JP6161926B2 - Reaction method and reaction apparatus - Google Patents

Reaction method and reaction apparatus Download PDF

Info

Publication number
JP6161926B2
JP6161926B2 JP2013053745A JP2013053745A JP6161926B2 JP 6161926 B2 JP6161926 B2 JP 6161926B2 JP 2013053745 A JP2013053745 A JP 2013053745A JP 2013053745 A JP2013053745 A JP 2013053745A JP 6161926 B2 JP6161926 B2 JP 6161926B2
Authority
JP
Japan
Prior art keywords
gas
reaction
reaction vessel
tubular member
injection port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013053745A
Other languages
Japanese (ja)
Other versions
JP2014176827A (en
Inventor
小林 有二
有二 小林
田中 直行
直行 田中
淳一 秋山
淳一 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2013053745A priority Critical patent/JP6161926B2/en
Priority to CN201410095052.1A priority patent/CN104045065B/en
Publication of JP2014176827A publication Critical patent/JP2014176827A/en
Application granted granted Critical
Publication of JP6161926B2 publication Critical patent/JP6161926B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Description

本発明は、複数種の気体を接触させて反応させる反応方法及び反応装置に関する。   The present invention relates to a reaction method and a reaction apparatus in which a plurality of kinds of gases are brought into contact with each other for reaction.

セレン化水素は、例えばCIGS(Copper Indium Gallium Selenide)型太陽電池の原料に使用される有用な化合物である。
セレン化水素の製造方法はいくつか知られており、例えば特許文献1には、金属セレンと水素ガスとを400〜700℃の温度で接触させてセレン化水素を合成する方法が開示されている。
Hydrogen selenide is a useful compound used, for example, as a raw material for CIGS (Copper Indium Gallium Selenide) type solar cells.
Several methods for producing hydrogen selenide are known. For example, Patent Document 1 discloses a method of synthesizing hydrogen selenide by contacting metal selenium and hydrogen gas at a temperature of 400 to 700 ° C. .

また、特許文献2には、金属セレンと水素ガスとを400〜700℃の温度で反応させてセレン化水素を製造するセレン化水素製造装置が開示されている。特許文献2に開示のセレン化水素製造装置は、反応炉から抜き出した反応ガス中に含まれる未反応の金属セレンを捕集し気化させ、水素ガスに同伴させて反応炉に再導入できるようになっている。よって、金属セレンを原料として有効に利用することができる。   Patent Document 2 discloses a hydrogen selenide production apparatus for producing hydrogen selenide by reacting metal selenium and hydrogen gas at a temperature of 400 to 700 ° C. The hydrogen selenide production apparatus disclosed in Patent Document 2 collects and vaporizes unreacted metal selenium contained in the reaction gas extracted from the reaction furnace, and entrains it with hydrogen gas so that it can be reintroduced into the reaction furnace. It has become. Therefore, metal selenium can be effectively used as a raw material.

また、特許文献2に開示のセレン化水素製造装置は、生成したセレン化水素を含む反応ガス中からセレン化水素を捕集し、セレン化水素を捕集した後の反応ガスを水素投入経路に戻して、反応炉に再導入できるようになっている。よって、反応ガス中の水素ガスを原料として有効に利用することができる。
このように、特許文献2に開示のセレン化水素製造装置は、金属セレンや水素ガスの有効利用が図れるので、セレン化水素の収率を向上させることができる。
In addition, the hydrogen selenide production apparatus disclosed in Patent Document 2 collects hydrogen selenide from the reaction gas containing the generated hydrogen selenide, and uses the reaction gas after collecting the hydrogen selenide as a hydrogen input path. It can be returned and reintroduced into the reactor. Therefore, hydrogen gas in the reaction gas can be effectively used as a raw material.
Thus, since the hydrogen selenide manufacturing apparatus disclosed in Patent Document 2 can effectively use metal selenium and hydrogen gas, the yield of hydrogen selenide can be improved.

特開2007−246342号公報JP 2007-246342 A 特開2012−153583号公報JP 2012-153583 A

しかしながら、金属セレンは前記温度において小さい平衡蒸気圧しか有しないため、セレン蒸気の気相(反応系)への供給量は少ない。よって、特許文献1,2に開示の技術では、セレン化水素の単位時間当たりの生成量は低く、大スケールでの工業的生産を行うことは容易ではなかった。
また、特許文献1に開示のセレン化水素の製造方法は、反応炉に投入した水素ガスの多くが未反応のまま反応炉から排出されるため、大量の水素ガスを必要とするという問題があった。さらに、水素ガスの使用量を基準としたセレン化水素の収率が低いという問題があった。
However, since metal selenium has only a small equilibrium vapor pressure at the above temperature, the amount of selenium vapor supplied to the gas phase (reaction system) is small. Therefore, in the technologies disclosed in Patent Documents 1 and 2, the amount of hydrogen selenide produced per unit time is low, and it is not easy to perform industrial production on a large scale.
Further, the method for producing hydrogen selenide disclosed in Patent Document 1 has a problem that a large amount of hydrogen gas is required because most of the hydrogen gas charged into the reactor is discharged from the reactor without being reacted. It was. Furthermore, there is a problem that the yield of hydrogen selenide based on the amount of hydrogen gas used is low.

さらに、特許文献2に開示のセレン化水素製造装置は、未反応の金属セレンと水素ガスを循環させるので、水素ガスの使用量を基準としたセレン化水素の収率の向上を図ることはできるものの、反応炉内での金属セレンと水素ガスとの接触効率を向上させるものではないため、反応ガス中のセレン化水素の濃度が低いという問題があった。特に、装置が大型である場合は、セレン化水素の濃度が低いという傾向が強かった。さらに、未反応の金属セレンを捕集して反応炉に再導入する際に大量の水素ガスを同伴するため、大量の水素ガスを回収する必要があるという問題があった。   Furthermore, since the hydrogen selenide production apparatus disclosed in Patent Document 2 circulates unreacted metal selenium and hydrogen gas, it is possible to improve the yield of hydrogen selenide based on the amount of hydrogen gas used. However, there is a problem that the concentration of hydrogen selenide in the reaction gas is low because it does not improve the contact efficiency between metal selenium and hydrogen gas in the reaction furnace. In particular, when the apparatus was large, there was a strong tendency for the concentration of hydrogen selenide to be low. Furthermore, since a large amount of hydrogen gas is accompanied when unreacted metal selenium is collected and reintroduced into the reaction furnace, a large amount of hydrogen gas needs to be recovered.

そこで、本発明は、上記のような従来技術が有する問題点を解決し、複数種の気体を反応させて目的化合物を製造するに際して、原料である前記気体を大量に使用する必要がなく、目的化合物の単位時間当たりの生成量が高い反応方法及び反応装置を提供することを課題とする。   Therefore, the present invention solves the problems of the prior art as described above, and it is not necessary to use a large amount of the gas as a raw material when producing a target compound by reacting plural kinds of gases. It is an object of the present invention to provide a reaction method and a reaction apparatus in which the amount of compound produced per unit time is high.

前記課題を解決するため、本発明の態様は、次のような構成からなる。すなわち、本発明の一態様に係る反応方法は、複数種の気体を反応容器に供給し、これら気体同士を反応させる反応方法であって、前記複数種の気体のうち一部の種類の気体を気体供給部から前記反応容器内に供給するとともに、前記複数種の気体のうち残部の種類の気体を噴射口から前記反応容器内に噴射し、前記一部の種類の気体と前記残部の種類の気体とを反応させるに際して、前記気体供給部によって、前記一部の種類の気体の発生源となる液体状又は固体状の原料物質を加熱して前記原料物質を気化させ前記反応容器内に供給するとともに、前記噴射口を、前記反応容器内に設置され且つ両端に開口部を有する管状部材の内側に配して、この噴射口から前記残部の種類の気体を前記管状部材の一端側に向かって噴射し、この噴射により前記反応容器内の気体が前記管状部材の他端側の開口部から前記管状部材の内部に流入して一端側の開口部から流出する気体流路を形成させることを特徴とする。   In order to solve the above-described problems, an aspect of the present invention has the following configuration. That is, the reaction method according to one embodiment of the present invention is a reaction method in which a plurality of types of gases are supplied to a reaction vessel and these gases react with each other, and some types of gases among the plurality of types of gases are reacted. While supplying from the gas supply unit into the reaction vessel, the remaining types of gases among the plurality of types of gas are injected into the reaction vessel from the injection port, and the partial types of gases and the types of the remaining units are injected. When reacting with a gas, the gas supply unit heats the liquid or solid source material that is a generation source of the some types of gas to vaporize the source material and supply it to the reaction vessel. In addition, the injection port is arranged inside a tubular member installed in the reaction vessel and having openings at both ends, and the remaining type of gas is directed from the injection port toward one end side of the tubular member. To this jet The gas in the reaction vessel, characterized in that to form a gas flow channel flowing from one side of the opening and into the interior of the tubular member from the opening of the other end of the tubular member Ri.

この反応方法においては、前記噴射口は、前記管状部材の一端側の開口部よりも前記管状部材の軸方向内部側に配してもよい。また、前記噴射口は、前記管状部材の径方向中心部に配してもよい。
さらに、この反応方法においては、前記原料物質を前記反応容器の内部に配し、前記反応容器内で気化してもよいし、あるいは、前記原料物質を前記反応容器の内部の底部に配し、前記反応容器内で気化するとともに、前記噴射口から前記残部の種類の気体を前記原料物質に向かって噴射してもよい。
さらに、この反応方法は、2種の気体を反応させる反応方法であってもよく、前記一部の種類の気体をセレンとし、前記残部の種類の気体を水素ガスとすることができる。
In this reaction method, the injection port may be arranged on the axially inner side of the tubular member with respect to the opening on one end side of the tubular member. Moreover, you may distribute | arrange the said injection port to the radial direction center part of the said tubular member.
Furthermore, in this reaction method, the raw material may be disposed inside the reaction vessel and vaporized in the reaction vessel, or the raw material may be disposed at the bottom inside the reaction vessel, While vaporizing in the reaction vessel, the remaining kind of gas may be injected from the injection port toward the source material.
Further, this reaction method may be a reaction method in which two kinds of gases are reacted, and the partial kind of gas may be selenium and the remaining kind of gas may be hydrogen gas.

また、本発明の他の態様に係る反応装置は、複数種の気体を反応させる反応装置であって、前記複数種の気体が供給されこれら気体同士の反応が行われる反応容器と、前記複数種の気体のうち一部の種類の気体を前記反応容器内に供給する気体供給部と、前記複数種の気体のうち残部の種類の気体を前記反応容器内に噴射する噴射口と、前記反応容器内に設置され且つ両端に開口部を有する管状部材と、を備え、前記噴射口は、前記管状部材の内側に配されていて、前記残部の種類の気体を前記管状部材の一端側に向かって噴射するようになっており、この噴射により前記反応容器内の気体が前記管状部材の他端側の開口部から前記管状部材の内部に流入して一端側の開口部から流出する気体流路を形成するようになっていることを特徴とする。   Moreover, the reaction apparatus according to another aspect of the present invention is a reaction apparatus for reacting a plurality of types of gases, wherein the plurality of types of gases are supplied and reaction between these gases is performed, and the plurality of types A gas supply unit for supplying some types of gases into the reaction vessel, an injection port for injecting the remaining types of gases among the plurality of gases into the reaction vessel, and the reaction vessel A tubular member installed inside and having openings at both ends, and the injection port is disposed inside the tubular member, and the remaining type of gas is directed toward one end of the tubular member. A gas flow path in which the gas in the reaction vessel flows into the tubular member from the opening on the other end side of the tubular member and flows out from the opening on the one end side by this injection. It is characterized by being formed .

この反応装置においては、前記噴射口は、前記管状部材の一端側の開口部よりも前記管状部材の軸方向内部側に配してもよい。また、前記噴射口は、前記管状部材の径方向中心部に配してもよい。
さらに、この反応装置においては、前記噴射口は、前記管状部材に挿通されて前記残部の種類の気体を前記反応容器内に供給する内管の先端に設けられていてもよい。
In this reaction apparatus, the injection port may be arranged on the axially inner side of the tubular member with respect to the opening on one end side of the tubular member. Moreover, you may distribute | arrange the said injection port to the radial direction center part of the said tubular member.
Further, in this reaction apparatus, the injection port may be provided at the tip of an inner tube that is inserted into the tubular member and supplies the remaining type of gas into the reaction vessel.

さらに、この反応装置においては、前記気体供給部は、前記一部の種類の気体の発生源となる液体状又は固体状の原料物質を収容する原料収容部と、前記原料収容部を加熱して前記原料物質を気化させる加熱部と、を備えていてもよい。
さらに、この反応装置においては、前記原料収容部が前記反応容器の内部に設けられていてもよいし、あるいは、前記原料収容部が前記反応容器の内部の底部に設けられており、前記管状部材が一端側の開口部を前記原料収容部に向けて設置されていてもよい。
さらに、この反応装置は、2種の気体を反応させる反応装置であってもよく、前記一部の種類の気体をセレンとし、前記残部の種類の気体を水素ガスとすることができる。
Further, in this reaction apparatus, the gas supply unit heats the raw material storage unit that stores a raw material storage unit that stores a liquid or solid source material that is a generation source of the some types of gas. A heating unit that vaporizes the raw material.
Furthermore, in this reaction apparatus, the raw material container may be provided inside the reaction container, or the raw material container may be provided at the bottom inside the reaction container, and the tubular member However, the opening part of the one end side may be installed toward the said raw material accommodating part.
Further, this reaction apparatus may be a reaction apparatus for reacting two kinds of gases, and the partial kind of gas may be selenium and the remaining kind of gas may be hydrogen gas.

本発明に係る反応方法及び反応装置は、複数種の気体を反応させて目的化合物を製造するに際して、原料である前記気体を大量に使用する必要がなく、目的化合物の単位時間当たりの生成量が高い。   In the reaction method and the reaction apparatus according to the present invention, when a target compound is produced by reacting plural kinds of gases, it is not necessary to use a large amount of the gas as a raw material, and the production amount of the target compound per unit time is reduced. high.

本発明に係る反応方法及び反応装置の一実施形態を説明する図である。It is a figure explaining one Embodiment of the reaction method and reaction apparatus which concern on this invention. 図1の実施形態の変形例を説明する図である。It is a figure explaining the modification of embodiment of FIG. 比較例に係る反応方法及び反応装置を説明する図である。It is a figure explaining the reaction method and reaction apparatus which concern on a comparative example.

本発明に係る反応方法及び反応装置の実施の形態を、図面を参照しながら詳細に説明する。各図においては、水素ガス等の気体の流れを矢印で表示してある。なお、本発明は、複数種の気体を反応させて目的化合物を製造する反応方法及び反応装置に係るものであるが、本実施形態においては、セレン及び水素ガスの2種の気体を反応させてセレン化水素を製造する場合を例にして、本発明を説明する。   Embodiments of a reaction method and a reaction apparatus according to the present invention will be described in detail with reference to the drawings. In each figure, the flow of gas such as hydrogen gas is indicated by arrows. The present invention relates to a reaction method and a reaction apparatus for producing a target compound by reacting plural kinds of gases. In this embodiment, two kinds of gases, selenium and hydrogen gas, are reacted. The present invention will be described by taking the case of producing hydrogen selenide as an example.

図1の反応装置は、気体状のセレンと水素ガスの反応が行われる反応容器1と、水素ガスを反応容器1内に供給する内管2と、内管2を囲むように内管2と同軸に設置された外管3(本発明の構成要件である管状部材に相当する)と、反応容器1内の気体を外部に排出する排出口4と、反応容器1を加熱するヒーター5(本発明の構成要件である加熱部に相当する)と、を備えている。   1 includes a reaction vessel 1 in which a reaction between gaseous selenium and hydrogen gas is performed, an inner tube 2 that supplies hydrogen gas into the reaction vessel 1, an inner tube 2 that surrounds the inner tube 2, An outer tube 3 (corresponding to a tubular member which is a constituent element of the present invention) installed coaxially, a discharge port 4 for discharging the gas in the reaction vessel 1 to the outside, and a heater 5 for heating the reaction vessel 1 (this Corresponding to a heating part which is a constituent element of the invention.

また、反応容器1の内部の底部には、原料物質であるセレン10を収容する原料収容部6が設けられている。反応容器1内に導入する際のセレンは、液体状(溶融状態)であっても固体状(粉末状又は塊状)であってもよいが、原料収容部6に収容されたセレン10はヒーター5で加熱されることにより液体状に維持される。そして、原料収容部6に収容された液体状のセレン10が気化(蒸発)してセレン蒸気が発生し、反応容器1の底部から上昇するので、セレン蒸気が反応容器1内の気相(反応系)に供給されることとなる。すなわち、原料収容部6とヒーター5は、本発明の構成要件である気体供給部の一部又は全部を構成するものである。   In addition, a raw material container 6 for containing selenium 10 as a raw material is provided at the bottom inside the reaction vessel 1. Selenium to be introduced into the reaction vessel 1 may be liquid (molten state) or solid (powder or lump), but the selenium 10 contained in the raw material container 6 is the heater 5. It is maintained in a liquid state by being heated at. And since the liquid selenium 10 accommodated in the raw material container 6 is vaporized (evaporated) to generate selenium vapor and rises from the bottom of the reaction vessel 1, the selenium vapor is vaporized in the reaction vessel 1 (reaction). System). That is, the raw material accommodating part 6 and the heater 5 constitute a part or all of the gas supply part which is a constituent requirement of the present invention.

ヒーター5は、図1に示すように、反応容器1の上下方向略中間部より下方部分を加熱できるようになっているので、反応容器1の底部に設けられた原料収容部6を加熱してセレン10を気化させることができることに加えて、反応容器1の底部から上昇したセレン蒸気を加熱して、反応容器1内のセレン蒸気を気体状に維持することができる。ただし、セレン10を気化させることとセレン蒸気を気体状に維持することができるならば、ヒーター5による加熱部分は反応容器1の上下方向略中間部より下方部分に限定されるものではなく、例えば反応容器1の底部及びその周辺部分であってもよいし、反応容器1の全体であってもよい。   As shown in FIG. 1, the heater 5 can heat the lower part of the reaction vessel 1 from a substantially middle part in the vertical direction. Therefore, the heater 5 heats the raw material container 6 provided at the bottom of the reaction vessel 1. In addition to being able to vaporize the selenium 10, the selenium vapor rising from the bottom of the reaction vessel 1 can be heated to maintain the selenium vapor in the reaction vessel 1 in a gaseous state. However, if the selenium 10 can be vaporized and the selenium vapor can be maintained in a gaseous state, the portion heated by the heater 5 is not limited to a portion below the substantially middle portion in the vertical direction of the reaction vessel 1, for example, The bottom of reaction container 1 and its peripheral part may be sufficient, and the whole reaction container 1 may be sufficient.

外管3は、両端が開口した管状の部材であり、その軸方向を鉛直にした姿勢で全体が反応容器1内に収容されている。そして、外管3の下端側の開口3aは、原料収容部6に収容された液体状のセレン10の液面に対して間隔をあけて対向しており、また、上端側の開口3bは、反応容器1の天井面に対して間隔をあけて対向している。   The outer tube 3 is a tubular member that is open at both ends, and is entirely accommodated in the reaction vessel 1 in a posture in which the axial direction is vertical. And the opening 3a on the lower end side of the outer tube 3 is opposed to the liquid surface of the liquid selenium 10 accommodated in the raw material accommodating portion 6 with an interval, and the opening 3b on the upper end side is It faces the ceiling surface of the reaction vessel 1 with a gap.

また、内管2は、外管3よりも小径な管状の部材であり、平行をなして外管3の内側に挿通されている。内管2と外管3は同軸をなしているので、内管2は外管3の径方向中心部に配されている。ただし、内管2は外管3の径方向中心部以外の部分に配されていてもよく、例えば外管3の径方向外方側部分に配されていてもよい。内管2は、反応容器1の壁体を貫通して反応容器1の内部と外部を連通しており、その基端は、例えば加圧された水素ガスが充填された水素ガス供給源(図示せず)に接続されており、水素ガスを噴射する噴射口2aであるその先端は、外管3の内側に配されている。   The inner tube 2 is a tubular member having a smaller diameter than the outer tube 3, and is inserted inside the outer tube 3 in parallel. Since the inner tube 2 and the outer tube 3 are coaxial, the inner tube 2 is arranged at the center in the radial direction of the outer tube 3. However, the inner tube 2 may be disposed in a portion other than the central portion in the radial direction of the outer tube 3. For example, the inner tube 2 may be disposed in a radially outer side portion of the outer tube 3. The inner tube 2 penetrates the wall of the reaction vessel 1 and communicates the inside and the outside of the reaction vessel 1, and the base end thereof is, for example, a hydrogen gas supply source (see FIG. The tip, which is an injection port 2 a for injecting hydrogen gas, is arranged inside the outer tube 3.

噴射口2aは、外管3の下端側の開口3aよりも軸方向内部側(すなわち上側)に配されていて、水素ガスを外管3の下端側の開口3aに向かって(すなわち、液体状のセレン10に向かって)噴射するようになっている。噴射口2aの形状や口径(内径)は特に限定されるものではないが、口径を小さくしてノズル状とすることにより、噴射された気体の線速度を向上することができる。   The injection port 2a is arranged on the inner side (that is, the upper side) in the axial direction than the opening 3a on the lower end side of the outer tube 3, and the hydrogen gas is directed toward the opening 3a on the lower end side of the outer tube 3 (that is, in a liquid state). (Toward the selenium 10). The shape and the diameter (inner diameter) of the ejection port 2a are not particularly limited, but the linear velocity of the ejected gas can be improved by reducing the diameter to a nozzle shape.

次に、このような反応装置によりセレン化水素を製造する方法を説明する。まず、セレン蒸気の発生源である固体状の金属セレンを、反応容器1内に投入し原料収容部6に収容する。そして、ヒーター5で例えば400℃以上700℃以下(より好ましくは450℃以上650℃以下)に加熱することによりセレンを溶融して液体状とする。なお、上記温度に加熱した反応容器1に金属セレンを投入してもよいし、金属セレンを投入してから反応容器1を上記温度に加熱してもよい。   Next, a method for producing hydrogen selenide using such a reactor will be described. First, solid metal selenium, which is a generation source of selenium vapor, is charged into the reaction vessel 1 and stored in the raw material storage unit 6. And by heating to 400 degreeC or more and 700 degrees C or less (more preferably 450 degreeC or more and 650 degrees C or less) with the heater 5, selenium is fuse | melted and made into a liquid state. Metal selenium may be charged into the reaction vessel 1 heated to the above temperature, or the reaction vessel 1 may be heated to the above temperature after the metal selenium is charged.

外管3の下端部は、液体状のセレン10と接触していてもよいが、後述する負圧を効果的に発生させるためには、液体状のセレン10とは接触せず、液体状のセレン10の液面と離れていることが好ましい。よって、金属セレンの投入量は、外管3の下端部と液体状のセレン10とが接触しないように調整することが好ましい。
また、セレンと水素ガスの反応が進行してセレンが消費されると、液体状のセレン10の液面が低下するので、噴射口2aと液体状のセレン10の液面との距離が変化する。よって、噴射口2aから噴射される水素ガスの線速度も考慮して、噴射口2aと液体状のセレン10の液面との距離がセレン化水素の製造に対して好適な値となるように、金属セレンの投入量を調整することが好ましい。
The lower end portion of the outer tube 3 may be in contact with the liquid selenium 10, but in order to effectively generate the negative pressure described later, the liquid selenium 10 is not in contact with the liquid selenium 10. It is preferable that the liquid surface of selenium 10 is separated. Therefore, it is preferable to adjust the amount of metal selenium input so that the lower end portion of the outer tube 3 and the liquid selenium 10 do not contact each other.
Further, when the reaction between selenium and hydrogen gas proceeds and selenium is consumed, the liquid level of liquid selenium 10 is lowered, so that the distance between the injection port 2a and the liquid level of liquid selenium 10 changes. . Therefore, in consideration of the linear velocity of the hydrogen gas injected from the injection port 2a, the distance between the injection port 2a and the liquid level of the liquid selenium 10 is a value suitable for the production of hydrogen selenide. It is preferable to adjust the input amount of metal selenium.

原料収容部6に収容された液体状のセレン10は上記温度に保持されることにより気化(蒸発)し、生成したセレン蒸気は反応容器1の底部から上昇するので、セレン蒸気が反応容器1内の気相(反応系)に供給される。ここで、内管2の噴射口2aから液体状のセレン10に向かって水素ガスを噴射すると、水素ガスとセレン蒸気が接触して気相反応し、気体状のセレン化水素が生成する。セレン10に向けて噴射された水素ガスはセレン10の液面に衝突して上昇気流となるので、生成したセレン化水素は上昇気体に同伴されて反応容器1の内部を上昇する。   The liquid selenium 10 stored in the raw material storage unit 6 is vaporized (evaporated) by being held at the above temperature, and the generated selenium vapor rises from the bottom of the reaction vessel 1. To the gas phase (reaction system). Here, when hydrogen gas is injected from the injection port 2a of the inner pipe 2 toward the liquid selenium 10, the hydrogen gas and selenium vapor come into contact with each other to cause a gas phase reaction, thereby generating gaseous hydrogen selenide. Since the hydrogen gas injected toward the selenium 10 collides with the liquid surface of the selenium 10 and becomes an ascending current, the generated hydrogen selenide is accompanied by the ascending gas and rises inside the reaction vessel 1.

なお、噴射口2aからの水素ガスの噴射は、反応容器1の温度を上昇させる以前又はセレンが溶融する以前の段階から行ってもよいし、反応容器1の温度が所定の温度に到達しセレンと水素ガスの反応が可能な温度となってから行ってもよい。
また、噴射される水素ガスの線速度は、温度によって大きく変化するものの、例えば400℃以上700℃以下の範囲では、20m/s以上とすることが好ましい。
The injection of hydrogen gas from the injection port 2a may be performed before the temperature of the reaction vessel 1 is increased or before the selenium is melted, or when the temperature of the reaction vessel 1 reaches a predetermined temperature and selenium. Alternatively, the reaction may be performed after reaching a temperature at which the hydrogen gas can react.
Moreover, although the linear velocity of the injected hydrogen gas varies greatly depending on the temperature, it is preferably 20 m / s or more, for example, in the range of 400 ° C. or more and 700 ° C. or less.

このとき、噴射口2aから噴射された水素ガスが外管3の内部を下方に流れることにより、イジェクター効果が発現して外管3の内部に負圧が生じる。負圧の大きさは、噴射される水素ガスの線速度、及び、反応容器1の内径と外管3の内径との比率に依存する。
反応容器1の内径と外管3の内径との比率(〔外管3の内径〕/〔反応容器1の内径〕)は、0.6以下とすることが好ましい。
また、噴射口2aの位置は、外管3の上端から下端の間にあればよく、特に限定されない。
At this time, the hydrogen gas injected from the injection port 2 a flows downward in the outer tube 3, whereby an ejector effect is developed and a negative pressure is generated in the outer tube 3. The magnitude of the negative pressure depends on the linear velocity of the injected hydrogen gas and the ratio between the inner diameter of the reaction vessel 1 and the inner diameter of the outer tube 3.
The ratio of the inner diameter of the reaction vessel 1 to the inner diameter of the outer tube 3 ([the inner diameter of the outer tube 3] / [the inner diameter of the reaction vessel 1]) is preferably 0.6 or less.
Moreover, the position of the injection port 2a should just be between the upper end of the outer tube | pipe 3, and a lower end, and is not specifically limited.

この負圧により、反応容器1内の気体(外管3の外部の気体)が外管3の上端側の開口3b(外管3の内部を流れる気流の上流側の開口)から外管3の内部に流入して下端側の開口3a(外管3の内部を流れる気流の下流側の開口)から流出する気体流路が形成される。この気体流路は、噴射口2aから噴射された水素ガスの流れと同一方向の下降気流である。そして、この気体流路に沿って外管3の内部を下降してきた気体は、噴射口2aから噴射された水素ガスと合流して、液体状のセレン10の液面に向けて噴射される。   Due to this negative pressure, the gas in the reaction vessel 1 (the gas outside the outer tube 3) passes through the opening 3 b on the upper end side of the outer tube 3 (the opening on the upstream side of the airflow flowing inside the outer tube 3) from the outer tube 3. A gas flow path is formed which flows into the inside and flows out from the opening 3a on the lower end side (opening on the downstream side of the airflow flowing inside the outer tube 3). This gas flow path is a downward air flow in the same direction as the flow of hydrogen gas injected from the injection port 2a. Then, the gas descending in the outer tube 3 along the gas flow path merges with the hydrogen gas ejected from the ejection port 2 a and is ejected toward the liquid surface of the liquid selenium 10.

下方に向けて噴射された気体(噴射口2aから噴射された水素ガスと外管3の内部を下降してきた気体とが合流したものであり、以下「合流気体」と記す)はセレン10の液面に衝突して上昇気流となるので、生成したセレン化水素は合流気体に同伴されて反応容器1の内部を上昇する。ヒーター5は、反応容器1の上下方向略中間部より上方部分を加熱できるようにはなっていないので、上昇した合流気体は反応容器1の上部で冷却される。   The gas injected downward (the hydrogen gas injected from the injection port 2a and the gas descending the outer tube 3 merged, hereinafter referred to as “combined gas”) is a liquid of selenium 10. Since it collides with the surface and becomes an updraft, the generated hydrogen selenide is accompanied by the combined gas and rises inside the reaction vessel 1. Since the heater 5 is not adapted to heat the upper part of the reaction vessel 1 above the substantially middle part in the vertical direction, the rising combined gas is cooled at the upper part of the reaction vessel 1.

そして、冷却された合流気体の一部が、反応容器1の上部に設けられた排出口4から反応容器1の外部に排出され、他部が前記気体流路に沿って外管3の上端側の開口3bから外管3の内部に流入する。外管3の内部に流入した合流気体は外管3の内部を下降し、噴射口2aから噴射された水素ガスと再び合流するから、これにより合流気体が反応容器1内を循環することとなる。   Then, a part of the cooled combined gas is discharged to the outside of the reaction vessel 1 from the discharge port 4 provided at the upper portion of the reaction vessel 1, and the other portion is on the upper end side of the outer tube 3 along the gas flow path. Flows into the outer tube 3 from the opening 3b. The merged gas that has flowed into the outer tube 3 descends in the outer tube 3 and merges again with the hydrogen gas injected from the injection port 2a, so that the combined gas circulates in the reaction vessel 1. .

この合流気体には未反応のセレンが含まれているが、未反応のセレンの一部は高温に保たれたまま再度外管3の内部に取り込まれ、噴射口2aから噴射された水素ガスと合流して、水素ガスとの反応に供される。しかも、前記のような合流気体の循環が複数回繰り返される場合があるので、セレンが水素ガスと接触し反応する機会が多くなる。その結果、セレン化水素の単位時間当たりの生成量が高くなる。また、セレン化水素の収率も高くなる。さらに、水素ガスが循環して繰り返し反応に供されることになるから、水素ガスの使用量を削減することができ、特許文献1,2に開示の技術のように水素ガスを大量に使用する必要がない。そのため、水素ガスの回収も容易である。よって、本実施形態の反応方法及び反応装置は、セレン化水素の大スケールでの工業的生産に好適である。   This combined gas contains unreacted selenium, but a part of the unreacted selenium is again taken into the outer tube 3 while being kept at a high temperature, and the hydrogen gas injected from the injection port 2a and Combined and used for reaction with hydrogen gas. In addition, since the merging gas circulation as described above may be repeated a plurality of times, the opportunity for selenium to contact and react with the hydrogen gas increases. As a result, the amount of hydrogen selenide produced per unit time is increased. Also, the yield of hydrogen selenide is increased. Furthermore, since hydrogen gas is circulated and repeatedly used for the reaction, the amount of hydrogen gas used can be reduced, and a large amount of hydrogen gas is used as in the techniques disclosed in Patent Documents 1 and 2. There is no need. Therefore, the recovery of hydrogen gas is easy. Therefore, the reaction method and reaction apparatus of this embodiment are suitable for industrial production of hydrogen selenide on a large scale.

図3に示すような外管を備えていない反応装置を使用した場合は、内管102の噴射口102aから噴射された水素ガスがセレン化水素を同伴して反応容器101の内部を上昇するものの、前記気体流路は形成されないので前記循環は生じず、ほとんどの水素ガスが排出口104から反応容器101の外部に排出される。よって、セレンが水素ガスと接触する機会が少ないので、セレン化水素の単位時間当たりの生成量が低く、また、セレン化水素の収率も低く、さらに、水素ガスの使用量も大量となる。なお、図3における符号105はヒーター、符号106は原料収容部、符号110は液体状のセレンを示す。   When a reaction apparatus not equipped with an outer tube as shown in FIG. 3 is used, the hydrogen gas injected from the injection port 102a of the inner tube 102 rises inside the reaction vessel 101 with hydrogen selenide. Since the gas flow path is not formed, the circulation does not occur, and most of the hydrogen gas is discharged from the discharge port 104 to the outside of the reaction vessel 101. Therefore, since there is little opportunity for selenium to come into contact with hydrogen gas, the amount of hydrogen selenide produced per unit time is low, the yield of hydrogen selenide is low, and the amount of hydrogen gas used is also large. In FIG. 3, reference numeral 105 denotes a heater, reference numeral 106 denotes a raw material container, and reference numeral 110 denotes liquid selenium.

排出口4から排出された合流気体は、反応容器1の排出口4に接続された排出管7を介して分離装置(図示せず)に送られる。排出された気体は、主として未反応の水素ガスと反応生成物であるセレン化水素からなるが、分離装置において例えば−196℃の液体窒素で冷却するとセレン化水素が凝固するので、水素ガスと分離することができる。凝固したセレン化水素を再度加熱すれば、純度の高いセレン化水素を得ることができる。また、排出口4から排出された気体には、未反応のセレンが同伴されている場合があるが、未反応のセレンは、例えばセレン化水素との凝固温度の違いを利用して分離することができる。   The combined gas discharged from the discharge port 4 is sent to a separation device (not shown) through a discharge pipe 7 connected to the discharge port 4 of the reaction vessel 1. The discharged gas is mainly composed of unreacted hydrogen gas and hydrogen selenide, which is a reaction product. However, when it is cooled with liquid nitrogen at −196 ° C., for example, the hydrogen selenide is solidified in the separation device. can do. If the solidified hydrogen selenide is heated again, highly pure hydrogen selenide can be obtained. The gas discharged from the outlet 4 may be accompanied by unreacted selenium. The unreacted selenium may be separated using, for example, a difference in solidification temperature from hydrogen selenide. Can do.

このような本実施形態の反応方法及び反応装置は、例えばCIGS型太陽電池の原料に使用されるセレン化水素の製造に好適である。また、半導体材料であるセレン化亜鉛(ZnSe)を製造する際の原料としてのセレン化水素の製造にも好適である。
なお、本実施形態は本発明の一例を示したものであって、本発明は本実施形態に限定されるものではない。例えば、本実施形態においては、セレンを反応容器1の内部で気化させることによりセレン蒸気を得て、そのセレン蒸気を反応系に供給したが、反応容器1の外部においてセレンを気化させるなどしてセレン蒸気を製造し、配管等によりセレン蒸気を反応容器1の内部に供給してもよい。
Such a reaction method and reaction apparatus of this embodiment are suitable for the production of hydrogen selenide used as a raw material for CIGS type solar cells, for example. Moreover, it is suitable also for manufacture of hydrogen selenide as a raw material when manufacturing zinc selenide (ZnSe) which is a semiconductor material.
In addition, this embodiment shows an example of this invention and this invention is not limited to this embodiment. For example, in this embodiment, selenium vapor is obtained by vaporizing selenium inside the reaction vessel 1 and the selenium vapor is supplied to the reaction system, but selenium is vaporized outside the reaction vessel 1 or the like. Selenium vapor may be produced, and the selenium vapor may be supplied to the inside of the reaction vessel 1 by piping or the like.

また、内管2及び外管3を、その軸方向を鉛直にした姿勢で設置し、且つ、内管2の噴射口2aを下方に向けることが好ましいが、それに対して90°の方向に噴射口2aが向くように内管2及び外管3を設置してもよいし(すなわち、内管2及び外管3を、その軸方向を水平にした姿勢で設置する)、180°の方向に噴射口2aが向くように内管2及び外管3を設置してもよいし(すなわち、内管2及び外管3を、その軸方向を鉛直にした姿勢で設置し、且つ、内管2の噴射口2aを上方に向ける)、あるいは、任意の角度の方向に噴射口2aが向くように内管2及び外管3を設置してもよい。   Moreover, it is preferable to install the inner tube 2 and the outer tube 3 in a posture in which the axial direction is vertical, and the injection port 2a of the inner tube 2 is directed downward. The inner tube 2 and the outer tube 3 may be installed so that the mouth 2a faces (that is, the inner tube 2 and the outer tube 3 are installed in a posture in which the axial direction is horizontal), and in the direction of 180 °. The inner tube 2 and the outer tube 3 may be installed so that the injection port 2a faces (that is, the inner tube 2 and the outer tube 3 are installed in a posture in which the axial direction is vertical, and the inner tube 2 The inner tube 2 and the outer tube 3 may be installed so that the injection port 2a faces in an arbitrary angle direction.

また、本実施形態の反応方法及び反応装置を適用可能な反応は、セレンと水素ガスからセレン化水素を得る反応に限定されるものではなく、気体同士を反応させる種々の反応に適用可能である。例えば、硫黄と水素ガスから硫化水素を得る反応に適用可能である。
さらに、本実施形態においては、2種の気体を反応させる例を説明したが、3種以上の気体を反応させる場合にも本発明を適用できることは勿論である。その場合には、2種以上の気体を噴射口2aから噴射し1種の気体を原料収容部6での気化で供給してもよいし、逆に、1種の気体を噴射口2aから噴射し2種以上の気体を原料収容部6での気化で供給してもよい。さらに、2種以上の気体を噴射口2aから噴射し2種以上の気体を原料収容部6での気化で供給してもよい。
The reaction to which the reaction method and the reaction apparatus of the present embodiment can be applied is not limited to the reaction for obtaining hydrogen selenide from selenium and hydrogen gas, but can be applied to various reactions in which gases are reacted with each other. . For example, it is applicable to a reaction for obtaining hydrogen sulfide from sulfur and hydrogen gas.
Furthermore, in this embodiment, although the example which makes 2 types of gas react was demonstrated, of course, this invention is applicable also when making 3 or more types of gas react. In that case, two or more types of gas may be injected from the injection port 2a and one type of gas may be supplied by vaporization in the raw material container 6, or conversely, one type of gas may be injected from the injection port 2a. However, two or more gases may be supplied by vaporization in the raw material container 6. Further, two or more kinds of gases may be injected from the injection port 2 a and two or more kinds of gases may be supplied by vaporization in the raw material storage unit 6.

2種以上の気体を噴射口2aから噴射する場合には、内管2及び外管3をその気体の種類と同数設け、各気体を別の噴射口2aから噴射してもよい。また、2種以上の気体を原料収容部6での気化で供給する場合には、原料収容部6をその気体の種類と同数設け、各気化を別の原料収容部6で行ってもよい。
さらに、本実施形態においては、原料収容部6で液体状の原料物質を加熱し蒸発させて蒸気を得たが、昇華性を有する物質であれば、原料収容部6で固体状の原料物質を加熱し昇華させて蒸気を得てもよい。
When two or more kinds of gases are injected from the injection port 2a, the same number of inner tubes 2 and outer tubes 3 as the types of the gases may be provided, and each gas may be injected from another injection port 2a. When two or more kinds of gases are supplied by vaporization in the raw material storage unit 6, the same number of raw material storage units 6 as the types of the gases may be provided, and each vaporization may be performed in another raw material storage unit 6.
Further, in the present embodiment, the liquid raw material is heated and evaporated in the raw material storage unit 6 to obtain vapor, but if the material has sublimation properties, the solid raw material in the raw material storage unit 6 Steam may be obtained by heating and sublimation.

さらに、本実施形態においては、外管3の上端が開口しており、負圧の発生により該開口3bから反応容器1内の気体が外管3内に流入する構造となっていたが、図2に示すように外管3の上端が閉口していて、上端の側面部分に外管3の内部と外部を連通する開口3bを設けた構造としてもよい。負圧が発生した際には、反応容器1内の気体が側面部分の開口3bから外管3内に流入する。   Furthermore, in this embodiment, the upper end of the outer tube 3 is open, and the gas in the reaction vessel 1 flows into the outer tube 3 from the opening 3b due to the generation of negative pressure. 2, the upper end of the outer tube 3 is closed, and an opening 3 b that communicates the inside and the outside of the outer tube 3 may be provided on the side surface portion of the upper end. When negative pressure is generated, the gas in the reaction vessel 1 flows into the outer tube 3 from the opening 3b in the side surface portion.

側面部分の開口3bは、図2に示すように、径方向外方に突出する筒状部31を側面部分に連結することにより形成してもよいし、外管3の内部と外部を連通する貫通孔を側面部分に設けることにより形成してもよい。筒状部31や貫通孔の数は、1つでもよいし複数でもよい。
このように、負圧の発生時に反応容器1内の気体が外管3内に流入するための開口3bは、その形状、位置等については特に限定されるものではなく、外管3の内部に発生する負圧に対して悪影響を与えないものであればよいが、その大きさについては、開口3bの面積の合計が外管3の径方向内面積以上であることが好ましい。
As shown in FIG. 2, the opening 3 b in the side surface portion may be formed by connecting a cylindrical portion 31 protruding radially outward to the side surface portion, or communicates the inside and the outside of the outer tube 3. You may form by providing a through-hole in a side part. The number of the cylindrical portions 31 and the through holes may be one or plural.
Thus, the opening 3b for the gas in the reaction vessel 1 to flow into the outer tube 3 when negative pressure is generated is not particularly limited in shape, position, etc. As long as it does not adversely affect the generated negative pressure, the total area of the openings 3b is preferably equal to or larger than the inner area in the radial direction of the outer tube 3.

さらに、内管2と外管3の断面形状(軸方向に直交する平面で切断した場合の断面形状)は特に限定されるものではなく、例えば円形、楕円形、多角形(三角形、四角形等)をあげることができる。ただし、内管2と外管3の断面形状は、同形状であることが好ましい。
さらに、反応時の反応容器1内の圧力は特に限定されるものではなく、例えば、大気圧とすることもできるし、微加圧とすることもできる。
さらに、反応容器1、内管2、及び外管3の素材は、セレンに腐食されにくく耐熱性を有するものが好ましい。例えば、ステンレス鋼、チタン、タンタル、セラミック、ガラスが好適である。
Furthermore, the cross-sectional shape (cross-sectional shape when cut along a plane orthogonal to the axial direction) of the inner tube 2 and the outer tube 3 is not particularly limited, and for example, a circle, an ellipse, a polygon (triangle, square, etc.) Can give. However, the inner tube 2 and the outer tube 3 preferably have the same cross-sectional shape.
Furthermore, the pressure in the reaction container 1 at the time of reaction is not specifically limited, For example, it can also be set to atmospheric pressure and can also be set as a slight pressurization.
Furthermore, the material of the reaction vessel 1, the inner tube 2, and the outer tube 3 is preferably one that is resistant to corrosion by selenium and has heat resistance. For example, stainless steel, titanium, tantalum, ceramic, and glass are suitable.

以下に実施例及び比較例を示して、本発明をより詳細に説明する。
(実施例1)
上記実施形態の反応装置(図1の反応装置)と同様の構造を有する反応装置を用いて、上記実施形態と同様の反応方法によりセレン化水素を製造した。この反応装置の内容積は1.4Lである。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.
Example 1
Hydrogen selenide was manufactured by the reaction method similar to the said embodiment using the reaction apparatus which has the structure similar to the reaction apparatus (reaction apparatus of FIG. 1) of the said embodiment. The internal volume of this reactor is 1.4L.

固体状のセレン250gを反応容器内の原料収容部に収容し、水素ガスを噴射口から986SCCM(standard cc/min )の流速で噴射した後、セレンを550℃に昇温して気化させ、水素ガスと反応させた。そして、排出口から排出される気体をFT−IR(Fourier Transform Infrared Spectroscopy )により分析して、セレン化水素の発生量を測定した。その結果、セレン化水素の発生量は15.6mmol/minであった。   After storing 250 g of solid selenium in the raw material container in the reaction vessel and injecting hydrogen gas at a flow rate of 986 SCCM (standard cc / min) from the injection port, the selenium was heated to 550 ° C. to be vaporized, and hydrogen Reacted with gas. And the gas discharged | emitted from a discharge port was analyzed by FT-IR (Fourier Transform Infrared Spectroscopy), and the generation amount of hydrogen selenide was measured. As a result, the amount of hydrogen selenide generated was 15.6 mmol / min.

(比較例1)
外管を備えていないことを除いては、実施例1で用いたものと同様の反応装置(図3の反応装置)を用いて、セレン化水素を製造した。
固体状のセレン250gを反応容器内の原料収容部に収容し、水素ガスを噴射口から986SCCM(standard cc/min )の流速で噴射した後、セレンを550℃に昇温して気化させ、水素ガスと反応させた。そして、排出口から排出される気体をFT−IRにより分析して、セレン化水素の発生量を測定した。その結果、セレン化水素の発生量は10.9mmol/minであった。
なお、実施例1及び比較例1における測定に用いたFT−IR分析装置は、Thermo Fisher Scientific社製のNicolet−380であり、セルはガスセル(長さ10cm)である。
(Comparative Example 1)
Hydrogen selenide was produced using the same reaction apparatus as that used in Example 1 (reaction apparatus in FIG. 3) except that the outer tube was not provided.
After storing 250 g of solid selenium in the raw material container in the reaction vessel and injecting hydrogen gas at a flow rate of 986 SCCM (standard cc / min) from the injection port, the selenium was heated to 550 ° C. to be vaporized, and hydrogen Reacted with gas. And the gas discharged | emitted from a discharge port was analyzed by FT-IR, and the generation amount of hydrogen selenide was measured. As a result, the amount of hydrogen selenide generated was 10.9 mmol / min.
In addition, the FT-IR analyzer used for the measurement in Example 1 and Comparative Example 1 is Nicolet-380 manufactured by Thermo Fisher Scientific, and the cell is a gas cell (length: 10 cm).

1 反応容器
2 内管
2a 噴射口
3 外管
3a 下端側の開口
3b 上端側の開口
5 ヒーター
6 原料収容部
10 セレン
DESCRIPTION OF SYMBOLS 1 Reaction container 2 Inner pipe | tube 2a Injection port 3 Outer pipe | tube 3a Opening of lower end side 3b Opening of upper end side 5 Heater 6 Raw material accommodating part 10 Selenium

Claims (12)

複数種の気体を反応容器に供給し、これら気体同士を反応させる反応方法であって、
前記複数種の気体のうち一部の種類の気体を気体供給部から前記反応容器内に供給するとともに、前記複数種の気体のうち残部の種類の気体を噴射口から前記反応容器内に噴射し、前記一部の種類の気体と前記残部の種類の気体とを反応させるに際して、
前記気体供給部によって、前記一部の種類の気体の発生源となる液体状又は固体状の原料物質を加熱して前記原料物質を気化させ前記反応容器内に供給するとともに、前記噴射口を、前記反応容器内に設置され且つ両端に開口部を有する管状部材の内側に配して、この噴射口から前記残部の種類の気体を前記管状部材の一端側に向かって噴射し、この噴射により前記反応容器内の気体が前記管状部材の他端側の開口部から前記管状部材の内部に流入して一端側の開口部から流出する気体流路を形成させ
前記一部の種類の気体がセレンであり、前記残部の種類の気体が水素ガスであることを特徴とする反応方法。
A reaction method of supplying a plurality of gases to a reaction vessel and reacting these gases with each other,
While supplying some types of gases among the plurality of types of gases from the gas supply unit into the reaction vessel, the remaining types of gases among the plurality of types of gases are injected into the reaction vessel from the injection port. , When reacting the partial type of gas and the residual type of gas,
The gas supply unit heats the liquid or solid source material serving as a generation source of the some types of gas to vaporize the source material and supply the material into the reaction vessel, and the injection port. Arranged inside the tubular member installed in the reaction vessel and having openings at both ends, the remaining kind of gas is jetted from the jet port toward one end side of the tubular member, and by the jetting, Forming a gas flow path in which the gas in the reaction vessel flows into the tubular member from the opening on the other end side of the tubular member and flows out from the opening on the one end side ;
The reaction method according to claim 1, wherein the partial type of gas is selenium and the remaining type of gas is hydrogen gas .
前記噴射口は、前記管状部材の一端側の開口部よりも前記管状部材の軸方向内部側に配されていることを特徴とする請求項1に記載の反応方法。   The reaction method according to claim 1, wherein the injection port is arranged on an inner side in the axial direction of the tubular member than an opening on one end side of the tubular member. 前記噴射口は、前記管状部材の径方向中心部に配されていることを特徴とする請求項1又は請求項2に記載の反応方法。   The reaction method according to claim 1, wherein the injection port is disposed at a central portion in a radial direction of the tubular member. 前記原料物質を前記反応容器の内部に配し、前記反応容器内で気化することを特徴とする請求項1〜3のいずれか一項に記載の反応方法。   The reaction method according to claim 1, wherein the raw material is disposed inside the reaction vessel and vaporized in the reaction vessel. 前記原料物質を前記反応容器の内部の底部に配し、前記反応容器内で気化するとともに、前記噴射口から前記残部の種類の気体を前記原料物質に向かって噴射することを特徴とする請求項4に記載の反応方法。   The raw material is disposed at the bottom inside the reaction vessel, vaporized in the reaction vessel, and the remaining type of gas is injected from the injection port toward the raw material. 4. The reaction method according to 4. 複数種の気体を反応させる反応装置であって、
前記複数種の気体が供給されこれら気体同士の反応が行われる反応容器と、前記複数種の気体のうち一部の種類の気体を前記反応容器内に供給する気体供給部と、前記複数種の気体のうち残部の種類の気体を前記反応容器内に噴射する噴射口と、前記反応容器内に設置され且つ両端に開口部を有する管状部材と、を備え、
前記噴射口は、前記管状部材の内側に配されていて、前記残部の種類の気体を前記管状部材の一端側に向かって噴射するようになっており、この噴射により前記反応容器内の気体が前記管状部材の他端側の開口部から前記管状部材の内部に流入して一端側の開口部から流出する気体流路を形成するようになっており、
前記一部の種類の気体がセレンであり、前記残部の種類の気体が水素ガスであることを特徴とする反応装置。
A reaction device for reacting a plurality of gases,
A reaction vessel in which the plurality of types of gases are supplied and a reaction between the gases is performed; a gas supply unit that supplies some of the plurality of types of gases into the reaction vessel; and the plurality of types An injection port for injecting the remaining type of gas into the reaction vessel, and a tubular member installed in the reaction vessel and having openings at both ends,
The injection port is arranged inside the tubular member, and injects the remaining type of gas toward one end side of the tubular member, and the gas in the reaction vessel is injected by this injection. A gas flow path is formed which flows into the tubular member from the opening on the other end side of the tubular member and flows out from the opening on the one end side ;
The reaction apparatus characterized in that the partial type of gas is selenium and the remaining type of gas is hydrogen gas .
前記噴射口は、前記管状部材の一端側の開口部よりも前記管状部材の軸方向内部側に配されていることを特徴とする請求項6に記載の反応装置。 The reaction apparatus according to claim 6 , wherein the injection port is arranged on an inner side in the axial direction of the tubular member than an opening on one end side of the tubular member. 前記噴射口は、前記管状部材の径方向中心部に配されていることを特徴とする請求項6又は請求項7に記載の反応装置。 The reaction apparatus according to claim 6 or 7 , wherein the injection port is arranged at a central portion in a radial direction of the tubular member. 前記噴射口は、前記管状部材に挿通されて前記残部の種類の気体を前記反応容器内に供給する内管の先端に設けられていることを特徴とする請求項6〜8のいずれか一項に記載の反応装置。 The said injection port is provided in the front-end | tip of the inner tube which is penetrated by the said tubular member and supplies the said remaining kind of gas in the said reaction container. A reactor according to 1. 前記気体供給部は、前記一部の種類の気体の発生源となる液体状又は固体状の原料物質を収容する原料収容部と、前記原料収容部を加熱して前記原料物質を気化させる加熱部と、を備えることを特徴とする請求項6〜9のいずれか一項に記載の反応装置。 The gas supply unit includes a raw material storage unit that stores a liquid or solid source material serving as a generation source of the partial types of gas, and a heating unit that heats the raw material storage unit to vaporize the source material. And the reaction apparatus according to any one of claims 6 to 9 . 前記原料収容部が前記反応容器の内部に設けられていることを特徴とする請求項10に記載の反応装置。 The reaction apparatus according to claim 10 , wherein the raw material container is provided in the reaction vessel. 前記原料収容部が前記反応容器の内部の底部に設けられており、前記管状部材が一端側の開口部を前記原料収容部に向けて設置されていることを特徴とする請求項11に記載の反応装置。 The raw material accommodating portion is provided on the bottom of the interior of the reaction vessel, according to claim 11, wherein the tubular member is disposed toward an opening at one end to said material accommodating portion Reactor.
JP2013053745A 2013-03-15 2013-03-15 Reaction method and reaction apparatus Active JP6161926B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013053745A JP6161926B2 (en) 2013-03-15 2013-03-15 Reaction method and reaction apparatus
CN201410095052.1A CN104045065B (en) 2013-03-15 2014-03-14 Reaction method and reaction unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013053745A JP6161926B2 (en) 2013-03-15 2013-03-15 Reaction method and reaction apparatus

Publications (2)

Publication Number Publication Date
JP2014176827A JP2014176827A (en) 2014-09-25
JP6161926B2 true JP6161926B2 (en) 2017-07-12

Family

ID=51498522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013053745A Active JP6161926B2 (en) 2013-03-15 2013-03-15 Reaction method and reaction apparatus

Country Status (2)

Country Link
JP (1) JP6161926B2 (en)
CN (1) CN104045065B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3210939A1 (en) * 2016-02-24 2017-08-30 Casale SA A reactor for oxidation of ammonia in the production of nitric acid
CN108313986B (en) * 2018-03-30 2019-10-25 申士杰 Co and Al is inhibited to mix the method for occupy-place and the compound of preparation

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1422781A (en) * 1972-03-29 1976-01-28 Ici Ltd Vapourinsing process
GB2222098B (en) * 1988-08-24 1992-03-18 Exxon Research Engineering Co Improvements in and relating to contacting of plural distinct fluid phases
CN1118346C (en) * 1997-12-23 2003-08-20 北京科技大学 Technology and equipment for preparation of tungsten carbide-nickel-iron series nanometer grade composit powder
JP5086451B2 (en) * 2011-01-27 2012-11-28 大陽日酸株式会社 Hydrogen selenide production equipment
CN102674268A (en) * 2011-03-11 2012-09-19 大连立方化学技术有限公司 Hydrogen selenide preparation device and method
CN102267690B (en) * 2011-06-03 2013-01-30 中昊光明化工研究设计院有限公司 Preparation method of hydrogen selenide

Also Published As

Publication number Publication date
JP2014176827A (en) 2014-09-25
CN104045065A (en) 2014-09-17
CN104045065B (en) 2017-01-04

Similar Documents

Publication Publication Date Title
TWI397605B (en) Method and apparatus for generating a carbon nanotube
US20160296905A1 (en) Plasma reactor and method for decomposing a hydrocarbon fluid
NO334282B1 (en) Apparatus and method for making particulate matter
JP6161926B2 (en) Reaction method and reaction apparatus
JP2018108588A (en) Multi reactor system in which pressure is adjusted
JP2004149403A (en) Hydrogen generator and fuel cell power system
CN113939359A (en) Reactor with direct electrical heating
JP6161927B2 (en) Reaction method and reaction apparatus
ES2807473T3 (en) Syngas production device and procedure
JP2012193918A (en) Burner for manufacturing inorganic spheroidized particle, apparatus for manufacturing inorganic spheroidized particle and method of manufacturing inorganic spheroidized particle
KR101651315B1 (en) Fluidized bed reactor and preparatio of carbon nanostructures using same
TWI792745B (en) Apparatus and method of producing inorganic powder
US20100247416A1 (en) Silicon manufacturing apparatus and related method
SE1001004A1 (en) Production of carbon in indirect heated gasification
RU2008149663A (en) METHOD FOR CONTINUOUS PRODUCTION OF 2-MERCAPTOBENZTHIAZOL IN A TUBULAR REACTOR AND DEVICE FOR ITS CARRYING OUT
ES2849551T3 (en) Methanization reactor to react hydrogen with at least one carbon-based compound to produce methane and water
JP2021147309A (en) Method and device for producing boron nitride nanotubes
JP2009242742A (en) Liquid cooling device for gas hydrate manufacturing apparatus and method
CN103380486B (en) Carburator
US20240286893A1 (en) Process and system for producing a gas comprising nitrogen (n2) and hydrogen (h2) by combustion of hydrogen in the presence of air
JP2012206077A (en) Method for producing inorganic spheroidized particle, inorganic spheroidized particle-producing burner, and inorganic spheroidized particle production device
KR102118318B1 (en) Integrated multi-stage reactor for methanation of carbon oxides
US20150168055A1 (en) Multi-stage temperature based separation of gas impurities
RU2377098C1 (en) Installation for receiving of powder of carbonyl iron
JP2015000819A (en) Hydrogen generation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170614

R150 Certificate of patent or registration of utility model

Ref document number: 6161926

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350