the present invention includes a current collector, a mixture layer containing a silicon-containing substance and a polyimide-based binder, and the current collector side of the mixture layer or the current collector. The electrode for a non-aqueous electrolyte storage element includes a layer made of a polyimide resin on the surface opposite to the body.

ケイ素を含有する物質を活物質として用いる場合、ポリイミド系結着剤を用いることにより、ケイ素を含有する化合物の充放電サイクルに伴う体積変化に起因する合剤層の厚み方向の膨張を抑制することができる。
非水電解質素子用電極に使用される結着剤としては、リチウム電池に用いられているポリフッ化ビニリデン(PVDF)、ポリエチレン、ポリプロピレン、エチレン−プロピレン−ジエンターポリマー(EPDM)、スルホン化EPDM、スチレンブタジエンゴム(SBR)等が良く知られている。しかし、本発明では、ケイ素を含有する物質を活物質として用いるために、これらの結着剤では、ケイ素を含有する化合物の充放電サイクルに伴う体積変化に起因する合剤層の厚み方向の膨張を十分に抑制することが難しく、非水電解質蓄電素子用電極の電気化学的特性の低下が起こりやすいため好ましくない。
When a silicon-containing substance is used as an active material, by using a polyimide-based binder, the expansion in the thickness direction of the mixture layer due to the volume change accompanying the charge / discharge cycle of the compound containing silicon is suppressed. Can do.
The binder used for the electrode for the non-aqueous electrolyte element includes polyvinylidene fluoride (PVDF), polyethylene, polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, and styrene, which are used in lithium batteries. Butadiene rubber (SBR) and the like are well known. However, in the present invention, since a silicon-containing substance is used as an active material, in these binders, the expansion of the mixture layer in the thickness direction caused by the volume change accompanying the charge / discharge cycle of the compound containing silicon Is not preferable because it is difficult to sufficiently suppress the electrochemical property, and the electrochemical characteristics of the electrode for the nonaqueous electrolyte storage element are likely to deteriorate.

また、合剤層の前記集電体側或いは集電体とは反対側の表面に、ポリイミド系樹脂からなる層を備えることで、充放電サイクルに伴う非水電解質蓄電素子用電極の厚み方向の膨張を抑制することができる。 Further, the current collector-side or surface opposite to the collector of the mixture layer, in Rukoto a layer made of a polyimide resin, in the thickness direction of the non-aqueous electrolyte energy storage element electrodes associated with charge and discharge cycles Expansion can be suppressed.

ここで、ポリイミド系樹脂からなる層は、合剤層の集電体側或いは集電体とは反対側の面の少なくとも一部に備えられていればよい。充放電サイクルに伴う電極厚みの膨張性を改善する観点から、ポリイミド系樹脂からなる層の面積は大きい方が好ましく、ポリイミド系樹脂からなる層が合剤層の集電体側或いは集電体とは反対側の面の全体に渡って備えられていることが最も好ましい。 Here, the layer made of polyimide resin may be provided on at least a part of the current collector side of the mixture layer or the surface opposite to the current collector. From the viewpoint of improving the expandability of the electrode thickness associated with the charge / discharge cycle, it is preferable that the area of the layer made of polyimide resin is larger, and the layer made of polyimide resin is the current collector side of the mixture layer or the current collector Most preferably, it is provided over the entire opposite surface.

ポリイミド系樹脂からなる層及び合剤層に含まれるポリイミド系結着剤の濃度は、実施例に後述する様に、非水電解質蓄電素子用電極の切断面を電子線マイクロアナライザ(EPMA)により、元素分布の分析、ポリイミド系結着剤に含有される窒素(N)に関する定量分析を行うことで測定する。 The concentration of the polyimide binder contained in the layer made of the polyimide resin and the mixture layer, as described later in the examples, the cut surface of the electrode for the nonaqueous electrolyte storage element by an electron beam microanalyzer (EPMA), It is measured by analyzing the element distribution and performing quantitative analysis on nitrogen (N) contained in the polyimide binder.

また、ポリイミド系樹脂からなる層と合剤層のポリイミド系結着剤として、結着剤に含まれるポリイミドの種類や溶剤の種類或いはその組成が同じポリイミド系樹脂を使用することにより、非水電解質蓄電素子用電極の作製工程が簡略化できるので好ましい。 In addition, as a polyimide binder for the layer made of the polyimide resin and the mixture layer, a non-aqueous electrolyte can be obtained by using a polyimide resin having the same type of polyimide, the same kind of solvent, or the composition of the polyimide contained in the binder. This is preferable because the manufacturing process of the electrode for the storage element can be simplified.

また、後述する実施例に示すように、合剤層の集電体とは反対側にポリイミド系樹脂からなる層を備えることで、合剤層の集電体側にポリイミド系樹脂からなる層を備えるよりも、本発明の効果を高めることができるので好ましい。 Further, as shown in the examples below, the collector of the mixture layer by providing a layer made of a polyimide resin on the opposite side, comprises a layer made of a polyimide resin on the collector side of the mixture layer It is preferable because the effect of the present invention can be enhanced.

本発明に係る非水電解質蓄電素子用電極におけるポリイミド系樹脂からなる層の厚みは、非水電解質蓄電素子用電極の厚みの膨張を抑制する観点から、0.5〜5μmであることが好ましい。このとき、ポリイミド系樹脂からなる層が備えられている合剤層の厚みは1〜70μmであることが好ましい The thickness of the layer made of the polyimide resin in the nonaqueous electrolyte storage element electrode according to the present invention is preferably 0.5 to 5 μm from the viewpoint of suppressing the expansion of the thickness of the nonaqueous electrolyte storage element electrode. At this time , it is preferable that the thickness of the mixture layer provided with the layer which consists of a polyimide-type resin is 1-70 micrometers .

ポリイミド系樹脂からなる層には、本発明の効果を損なわない範囲で、ポリイミド系結着剤以外の物質が含まれていても良い The layer made of the polyimide resin may contain a substance other than the polyimide binder as long as the effects of the present invention are not impaired .

本発明に係る非水電解質蓄電素子用電極では、合剤層に炭素材料を備えることで充放電サイクル特性を向上することができるために好ましい。
炭素材料としては、カーボンナノチューブ、非結晶性炭素、天然黒鉛、人造黒鉛、鱗片状黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンウイスカー等が挙げられる。また、炭素材料自身あるいは非水電解質蓄電素子の特性向上を目的として、ホウ素等の異種元素が添加されていてもよい。
これらの中でも、鱗片状黒鉛を用いることが好ましい。
炭素材料中に含まれる鱗片状黒鉛の割合としては、40質量%以上が好ましい。より好ましくは、40〜60質量%である。
In the electrode for nonaqueous electrolyte storage elements according to the present invention, it is preferable to provide a carbon material in the mixture layer because charge / discharge cycle characteristics can be improved.
Examples of the carbon material include carbon nanotubes, amorphous carbon, natural graphite, artificial graphite, flake graphite, carbon black, acetylene black, ketjen black, carbon whisker and the like. Further, for the purpose of improving the characteristics of the carbon material itself or the nonaqueous electrolyte storage element, a different element such as boron may be added.
Among these, it is preferable to use scale-like graphite.
The proportion of scaly graphite contained in the carbon material is preferably 40% by mass or more. More preferably, it is 40-60 mass%.

鱗片状黒鉛としては、流動法窒素ガス吸着法によるBET比表面積が6〜10m/gの鱗片状黒鉛を用いることで、充放電サイクル特性を向上することができるために好ましい。また、粒度分布測定における50%粒子径(D50)を7〜15μmとすることが好ましく、ラマン分光法におけるR値がR≦0.17のものが好ましい。 As the flake graphite, it is preferable to use flake graphite having a BET specific surface area of 6 to 10 m 2 / g by a flow method nitrogen gas adsorption method because charge / discharge cycle characteristics can be improved. The 50% particle diameter (D50) in the particle size distribution measurement is preferably 7 to 15 μm, and the R value in Raman spectroscopy is preferably R ≦ 0.17.

本発明に係る非水電解質蓄電素子用電極に使用するケイ素を含有する物質としては、ケイ素、ケイ素酸化物またはケイ素合金を単独、あるいは2 種以上混合して用いることができる。例えば、一般式SiO(0≦x<2)で表される物質が挙げられる
また、本発明の効果を損なわない範囲で、少量のB、N、P、F、Cl、Br、I等の典型非金属元素、Li、Na、Mg、Al、K、Ca、Zn、Ga、Ge等の典型金属元素、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo、Zr、Ta、Hf、Nb、W等の遷移金属元素を含有することを排除するものではない。
As the substance containing silicon used for the electrode for the nonaqueous electrolyte storage element according to the present invention, silicon, silicon oxide or silicon alloy can be used alone or in combination of two or more. For example, a substance represented by the general formula SiO x (0 ≦ x <2) can be given .
In addition, a small amount of typical nonmetallic elements such as B, N, P, F, Cl, Br, and I, Li, Na, Mg, Al, K, Ca, Zn, Ga, Excluding inclusion of typical metal elements such as Ge, transition metal elements such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Zr, Ta, Hf, Nb, and W Absent.

一般式SiO(0≦x<2)で表される物質において、SiOおよびSiの両相を含む材料を使用することが好ましい。この様な材料は、SiOのマトリックス中のSiへのリチウムの吸蔵・放出のよる体積膨張が小さい。従って、両者を最適な比率で混合することにより、放電容量が大きく、しかも充放電サイクル特性に優れた物質が得られるためである。 In the substance represented by the general formula SiO x (0 ≦ x <2), it is preferable to use a material containing both phases of SiO 2 and Si. Such a material has a small volume expansion due to insertion and extraction of lithium into and from Si in the SiO 2 matrix. Therefore, by mixing them at an optimum ratio, a substance having a large discharge capacity and excellent charge / discharge cycle characteristics can be obtained.

さらに、一般式SiO(0≦x<2)で表される物質の中では、CuKα線を用いて測定されたX線回折測定(XRD)のプロファイルにおいて、2θ=46°〜49°の範囲に現れるピークの半値幅が3°未満であると、充放電サイクル特性が優れているので好ましい。 Furthermore, in the substance represented by the general formula SiO x (0 ≦ x <2), the range of 2θ = 46 ° to 49 ° in the X-ray diffraction measurement (XRD) profile measured using CuKα rays. When the half width of the peak appearing in is less than 3 °, the charge / discharge cycle characteristics are excellent, which is preferable.

ケイ素を含有する物質の平均粒子径は5μm以下であることが好ましい。さらに、非水電解質蓄電素子の充放電サイクル特性を向上する目的で、1μm以下であることがより好ましい。   The average particle diameter of the substance containing silicon is preferably 5 μm or less. Furthermore, it is more preferably 1 μm or less for the purpose of improving the charge / discharge cycle characteristics of the nonaqueous electrolyte storage element.

また、ケイ素を含有する物質の結晶性は、高結晶性のものからアモルファスなものまで使用することができるが、高結晶性のものは、充放電サイクルによってアモルファスしたときの可逆電位の変化が大きくなる虞があるため、アモルファスのものを用いることが好ましい。
さらに、ケイ素を含有する物質が、フッ酸、硫酸などの酸で洗浄されているものや水素で還元されているものも使用することが可能である。
In addition, the crystallinity of a silicon-containing substance can be used from a highly crystalline one to an amorphous one, but the high crystalline one has a large reversible potential change when it is made amorphous by a charge / discharge cycle. Therefore, it is preferable to use an amorphous material.
Furthermore, it is possible to use a silicon-containing substance that has been washed with an acid such as hydrofluoric acid or sulfuric acid or that has been reduced with hydrogen.

ケイ素を含有する物質を導電性物質により被覆した活物質は、充放電に伴うケイ素を含有する物質の粒子の体積変化に伴う粒子と導電性物質との乖離を抑制することができるため、如何なる充電状態においても良好な充放電特性を得ることができるので好ましい。
ケイ素を含有する物質を被覆する導電性物質としては、ケイ素を含有する物質よりも電気伝導性に優れる物質であれば特に限定されるものではない。例えば、カーボン、金属、金属化合物、金属繊維、導電性高分子、導電性セラミック等が挙げられる。これらの中でも、被覆工程の容易さ、製造コスト、電気伝導性、非水電解質蓄電素子の特性への影響のバランスから、カーボンを用いることが好ましい。カーボンには、カーボンナノチューブ、非結晶性炭素、天然黒鉛、人造黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンウイスカーが挙げられる。また、カーボンあるいは非水電解質蓄電素子の特性向上を目的として、ホウ素等の異種元素が添加されていてもよい。
An active material in which a silicon-containing substance is coated with a conductive substance can suppress any separation between the particles and the conductive substance that accompanies a volume change of the silicon-containing substance accompanying charge / discharge. It is preferable because good charge / discharge characteristics can be obtained even in a state.
The conductive substance that coats the substance containing silicon is not particularly limited as long as it is a substance that is more excellent in electrical conductivity than the substance containing silicon. Examples thereof include carbon, metal, metal compound, metal fiber, conductive polymer, conductive ceramic and the like. Among these, it is preferable to use carbon from the balance of the influence on the ease of a coating process, manufacturing cost, electrical conductivity, and characteristics of the nonaqueous electrolyte storage element. Examples of carbon include carbon nanotubes, amorphous carbon, natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, and carbon whiskers. Further, for the purpose of improving the characteristics of the carbon or non-aqueous electrolyte storage element, a different element such as boron may be added.

ケイ素を含有する物質を導電性物質で被覆する方法としては、特に限定されることは無いが、例えば、ベンゼン、トルエン、キシレン、メタンなどを炭素源として気相中で分解し、ケイ素を含有する物質の表面に化学的に蒸着させるCVD法、ケイ素を含有する物質と有機化合物とを混合した後に不活性雰囲気あるいは還元雰囲気中で加熱する方法、あるいはケイ素を含有する物質と炭素材料との間に機械的エネルギーを作用させて複合体を形成するメカニカルミリング法等が挙げられる。中でも、CVD法によりケイ素を含有する物質の表面に低結晶性炭素を被覆する方法が好ましい。   The method for coating a silicon-containing substance with a conductive substance is not particularly limited. For example, silicon is contained by decomposing in a gas phase using benzene, toluene, xylene, methane, or the like as a carbon source. CVD method for chemical vapor deposition on the surface of a substance, method of heating in an inert or reducing atmosphere after mixing a silicon-containing substance and an organic compound, or between a silicon-containing substance and a carbon material Examples thereof include a mechanical milling method in which mechanical energy is applied to form a composite. Among them, a method of coating low crystalline carbon on the surface of a substance containing silicon by a CVD method is preferable.

活物質中に含まれるケイ素を含有する物質を被覆する導電性物質の被覆量は、1〜30質量%であることが好ましい。より好ましくは、2〜10質量%である。導電性物質の被覆量を上記範囲にすることにより、活物質の充放電特性を優れたものとすることが可能となる。
導電性物質の被覆量が1質量%未満の場合、ケイ素を含有する物質の電子伝導性を補助する導電性物質が少なすぎるために、充放電容量が低下するので好ましくない。また導電性物質の被覆量が30質量%を超える場合、ケイ素を含有する物質と非水電解質の間のイオン伝導が導電性物質により阻害されるために、充放電容量が低下するので好ましくない。
The coating amount of the conductive material covering the silicon-containing material contained in the active material is preferably 1 to 30% by mass. More preferably, it is 2-10 mass%. By setting the coating amount of the conductive material within the above range, the charge / discharge characteristics of the active material can be made excellent.
When the coating amount of the conductive material is less than 1% by mass, the amount of the conductive material that assists the electronic conductivity of the silicon-containing material is too small, which is not preferable because the charge / discharge capacity decreases. In addition, when the coating amount of the conductive material exceeds 30% by mass, ion conduction between the silicon-containing material and the nonaqueous electrolyte is inhibited by the conductive material, which is not preferable because the charge / discharge capacity is reduced.

本発明に係る非水電解質蓄電素子用電極の対極としては、充放電による可逆電位が異なる電極であれば特に限定されるものではない。対極の一例としては、LiCoO、LiMn、LiNiCoO、LiNiMnCoO、Li(Ni0.5Mn1.5)O、LiTi12、LiV等のリチウム遷移金属複合酸化物、Li[LiNiMnCo]O等のリチウム過剰型遷移金属複合酸化物、LiFePO、LiMnPO、Li(PO、LiMnSiO等のポリアニオン化合物、硫化鉄、フッ化鉄、硫黄等を含む電極が挙げられる。 The counter electrode of the electrode for a nonaqueous electrolyte storage element according to the present invention is not particularly limited as long as the electrode has a different reversible potential due to charge / discharge. Examples of the counter electrode include LiCoO 2 , LiMn 2 O 4 , LiNiCoO 2 , LiNiMnCoO 2 , Li (Ni 0.5 Mn 1.5 ) O 4 , Li 4 Ti 5 O 12 , LiV 3 O 8 and other lithium transition metal composite oxides, Lithium-rich transition metal complex oxides such as Li [LiNiMnCo] O 2 , polyanion compounds such as LiFePO 4 , LiMnPO 4 , Li 3 V 2 (PO 4 ) 3 , Li 2 MnSiO 4 , iron sulfide, iron fluoride, sulfur And the like.

本発明に係る非水電解質蓄電素子用電極の合剤層に用いる結着剤にはポリイミド系結着剤を用いる。ポリイミド系結着剤としては、ポリイミド、ポリアミドイミド等が挙げられる。特にポリイミドが好適である。
合剤層中における結着剤の含有量は、合剤層の総質量に対して1〜50質量%が好ましく、特に2〜30質量%が好ましい。
A polyimide-based binder is used as the binder used in the mixture layer of the electrode for the nonaqueous electrolyte storage element according to the present invention. Examples of the polyimide binder include polyimide and polyamideimide. Polyimide is particularly preferable.
1-50 mass% is preferable with respect to the total mass of a mixture layer, and, as for content of the binder in a mixture layer, 2-30 mass% is especially preferable.

電極は、銅箔等の集電体上に合剤層とポリイミド系樹脂からなる層を順番に形成することで作製する。なお、集電体上に合剤層とポリイミド系樹脂からなる形成する順番は任意である。 The electrode is produced by sequentially forming a mixture layer and a layer made of a polyimide resin on a current collector such as a copper foil. The order of forming the layer composed of the mixture layer and the polyimide resin on the current collector is arbitrary.

合剤層は、ケイ素を含有する物質とポリイミド樹脂の結着剤等を混練して合剤とし、N−メチルピロリドン,トルエン等の有機溶媒又は水に混合させた後、得られた混合液を集電体又は表面層の上に塗布して50℃〜250℃程度の温度で加熱乾燥処理を行うことにより好適に作製される。前記塗布方法については、例えば、アプリケーターロールなどのローラーコーティング、スクリーンコーティング、ドクターブレード方式、スピンコーティング、バーコータ等の手段を用いて任意の厚さ及び任意の形状に塗布することが望ましいが、これらに限定されるものではない。   The mixture layer is prepared by kneading a silicon-containing substance and a polyimide resin binder into an organic solvent such as N-methylpyrrolidone and toluene, or water and then mixing the resulting mixture. It is preferably produced by applying it on a current collector or a surface layer and performing a heat drying treatment at a temperature of about 50 ° C to 250 ° C. About the application method, for example, it is desirable to apply to any thickness and any shape using means such as roller coating such as applicator roll, screen coating, doctor blade method, spin coating, bar coater, etc. It is not limited.

ポリイミド系樹脂からなる層は、ポリイミド化合物をN−メチルピロリドン,トルエン等の有機溶媒又は水に混合させた後、得られた混合液を集電体又は合剤層の上に塗布して50℃〜250℃程度の温度で加熱乾燥処理を行うことにより好適に作製される。前記塗布方法については、例えば、アプリケーターロールなどのローラーコーティング、スクリーンコーティング、ドクターブレード方式、スピンコーティング、バーコータ等の手段を用いて任意の厚さ及び任意の形状に塗布することが望ましいが、これらに限定されるものではない。 A layer made of a polyimide resin was prepared by mixing a polyimide compound with an organic solvent such as N-methylpyrrolidone or toluene or water, and then applying the obtained mixture on a current collector or a mixture layer at 50 ° C. It is preferably produced by performing a heat drying treatment at a temperature of about ~ 250 ° C. About the application method, for example, it is desirable to apply to any thickness and any shape using means such as roller coating such as applicator roll, screen coating, doctor blade method, spin coating, bar coater, etc. It is not limited.

本発明に係る非水電解質蓄電素子に用いる非水電解質は、限定されるものではなく、一般にリチウム電池等への使用が提案されているものが使用可能である。非水電解質に用いる非水溶媒としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネート、ビニレンカーボネート等の環状炭酸エステル類;γ−ブチロラクトン、γ−バレロラクトン等の環状エステル類;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート類;ギ酸メチル、酢酸メチル、酪酸メチル等の鎖状エステル類;テトラヒドロフランまたはその誘導体;1,3−ジオキサン、1,4−ジオキサン、1,2−ジメトキシエタン、1,4−ジブトキシエタン、メチルジグライム等のエーテル類;アセトニトリル、ベンゾニトリル等のニトリル類;ジオキソランまたはその誘導体;エチレンスルフィド、スルホラン、スルトンまたはその誘導体等の単独またはそれら2種以上の混合物等を挙げることができるが、これらに限定されるものではない。   The nonaqueous electrolyte used for the nonaqueous electrolyte electricity storage device according to the present invention is not limited, and those generally proposed for use in lithium batteries and the like can be used. Nonaqueous solvents used for the nonaqueous electrolyte include cyclic carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, chloroethylene carbonate and vinylene carbonate; cyclic esters such as γ-butyrolactone and γ-valerolactone; dimethyl carbonate, Chain carbonates such as diethyl carbonate and ethyl methyl carbonate; chain esters such as methyl formate, methyl acetate and methyl butyrate; tetrahydrofuran or derivatives thereof; 1,3-dioxane, 1,4-dioxane, 1,2-dimethoxy Ethers such as ethane, 1,4-dibutoxyethane and methyldiglyme; Nitriles such as acetonitrile and benzonitrile; Dioxolane or derivatives thereof; Ethylene sulfide, sulfolane, sultone or derivatives thereof Examples thereof include a conductor alone or a mixture of two or more thereof, but are not limited thereto.

非水電解質に用いる電解質塩としては、例えば、LiClO,LiBF,LiAsF,LiPF,LiSCN,LiBr,LiI,LiSO,Li10Cl10,NaClO,NaI,NaSCN,NaBr,KClO,KSCN等のリチウム(Li)、ナトリウム(Na)またはカリウム(K)の1種を含む無機イオン塩、LiCFSO,LiN(CFSO,LiN(CSO,LiN(CFSO)(CSO),LiC(CFSO,LiC(CSO,(CHNBF,(CHNBr,(CNClO,(CNI,(CNBr,(n−C、NClO,(n−CNI,(CN−maleate,(CN−benzoate,(CN−phtalate、ステアリルスルホン酸リチウム、オクチルスルホン酸リチウム、ドデシルベンゼンスルホン酸リチウム等の有機イオン塩等が挙げられ、これらのイオン性化合物を単独、あるいは2種類以上混合して用いることが可能である。 Examples of the electrolyte salt used for the non-aqueous electrolyte include LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiSCN, LiBr, LiI, Li 2 SO 4 , Li 2 B 10 Cl 10 , NaClO 4 , NaI, NaSCN, and NaBr. , KClO 4 , KSCN, and other inorganic ion salts containing one of lithium (Li), sodium (Na), or potassium (K), LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 (SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , (CH 3 ) 4 NBF 4 , ( CH 3 ) 4 NBr, (C 2 H 5 ) 4 NClO 4 , (C 2 H 5 ) 4 NI, (C 3 H 7 ) 4 NBr, (n-C 4 H 9) 4, NClO 4, ( n-C 4 H 9) 4 NI, (C 2 H 5) 4 N-maleate, (C 2 H 5) 4 N-benzoate, (C 2 H 5) 4 N-pht h Alate, lithium stearyl sulfonate, lithium octyl sulfonate, organic ion salts such as lithium dodecyl benzenesulfonic acid and the like, it is possible to use a mixture of these ionic compounds alone, or two or more kinds.

さらに、LiPF又はLiBFと、LiN(CSOのようなパーフルオロアルキル基を有するリチウム塩とを混合して用いることにより、さらに電解質の粘度を下げることができるので、低温特性をさらに高めることができ、また、自己放電を抑制することができ、より望ましい。 Further, by using a mixture of LiPF 6 or LiBF 4 and a lithium salt having a perfluoroalkyl group such as LiN (C 2 F 5 SO 2 ) 2 , the viscosity of the electrolyte can be further reduced, The low temperature characteristics can be further improved, and self-discharge can be suppressed, which is more desirable.

また、非水電解質として常温溶融塩やイオン液体を用いてもよい。   Moreover, you may use normal temperature molten salt and an ionic liquid as a nonaqueous electrolyte.

非水電解質における電解質塩の濃度としては、高い蓄電素子特性を有する非水電解質蓄電素子を確実に得るために、0.1mol/l〜5mol/lが好ましく、さらに好ましくは、0.5mol/l〜2.5mol/lである。   The concentration of the electrolyte salt in the non-aqueous electrolyte is preferably 0.1 mol / l to 5 mol / l, more preferably 0.5 mol / l in order to reliably obtain a non-aqueous electrolyte storage element having high power storage element characteristics. -2.5 mol / l.

セパレータとしては、優れた高率放電性能を示す多孔膜や不織布等を、単独あるいは併用することが好ましい。セパレータを構成する材料としては、例えばポリエチレン,ポリプロピレン等に代表されるポリオレフィン系樹脂、ポリエチレンテレフタレート,ポリブチレンテレフタレート等に代表されるポリエステル系樹脂、ポリフッ化ビニリデン、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−パーフルオロビニルエーテル共重合体、フッ化ビニリデン−テトラフルオロエチレン共重合体、フッ化ビニリデン−トリフルオロエチレン共重合体、フッ化ビニリデン−フルオロエチレン共重合体、フッ化ビニリデン−ヘキサフルオロアセトン共重合体、フッ化ビニリデン−エチレン共重合体、フッ化ビニリデン−プロピレン共重合体、フッ化ビニリデン−トリフルオロプロピレン共重合体、フッ化ビニリデン−テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−エチレン−テトラフルオロエチレン共重合体等を挙げることができる。   As the separator, it is preferable to use a porous film or a non-woven fabric exhibiting excellent high rate discharge performance alone or in combination. Examples of the material constituting the separator include polyolefin resins typified by polyethylene and polypropylene, polyester resins typified by polyethylene terephthalate and polybutylene terephthalate, polyvinylidene fluoride, and vinylidene fluoride-hexafluoropropylene copolymer. , Vinylidene fluoride-perfluorovinyl ether copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-trifluoroethylene copolymer, vinylidene fluoride-fluoroethylene copolymer, vinylidene fluoride-hexafluoro Acetone copolymer, vinylidene fluoride-ethylene copolymer, vinylidene fluoride-propylene copolymer, vinylidene fluoride-trifluoropropylene copolymer, vinylidene fluoride-tetrafluoro Ethylene - hexafluoropropylene copolymer, vinylidene fluoride - ethylene - can be mentioned tetrafluoroethylene copolymer.

セパレータの空孔率は強度の観点から98体積%以下が好ましい。また、充放電特性の観点から空孔率は20体積%以上が好ましい。   The porosity of the separator is preferably 98% by volume or less from the viewpoint of strength. Further, the porosity is preferably 20% by volume or more from the viewpoint of charge / discharge characteristics.

また、セパレータは、例えばアクリロニトリル、エチレンオキシド、プロピレンオキシド、メチルメタアクリレート、ビニルアセテート、ビニルピロリドン、フッ化ビニリデン等の重合体であるポリマーと電解質とで構成されるポリマーゲルを用いてもよい。非水電解質を上記のようにゲル状態で用いると、漏液を防止する効果がある点で好ましい。   The separator may be a polymer gel composed of a polymer and an electrolyte such as acrylonitrile, ethylene oxide, propylene oxide, methyl methacrylate, vinyl acetate, vinyl pyrrolidone, and vinylidene fluoride. Use of the non-aqueous electrolyte in the gel state as described above is preferable in that it has an effect of preventing leakage.

さらに、セパレータは、上述したような多孔膜や不織布等とポリマーゲルを併用して用いると、電解質の保液性が向上するため望ましい。即ち、ポリエチレン微孔膜の表面及び微孔壁面に厚さ数μm以下の親溶媒性ポリマーを被覆したフィルムを形成し、前記フィルムの微孔内に電解質を保持させることで、前記親溶媒性ポリマーがゲル化する。   Furthermore, it is desirable that the separator be used in combination with the above-described porous film, non-woven fabric, or the like and a polymer gel because the liquid retention of the electrolyte is improved. That is, by forming a film in which the surface of the polyethylene microporous membrane and the microporous wall are coated with a solvophilic polymer having a thickness of several μm or less, and holding the electrolyte in the micropores of the film, Gels.

前記親溶媒性ポリマーとしては、ポリフッ化ビニリデンの他、エチレンオキシド基やエステル基等を有するアクリレートモノマー、エポキシモノマー、イソシアナート基を有するモノマー等が架橋したポリマー等が挙げられる。該モノマーは、ラジカル開始剤を併用して加熱や紫外線(UV)を用いたり、電子線(EB)等の活性光線等を用いて架橋反応を行わせることが可能である。   Examples of the solvophilic polymer include polyvinylidene fluoride, an acrylate monomer having an ethylene oxide group or an ester group, an epoxy monomer, a polymer having a monomer having an isocyanate group, and the like crosslinked. The monomer can be subjected to a crosslinking reaction using a radical initiator in combination with heating or ultraviolet rays (UV), or using an actinic ray such as an electron beam (EB).

非水電解質蓄電素子の形状ついては特に限定されるものではなく、円筒型、角型、扁平型、ボタン型等が一例として挙げられる。   The shape of the nonaqueous electrolyte storage element is not particularly limited, and examples thereof include a cylindrical shape, a square shape, a flat shape, and a button shape.

(実施例1)
ポリイミド系樹脂としてポリイミドを用いた。分散媒であるN−メチルピロリドン(NMP)に、ポリイミドを固形分17.5質量%となるように含有させた溶液を調製し、さらに上記溶液と同質量のNMPを加えて混合し、ポリイミド系樹脂の溶液を調製した。この塗布ペーストを厚さ20μmの銅箔集電体に塗布した後、350℃で5時間の真空乾燥を行うことで、ポリイミド系樹脂からなる層を作製した。
Example 1
Polyimide was used as the polyimide resin . Are treated with the dispersion medium N- methylpyrrolidone (NMP), polyimide a solution containing such a solid content of 17.5 wt% was prepared, further added and mixed NMP of the solution and the mass, polyimide A solution of the resin was prepared. After this coating paste was applied to a copper foil current collector having a thickness of 20 μm, vacuum drying was performed at 350 ° C. for 5 hours to prepare a layer made of polyimide resin .

活物質であるケイ素を含有する物質としてカーボンで被覆された酸化ケイ素(カーボン含有率5.9質量%、D50=4.5μm)と、導電剤である鱗片状黒鉛(TIMCAL Ltd. 製、SFG−6)を、質量比が4:6となるように混合した。続いて、結着剤であるポリイミドを、活物質と導電剤との混合物と結着剤との質量比が(活物質+導電剤):結着剤=9:1となるように混合した。さらに、分散媒としてN−メチルピロリドンを適量加えて混練分散し、合剤層の塗布ペーストを調製した。この塗布ペーストを上記ポリイミド系樹脂からなる層の上に全体に渡って塗布した後、350℃で5時間の真空乾燥を行い、ロールプレスを行うことで非水電解質蓄電素子用電極を作製した。作製した非水電解質蓄電素子用電極の厚みと塗布質量を測定したところ、電極の厚みは49μm、塗布質量は2.68mg/cmであった。この電極厚みから集電体の銅箔の厚みを差し引くことで求められる合剤層とポリイミド系樹脂からなる層を合わせた層の厚みは29μmであった。 Silicon oxide coated with carbon (carbon content: 5.9% by mass, D50 = 4.5 μm) as a material containing silicon as an active material, and flaky graphite (manufactured by TIMCAL Ltd., SFG-) 6) was mixed so that the mass ratio was 4: 6. Subsequently, the polyimide as the binder was mixed so that the mass ratio of the mixture of the active material and the conductive agent to the binder was (active material + conductive agent): binder = 9: 1. Further, an appropriate amount of N-methylpyrrolidone was added as a dispersion medium and kneaded and dispersed to prepare a coating paste for the mixture layer. After this coating paste was applied over the entire layer made of the polyimide resin , vacuum drying was performed at 350 ° C. for 5 hours, and roll pressing was performed to produce a nonaqueous electrolyte storage element electrode. When the thickness and coating mass of the produced electrode for a nonaqueous electrolyte storage element were measured, the electrode thickness was 49 μm and the coating mass was 2.68 mg / cm 2 . The thickness of the combined layer obtained by subtracting the thickness of the copper foil of the current collector from the electrode thickness and the layer made of the polyimide resin were 29 μm.

(実施例2)
非水電解質蓄電素子用電極を作製する工程において、銅箔集電体上に、上記合剤層用塗布ペーストを塗布、真空乾燥を行った。その合剤層の上に全体に渡って、上記ポリイミド系樹脂の溶液を塗布、真空乾燥を行い、ロールプレスを行ったことを除いては、実施例1と同様にして実施例2の非水電解質蓄電素子を作製した。電極の厚みは48μm、塗布質量は3.35mg/cmであった。また、合剤層とポリイミド系樹脂からなる層を合わせた層の厚みは28μmであった。
(Example 2)
In the step of producing an electrode for a nonaqueous electrolyte storage element , the mixture layer coating paste was applied onto a copper foil current collector and vacuum-dried. Throughout over the mixture layer, applying a solution of the polyimide resin, and vacuum drying, with the exception that was roll press, the non-aqueous in Example 2 in the same manner as in Example 1 An electrolyte storage element was produced. The electrode thickness was 48 μm, and the coating mass was 3.35 mg / cm 2 . The thickness of the combined layer of the mixture layer and the polyimide resin layer was 28 μm.

(比較例1)
非水電解質蓄電素子用電極を作製する工程において、銅箔集電体上に、上記ポリイミド系樹脂の溶液を塗布、真空乾燥を行い、ポリイミド系樹脂からなる層のみを形成したことを除いては、実施例1と同様にして比較例1の非水電解質蓄電素子を作製した。電極の厚みは22μm、塗布質量は0.15mg/cmであった。また、ポリイミド系樹脂からなる層の厚みは2μmであった。
(Comparative Example 1)
In the step of preparing a non-aqueous electrolyte energy storage element electrodes, on a copper foil current collector, applying a solution of the polyimide resin, and vacuum drying, except that the formation of the only layer composed of the polyimide resin In the same manner as in Example 1, a nonaqueous electrolyte electricity storage device of Comparative Example 1 was produced. The electrode thickness was 22 μm, and the coating mass was 0.15 mg / cm 2 . The thickness of the layer made of polyimide resin was 2 μm.

(比較例2)
非水電解質蓄電素子用電極を作製する工程において、銅箔集電体上に、上記合剤層用の塗布ペーストを塗布、真空乾燥を行い、合剤層のみを形成したことを除いては、実施例1と同様にして比較例2の非水電解質蓄電素子を作製した。電極の厚みは46μm、塗布質量は2.78mg/cmであった。また、合剤層の厚みは26μmであった。
(Comparative Example 2)
In the step of preparing a non-aqueous electrolyte energy storage element electrodes, on a copper foil current collector, applying a coating paste for the mixture layer, followed by vacuum drying, except that it was formed only mix layer, A nonaqueous electrolyte electricity storage device of Comparative Example 2 was produced in the same manner as Example 1. The electrode thickness was 46 μm and the coating mass was 2.78 mg / cm 2 . Moreover, the thickness of the mixture layer was 26 μm.

(電子線マイクロアナライザ(EPMA)測定)
実施例1、2及び比較例1、2の非水電解質蓄電素子用電極について、電極断面のEPMA測定を実施した。
まず、各非水電解質蓄電素子用電極をアクリル板により電極の厚み方向から挟み込んで固定し、これをクロスセクション・ポリッシャ(日本電子株式会社製、IB-09020CP)を用いて非水電解質蓄電素子用電極の厚み方向に切断し、その切断面の平滑化処理を行った。これを、電子線マイクロアナライザ(株式会社島津製作所製、EPMA-1610)の試料台に、電極の切断面を測定可能なようにセットし、断面における窒素(N)、銅(Cu)、シリコン(Si)、炭素(C)及び酸素(O)のライン分析(加速電圧:10kV、ビームサイズ:1μm、ビーム強度:200nA、積算回数:1回、計数時間:1秒)を行い、各元素の特性X線強度を測定した。
図1に実施例1の電極の測定結果を示す。 この図は実施例1の電極断面の窒素(N)元素と銅(Cu)元素の濃度と分布を示す図である。図の左側から、Cuの濃度が高い領域はCu集電体に相当し、Cuの濃度が急に減少する地点からNの濃度高い領域(図中のX)がポリイミド系結着剤を含む層に相当しており、その右側に存在するN濃度が低い領域(図中のY)が合剤層に相当している。ここで、N元素のカウント数の最大値に対する表面層の厚み方向の中心部(x)のN元素のカウント数を表面層のバインダー濃度(A)とし、N元素のカウント数の最大値に対する合剤層の厚み方向の中心部(y)のN元素のカウント数を合剤層のバインダー濃度(B)とする。そして、ポリイミド系結着剤を含む層のバインダー濃度(A)と合剤層のバインダー濃度(B)の比A/Bを算出した。実施例1及び2について算出したA/Bの値を表1に示す。
(Electron beam microanalyzer (EPMA) measurement)
For the electrodes for nonaqueous electrolyte storage elements of Examples 1 and 2 and Comparative Examples 1 and 2, EPMA measurement of the electrode cross section was performed.
First, each non-aqueous electrolyte storage element electrode is sandwiched and fixed by an acrylic plate from the thickness direction of the electrode, and this is used for a non-aqueous electrolyte storage element using a cross section polisher (IB-09020CP, manufactured by JEOL Ltd.) The electrode was cut in the thickness direction, and the cut surface was smoothed. This is set on the sample stage of an electron beam microanalyzer (manufactured by Shimadzu Corporation, EPMA-1610) so that the cut surface of the electrode can be measured, and in the cross section, nitrogen (N), copper (Cu), silicon ( Si), carbon (C) and oxygen (O) line analysis (acceleration voltage: 10 kV, beam size: 1 μm, beam intensity: 200 nA, number of integrations: 1, counting time: 1 second), characteristics of each element X-ray intensity was measured.
The measurement result of the electrode of Example 1 is shown in FIG. This figure shows the concentration and distribution of nitrogen (N) element and copper (Cu) element in the electrode cross section of Example 1. FIG. From the left side of the figure, the region where the Cu concentration is high corresponds to the Cu current collector, and the region where the concentration of N is high (X in the drawing) from the point where the Cu concentration suddenly decreases is a layer containing a polyimide binder. The region with a low N concentration (Y in the figure) present on the right side corresponds to the mixture layer. Here, the N element count number in the central portion (x) in the thickness direction of the surface layer relative to the maximum value of the N element count number is defined as the binder concentration (A) of the surface layer, and the total value for the N element count number is The count number of the N element at the center (y) in the thickness direction of the agent layer is defined as the binder concentration (B) of the mixture layer. And ratio A / B of the binder density | concentration (A) of the layer containing a polyimide binder and the binder density | concentration (B) of a mixture layer was computed. The values of A / B calculated for Examples 1 and 2 are shown in Table 1.

また、実施例1及び実施例2のSi、C及びOのライン分析の結果から、実施例1の表面層には活物質であるケイ素を含有する物質が存在しないこと、実施例2の表面層には活物質であるケイ素を含有する物質がある程度存在していることが判明した。   Further, from the results of the line analysis of Si, C, and O of Example 1 and Example 2, the surface layer of Example 1 is free of a substance containing silicon as an active material, and the surface layer of Example 2 It has been found that a substance containing silicon as an active material exists to some extent.

(非水電解質素子の作製)
上記非水電解質蓄電素子用電極の対極としてリチウム金属使用した。ステンレス鋼(品名:SUS316)製の端子を取り付けたステンレス鋼(品名:SUS316)製のメッシュ集電体の両面に、厚さ300μmのリチウム金属箔を貼り合わせてプレス加工したものを対極とした。
(Preparation of non-aqueous electrolyte element)
Lithium metal was used as a counter electrode for the non-aqueous electrolyte storage element electrode. A stainless steel (product name: SUS316) mesh current collector to which a stainless steel (product name: SUS316) terminal is attached is bonded to both sides of a 300 μm thick lithium metal foil and pressed to form a counter electrode.

また、リチウム金属片をステンレス鋼(品名:SUS316)製の集電棒の先端に貼り付けたものを参照極とした。   In addition, a reference electrode was prepared by attaching a lithium metal piece to the tip of a current collector rod made of stainless steel (product name: SUS316).

エチレンカーボネートとジエチルカーボネートを体積比1:1の割合で混合した混合溶媒に、電解質塩であるLiClOを1.0mol/lの濃度で溶解させ、非水電解質を作製した。該非水電解質中の水分量は40ppm未満とした。 A nonaqueous electrolyte was prepared by dissolving LiClO 4 as an electrolyte salt at a concentration of 1.0 mol / l in a mixed solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1. The amount of water in the non-aqueous electrolyte was less than 40 ppm.

露点−40℃以下のArボックス中においてガラス製の非水電解質蓄電素子を組み立てた。予め容器の蓋部分に導線部を固定した金メッキクリップに対極と同じ面積になるように切断した非水電解質蓄電素子用電極と対極と参照極とを各1枚ずつ挟んだ後、非水電解質蓄電素子用電極と対極が対向するように固定した。参照極は対極から見て非水電解質蓄電素子用電極の裏側となる位置に固定した。次に、一定量の電解液を入れたポリプロピレン製カップをガラス容器内に設置し、そこに非水電解質蓄電素子用電極、対極及び参照極が浸かるように蓋をすることで非水電解質蓄電素子を組み立てた。   A glass non-aqueous electrolyte storage element was assembled in an Ar box having a dew point of −40 ° C. or lower. A non-aqueous electrolyte storage element is sandwiched between a non-aqueous electrolyte storage element electrode, a counter electrode, and a reference electrode, each of which has been cut to have the same area as the counter electrode, on a gold-plated clip whose lead is fixed to the lid of the container in advance. The device electrode and the counter electrode were fixed so as to face each other. The reference electrode was fixed at a position on the back side of the electrode for the nonaqueous electrolyte storage element as viewed from the counter electrode. Next, a non-aqueous electrolyte electricity storage element is installed by placing a polypropylene cup containing a certain amount of electrolyte in a glass container and covering the nonaqueous electrolyte electricity storage element electrode, counter electrode, and reference electrode. Assembled.

(初期活性化工程)
上記のようにして作製された非水電解質蓄電素子を、25℃に設定した恒温槽に移し、初期活性化工程に供した。初期活性化工程は4サイクルの充放電サイクルから構成される。まず、初回の充電条件は、電流値0.1CmA、電位0.02Vの定電流定電圧充電とした。充電時間は通電開始から16時間とした。初回の放電条件は、電流0.1CmA、終止電圧2.0Vの定電流放電とした。続いて、2〜4サイクル目の充電条件は、電流値0.2CmA、電位0.02Vの定電流定電圧充電とした。充電時間は通電開始から8時間とした。2〜4サイクル目の放電条件は、電流0.2CmA、終止電圧2.0Vの定電流放電とした。全てのサイクルにおいて、充電後及び放電後に30分の休止時間を設定した。
ここで、実施例1、2及び比較例1、2の各非水電解質蓄電素子に適用する電流値1CmAは6mAとした。
(Initial activation process)
The non-aqueous electrolyte electricity storage device produced as described above was transferred to a thermostat set at 25 ° C. and subjected to an initial activation step. The initial activation process is composed of four charge / discharge cycles. First, the initial charging conditions were constant current and constant voltage charging with a current value of 0.1 CmA and a potential of 0.02 V. The charging time was 16 hours from the start of energization. The initial discharge conditions were constant current discharge with a current of 0.1 CmA and a final voltage of 2.0V. Subsequently, the charging conditions in the second to fourth cycles were constant current and constant voltage charging with a current value of 0.2 CmA and a potential of 0.02 V. The charging time was 8 hours from the start of energization. The discharge conditions for the second to fourth cycles were constant current discharge with a current of 0.2 CmA and a final voltage of 2.0 V. In all cycles, a 30 minute rest period was set after charging and discharging.
Here, the current value 1 CmA applied to each of the nonaqueous electrolyte storage elements of Examples 1 and 2 and Comparative Examples 1 and 2 was set to 6 mA.

(充放電サイクル試験)
初期活性化工程後の各非水電解質蓄電素子を、30サイクルの充放電サイクル試験に供した。充電条件は、電流値1CmA、電位0.02Vの定電流定電圧充電とした。充電時間は通電開始から3時間とした。放電条件は、電流1CmA、終止電圧2.0Vの定電流放電とした。
(Charge / discharge cycle test)
Each nonaqueous electrolyte storage element after the initial activation step was subjected to a charge / discharge cycle test of 30 cycles. The charging conditions were constant current and constant voltage charging with a current value of 1 CmA and a potential of 0.02 V. The charging time was 3 hours from the start of energization. The discharge conditions were a constant current discharge with a current of 1 CmA and a final voltage of 2.0V.

(非水電解質蓄電素子用電極の厚み測定)
放電サイクル試験が終了した各非水電解質蓄電素子を、露点−40℃以下のArボックス中において解体して非水電解質蓄電素子用電極を取り出した。取り出した非水電解質蓄電素子用電極は、ジメチルカーボネート(DMC)で非水電解質蓄電素子用電極に付着したリチウム塩を洗浄した後、真空乾燥を行った。乾燥後の非水電解質蓄電素子用電極の厚みを測定し、その値から集電体である銅箔の厚みを差し引くことで、実施例1及び2の非水電解質蓄電素子用電極については合剤層とポリイミド系樹脂からなる層を合わせた厚みを、比較例1及び2の非水電解質蓄電素子用電極についてはポリイミド系樹脂からなる層及び合剤層の厚みをそれぞれ求めた。そして、各実施例及び比較例について、非水電解質蓄電素子用電極作製直後に対する充放電サイクル試験後の厚みの比率を算出し「厚み変化率(%)」として表1に示す。
(Measurement of electrode thickness for nonaqueous electrolyte storage element)
Each non-aqueous electrolyte electricity storage element for which the discharge cycle test was completed was disassembled in an Ar box having a dew point of −40 ° C. or lower, and an electrode for the non-aqueous electrolyte electricity storage element was taken out. The taken out electrode for the non-aqueous electrolyte storage element was washed with lithium salt attached to the electrode for the non-aqueous electrolyte storage element with dimethyl carbonate (DMC) and then vacuum-dried. By measuring the thickness of the electrode for the nonaqueous electrolyte storage element after drying and subtracting the thickness of the copper foil as the current collector from the value, the mixture for the electrode for the nonaqueous electrolyte storage element of Examples 1 and 2 the total thickness of the layers comprising a layer and a polyimide resin, non-aqueous electrolyte energy storage element electrodes of Comparative examples 1 and 2 were respectively determined the thickness of the layer and the mixture layer made of a polyimide resin. And about each Example and a comparative example, the ratio of the thickness after the charging / discharging cycle test with respect to immediately after preparation of the electrode for nonaqueous electrolyte electrical storage elements was computed, and it shows in Table 1 as "thickness change rate (%)."

表1からわかるように、比較例1の集電体上にポリイミド系樹脂からなる層のみを形成した電極や、比較例2のように集電体上に合剤層のみを形成した電極では、充放電サイクルを行うことにより、電極の厚みが大きく増加している。それにも関わらず、実施例1及び2のように、合剤層とポリイミド系樹脂からなる層を合わせて形成した非水電解質蓄電素子用電極では、驚くべきことに充放電サイクル後の電極の厚みの増加が抑制されている。この現象の理由についての詳細は解らないが、合剤層とポリイミド系樹脂からなる層との間に何らかの相互作用が働いたものと推察される。 As can be seen from Table 1, in an electrode in which only a layer made of a polyimide resin is formed on the current collector of Comparative Example 1 and an electrode in which only a mixture layer is formed on the current collector as in Comparative Example 2, By performing the charge / discharge cycle, the thickness of the electrode is greatly increased. Nevertheless, as in Examples 1 and 2, in the electrode for a nonaqueous electrolyte storage element formed by combining a mixture layer and a layer made of a polyimide resin , surprisingly, the thickness of the electrode after the charge / discharge cycle The increase of is suppressed. Although details about the reason for this phenomenon are not understood, it is presumed that some kind of interaction worked between the mixture layer and the polyimide resin layer.

また、実施例2の非水電解質蓄電素子用電極の方が、実施例1の非水電解質蓄電素子用電極よりも電極の厚みの増加が抑制されていることから、合剤層の集電体とは反対側の面にポリイミド系樹脂からなる層を備えた電極がより好ましい。
Moreover, since the increase in the thickness of the electrode of the nonaqueous electrolyte storage element electrode of Example 2 is suppressed more than that of the nonaqueous electrolyte storage element electrode of Example 1, the current collector of the mixture layer An electrode having a layer made of a polyimide resin on the opposite surface is more preferable.

なお、本発明者は、集電体箔上に合剤層用塗布ペーストを塗布、真空乾燥を行うことで形成した合剤層の上に、予め作製しておいた表面層を載せたのち、ロールプレスを行うことで作製した非水電解質蓄電素子用電極であっても、実施例2と同様の結果が得られることを確認している。   In addition, the inventor applied a mixture layer coating paste on the current collector foil, and after placing a surface layer prepared in advance on the mixture layer formed by vacuum drying, It has been confirmed that the same result as in Example 2 can be obtained even with the electrode for a non-aqueous electrolyte storage element produced by roll pressing.

本発明の非水電解質蓄電素子用電極は、充放電サイクルに伴う電極の厚みの増加を抑制することができるので、非水電解質蓄電素子の膨れが抑制され、隣接機器への影響が軽減されるものであるから、電気自動車用電源、電子機器用電源、電力貯蔵用電源等の非水電解質用蓄電素子に有効に利用できる。   Since the electrode for a nonaqueous electrolyte storage element of the present invention can suppress an increase in the thickness of the electrode accompanying a charge / discharge cycle, the swelling of the nonaqueous electrolyte storage element is suppressed and the influence on adjacent devices is reduced. Therefore, it can be effectively used for nonaqueous electrolyte power storage elements such as electric vehicle power supplies, electronic device power supplies, and power storage power supplies.

Claims (3)

集電体と、ケイ素を含有する物質とポリイミド系結着剤を含む合剤層を備え、前記合剤層と前記集電体との間に、厚み0.5〜5μmの、ポリイミド系樹脂からなる層を備えている、非水電解質蓄電素子用電極。 A current collector, a mixture layer containing a silicon-containing substance and a polyimide binder , and a polyimide resin having a thickness of 0.5 to 5 μm between the mixture layer and the current collector The electrode for nonaqueous electrolyte electrical storage elements provided with the layer which becomes. 集電体と、ケイ素を含有する物質とポリイミド系結着剤を含む合剤層を備え、前記合剤層の、前記集電体とは反対側に、厚み0.5〜5μmの、ポリイミド系樹脂からなる層を備えている、非水電解質素子用電極。 A current collector, a mixture layer containing a silicon-containing substance and a polyimide binder, and a polyimide system having a thickness of 0.5 to 5 μm on the opposite side of the mixture layer from the current collector An electrode for a non-aqueous electrolyte element, comprising a resin layer. 請求項1又は2に記載の非水電解質蓄電素子用電極を備えた非水電解質蓄電素子。 Nonaqueous electricity storage device having a non-aqueous electrolyte energy storage device electrode according to claim 1 or 2.
JP2013202564A 2013-09-27 2013-09-27 Electrode for nonaqueous electrolyte storage element Expired - Fee Related JP6164011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013202564A JP6164011B2 (en) 2013-09-27 2013-09-27 Electrode for nonaqueous electrolyte storage element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013202564A JP6164011B2 (en) 2013-09-27 2013-09-27 Electrode for nonaqueous electrolyte storage element

Publications (2)

Publication Number Publication Date
JP2015069819A JP2015069819A (en) 2015-04-13
JP6164011B2 true JP6164011B2 (en) 2017-07-19

Family

ID=52836288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013202564A Expired - Fee Related JP6164011B2 (en) 2013-09-27 2013-09-27 Electrode for nonaqueous electrolyte storage element

Country Status (1)

Country Link
JP (1) JP6164011B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110034031A (en) * 2008-10-31 2011-04-04 히다치 막셀 가부시키가이샤 Nonaqueous secondary battery
JP5316862B2 (en) * 2009-02-04 2013-10-16 株式会社豊田自動織機 Negative electrode for lithium ion secondary battery and method for producing the same
DE112011101607T5 (en) * 2010-05-12 2013-04-11 Kabushiki Kaisha Toyota Jidoshokki Electrode for lithium ion secondary battery and manufacturing method therefor
US20150037671A1 (en) * 2012-02-13 2015-02-05 Nec Corporation Negative electrode for lithium secondary battery and method for manufacturing the same
JP6523609B2 (en) * 2013-03-26 2019-06-05 株式会社東芝 Electrode for non-aqueous electrolyte battery, non-aqueous electrolyte secondary battery and battery pack
JP6523608B2 (en) * 2013-03-26 2019-06-05 株式会社東芝 Electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery and battery pack

Also Published As

Publication number Publication date
JP2015069819A (en) 2015-04-13

Similar Documents

Publication Publication Date Title
TWI697148B (en) Negative electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for manufacturing negative electrode material for non-aqueous electrolyte secondary battery
JP6264291B2 (en) Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
WO2013183187A1 (en) Negative electrode active material and manufacturing process therefor
JP6660581B2 (en) Electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO2017082083A1 (en) Lithium ion secondary battery and method for manufacturing same
JP7015447B2 (en) Non-aqueous electrolyte secondary battery
JP2016066529A (en) Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
KR20170025874A (en) Lithium secondary battery and operating method thereof
WO2015015883A1 (en) Lithium secondary battery and electrolyte solution for lithium secondary batteries
JPWO2014136794A1 (en) Lithium secondary battery
JP6862091B2 (en) Method for manufacturing negative electrode active material, mixed negative electrode active material, negative electrode for non-aqueous electrolyte secondary battery, lithium ion secondary battery, and negative electrode active material
WO2015025721A1 (en) Positive electrode material for lithium-ion battery, method for producing same, and lithium-ion battery using same
JP6127817B2 (en) Non-aqueous electrolyte secondary battery electrode and non-aqueous electrolyte secondary battery using the same
WO2017057134A1 (en) Positive electrode for lithium-ion secondary cell, and lithium-ion secondary cell
JP6465456B2 (en) Negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
KR101580486B1 (en) Anode with Improved Wetting Properties and Lithium Secondary Battery Having the Same
JP2018097935A (en) Carbonaceous material, lithium secondary battery, and method of producing carbonaceous material
JP5573875B2 (en) Nonaqueous electrolyte solution and lithium ion secondary battery
JP6164011B2 (en) Electrode for nonaqueous electrolyte storage element
JP2017126488A (en) Nonaqueous electrolyte solution for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2016192272A (en) Negative electrode for power storage element, power storage element and power storage device
JP6252353B2 (en) Non-aqueous electrolyte storage element and storage device including the same
JP7072673B2 (en) Electrodes for lithium secondary batteries containing LiOH, manufacturing methods thereof, and lithium secondary batteries containing the electrodes.
JP2014120355A (en) Method for manufacturing nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP6164012B2 (en) Electrode for nonaqueous electrolyte storage element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170605

R150 Certificate of patent or registration of utility model

Ref document number: 6164011

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees