JP6161588B2 - Conductive powder evaluation method - Google Patents

Conductive powder evaluation method Download PDF

Info

Publication number
JP6161588B2
JP6161588B2 JP2014250046A JP2014250046A JP6161588B2 JP 6161588 B2 JP6161588 B2 JP 6161588B2 JP 2014250046 A JP2014250046 A JP 2014250046A JP 2014250046 A JP2014250046 A JP 2014250046A JP 6161588 B2 JP6161588 B2 JP 6161588B2
Authority
JP
Japan
Prior art keywords
powder
conductivity
conductive powder
evaluation
porosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014250046A
Other languages
Japanese (ja)
Other versions
JP2016109648A (en
Inventor
慶樹 渡邉
慶樹 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Original Assignee
Noritake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd filed Critical Noritake Co Ltd
Priority to JP2014250046A priority Critical patent/JP6161588B2/en
Publication of JP2016109648A publication Critical patent/JP2016109648A/en
Application granted granted Critical
Publication of JP6161588B2 publication Critical patent/JP6161588B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、導電性粉体の評価方法に関する。   The present invention relates to a method for evaluating conductive powder.

燃料電池、二次電池、電子部品等の分野においては、種々の導電性粉体が用いられている。これらの部品の設計にあたっては、用いられる導電性粉体の電気的特性を把握することが重要である。導電性粉体の導電率を測定するにあたっては、一般に、絶縁性の容器に粉体を入れ、上下から電極となる押し棒で粉体に一定の圧力をかけて圧密させ、電極間に電流を流したときの抵抗値、電極の面積および電極間距離から導電率を測定することが行われている(例えば特許文献1〜3)。   Various conductive powders are used in the fields of fuel cells, secondary batteries, electronic parts, and the like. In designing these parts, it is important to grasp the electrical characteristics of the conductive powder used. In measuring the electrical conductivity of conductive powder, generally, powder is put into an insulating container, and the powder is pressed and compacted with a push rod that becomes an electrode from above and below. Measuring the conductivity from the resistance value, the area of the electrode, and the distance between the electrodes when flowing (for example, Patent Documents 1 to 3).

特開平11−181324号公報Japanese Patent Laid-Open No. 11-181324 特開平6−236710号公報JP-A-6-236710 特開2014−53314号公報JP 2014-53314 A

しかしながら、上述した圧密しながらの測定は、特殊な容器や電極が必要であることに加えて、電極間の距離を正確に測ることや圧密挙動が定常状態になっているかの判定が困難であるため、正確な値を得ることができないという欠点がある。また、圧密体や粉体成形体の導電率には、粉体の充填状態(粉体粒子間の空隙率)が大きく影響するが、空隙率の制御は困難であるため、異なる種類の粉体間の導電率の比較評価には適さない。さらに、仮に空隙率の制御ができたとしても、かかる制御を行うためには、粉体の種類ごとに大量のサンプルを消費して予備実験を繰り返し行う必要があるため、希少な粉体の評価は事実上できないという問題がある。   However, in addition to the need for special containers and electrodes, it is difficult to accurately measure the distance between the electrodes and determine whether the consolidation behavior is in a steady state. Therefore, there is a drawback that an accurate value cannot be obtained. In addition, the electrical conductivity of compacts and powder compacts is greatly affected by the powder filling state (porosity between powder particles), but it is difficult to control the porosity, so different types of powders are used. It is not suitable for comparative evaluation of electrical conductivity. Furthermore, even if the porosity can be controlled, in order to perform such control, it is necessary to consume a large amount of samples for each type of powder and repeat preliminary experiments. Has the problem that it is virtually impossible.

本発明はかかる点に鑑みてなされたものであり、その主な目的は、空隙率の影響を排除して導電性粉体の導電性を適切に評価し得る新規な方法を提供することである。   This invention is made | formed in view of this point, The main objective is to provide the novel method which can eliminate the influence of porosity and can evaluate the electroconductivity of electroconductive powder appropriately. .

本発明によって提供される方法は、導電性粉体の導電性を評価する方法である。この評価方法は、評価対象となる導電性粉体の少なくともコア部と同質の材料からなる基準導電性粉体を用いて、互いに異なる空隙率を有する3つ以上の基準粉体成形体を作製することを包含する。また、前記3つ以上の基準粉体成形体の導電率を測定することを包含する。さらに、前記3つ以上の基準粉体成形体の空隙率を横軸に、導電率を縦軸に取ったときの相関図から空隙率Xと導電率Yとの関係を示す近似直線(Y=aX+b)を算出することを包含する。そして、前記評価対象となる導電性粉体を用いて評価用粉体成形体を作製し、当該評価用粉体成形体の導電率および空隙率と前記近似直線とに基づいて、前記評価対象となる導電性粉体の導電性を評価することを包含する。この評価方法によれば、粉体成形体の空隙率に影響されずに、種々異なる粉体間の導電性を相対的に評価することが可能になる。なお、本明細書において「コア部」とは、導電性粉体のベース(母材)となる部分をいう。当該コア部は、別の材料によってその一部または全部が覆われていてもよいし覆われていなくてもよい。当該コア部の一部または全部が別材料で覆われている場合、例えば、当該コア部を覆う別材料の種類や形状(例えば厚み)等によって、導電性粉体の導電性が異なり得る。また、当該コア部が別材料で覆われていない場合でも、当該コア部に対する導電性を異ならせる処理(例えば熱処理の有無や熱処理条件)等によって、導電性粉体の導電性が異なり得る。本発明は、このような導電性が種々異なり得る導電性粉体のコア部と同質の材料からなる基準導電性粉体を用いて近似直線(Y=aX+b)を算出することで、種々異なる粉体間の導電性を相対的に評価することが可能になる。なお、ここでいう「同質の材料」とは、コア部の主要成分(例えば炭素系材料の場合、C)が同質であることをいう。したがって、主要成分でない添加物(例えば貴金属元素などの触媒成分)、官能基、結晶構造、±20%以内の配合比の相違などは、ここでいう同質の材料に含まれ得る。   The method provided by the present invention is a method for evaluating the conductivity of a conductive powder. In this evaluation method, three or more reference powder compacts having different void ratios are produced using a reference conductive powder made of the same quality material as at least the core of the conductive powder to be evaluated. Including that. Further, the method includes measuring the electrical conductivity of the three or more reference powder compacts. Further, an approximate straight line (Y = Y) showing the relationship between the porosity X and the conductivity Y from the correlation diagram when the porosity of the three or more reference powder compacts is taken on the horizontal axis and the conductivity is taken on the vertical axis. including calculating aX + b). Then, an evaluation powder molded body is produced using the conductive powder to be evaluated, and based on the conductivity and porosity of the evaluation powder molded body and the approximate straight line, Evaluation of the conductivity of the conductive powder. According to this evaluation method, it is possible to relatively evaluate the conductivity between various powders without being affected by the porosity of the powder compact. In the present specification, the “core portion” refers to a portion that becomes a base (base material) of the conductive powder. The core portion may be partially or entirely covered with another material or may not be covered. When a part or all of the core part is covered with another material, for example, the conductivity of the conductive powder may differ depending on the type and shape (for example, thickness) of the different material covering the core part. Further, even when the core part is not covered with another material, the conductivity of the conductive powder can be different depending on the treatment (for example, the presence or absence of heat treatment or the heat treatment condition) of making the core part different in conductivity. The present invention calculates various kinds of powders by calculating an approximate straight line (Y = aX + b) using a reference conductive powder made of the same material as the core part of the conductive powder that can have various conductivity. It becomes possible to relatively evaluate the conductivity between the bodies. The “same material” here means that the main component of the core part (for example, C in the case of a carbon-based material) is homogeneous. Therefore, additives that are not main components (for example, catalyst components such as noble metal elements), functional groups, crystal structures, differences in blending ratios within ± 20%, and the like can be included in the homogeneous materials referred to herein.

ここで開示される評価方法の好ましい一態様では、前記評価用粉体成形体の導電率Yと、当該評価用粉体成形体の空隙率を前記近似直線のXに代入して得られた基準導電率Yとから、相対導電率比Y=(Y/Y)を算出し、当該相対導電率比Yに基づいて、前記評価対象となる導電性粉体の導電性を定量的に評価する。このようにすれば、空隙率の影響を排除して信頼性の高い導電性評価値(相対導電率比Y)を提供することができる。 In one preferred embodiment of the evaluation method disclosed herein, the conductivity of Y 1 of the evaluation for powder molded body was obtained by substituting the porosity of the evaluation for powder molded body X of the approximate straight line The relative conductivity ratio Y 3 = (Y 1 / Y 2 ) is calculated from the reference conductivity Y 2, and the conductivity of the conductive powder to be evaluated is determined based on the relative conductivity ratio Y 3. Assess quantitatively. In this way, it is possible to provide a highly reliable conductivity evaluation value (relative conductivity ratio Y 3 ) by eliminating the influence of the porosity.

ここで開示される評価方法の好ましい一態様では、前記評価対象となる導電性粉体のコア部は、炭素材料からなる。炭素材料の粉体成形体は、空隙率と導電率とが優れた直線関係を示すため、本発明の評価方法を好ましく適用し得る。   In a preferred aspect of the evaluation method disclosed herein, the core portion of the conductive powder to be evaluated is made of a carbon material. Since the powder molded body of the carbon material shows a linear relationship in which the porosity and conductivity are excellent, the evaluation method of the present invention can be preferably applied.

ここで開示される評価方法の好ましい一態様では、前記評価対象となる導電性粉体は、前記コア部の表面に付着した被膜を有している。好ましい一態様では、前記コア部の表面に付着した被膜は、シリカからなる。この場合、被膜の種類や厚みによって導電性粉体の導電性が異なり得るが、本態様の発明によれば、そのような導電性の異なる粉体間の導電性を精度よく評価することができる。   In a preferred aspect of the evaluation method disclosed herein, the conductive powder to be evaluated has a film attached to the surface of the core portion. In a preferred embodiment, the coating attached to the surface of the core portion is made of silica. In this case, the conductivity of the conductive powder may vary depending on the type and thickness of the coating, but according to the invention of this aspect, it is possible to accurately evaluate the conductivity between powders having different conductivity. .

また、本発明によると、ここで開示されるいずれかの評価方法の実施を包含する電子部品を製造する方法が提供される。
すなわち、ここで開示される電子部品製造方法は、導電性粉体を用いた電子部品の製造方法であって、
ここで開示されるいずれかの評価方法により導電性粉体の導電性を評価して当該導電性粉体が良品であるか否かを判定すること、および、
前記判定において良品とされた導電性粉体を用いて電子部品を構築すること
を包含する。
In addition, according to the present invention, there is provided a method of manufacturing an electronic component that includes performing any of the evaluation methods disclosed herein.
That is, the electronic component manufacturing method disclosed herein is a method of manufacturing an electronic component using conductive powder,
Evaluating the conductivity of the conductive powder by any of the evaluation methods disclosed herein to determine whether the conductive powder is a non-defective product, and
This includes constructing an electronic component using the conductive powder determined as non-defective in the determination.

この製造方法によれば、上述した方法により導電性粉体の導電性を評価して当該導電性粉体が良品であるか否かを判定し、その判定において良品とされた導電性粉体のみを採用するので、所望の導電性を有する導電性粉体を備えた高品質な電子部品を効率よく製造することができる。   According to this manufacturing method, the conductivity of the conductive powder is evaluated by the method described above to determine whether or not the conductive powder is a non-defective product, and only the conductive powder that has been determined to be non-defective in the determination. Therefore, it is possible to efficiently manufacture a high-quality electronic component including a conductive powder having desired conductivity.

粉体成形体を模式的に示す斜視図である。It is a perspective view which shows a powder molded object typically. 空隙率と導電率との関係を示すグラフである。It is a graph which shows the relationship between a porosity and electrical conductivity. 空隙率と導電率との関係を示すグラフである。It is a graph which shows the relationship between a porosity and electrical conductivity.

以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄(例えば、導電性粉体の製造方法など)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。   Hereinafter, preferred embodiments of the present invention will be described. Note that matters other than the matters specifically mentioned in the present specification and necessary for the implementation of the present invention (for example, a method for producing a conductive powder) can be obtained by those skilled in the art based on the prior art in this field. It can be grasped as a design matter. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field.

ここに開示される評価方法は、導電性粉体の電気的特性である導電性を評価する方法である。本発明の実施にあたって導電性を評価する対象となる導電性粉体の構成は特に制限されない。導電性を評価する対象となる導電性粉体は、導電性を有する粉末状のものであればよい。ここに開示される評価方法で評価される導電性粉体としては、典型的には燃料電池、リチウムイオン二次電池、電子部品等の分野において用いられている導電性粉体が好適である。導電性粉体の好適例としては、アセチレンブラック(AB)、ケッチェンブラック、ファーネスブラック、サーマルブラック等のカーボンブラックやその他(グラファイト等)の粉末状炭素材料が挙げられる。かかる粉末状炭素材料には、炭素以外の元素が含まれてもよい。例えば、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)、ルテニウム(Ru)、イリジウム(Ir)およびオスミウム(Os)のうちの1種または2種以上の金属元素が含まれていてもよい。好適例として、Pt、Pd、Rh等の貴金属元素を担持した粉末状炭素材料が挙げられる。さらに、導電性材料のコア部の表面に被膜が付着した導電性粉体(すなわちコア‐シェル構造の導電性粉体)を評価対象としてもよい。コア部の表面に付着した被膜を構成する材料としては、シリカ(SiO)、スズ、アモルファスカーボン、炭酸リチウム等の無機材料や樹脂等の有機材料が例示される。ここで開示される評価方法は、このような粉末状炭素材料のコア部の表面にシリカ等の被膜が付着した導電性粉体に対してより好適に適用することができる。 The evaluation method disclosed here is a method for evaluating conductivity, which is an electrical property of the conductive powder. In the practice of the present invention, the configuration of the conductive powder to be evaluated for conductivity is not particularly limited. The conductive powder to be evaluated for conductivity may be a powder having conductivity. As the conductive powder evaluated by the evaluation method disclosed herein, a conductive powder typically used in the fields of fuel cells, lithium ion secondary batteries, electronic parts and the like is suitable. Preferable examples of the conductive powder include carbon black such as acetylene black (AB), ketjen black, furnace black and thermal black, and other powdery carbon materials (graphite and the like). Such powdery carbon material may contain elements other than carbon. For example, one or more metal elements of platinum (Pt), palladium (Pd), rhodium (Rh), ruthenium (Ru), iridium (Ir) and osmium (Os) may be contained. . As a suitable example, a powdery carbon material supporting a noble metal element such as Pt, Pd, Rh and the like can be mentioned. Furthermore, a conductive powder (that is, a conductive powder having a core-shell structure) in which a film adheres to the surface of the core portion of the conductive material may be used as an evaluation target. Examples of the material constituting the film attached to the surface of the core part include inorganic materials such as silica (SiO 2 ), tin, amorphous carbon, and lithium carbonate, and organic materials such as resins. The evaluation method disclosed here can be more suitably applied to conductive powder in which a coating such as silica is attached to the surface of the core portion of such a powdery carbon material.

ここに開示される評価方法は、上述した導電性粉体の導電性を評価する方法に関するものである。以下、図1および図2を参照しながら、Ptを担持したカーボン粉末からなるコア部の表面にシリカ被膜が付着した導電性粉体(以下「シリカ被覆Pt/C」とも表記する。)を評価する手順につき説明するが、本発明の適用対象を限定する意図ではない。   The evaluation method disclosed here relates to a method for evaluating the conductivity of the conductive powder described above. Hereinafter, referring to FIG. 1 and FIG. 2, conductive powder (hereinafter also referred to as “silica-coated Pt / C”) having a silica coating attached to the surface of the core portion made of carbon powder carrying Pt is evaluated. However, it is not intended to limit the application target of the present invention.

上記導電性粉体の導電性を評価する方法の一つとして、本発明者は、図1に示すような導電性粉体の成形体(ここではペレット)を作製し、かかる粉体成形体の導電率を測定することを考えている。導電率の測定は、例えば、粉体成形体に対して4本のプローブ(探針)を直線上に配置し、外側の2本のプローブ間に電流を流したときの内側の2本のプローブ間に生ずる電位差を測定し、該電位差から抵抗率を求めることにより行われる。   As one of the methods for evaluating the conductivity of the conductive powder, the present inventor manufactured a conductive powder molded body (in this case, a pellet) as shown in FIG. I am thinking of measuring conductivity. For example, the conductivity is measured by arranging four probes (probes) on a straight line with respect to the powder molded body and passing two current probes between the two outer probes. This is done by measuring the potential difference generated between them and determining the resistivity from the potential difference.

図2および表1は、シリカ被覆Pt/Cを用いて作製した粉体成形体について、空隙率および導電率を表示した例である。粉体成形体Aは、シリカ被膜の厚みが3nmのシリカ被覆Pt/C(以下「導電性粉体1」と表記する。)を用いて作製されており、空隙率が65.9%、導電率が2.171×10−1S/cmである。粉体成形体Bは、シリカ被膜の厚みが1nmのシリカ被覆Pt/C((以下、「導電性粉体2」と表記する。)を用いて作製されており、空隙率が69.1%、導電率が4.513×10−1S/cmである。粉体成形体Cは、粉体成形体Bと同様、導電性粉体2を用いて作製されており、空隙率が76.4%、導電率が2.022×10−1S/cmである。 FIG. 2 and Table 1 are examples in which the porosity and conductivity are displayed for a powder molded body produced using silica-coated Pt / C. The powder compact A is manufactured using silica-coated Pt / C (hereinafter referred to as “conductive powder 1”) having a silica coating thickness of 3 nm, and has a porosity of 65.9% and a conductive property. The rate is 2.171 × 10 −1 S / cm. The powder compact B is manufactured using silica-coated Pt / C (hereinafter referred to as “conductive powder 2”) having a silica coating thickness of 1 nm and a porosity of 69.1%. The electrical conductivity is 4.513 × 10 −1 S / cm The powder compact C is produced using the conductive powder 2 in the same manner as the powder compact B, and the porosity is 76. The conductivity is 4% and the conductivity is 2.022 × 10 −1 S / cm.

Figure 0006161588
Figure 0006161588

ここで、導電性粉体の導電性の優劣について、導電性粉体1と導電性粉体2とを比較評価する場合、図2に示すように、粉体成形体Aと粉体成形体Bとを対比すると、粉体成形体Bの方が粉体成形体Aよりも空隙率が大きいにもかかわらず導電率が高いため、導電性粉体2の方が導電性粉体1よりも導電性が優れていることが明らかである。一方、粉体成形体Aと粉体成形体Cとの対比では、粉体成形体Cの方が粉体成形体Aよりも空隙率が大きく、かつ導電率も低いため、どちらの粉体がより導電性に優れているか視覚的に判断しにくい。導電性を適切に評価する観点からは、このような空隙率の影響を排除して、種々異なる粉体間の導電性を比較評価できることが望ましい。   Here, when comparing the conductive powder 1 and the conductive powder 2 with respect to the superiority or inferiority of the conductivity of the conductive powder, as shown in FIG. 2, the powder compact A and the powder compact B In contrast, the powder molded body B has a higher conductivity than the powder molded body A, although the porosity is higher. Therefore, the conductive powder 2 is more conductive than the conductive powder 1. It is clear that the properties are excellent. On the other hand, in comparison between the powder molded body A and the powder molded body C, the powder molded body C has a higher porosity and lower electrical conductivity than the powder molded body A. It is difficult to visually determine whether it is more conductive. From the viewpoint of appropriately evaluating the conductivity, it is desirable to be able to compare and evaluate the conductivity between various powders by eliminating the influence of such porosity.

本発明者は、導電性粉体の粉体成形体を複数作製し、種々の空隙率を有する粉体成形体の導電率を求めた結果、粉体成形体の導電率と空隙率とが直線関係にあることを見出した。具体的には、シリカ被膜がないPt/C(以下「導電性粉体3」と表記する。)を用いて種々異なった空隙率に調整した粉体成形体を複数作製し、導電率を測定した。その結果、図2に示すように、粉体成形体の空隙率が少なくとも50%〜90%(典型的には60%〜80%)の間では、空隙率と導電率とが直線関係にあることを見出した。この関係を利用することで、空隙率に影響されずに、種々異なる粉体間の導電性を比較評価することが可能になる。   As a result of producing a plurality of powder compacts of conductive powder and determining the conductivity of powder compacts having various porosity, the present inventor found that the conductivity and porosity of the powder compact were linear. I found that there is a relationship. Specifically, using Pt / C without a silica coating (hereinafter referred to as “conductive powder 3”), a plurality of powder compacts adjusted to various porosity are prepared, and the electrical conductivity is measured. did. As a result, as shown in FIG. 2, when the porosity of the powder compact is at least 50% to 90% (typically 60% to 80%), the porosity and conductivity are in a linear relationship. I found out. By utilizing this relationship, it is possible to compare and evaluate the conductivity between various different powders without being affected by the porosity.

例えば、上記得られた空隙率を横軸に、導電率を縦軸に取ったときの相関図から空隙率Xと導電率Yとの関係を示す近似直線(Y=aX+b)を算出するとよい。そして、この算出した近似直線と、導電性粉体1、2を用いた粉体成形体A〜Cの導電率とを比較することで、導電性粉体1、2と導電性粉体3とを相対評価することができる。図示した例では、導電性粉体1、2を用いた粉体成形体A〜Cの導電率が、同等の空隙率を有する導電性粉体3を用いた粉体成形体の導電率よりも低いことを視覚的に判断することができる。   For example, an approximate straight line (Y = aX + b) indicating the relationship between the porosity X and the conductivity Y may be calculated from the correlation diagram when the obtained porosity is on the horizontal axis and the conductivity is on the vertical axis. And by comparing this calculated approximate straight line and the conductivity of the powder compacts A to C using the conductive powders 1 and 2, the conductive powders 1 and 2 and the conductive powder 3 Can be evaluated relative to each other. In the illustrated example, the conductivity of the powder compacts A to C using the conductive powders 1 and 2 is higher than the conductivity of the powder compact using the conductive powder 3 having the same porosity. It is possible to judge visually that it is low.

あるいは、相対導電率比に換算して導電性粉体の導電性を定量的に評価することも可能である。例えば、導電性粉体1、2を用いた粉体成形体A〜Cの導電率Yと、当該粉体成形体A〜Cの空隙率を前記近似直線のXに代入して得られた基準導電率Yとから、導電性粉体1、2の相対導電率比Y=(Y/Y)を算出するとよい。かかる相対導電率比は、導電性粉体1、2の導電性の評価指標となり得る。すなわち、相対導電率比が大きければ大きいほど、導電性粉体1、2の導電性が良好であることを示唆している。 Alternatively, it is possible to quantitatively evaluate the conductivity of the conductive powder in terms of a relative conductivity ratio. For example, obtained by substituting the conductivity Y 1 of the powder compacts A to C using the conductive powders 1 and 2 and the porosity of the powder compacts A to C into X of the approximate line. The relative conductivity ratio Y 3 = (Y 1 / Y 2 ) of the conductive powders 1 and 2 may be calculated from the reference conductivity Y 2 . Such a relative conductivity ratio can be an evaluation index of the conductivity of the conductive powders 1 and 2. That is, it is suggested that the larger the relative conductivity ratio, the better the conductivity of the conductive powders 1 and 2.

図2に示した例では、導電性粉体1を用いた粉体成形体Aの導電率Yと、当該粉体成形体Aの空隙率を前記近似直線のXに代入して得られた基準導電率Yとから、導電性粉体1の相対導電率比Y=(Y/Y)を算出すると、3.48×10−2となる。一方、導電性粉体2を用いた粉体成形体Cの導電率Yと、当該粉体成形体Cの空隙率を前記近似直線のXに代入して得られた基準導電率Yとから、導電性粉体2の相対導電率比Y=(Y/Y)を算出すると、8.83×10−2となる。この結果から、導電性粉体2は、導電性粉体1よりも導電性に優れると判断することができる。粉体成形体Aと粉体成形体Cとの対比では、粉体成形体Cの方が粉体成形体Aよりも空隙率が大きく、かつ導電率も低いため、どちらの粉体がより導電性に優れているか視覚的に判断しにくい。しかし、上記のように相対導電率比を求めることで、相対導電率比の大小から、種々異なる粉体間の導電性を定量的に評価することが可能になる。 In the example shown in FIG. 2, it was obtained by substituting the conductivity Y1 of the powder compact A using the conductive powder 1 and the porosity of the powder compact A into X of the approximate line. When the relative conductivity ratio Y 3 = (Y 1 / Y 2 ) of the conductive powder 1 is calculated from the reference conductivity Y 2 , 3.48 × 10 −2 is obtained. On the other hand, the conductivity of the powder molded body C using a conductive powder 2 and Y 1, a reference conductivity Y 2 obtained by substituting the porosity of the powder molded body C to X of the approximate straight line From this, the relative conductivity ratio Y 3 = (Y 1 / Y 2 ) of the conductive powder 2 is calculated to be 8.83 × 10 −2 . From this result, it can be determined that the conductive powder 2 is more conductive than the conductive powder 1. In comparison between the powder compact A and the powder compact C, the powder compact C has a higher porosity and lower electrical conductivity than the powder compact A, so that either powder is more conductive. It is difficult to judge visually whether it is excellent. However, by obtaining the relative conductivity ratio as described above, it is possible to quantitatively evaluate the conductivity between various powders based on the relative conductivity ratio.

以上のような知見から、本実施形態における導電性粉体の評価方法は、基準粉体成形体作製工程と導電率測定工程と近似直線算出工程と評価工程とを有している。各工程を概略すれば以下の通りである。   From the above knowledge, the conductive powder evaluation method according to the present embodiment includes a reference powder molded body production step, a conductivity measurement step, an approximate straight line calculation step, and an evaluation step. The outline of each process is as follows.

<基準粉体成形体作製工程>
基準粉体成形体作製工程は、評価対象となる導電性粉体の少なくともコア部と同質の材料からなる基準導電性粉体を用いて、互いに異なる空隙率を有する3つ以上の基準粉体成形体を作製する工程である。例えば、評価対象がシリカ被覆Pt/Cの場合、コア部と同質の材料からなるPt/Cを用いて、互いに異なる空隙率を有する3つ以上の基準粉体成形体を作製するとよい。基準粉体成形体の形状は、後述する導電率測定工程において導電率を測定しやすい形状であればよく、例えば、図1に示すようなペレット状に成形され得る。作製する基準粉体成形体の数は3つ以上であればよいが、高精度に近似直線を算出する観点からは、概ね5つ以上(例えば5〜20つ)が適当であり、好ましくは6つ以上(例えば6〜10つ)である。
<Standard powder compact manufacturing process>
The reference powder molded body manufacturing step uses three or more reference powder moldings having different void ratios using a reference conductive powder made of the same quality material as at least the core part of the conductive powder to be evaluated. This is a process for producing a body. For example, when the evaluation target is silica-coated Pt / C, three or more reference powder compacts having different porosity from each other may be produced using Pt / C made of the same material as the core. The shape of the reference powder molded body may be any shape as long as the conductivity can be easily measured in the later-described conductivity measuring step, and can be formed into a pellet shape as shown in FIG. The number of reference powder compacts to be produced may be three or more, but from the viewpoint of calculating an approximate straight line with high accuracy, generally five or more (for example, 5 to 20) are appropriate, preferably 6 One or more (for example, 6 to 10).

基準粉体成形体の空隙率は、粉体成形体の作製が可能な範囲内であれば特に限定されるものではないが、概ね30%〜90%が適当であり、好ましくは50%〜90%、より好ましくは60%〜80%である。かかる範囲内において互いに異なる空隙率を有する3つ以上の基準粉体成形体を作製するとよい。高精度に近似直線を算出する観点からは、3つ以上の基準粉体成形体のうち、最大の空隙率を有する基準粉体成形体と、最小の空隙率を有する基準粉体成形体との空隙率の差が、通常は5%以上、好ましくは8%以上、より好ましくは10%以上であるとよい。基準粉体成形体の空隙率は、例えば、基準粉体成形体を成形する際の成形圧力、成形体の厚み、成形体の質量等を変えることによって制御することができる。   The porosity of the reference powder molded body is not particularly limited as long as it is within a range in which the powder molded body can be produced, but is generally 30% to 90%, preferably 50% to 90%. %, More preferably 60% to 80%. It is preferable to produce three or more reference powder compacts having different porosity in such a range. From the viewpoint of calculating an approximate straight line with high accuracy, among three or more reference powder compacts, a reference powder compact having the maximum porosity and a reference powder compact having the minimum porosity The difference in porosity is usually 5% or more, preferably 8% or more, more preferably 10% or more. The porosity of the reference powder molded body can be controlled, for example, by changing the molding pressure, the thickness of the molded body, the mass of the molded body, and the like when the reference powder molded body is molded.

なお、ここでいう「空隙率」は、粉体成形体における空孔の割合(百分率)である。粉体成形体の空隙率は、粉体成形体の見掛けの体積をVとし、その質量をWとし、粉体成形体を構成する導電性粉体の見掛け密度(すなわち導電性粒子の物質自身の実体積と粒子内の閉気孔(外部と繋がっていない気孔)の体積とを合わせた合計体積によって質量を割った値)をρとした場合に、(1−W/ρ)×100により算出され得る。図2に示したペレット状成形体の場合、粉体成形体10の見掛けの体積Vは、粉体成形体の半径rと厚みdとからπrdにより算出され得る。ここで、粉体成形体の厚みdは、マイクロメータを用いて測定するものとする。また、粉体成形体の質量Wは、電子天秤を用いて測定するものとする。また、導電性粉体の真密度ρは、定容積膨張法による乾式密度測定により把握するものとする。 Here, the “void ratio” is a ratio (percentage) of pores in the powder compact. The porosity of the powder molded body is defined as follows. The apparent volume of the powder molded body is V 1 , the mass thereof is W 1, and the apparent density of the conductive powder constituting the powder molded body (that is, the substance of the conductive particles). When (1−W 1 / ρ 1 V) is defined as ρ 1 , the value obtained by dividing the mass by the total volume of the actual volume of the particle and the volume of closed pores in the particles (pores not connected to the outside). 1 ) It can be calculated by x100. In the case of the pellet-shaped compact shown in FIG. 2, the apparent volume V 1 of the powder compact 10 can be calculated by πr 2 d from the radius r and thickness d of the powder compact. Here, the thickness d of the powder compact is measured using a micrometer. The mass W 1 of the powder compact is measured using an electronic balance. Further, the true density ρ 1 of the conductive powder is grasped by dry density measurement by a constant volume expansion method.

<導電率測定工程>
導電率測定工程では、上記作製した3つ以上の基準粉体成形体の導電率を測定する工程である。導電率の測定方法としては、一般的な導電率の測定方法として常套的に使用されているものから任意に選択することができる。好ましい一態様では、四探針法が採用され得る。四探針法では、例えば、粉体成形体に対して4本のプローブ(探針)を直線上に配置し、外側の2本のプローブ間に電流を流したときの内側の2本のプローブ間に生ずる電位差から抵抗率を測定する。この抵抗率から導電率を高精度に求めることができる。
<Conductivity measurement process>
The conductivity measuring step is a step of measuring the conductivity of the three or more reference powder molded bodies produced as described above. As a measuring method of electrical conductivity, it can select arbitrarily from what is conventionally used as a general measuring method of electrical conductivity. In a preferred embodiment, a four-probe method can be employed. In the four-probe method, for example, four probes (probes) are arranged on a straight line with respect to the powder compact, and two probes on the inner side when a current is passed between the two outer probes. The resistivity is measured from the potential difference generated between them. From this resistivity, the conductivity can be determined with high accuracy.

<近似直線算出工程>
近似直線算出工程では、前記作製した3つ以上の基準粉体成形体の空隙率を横軸に、導電率を縦軸に取ったときの相関図から空隙率Xと導電率Yとの関係を示す近似直線(Y=aX+b)を算出する工程である。近似直線の算出方法としては、一般的な近似直線の算出方法として常套的に使用されているものから任意に選択することができる。例えば、最小二乗法(各点からの距離の総和が最小となるように直線を求める方法)を好ましく用いることができる。最小二乗法を用いる場合、相関係数Rの二乗(絶対値)としては、概ね0.9以上が適当であり、好ましくは0.95以上であり、より好ましくは0.98以上であり、特に好ましくは0.99以上である。このような優れた直線性を示す近似直線を用いることにより、導電性粉体をより適切に評価することができる。
<Approximate line calculation step>
In the approximate straight line calculation step, the relationship between the porosity X and the conductivity Y from the correlation diagram when the porosity of the three or more reference powder compacts produced above is taken on the horizontal axis and the conductivity is taken on the vertical axis. This is a step of calculating an approximate straight line (Y = aX + b). The approximate straight line calculation method can be arbitrarily selected from those conventionally used as a general approximate straight line calculation method. For example, a least square method (a method for obtaining a straight line so that the sum of distances from each point is minimized) can be preferably used. In the case of using the least square method, the square (absolute value) of the correlation coefficient R is approximately 0.9 or more, preferably 0.95 or more, more preferably 0.98 or more, Preferably it is 0.99 or more. By using an approximate straight line exhibiting such excellent linearity, the conductive powder can be more appropriately evaluated.

<評価工程>
評価工程は、評価対象となる導電性粉体を用いて評価用粉体成形体を作製し、当該評価用粉体成形体の導電率および空隙率と前記近似直線とに基づいて、評価対象となる導電性粉体の導電性を評価する工程である。評価用粉体成形体の形状は、できるだけ少量で、かつ導電率を測定しやすい形状であればよく、例えば図1に示すようなペレット状に成形され得る。また、評価用粉体成形体の空隙率は、粉体成形体の作製が可能な範囲内であれば特に限定されるものではなく、概ね30%〜90%、好ましくは50%〜90%、より好ましくは60%〜80%に設定され得る。ここで開示される技術によると、かかる評価用粉体成形体の空隙率に影響されずに、種々異なる導電性粉体の導電性を適切に評価することが可能である。評価用粉体成形体の導電率および空隙率の測定方法については、前述した基準粉体成形体と同様の手順で把握できるため、重複した説明は省略する。
<Evaluation process>
The evaluation step produces an evaluation powder molded body using the conductive powder to be evaluated, and based on the conductivity and porosity of the evaluation powder molded body and the approximate line, This is a step of evaluating the conductivity of the conductive powder. The shape of the evaluation powder compact may be as small as possible and the shape of which the conductivity can be easily measured. For example, it can be formed into a pellet shape as shown in FIG. Further, the porosity of the evaluation powder molded body is not particularly limited as long as the powder molded body can be produced, and is generally 30% to 90%, preferably 50% to 90%. More preferably, it can be set to 60% to 80%. According to the technique disclosed herein, it is possible to appropriately evaluate the conductivity of various conductive powders without being affected by the porosity of the evaluation powder compact. About the measuring method of the electrical conductivity and porosity of the powder compact for evaluation, since it can grasp | ascertain in the same procedure as the reference | standard powder compact mentioned above, the overlapping description is abbreviate | omitted.

評価用導電性粉体の導電性の評価は、上記算出した近似直線と、評価用粉体成形体の導電率および空隙率とに基づいて行うとよい。例えば、評価用粉体成形体の導電率Yが、当該評価用粉体成形体の空隙率を近似直線のXに代入して得られた基準導電率Yよりも小さい場合、評価用導電性粉体の方が基準導電性粉体よりも導電性が劣ると判断される。一方、評価用粉体成形体の導電率Yが、当該評価用粉体成形体の空隙率を近似直線のXに代入して得られた基準導電率Yよりも大きい場合、評価用導電性粉体の方が基準導電性粉体よりも導電性が良好であると判断される。その際、図2に示すように、基準粉体成形体の空隙率を横軸に、導電率を縦軸に取ったときの相関図を用いて上記評価を行ってもよい。この場合、上記算出した近似直線と、評価用粉体成形体の導電率とを比較することで、評価対象となる導電性粉体と基準導電性粉体との導電性の優劣を視覚的に判断することができる。 The conductivity of the evaluation conductive powder may be evaluated based on the calculated approximate line and the conductivity and porosity of the evaluation powder compact. For example, when the conductivity Y 1 of the evaluation powder compact is smaller than the reference conductivity Y 2 obtained by substituting the porosity of the evaluation powder compact for the approximate straight line X, the evaluation conductivity It is judged that the conductive powder is inferior in conductivity to the reference conductive powder. On the other hand, when the conductivity Y 1 of the evaluation powder compact is larger than the reference conductivity Y 2 obtained by substituting the porosity of the evaluation powder compact for the approximate straight line X, the evaluation conductivity It is determined that the conductive powder has better conductivity than the reference conductive powder. At that time, as shown in FIG. 2, the evaluation may be performed using a correlation diagram when the porosity of the reference powder compact is taken on the horizontal axis and the conductivity is taken on the vertical axis. In this case, by comparing the calculated approximate straight line with the conductivity of the evaluation powder compact, the superiority or inferiority of the conductivity between the conductive powder to be evaluated and the reference conductive powder is visually determined. Judgment can be made.

あるいは、相対導電率比に換算して、評価対象となる導電性粉体の導電性を定量的に評価してもよい。例えば、評価用粉体成形体の導電率Yと、当該評価用粉体成形体の空隙率を前記近似直線のXに代入して得られた基準導電率Yとから、評価用導電性粉体の相対導電率比Y=(Y/Y)を算出するとよい。かかる相対導電率比は、評価用導電性粉体の導電性の評価指標となり得る。すなわち、相対導電率比が大きければ大きいほど、評価用導電性粉体の導電性が良好であることを示唆している。例えば、種々異なる評価用導電性粉体の評価用粉体成形体について空隙率および導電率を測定し、前記近似直線を用いて相対導電率比Yを算出することで、空隙率に影響されずに、各粉体の導電性を定量的かつ相対的に評価することが可能になる。 Alternatively, the conductivity of the conductive powder to be evaluated may be quantitatively evaluated in terms of the relative conductivity ratio. For example, from the conductivity Y 1 of the evaluation powder compact and the reference conductivity Y 2 obtained by substituting the porosity of the evaluation powder compact into X of the approximate straight line, the evaluation conductivity It is preferable to calculate the relative conductivity ratio Y 3 = (Y 1 / Y 2 ) of the powder. Such a relative conductivity ratio can be an evaluation index of the conductivity of the conductive powder for evaluation. That is, the larger the relative conductivity ratio, the better the conductivity of the evaluation conductive powder. For example, the porosity and conductivity were measured for different evaluation conductive powder for evaluation powder molded body, by calculating the relative conductivity ratio Y 3 by using the approximate straight line is affected by the porosity Therefore, it is possible to quantitatively and relatively evaluate the conductivity of each powder.

上述した導電性の評価は、少量の粉体成形体(サンプル)を用いて簡易に行えるため、例えば、電子部品等の製造プロセスに容易に組み込むことができる。以下、上述した評価方法の実施を包含する電子部品の製造方法について説明する。   Since the above-described evaluation of conductivity can be easily performed using a small amount of a powder molded body (sample), for example, it can be easily incorporated into a manufacturing process of an electronic component or the like. Hereinafter, the manufacturing method of the electronic component including implementation of the evaluation method mentioned above is demonstrated.

ここに開示される電子部品の製造方法は、上述した評価方法により導電性粉体の導電性を評価して当該導電性粉体が良品であるか否かを判定すること、および、この判定において良品とされた導電性粉体を用いて電子部品を構築することを包含する。   In the method for manufacturing an electronic component disclosed herein, the conductivity of the conductive powder is evaluated by the evaluation method described above to determine whether or not the conductive powder is a non-defective product. This includes constructing an electronic component using a conductive powder that is regarded as a good product.

この場合、評価対象となる導電性粉体の少なくともコア部と同質の材料からなる基準導電性粉体を用いて、互いに異なる空隙率を有する3つ以上の基準粉体成形体を作製し、当該基準粉体成形体の空隙率と導電率との関係を示す近似直線(Y=aX+b)をあらかじめ算出しておくとよい。そして、製造に用いられる導電性粉体について、評価用粉体成形体を作製し、当該評価用粉体成形体の導電率および空隙率と、上記予備実験により得られた近似直線とに基づいて、評価対象となる導電性粉体の導電性を評価するとよい。   In this case, three or more reference powder compacts having different porosity are produced using reference conductive powder made of the same quality material as at least the core of the conductive powder to be evaluated. An approximate straight line (Y = aX + b) indicating the relationship between the porosity and conductivity of the reference powder compact may be calculated in advance. And about the electroconductive powder used for manufacture, the powder compact for evaluation is produced, and based on the electrical conductivity and porosity of the powder compact for evaluation and the approximate straight line obtained by the preliminary experiment. The conductivity of the conductive powder to be evaluated may be evaluated.

好ましい一態様では、評価用粉体成形体の導電率Yと、当該評価用粉体成形体の空隙率を近似直線のXに代入して得られた基準導電率Yとから算出された相対導電率比Y=(Y/Y)に基づいて導電性粉体の良否を判定する。例えば、良否の判定基準となる相対導電率比Yの値を予め設定しておき、これを閾値として上記算出された相対導電率比と比較することにより、導電性粉体が良品であるか否かを判定するとよい。例えば、その算出された相対導電率比が閾値以上の場合に導電性粉体を良品として判定し、当該相対導電率比が閾値を下回る場合に不良とするとよい。そして、その判定において良品とされた導電性粉体のみを用いて電子部品を製造するとよい。この製造方法によれば、所望の導電性を有する導電性粉体を備えた高品質な電子部品を効率よく(導電性粉体の性能バラツキによる製品不良の発生を抑えつつ)製造することができる。 In a preferred embodiment, the electrical conductivity Y 1 of the evaluation powder compact is calculated from the reference electrical conductivity Y 2 obtained by substituting the porosity of the evaluation powder compact into the approximate straight line X. The quality of the conductive powder is determined based on the relative conductivity ratio Y 3 = (Y 1 / Y 2 ). For example, by comparing the criteria become relative conductivity ratio is preset values for Y 3, the calculated relative conductivity ratio as a threshold of acceptability, or electrically conductive powder is a good It is good to determine whether or not. For example, when the calculated relative conductivity ratio is equal to or greater than a threshold value, the conductive powder is determined as a non-defective product, and when the relative conductivity ratio is lower than the threshold value, it is good. And it is good to manufacture an electronic component only using the electroconductive powder made into the quality goods in the determination. According to this manufacturing method, it is possible to efficiently manufacture a high-quality electronic component provided with conductive powder having desired conductivity (while suppressing the occurrence of product defects due to performance variations of the conductive powder). .

上記製造に用いられる導電性粉体の評価は、ロット毎のサンプリング抽出により行ってもよい。このようにすれば、導電性粉体のロットごとの性能バラツキの影響を抑えて、信頼性の高い電子部品を提供することができる。   You may perform evaluation of the electroconductive powder used for the said manufacture by sampling extraction for every lot. In this way, it is possible to provide a highly reliable electronic component while suppressing the influence of performance variation for each lot of conductive powder.

なお、ここに開示される製造方法は、上記のとおり、製造に用いられる導電性粉体を用いて評価用粉体成形体を作製し、当該評価用粉体成形体の導電率および空隙率と上記近似直線とに基づいて、導電性粉体の導電性を評価する評価(検査)工程を包含することによって特徴付けられるものであり、その他の条件(電子部品用材料の合成方法や、電子部品用材料をエレメントとして電子部品を構築する方法)は特に制限されない。   In addition, as described above, the manufacturing method disclosed herein produces an evaluation powder molded body using the conductive powder used for manufacturing, and the electrical conductivity and porosity of the evaluation powder molded body It is characterized by including an evaluation (inspection) process for evaluating the conductivity of the conductive powder based on the above approximate line, and other conditions (such as a method for synthesizing materials for electronic components and electronic components) The method of constructing an electronic component using the working material as an element is not particularly limited.

以下、本発明に関する実施例を説明するが、本発明を以下の実施例に示すものに限定することを意図したものではない。   EXAMPLES Examples relating to the present invention will be described below, but the present invention is not intended to be limited to those shown in the following examples.

<基準粉体成形体の作製>
基準導電性粉体としてPt/C(Ptを担持したカーボン粉末)を用いて基準粉体成形体を作製した。具体的には、基準導電性粉体としてのPt/C0.2gを電子天秤で秤量し、直径15mmの金型とプレス機(株式会社アマダ製、200kNニュートンプレスN3056−00)を用いて計6個のペレット状の基準粉体成形体を作製した。成形圧力は20MPa〜80MPaとした。
<Preparation of standard powder compact>
A standard powder compact was prepared using Pt / C (carbon powder carrying Pt) as the standard conductive powder. Specifically, 0.2 g of Pt / C as the reference conductive powder was weighed with an electronic balance, and a total of 6 was measured using a mold having a diameter of 15 mm and a press machine (Amada Co., Ltd., 200 kN Newton Press N3056-00). A pellet-shaped standard powder compact was produced. The molding pressure was 20 to 80 MPa.

<導電率および空隙率の測定>
上記得られた基準粉体成形体(ペレット)の質量を電子天秤で測定し、得られたペレットの中心の厚みをマイクロメータで測定した。次いで、抵抗率計(株式会社三菱化学アナリテック製、ロレスターGP、MCP−T610型)を用いて四探針法にて測定した。抵抗率計のプローブは、ペレットの中央に当てた。得られた抵抗率からペレットの寸法および補正係数RCF(Resistivity Correction Factor)を用いて導電率に換算した。また、基準粉体成形体(ペレット)の空隙率を、基準粉体成形体の見掛けの体積Vと質量Wと導電性粉体の真密度ρとから(1−W/ρ)×100により算出した。ここで導電性粉体の真密度ρは、乾式自動密度計(株式会社島津製作所製、アキュピックII1340)を用いて測定した。基準粉体成形体の構成、空隙率および導電率を表2の該当欄に示す。
<Measurement of conductivity and porosity>
The mass of the obtained standard powder compact (pellet) was measured with an electronic balance, and the thickness of the center of the obtained pellet was measured with a micrometer. Subsequently, it measured with the four-probe method using the resistivity meter (Mitsubishi Chemical Analytech Co., Ltd. make, Loresta GP, MCP-T610 type | mold). The resistivity meter probe was placed in the center of the pellet. The obtained resistivity was converted to conductivity using the pellet size and a correction coefficient RCF (Resistivity Correction Factor). Further, the porosity of the reference powder molded body (pellet) is calculated from the apparent volume V 1 and mass W 1 of the reference powder molded body and the true density ρ 1 of the conductive powder (1-W 1 / ρ 1 V 1 ) × 100. Here, the true density ρ 1 of the conductive powder was measured using a dry automatic densimeter (manufactured by Shimadzu Corporation, Accupic II 1340). The configuration, porosity, and conductivity of the reference powder compact are shown in the corresponding columns of Table 2.

Figure 0006161588
Figure 0006161588

<近似直線の算出>
上記得られた基準粉体成形体の空隙率を横軸に、導電率を縦軸に取ったときの相関図から空隙率Xと導電率Yとの関係を示す近似直線(Y=aX+b)を最小自乗法により算出した。結果を図2に示す。図2に示すように、最小自乗法により得られた近似直線は、Y=−0.3761X+31.025となった。また、相関係数Rの二乗(絶対値)は0.9991となり、この結果から優れた直線性を示すことが確認された。
<Calculation of approximate straight line>
An approximate straight line (Y = aX + b) indicating the relationship between the porosity X and the conductivity Y is shown from the correlation diagram when the porosity of the obtained standard powder compact is taken on the horizontal axis and the conductivity is taken on the vertical axis. It was calculated by the least square method. The results are shown in FIG. As shown in FIG. 2, the approximate straight line obtained by the method of least squares was Y = −0.3761X + 31.025. Further, the square (absolute value) of the correlation coefficient R was 0.9991, and it was confirmed from this result that excellent linearity was exhibited.

<評価用粉体成形体の作製>
評価用導電性粉体としてシリカ被覆Pt/Cを用いて評価用粉体成形体を作製した。具体的には、評価用導電性粉体としての上記シリカ被覆Pt/C0.2gを電子天秤で秤量し、直径15mmの金型とプレス機(株式会社アマダ製、200kNニュートンプレスN3056−00)を用いてペレット状の評価用粉体成形体を作製した。そして、前記<導電率および空隙率の測定>と同じ手順で評価用粉体成形体の導電率および空隙率を測定した。ここでは、シリカ被膜の厚みが3nmのシリカ被覆Pt/C(導電性粉体1)を用いて1つの評価用粉体成形体Aを作製した。また、シリカ被膜の厚みが1nmのシリカ被覆Pt/C(導電性粉体2)を用いて2つの評価用粉体成形体B、Cを作製した。シリカ被膜の厚みは、TEM観察により把握した。また、各評価用粉体成形体の導電率Yと、当該評価用粉体成形体の空隙率を前記近似直線のXに代入して得られた基準導電率Yとから、相対導電率比Y=(Y/Y)を算出した。各評価用粉体成形体の構成、空隙率、導電率および相対導電率比を表3の該当欄に示す。また、各評価用粉体成形体の空隙率と導電率との関係を図2に示してある。
<Preparation of powder molded body for evaluation>
A powder compact for evaluation was prepared using silica-coated Pt / C as the conductive powder for evaluation. Specifically, 0.2 g of the above silica-coated Pt / C as an electroconductive powder for evaluation was weighed with an electronic balance, and a die having a diameter of 15 mm and a press machine (Amada Co., Ltd., 200 kN Newton Press N3056-00) were used. A pellet-shaped powder molded body for evaluation was prepared using the above. Then, the electrical conductivity and porosity of the evaluation powder compact were measured in the same procedure as in <Measurement of electrical conductivity and porosity>. Here, one powder molded body A for evaluation was produced using silica-coated Pt / C (conductive powder 1) having a silica coating thickness of 3 nm. Also, two evaluation powder compacts B and C were prepared using silica-coated Pt / C (conductive powder 2) having a silica coating thickness of 1 nm. The thickness of the silica coating was determined by TEM observation. Further, relative conductivity from the conductivity Y 1 of each evaluation powder molded body and the reference conductivity Y 2 obtained by substituting the porosity of the evaluation powder molded body into X of the approximate line. The ratio Y 3 = (Y 1 / Y 2 ) was calculated. The configuration, porosity, conductivity, and relative conductivity ratio of each evaluation powder compact are shown in the corresponding columns of Table 3. FIG. 2 shows the relationship between the porosity and conductivity of each evaluation powder compact.

Figure 0006161588
Figure 0006161588

図2および表3から明らかなように、近似直線と、導電性粉体1を用いた評価用粉体成形体Aの導電率とを対比すると、導電性粉体1を用いた評価用粉体成形体Aの導電率が、同等の空隙率を有する基準導電性粉体を用いた粉体成形体の導電率よりも小さいことが視覚的に判る。これにより、基準導電性粉体の方が導電性粉体1よりも導電性に優れると云える。また、近似直線と、導電性粉体2を用いた評価用粉体成形体B,Cの導電率とを対比すると、導電性粉体2を用いた評価用粉体成形体B、Cの導電率が、同等の空隙率を有する基準導電性粉体を用いた粉体成形体の導電率よりも小さいことが視覚的に判る。これにより、基準導電性粉体の方が導電性粉体2よりも導電性に優れると云える。また、導電性粉体1と導電性粉体2との比較では、表3に示すように、導電性粉体2の相対導電率比は何れも概ね8・9×10−2となり、導電性粉体1の相対導電率比よりも大きい。この結果から、導電性粉体2の方が導電性粉体1よりも導電性に優れると云える。 As is clear from FIG. 2 and Table 3, when the approximate straight line is compared with the conductivity of the evaluation powder molded body A using the conductive powder 1, the evaluation powder using the conductive powder 1 is obtained. It can be seen visually that the electrical conductivity of the molded body A is smaller than the electrical conductivity of the powder molded body using the reference conductive powder having an equivalent porosity. Accordingly, it can be said that the reference conductive powder is superior in conductivity to the conductive powder 1. Further, when the approximation straight line is compared with the conductivity of the evaluation powder compacts B and C using the conductive powder 2, the conductivity of the evaluation powder compacts B and C using the conductive powder 2 is shown. It can be visually seen that the rate is smaller than the conductivity of the powder compact using the reference conductive powder having the same porosity. Thereby, it can be said that the reference conductive powder is more excellent in conductivity than the conductive powder 2. In comparison between the conductive powder 1 and the conductive powder 2, as shown in Table 3, the relative conductivity ratio of the conductive powder 2 is almost 8.9 × 10 −2 . It is larger than the relative conductivity ratio of the powder 1. From this result, it can be said that the conductive powder 2 is more conductive than the conductive powder 1.

以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、勿論、種々の改変が可能である。   As mentioned above, although this invention was demonstrated by suitable embodiment, such description is not a limitation matter and of course various modifications are possible.

例えば、上述した実施形態では、図2に示すように、基準粉体成形体の空隙率を横軸に、導電率を縦軸に取ったときの相関図を用いて、近似直線と評価用粉体成形体の導電率とを比較する場合を例示したが、これに限定されない。例えば、図3に示すように、縦軸の導電率を対数軸としてもよい。このように縦軸の導電率を対数軸とすることで、導電率のオーダーの違いをさらに視覚的に判断することができる。   For example, in the above-described embodiment, as shown in FIG. 2, using the correlation diagram when the porosity of the reference powder molded body is taken on the horizontal axis and the conductivity is taken on the vertical axis, the approximate line and the powder for evaluation are used. Although the case where it compares with the electrical conductivity of a body molded object was illustrated, it is not limited to this. For example, as shown in FIG. 3, the conductivity on the vertical axis may be a logarithmic axis. Thus, by making the conductivity of the vertical axis a logarithmic axis, the difference in the order of the conductivity can be further visually determined.

また、上述した実施形態では、基準粉体成形体および評価用粉体成形体は、導電性粉体のみから構成されている場合を例示したが、各粉体成形体の構成成分はこれに限定されない。例えば、必要に応じてバインダを含んでいてもよい。例えば、導電性粉体の成形性が悪く、導電率の測定に必要な強度を有する粉体成形体の作製が困難な場合には、粉体成形体にバインダを添加することができる。このような場合でも、基準粉体成形体と評価用粉体成形体の双方において同じバインダを用いることで、バインダによる影響を排除して導電性粉体の導電性を適切に評価することができる。   Further, in the above-described embodiment, the case where the reference powder molded body and the evaluation powder molded body are composed of only conductive powder is exemplified, but the constituent components of each powder molded body are limited thereto. Not. For example, a binder may be included as necessary. For example, when the moldability of the conductive powder is poor and it is difficult to produce a powder molded body having the strength necessary for measuring the conductivity, a binder can be added to the powder molded body. Even in such a case, by using the same binder in both the reference powder molded body and the evaluation powder molded body, it is possible to appropriately evaluate the conductivity of the conductive powder by eliminating the influence of the binder. .

Claims (6)

導電性粉体の導電性を評価する方法であって:
評価対象となる導電性粉体の少なくともコア部と同質の材料からなる基準導電性粉体を用いて、互いに異なる空隙率を有する3つ以上の基準粉体成形体を作製すること;
前記3つ以上の基準粉体成形体の導電率を測定すること;
前記3つ以上の基準粉体成形体の空隙率を横軸に、導電率を縦軸に取ったときの相関図から空隙率Xと導電率Yとの関係を示す近似直線(Y=aX+b)を算出すること;および、
前記評価対象となる導電性粉体を用いて評価用粉体成形体を作製し、当該評価用粉体成形体の導電率および空隙率と前記近似直線とに基づいて、前記評価対象となる導電性粉体の導電性を評価すること;
を含む、導電性粉体の評価方法。
A method for evaluating the conductivity of a conductive powder comprising:
Producing three or more reference powder compacts having different void ratios using a reference conductive powder made of the same material as at least the core of the conductive powder to be evaluated;
Measuring the electrical conductivity of the three or more reference powder compacts;
An approximate straight line (Y = aX + b) showing the relationship between the porosity X and the conductivity Y from the correlation diagram when the porosity of the three or more reference powder compacts is plotted on the horizontal axis and the conductivity is plotted on the vertical axis. Calculating; and
An evaluation powder molded body is produced using the conductive powder to be evaluated, and the conductivity to be evaluated is based on the conductivity and porosity of the evaluation powder molded body and the approximate line. The conductivity of the conductive powder;
The evaluation method of electroconductive powder containing this.
前記評価用粉体成形体の導電率Yと、当該評価用粉体成形体の空隙率を前記近似直線のXに代入して得られた基準導電率Yとから、相対導電率比Y=(Y/Y)を算出し、当該相対導電率比Yに基づいて、前記評価対象となる導電性粉体の導電性を定量的に評価する、請求項1に記載の評価方法。 From the conductivity Y 1 of the evaluation powder compact and the reference conductivity Y 2 obtained by substituting the porosity of the evaluation powder compact into X of the approximate line, the relative conductivity ratio Y The evaluation according to claim 1, wherein 3 = (Y 1 / Y 2 ) is calculated, and the conductivity of the conductive powder to be evaluated is quantitatively evaluated based on the relative conductivity ratio Y 3. Method. 前記評価対象となる導電性粉体のコア部は、炭素材料からなる、請求項1または2に記載の評価方法。   The evaluation method according to claim 1, wherein the core portion of the conductive powder to be evaluated is made of a carbon material. 前記評価対象となる導電性粉体は、前記コア部の表面に付着した被膜を有する、請求項1〜3の何れか一つに記載の評価方法。   The evaluation method according to claim 1, wherein the conductive powder to be evaluated has a film attached to the surface of the core portion. 前記コア部の表面に付着した被膜は、シリカからなる、請求項4に記載の評価方法。   The evaluation method according to claim 4, wherein the coating film attached to the surface of the core portion is made of silica. 導電性粉体を用いた電子部品の製造方法であって:
請求項1〜5の何れか一つに記載の方法により導電性粉体の導電性を評価して当該導電性粉体が良品であるか否かを判定すること;および、
前記判定において良品とされた導電性粉体を用いて電子部品を構築すること:
を含む、部品の製造方法。




A method for manufacturing an electronic component using a conductive powder comprising:
Evaluating the conductivity of the conductive powder by the method according to any one of claims 1 to 5 to determine whether or not the conductive powder is a good product; and
Constructing an electronic component using the conductive powder determined to be good in the determination:
A method for manufacturing a part, including:




JP2014250046A 2014-12-10 2014-12-10 Conductive powder evaluation method Active JP6161588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014250046A JP6161588B2 (en) 2014-12-10 2014-12-10 Conductive powder evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014250046A JP6161588B2 (en) 2014-12-10 2014-12-10 Conductive powder evaluation method

Publications (2)

Publication Number Publication Date
JP2016109648A JP2016109648A (en) 2016-06-20
JP6161588B2 true JP6161588B2 (en) 2017-07-12

Family

ID=56123963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014250046A Active JP6161588B2 (en) 2014-12-10 2014-12-10 Conductive powder evaluation method

Country Status (1)

Country Link
JP (1) JP6161588B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114993799B (en) * 2022-05-30 2023-03-21 楚能新能源股份有限公司 Method for rapidly evaluating grain strength of polycrystalline material

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5386072U (en) * 1976-12-16 1978-07-15
JPH0422876A (en) * 1990-05-18 1992-01-27 Fujitsu Ltd Method and device for measuring resistivity of fine particles
JPH0543061U (en) * 1991-11-11 1993-06-11 東亜電波工業株式会社 Electrodes for measuring powder volume resistance
US20020019054A1 (en) * 1998-09-04 2002-02-14 Judit E. Puskas Characterization of heterogeneous catalysts by electrical measurements
JP2009222673A (en) * 2008-03-18 2009-10-01 Panasonic Corp Powder physical property measurement method and powder physical property measurement device
PL221643B1 (en) * 2011-10-21 2016-05-31 Univ Warszawski Chamber for measuring the electrical properties of the powder or liquid samples and the method for measurement of electrical properties of the reactive powder or liquid samples
JP5960036B2 (en) * 2012-11-29 2016-08-02 株式会社ノリタケカンパニーリミテド Conductive paste preparation condition evaluation device

Also Published As

Publication number Publication date
JP2016109648A (en) 2016-06-20

Similar Documents

Publication Publication Date Title
Antunes et al. Investigation on the corrosion resistance of carbon black–graphite-poly (vinylidene fluoride) composite bipolar plates for polymer electrolyte membrane fuel cells
Kotaka et al. Microstructural analysis of mass transport phenomena in gas diffusion media for high current density operation in PEM fuel cells
Chodak et al. Relation between electrical and mechanical properties of conducting polymer composites
Mamunya et al. Influence of pressure on the electrical conductivity of metal powders used as fillers in polymer composites
White et al. Electrical percolation behavior in silver nanowire–polystyrene composites: simulation and experiment
da Rocha et al. Ultimate conductivity performance in metallic nanowire networks
Lin et al. Modified resistivity–strain behavior through the incorporation of metallic particles in conductive polymer composite fibers containing carbon nanotubes
Sudha et al. Evaluation of activation energy (Ea) profiles of nanostructured alumina polycarbonate composite insulation materials
Mironov et al. Comparison of electrical conductivity data obtained by four-electrode and four-point probe methods for graphite-based polymer composites
EP2938757B1 (en) Method for determining green electrode electrical resistivity
JP6788773B2 (en) Resistance measuring device and its method
CN108061743A (en) A kind of polar plate of lead acid storage battery detector
DE102009054435A1 (en) Heatable gas sensor and method for its production
de Oliveira et al. Corrosion and thermal stability of multi-walled carbon nanotube–graphite–acrylonitrile–butadiene–styrene composite bipolar plates for polymer electrolyte membrane fuel cells
JP6161588B2 (en) Conductive powder evaluation method
Yang et al. Strain sensing ability of metallic particulate reinforced cementitious composites: Experiments and microstructure-guided finite element modeling
Kane et al. Improvements in methods for measuring the volume conductivity of electrically conductive carbon powders
Xu et al. Self-oxidized sponge-like nanoporous nickel alloy in three-dimensions with pseudocapacitive behavior and excellent capacitive performance
JP2009115747A (en) Method and device for measuring conductive performance of paste
Crapnell et al. Circular economy electrochemistry: recycling old mixed material additively manufactured sensors into new electroanalytical sensing platforms
Bühler et al. Highly conductive polypropylene‐based composites for bipolar plates for polymer electrolyte membrane fuel cells
Boulfrad et al. Adhesion and percolation parameters in two dimensional Pd–LSCM composites for SOFC anode current collection
US9062997B2 (en) Liquid level detector
Sakaniwa et al. Conduction path development in electrically conductive adhesives composed of an epoxy-based binder
Wu et al. Evaluation on carbon nanocapsules for supercapacitors using a titanium cavity electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170613

R150 Certificate of patent or registration of utility model

Ref document number: 6161588

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250