JP6159624B2 - Method for producing acid gas separation membrane - Google Patents

Method for producing acid gas separation membrane Download PDF

Info

Publication number
JP6159624B2
JP6159624B2 JP2013181389A JP2013181389A JP6159624B2 JP 6159624 B2 JP6159624 B2 JP 6159624B2 JP 2013181389 A JP2013181389 A JP 2013181389A JP 2013181389 A JP2013181389 A JP 2013181389A JP 6159624 B2 JP6159624 B2 JP 6159624B2
Authority
JP
Japan
Prior art keywords
coating composition
facilitated transport
transport film
film
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013181389A
Other languages
Japanese (ja)
Other versions
JP2015047565A (en
Inventor
吉宏 油屋
吉宏 油屋
米山 聡
聡 米山
澤田 真
澤田  真
大介 平木
大介 平木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2013181389A priority Critical patent/JP6159624B2/en
Priority to PCT/JP2014/071937 priority patent/WO2015029884A1/en
Priority to TW103129617A priority patent/TW201509512A/en
Publication of JP2015047565A publication Critical patent/JP2015047565A/en
Application granted granted Critical
Publication of JP6159624B2 publication Critical patent/JP6159624B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • B01D67/00793Dispersing a component, e.g. as particles or powder, in another component
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1218Layers having the same chemical composition, but different properties, e.g. pore size, molecular weight or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/1411Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes containing dispersed material in a continuous matrix
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/142Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes with "carriers"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/38Polyalkenylalcohols; Polyalkenylesters; Polyalkenylethers; Polyalkenylaldehydes; Polyalkenylketones; Polyalkenylacetals; Polyalkenylketals
    • B01D71/381Polyvinylalcohol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • B01D71/401Polymers based on the polymerisation of acrylic acid, e.g. polyacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • B01D71/401Polymers based on the polymerisation of acrylic acid, e.g. polyacrylate
    • B01D71/4011Polymethylmethacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/30Cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/022Asymmetric membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/04Characteristic thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/36Polytetrafluoroethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は、原料ガスから酸性ガスを選択的に分離する酸性ガス分離膜の製造方法に関する。詳しくは、多層の促進輸送膜を有する酸性ガス分離膜において、促進輸送膜の上の促進輸送膜を適正に形成できる酸性ガス分離膜の製造方法に関する。   The present invention relates to a method for producing an acidic gas separation membrane that selectively separates acidic gas from raw material gas. Specifically, the present invention relates to a method for producing an acid gas separation membrane capable of appropriately forming a facilitated transport membrane on the facilitated transport membrane in an acidic gas separation membrane having a multilayer facilitated transport membrane.

近年、原料ガス(被処理ガス)から、酸性ガスを選択的に分離する技術の開発が進んでいる。例えば、酸性ガスを選択的に透過する酸性ガス分離膜を用いて、原料ガスから酸性ガスを分離する酸性ガス分離膜が開発されている。   In recent years, development of technology for selectively separating an acid gas from a source gas (a gas to be treated) has been advanced. For example, an acid gas separation membrane that separates an acid gas from a raw material gas using an acid gas separation membrane that selectively permeates the acid gas has been developed.

一例として、特許文献1には、原料ガスから炭酸ガス(二酸化炭素)を分離する酸性ガス分離膜(二酸化炭素分離ゲル膜)として、二酸化炭素透過性の支持体の上に、二酸化炭素キャリヤーを含む水溶液を、架橋構造を有するビニルアルコール−アクリル酸塩共重合体に吸収させて形成したハイドロゲル膜を形成した酸性ガス分離膜が開示されている。
また、特許文献1には、この酸性ガス分離膜の製造方法として、未架橋のビニルアルコール−アクリル酸塩共重合体水溶液を、二酸化炭素透過性の支持体上へ膜状に塗布した後、この水溶液を加熱し架橋させて水不溶化し、この水不溶化物に二酸化炭素キャリヤー水溶液を吸収させてゲル化する方法も開示されている。
As an example, Patent Literature 1 includes a carbon dioxide carrier on a carbon dioxide permeable support as an acidic gas separation membrane (carbon dioxide separation gel membrane) for separating carbon dioxide (carbon dioxide) from a raw material gas. An acidic gas separation membrane is disclosed in which a hydrogel membrane formed by absorbing an aqueous solution into a vinyl alcohol-acrylate copolymer having a crosslinked structure is formed.
Patent Document 1 discloses, as a method for producing this acidic gas separation membrane, an uncrosslinked vinyl alcohol-acrylate copolymer aqueous solution is applied in a film form on a carbon dioxide permeable support, A method is also disclosed in which an aqueous solution is heated and cross-linked to insolubilize water, and the water-insolubilized material absorbs an aqueous carbon dioxide carrier solution to form a gel.

他方、特許文献2には、吸水性ポリマと、二酸化炭素キャリアと、ゲル化剤とを含み、かつ、50℃以上で調製した塗布組成物(塗布液)を支持体に塗布し、支持体上に形成した塗膜を12℃以下で冷却してゲル膜とし、このゲル膜を温風で乾燥して二酸化炭素分離膜とする、酸性ガス分離膜の製造装置が記載されている。   On the other hand, in Patent Document 2, a coating composition (coating solution) containing a water-absorbing polymer, a carbon dioxide carrier, and a gelling agent and prepared at 50 ° C. or higher is applied to a support. An apparatus for producing an acidic gas separation membrane is described in which the coating film formed in the above is cooled to 12 ° C. or less to form a gel membrane, and this gel membrane is dried with warm air to form a carbon dioxide separation membrane.

特許文献1や特許文献2に示される酸性ガス分離膜は、いわゆる促進輸送膜を用いる酸性ガス分離膜である。促進輸送膜は、前述の二酸化炭素キャリアのような酸性ガスと反応するキャリアを膜中に有し、このキャリアによって酸性ガスを膜の反対側に輸送することで、原料ガスから酸性ガスを分離する。   The acidic gas separation membrane shown in Patent Literature 1 and Patent Literature 2 is an acidic gas separation membrane using a so-called facilitated transport membrane. The facilitated transport membrane has a carrier that reacts with an acidic gas such as the above-mentioned carbon dioxide carrier in the membrane, and the acidic gas is separated from the source gas by transporting the acidic gas to the opposite side of the membrane by this carrier. .

特公平7−102310号公報Japanese Patent Publication No. 7-102310 特開2012−143711号公報JP 2012-143711 A

ところで、特許文献1では、促進輸送膜(ゲル膜)の厚さは、1〜200μm程度が想定されている。他方、特許文献2では、促進輸送膜となる塗布組成物を1mm以下で塗布し、この塗膜をゲル化乾燥させて5〜50μm程度の厚さの促進輸送膜を形成することを想定している。   By the way, in patent document 1, about 1-200 micrometers is assumed for the thickness of a facilitated-transport film | membrane (gel film). On the other hand, in Patent Document 2, it is assumed that a coating composition to be a facilitated transport film is applied at 1 mm or less, and this coated film is gel-dried to form a facilitated transport film having a thickness of about 5 to 50 μm. Yes.

例えば、二酸化炭素と水素との混合ガスから二酸化炭素を分離する場合、促進輸送膜は、キャリアの化学反応により二酸化炭素を積極的に透過させるが、同時に、水素も、膜表面に溶解〜拡散して透過する。そのため、水素の透過性を下げるという点では、促進輸送膜は、厚い方が有利である。
また、支持体上に塗布組成物を塗布して、乾燥することにより、促進輸送膜を形成する場合には、塗布組成物の塗布厚が薄いと、支持体表面の異物や塗膜中に混入した気泡によって、形成した促進輸送膜にピンホール等の欠陥が生じる恐れがある。
For example, when carbon dioxide is separated from a mixed gas of carbon dioxide and hydrogen, the facilitated transport film actively permeates carbon dioxide by the chemical reaction of the carrier, but at the same time, hydrogen also dissolves and diffuses on the film surface. Through. For this reason, it is advantageous that the facilitated transport film is thicker in terms of lowering the hydrogen permeability.
In addition, when a facilitated transport film is formed by applying a coating composition on a support and drying it, if the coating composition is thin, it will be mixed into foreign matter or coating on the support surface. Due to the bubbles, defects such as pinholes may occur in the formed facilitated transport film.

このような観点から、特許文献1や2などに比して、より厚膜の促進輸送膜を形成する要求が有る。
塗布法によって、厚い膜を形成するためには、支持体に塗布する塗布組成物の厚さ(塗膜厚)を厚くするのが通常である。しかしながら、促進輸送膜を形成するための塗布組成物は、一般的に、水の含有量が多い。そのため、厚さが3mmを超えるような塗布組成物を塗布して乾燥する場合には、膜表面側と支持体側の乾燥過程が大きく異なる。すなわち、厚さが3mmを超えるような塗布組成物では、膜表面側が急速に乾燥して被膜を形成するため、膜表面がウロコ状の凹凸発生や、キャリア等の偏在が生じる場合が有る。
さらに、厚い塗膜を乾燥させるためには、乾燥時間も長くなり、生産性や製造設備の大きさ等の点でも不利である。
From such a point of view, there is a demand for forming a thicker facilitated transport film as compared with Patent Documents 1 and 2.
In order to form a thick film by a coating method, it is usual to increase the thickness (coating film thickness) of the coating composition applied to the support. However, the coating composition for forming the facilitated transport film generally has a high water content. Therefore, when a coating composition having a thickness exceeding 3 mm is applied and dried, the drying process on the film surface side and the support side is greatly different. That is, in a coating composition having a thickness exceeding 3 mm, the film surface side is rapidly dried to form a film, and therefore the film surface may have scale-like irregularities and uneven distribution of carriers and the like.
Furthermore, in order to dry a thick coating film, drying time becomes long and it is disadvantageous also in terms of productivity, the size of manufacturing equipment, and the like.

一方で、促進輸送膜を、複数回、重ねて形成することにより、合計で厚膜の促進輸送膜を形成することによって、これらの問題点を解決することができる。
しかしながら、本発明者らの検討によれば、促進輸送膜の上に、塗布組成物を塗布することで促進輸送膜を形成すると、上層の促進輸送膜の塗膜が適正に形成できず、促進輸送膜が不均一になってしまう場合が有る。
On the other hand, these problems can be solved by forming the facilitated transport film in a plurality of times so as to form a thick facilitated transport film in total.
However, according to the study by the present inventors, when the facilitated transport film is formed by applying the coating composition on the facilitated transport film, the coating of the upper facilitated transport film cannot be properly formed and promoted. The transport film may become uneven.

本発明の目的は、このような従来技術の問題点を解決することにあり、促進輸送膜を複数回、重ねて形成することにより、目的とする厚膜の促進輸送膜を形成でき、さらに、全ての促進輸送膜で、膜欠陥等が無い均一な促進輸送膜を形成できる酸性ガス分離膜の製造方法を提供することにある。   The object of the present invention is to solve such problems of the prior art, and by forming the facilitated transport film a plurality of times, it is possible to form the intended thick facilitated transport film, An object of the present invention is to provide a method for producing an acidic gas separation membrane capable of forming a uniform facilitated transport membrane free from membrane defects and the like with all facilitated transport membranes.

この目的を達成するために、本発明の酸性ガス分離膜の製造方法の第1の態様は、多孔質支持体の表面に、酸性ガスと反応するキャリア、および、キャリアを担持するための親水性化合物を含有する塗布組成物を、膜厚が0.01〜3mmとなるように塗布し、塗布した塗布組成物を乾燥することにより、最初の促進輸送膜を形成する初期膜形成工程と、
先に形成された促進輸送膜の表面に、酸性ガスと反応するキャリア、および、キャリアを担持するための親水性化合物を含有する塗布組成物を塗布し、塗布した塗布組成物を乾燥して促進輸送膜を形成する、1回以上の積層膜形成工程とを有し、
かつ、積層膜形成工程においては、塗布組成物を塗布するまでに前の工程で形成された促進輸送膜が曝される空間の温度および湿度を測定して、温度が10〜40℃、湿度が10〜50%RHとなるように、空間の温度および湿度を管理することを特徴とする酸性ガス分離膜の製造方法を提供する。
In order to achieve this object, the first aspect of the method for producing an acidic gas separation membrane of the present invention includes a carrier that reacts with an acidic gas on the surface of a porous support, and a hydrophilic property for supporting the carrier. An initial film forming step of forming a first facilitated transport film by applying a coating composition containing a compound so that the film thickness is 0.01 to 3 mm and drying the applied coating composition;
A coating composition containing a carrier that reacts with an acidic gas and a hydrophilic compound for supporting the carrier is applied to the surface of the previously formed facilitated transport film, and the applied coating composition is dried and accelerated. Having one or more laminated film forming steps for forming a transport film,
In the laminated film forming step, the temperature and humidity of the space to which the facilitated transport film formed in the previous step is exposed until the coating composition is applied are measured. Provided is a method for producing an acidic gas separation membrane, characterized in that the temperature and humidity of a space are controlled so as to be 10 to 50% RH.

このような本発明の酸性ガス分離膜の製造方法の第1の態様において、長尺な被処理物を巻回してなる被処理物ロールから、被処理物を送り出して、長手方向に搬送しつつ処理を行い、処理済の被処理物をロール状に巻回して処理済ロールとする、ロール・トゥ・ロール方式を用いるのが好ましい。
また、多孔質支持体を巻回してなる支持体ロールから多孔質支持体を送り出し、多孔質支持体を長手方向に搬送しつつ、初期膜形成工程あるいはさらに1回以上の積層膜形成工程を行った後、処理済の被処理物をロール状に巻回して処理済ロールとし、その後、この処理済ロールから処理済の被処理物を送り出して、積層膜形成工程を行うものであり、処理済ロールから処理済の被処理物を送り出して積層膜形成工程を行う際には、処理済の被処理物を送り出す処理済ロールが存在する空間、および、塗布組成物を塗布するまでに促進輸送膜が曝される空間において、温度および湿度の管理を行うのが好ましい。
また、初期膜形成工程および積層膜形成工程において、塗布組成物の乾燥から処理済の被処理物をロール状に巻回するまでに、形成した促進輸送膜が曝される空間の温度および湿度を測定して、温度および湿度が所定の範囲となるように、空間の温度および湿度を管理するのが好ましい。
また、塗布組成物が、温度が15〜35℃で、粘度が0.1〜5Pa・secであるのが好ましい。
また、初期膜形成工程における塗布組成物と、少なくとも1回の積層膜形成工程における塗布組成物とが、同じ組成物であるのが好ましい。
また、初期膜形成工程における塗布組成物と、少なくとも1回の積層膜形成工程における塗布組成物とが、異なる組成物であるのが好ましい。
さらに、塗布組成物が、キャリアとして炭酸セシウムを、親水性化合物としてポリビニルアルコール−ポリアクリル酸共重合体を、それぞれ含み、さらに、架橋剤を含有するのが好ましい。
In the first aspect of the method for producing an acidic gas separation membrane of the present invention, the workpiece is sent out from a workpiece roll formed by winding a long workpiece and conveyed in the longitudinal direction. It is preferable to use a roll-to-roll method in which processing is performed and a processed object is wound into a roll shape to form a processed roll.
In addition, the porous support is sent out from a support roll formed by winding the porous support, and the porous support is transported in the longitudinal direction, and the initial film forming process or one or more laminated film forming processes are performed. After that, the processed object to be processed is wound into a roll to form a processed roll, and then the processed object to be processed is sent out from this processed roll to perform a laminated film forming process. When the processed object to be processed is sent out from the roll and the laminated film forming step is performed, the space in which the processed roll for supplying the processed object is present, and the facilitated transport film until the coating composition is applied It is preferable to manage temperature and humidity in the space where the water is exposed.
Further, in the initial film forming step and the laminated film forming step, the temperature and humidity of the space to which the formed facilitated transport film is exposed from the drying of the coating composition to the winding of the processed object to be processed in a roll shape. It is preferable to measure and control the temperature and humidity of the space so that the temperature and humidity are in a predetermined range.
The coating composition preferably has a temperature of 15 to 35 ° C. and a viscosity of 0.1 to 5 Pa · sec.
Moreover, it is preferable that the coating composition in an initial stage film formation process and the coating composition in at least 1 time of laminated film formation process are the same compositions.
Moreover, it is preferable that the coating composition in an initial stage film formation process and the coating composition in at least 1 time of laminated film formation process are different compositions.
Furthermore, it is preferable that the coating composition contains cesium carbonate as a carrier, polyvinyl alcohol-polyacrylic acid copolymer as a hydrophilic compound, and further contains a crosslinking agent.

また、本発明の酸性ガス分離膜の製造方法の第2の態様は、多孔質支持体の表面に、酸性ガスと反応するキャリア、および、キャリアを担持するための親水性化合物を含有する塗布組成物を、膜厚が0.01〜3mmとなるように塗布し、塗布した塗布組成物を乾燥することにより、最初の促進輸送膜を形成する初期膜形成工程と、
先に形成された促進輸送膜の表面に、酸性ガスと反応するキャリア、および、キャリアを担持するための親水性化合物を含有する塗布組成物を塗布し、塗布した塗布組成物を乾燥して促進輸送膜を形成する、1回以上の積層膜形成工程とを有し、
かつ、積層膜形成工程においては、前の工程で形成された促進輸送膜の吸水による重量増加率が40質量%以下となる条件下で、塗布組成物の塗布を行うことを特徴とする酸性ガス分離膜の製造方法を提供する。
The second aspect of the method for producing an acidic gas separation membrane of the present invention is a coating composition containing a carrier that reacts with an acidic gas and a hydrophilic compound for supporting the carrier on the surface of the porous support. An initial film forming step of forming an initial facilitated transport film by applying the product so that the film thickness is 0.01 to 3 mm, and drying the applied coating composition;
A coating composition containing a carrier that reacts with an acidic gas and a hydrophilic compound for supporting the carrier is applied to the surface of the previously formed facilitated transport film, and the applied coating composition is dried and accelerated. Having one or more laminated film forming steps for forming a transport film,
In addition, in the laminated film forming step, the acidic gas is characterized in that the coating composition is applied under a condition that the weight increase rate due to water absorption of the facilitated transport film formed in the previous step is 40% by mass or less. A method for producing a separation membrane is provided.

このような本発明の酸性ガス分離膜の製造方法の第2の態様において、長尺な被処理物を巻回してなる被処理物ロールから、被処理物を送り出して、長手方向に搬送しつつ処理を行い、処理済の被処理物をロール状に巻回して処理済ロールとする、ロール・トゥ・ロール方式を用いるのが好ましい。
また、塗布組成物が、温度が15〜35℃で、粘度が0.1〜5Pa・secであるのが好ましい。
また、初期膜形成工程における塗布組成物と、少なくとも1回の積層膜形成工程における塗布組成物とが、同じ組成物であるのが好ましい。
また、積層膜形成工程において、塗布組成物を塗布する促進輸送膜が存在する空間の温度および湿度の少なくとも一方を制御することで、前の工程で形成された促進輸送膜の吸水による重量増加率が40質量%以下となる条件下として塗布組成物の塗布を行うのが好ましい。
また、塗布組成物が、キャリアとして炭酸セシウムを、親水性化合物としてポリビニルアルコール−ポリアクリル酸共重合体を、それぞれ含み、さらに、架橋剤を含有するのが好ましい。
さらに、初期膜形成工程および積層膜形成工程において、塗布組成物の乾燥から処理済の被処理物をロール状に巻回するまでに、形成した促進輸送膜が曝される空間の温度および湿度を測定して、温度および湿度が所定の範囲となるように、空間の温度および湿度を管理するのが好ましい。
In the second aspect of the method for producing an acidic gas separation membrane of the present invention, the workpiece is sent out from a workpiece roll formed by winding a long workpiece and conveyed in the longitudinal direction. It is preferable to use a roll-to-roll method in which processing is performed and a processed object is wound into a roll shape to form a processed roll.
The coating composition preferably has a temperature of 15 to 35 ° C. and a viscosity of 0.1 to 5 Pa · sec.
Moreover, it is preferable that the coating composition in an initial stage film formation process and the coating composition in at least 1 time of laminated film formation process are the same compositions.
In addition, in the laminated film forming process, by controlling at least one of the temperature and humidity of the space where the facilitated transport film for applying the coating composition is present, the rate of weight increase due to water absorption of the facilitated transport film formed in the previous process It is preferable that the coating composition is applied under the condition that is 40% by mass or less.
The coating composition preferably contains cesium carbonate as a carrier, polyvinyl alcohol-polyacrylic acid copolymer as a hydrophilic compound, and further contains a crosslinking agent.
Furthermore, in the initial film forming step and the laminated film forming step, the temperature and humidity of the space to which the formed facilitated transport film is exposed from the drying of the coating composition to the winding of the processed object to be rolled are changed. It is preferable to measure and control the temperature and humidity of the space so that the temperature and humidity are in a predetermined range.

このような本発明によれば、先に形成した促進輸送膜の上に、促進輸送膜となる塗布組成物を塗布した際に、ハジキを生じることなく、全面的に、均一な塗布組成物の塗膜(液膜)を形成できる。
そのため、本発明によれば、酸性ガス分離膜の製造において、促進輸送膜を重ねて、複数回、形成することにより、目的とする厚膜の促進輸送膜を形成する際に、全ての促進輸送膜で、膜欠陥等が無い均一な促進輸送膜を形成できる。
According to the present invention as described above, when the coating composition to be the facilitated transport film is applied on the previously formed facilitated transport film, the uniform coating composition is formed on the entire surface without causing repelling. A coating film (liquid film) can be formed.
Therefore, according to the present invention, in the production of an acid gas separation membrane, all facilitated transports are formed when forming the facilitated transport film of the target thick film by forming the facilitated transport film several times by overlapping and forming the facilitated transport film. A uniform facilitated transport film having no film defects or the like can be formed.

本発明の酸性ガス分離膜の製造方法を実施する製造装置の一例を概念的に示す図である。It is a figure which shows notionally an example of the manufacturing apparatus which enforces the manufacturing method of the acidic gas separation membrane of this invention. 本発明の本発明の酸性ガス分離膜の製造方法によって作成する酸性ガス分離膜の一例を概念的に示す図である。It is a figure which shows notionally an example of the acidic gas separation membrane created with the manufacturing method of the acidic gas separation membrane of this invention of this invention. 本発明の酸性ガス分離膜の製造方法を実施する製造装置の別の例を概念的に示す図である。It is a figure which shows notionally another example of the manufacturing apparatus which enforces the manufacturing method of the acidic gas separation membrane of this invention.

以下、本発明の酸性ガス分離膜の製造方法について、添付の図面に示される好適実施例を基に、詳細に説明する。   Hereinafter, the method for producing an acidic gas separation membrane of the present invention will be described in detail based on preferred embodiments shown in the accompanying drawings.

図1に、本発明の酸性ガス分離膜の製造方法を実施する、酸性ガス分離膜の製造装置の一例を概念的に示す。   In FIG. 1, an example of the manufacturing apparatus of the acidic gas separation membrane which implements the manufacturing method of the acidic gas separation membrane of this invention is shown notionally.

図1に示す製造装置10は、いわゆるロール・トゥ・ロール方式(以下、RtoRとも言う)によって、図2に概念的に示すような、本発明の製造方法による酸性ガス分離膜50を製造するものである。   A manufacturing apparatus 10 shown in FIG. 1 manufactures an acidic gas separation membrane 50 according to the manufacturing method of the present invention as conceptually shown in FIG. 2 by a so-called roll-to-roll method (hereinafter also referred to as RtoR). It is.

周知のように、RtoRとは、長尺な被処理物を巻回したロールから、被処理物を引き出し、被処理物を長手方向に搬送しつつ、塗布組成物の塗布や乾燥等の処理を行って、処理済の被処理物を、ロール状に巻回する製造方法である。
すなわち、製造装置10は、長尺(ウェブ状)な多孔質支持体52をロール状に巻回してなる支持体ロール52Rから多孔質支持体52を送り出し、多孔質支持体52を長手方向に搬送しつつ、多孔質支持体52の表面に最初の促進輸送膜54aを形成して、促進輸送膜54aを形成した多孔質支持体56(以下、便宜的に、処理済支持体56とする)をロール状に巻回して(巻き取って)、処理済支持体ロール56Rとする。
さらに、製造装置10は、処理済支持体ロール56Rから処理済支持体56を送り出して、長手方向に搬送しつつ、促進輸送膜54aの上に2層目の促進輸送膜54bを形成して本発明による酸性ガス分離膜50とし、酸性ガス分離膜50をロール状に巻回して、分離膜ロール50Rとする。
As is well known, RtoR is a process of drawing or drying a coating composition while pulling out a workpiece from a roll wound with a long workpiece and transporting the workpiece in the longitudinal direction. It is a manufacturing method which goes and rolls the processed to-be-processed object in roll shape.
That is, the manufacturing apparatus 10 sends out the porous support 52 from a support roll 52R formed by winding a long (web-like) porous support 52 in a roll shape, and transports the porous support 52 in the longitudinal direction. However, the first facilitated transport film 54a is formed on the surface of the porous support 52, and the porous support 56 (hereinafter referred to as the treated support 56 for convenience) in which the facilitated transport film 54a is formed. It is wound into a roll (wound up) to obtain a treated support roll 56R.
Further, the manufacturing apparatus 10 feeds the processed support 56 from the processed support roll 56R and transports it in the longitudinal direction while forming a second facilitated transport film 54b on the facilitated transport film 54a. The acidic gas separation membrane 50 according to the invention is wound, and the acidic gas separation membrane 50 is wound into a roll shape to obtain a separation membrane roll 50R.

このような製造装置10は、基本的に、供給部12と、塗布部14と、乾燥部18と、巻取部20とを有して構成される。
なお、製造装置10には、図示した部材以外にも、必要に応じて、パスローラ(ガイドローラ)、搬送ローラ対、搬送ガイド、各種のセンサ等、RtoRによって機能性膜(機能性フィルム)を製造する装置に設けられる、各種の部材を有してもよい。
Such a manufacturing apparatus 10 basically includes a supply unit 12, a coating unit 14, a drying unit 18, and a winding unit 20.
In addition to the illustrated members, the manufacturing apparatus 10 manufactures a functional film (functional film) using RtoR, such as a pass roller (guide roller), a pair of conveyance rollers, a conveyance guide, and various sensors as necessary. You may have various members provided in the apparatus to do.

ここで、製造装置10においては、供給部12および塗布部14を含む空間は、ハウジング26によって略閉空間となっている。さらに、ハウジング26の内部には、ハウジング26内の温度および湿度を測定する温湿度測定手段28、および、ハウジング26内の温度および湿度を調節する温湿度調節手段30が設けられる。
本発明の製造方法を実施する製造装置10は、2層目(2層目以降)の促進輸送膜54bを形成する際には(積層膜形成工程)、温湿度測定手段28による温度および湿度の測定結果に応じて、温湿度調節手段30が、ハウジング26内の温度を10〜40℃に調節し、かつ、ハウジング26内の湿度を10〜50%RHとなるように調節する。
この点に関しては、後に詳述する。
Here, in the manufacturing apparatus 10, the space including the supply unit 12 and the application unit 14 is a substantially closed space by the housing 26. Furthermore, a temperature / humidity measuring means 28 for measuring the temperature and humidity in the housing 26 and a temperature / humidity adjusting means 30 for adjusting the temperature and humidity in the housing 26 are provided inside the housing 26.
When forming the second layer (second and subsequent layers) facilitated transport film 54b (laminated film forming step), the manufacturing apparatus 10 for carrying out the manufacturing method of the present invention (the laminated film forming step) determines the temperature and humidity of the temperature / humidity measuring means 28. Depending on the measurement result, the temperature and humidity adjusting means 30 adjusts the temperature in the housing 26 to 10 to 40 ° C. and adjusts the humidity in the housing 26 to 10 to 50% RH.
This will be described in detail later.

供給部12は、最初の促進輸送膜54aを形成する際に、回転軸34に、長尺な多孔質支持体52をロール状に巻回してなる支持体ロール52R、回転軸34すなわち支持体ロール52Rを回転することにより、多孔質支持体52を送り出す部位である。
また、供給部12は、2層目の促進輸送膜54を形成する際に、回転軸34に、処理済支持体56をロール状に巻回してなる処理済支持体ロール56Rを装填して、回転軸34すなわち処理済支持体ロール56Rを回転することにより、処理済支持体56を送り出す部位である。
なお、このような多孔質支持体52や処理済支持体56の送り出しおよび搬送は、公知の方法で行えばよい。
When the first facilitated transport film 54a is formed, the supply unit 12 has a support roll 52R formed by winding a long porous support 52 around the rotary shaft 34 in a roll, and the rotary shaft 34, that is, the support roll. This is a part that feeds the porous support 52 by rotating 52R.
Further, when forming the second layer facilitated transport film 54, the supply unit 12 is loaded with a processed support roll 56R formed by winding the processed support 56 in a roll shape on the rotating shaft 34, This is a part that feeds out the processed support 56 by rotating the rotating shaft 34, that is, the processed support roll 56R.
In addition, what is necessary is just to perform sending out and conveyance of such a porous support body 52 and the processed support body 56 by a well-known method.

多孔質支持体52(以下、支持体52とも言う)は、炭酸ガス等の酸性ガスの透過性を有し、かつ、促進輸送膜54aを形成するための塗布組成物の塗布が可能(塗膜の支持が可能)であり、さらに、形成された促進輸送膜54aおよび促進輸送膜54bを支持するものである。なお、以下の説明では、促進輸送膜54aと促進輸送膜54bとを区別する必要がない場合には、両者をまとめて促進輸送膜54ともいう。
支持体52の形成材料は、この機能を発現できる物であれば、公知の各種の物が利用可能である。
The porous support 52 (hereinafter also referred to as the support 52) is permeable to an acidic gas such as carbon dioxide, and can be applied with a coating composition for forming the facilitated transport film 54a (coating film). Furthermore, the facilitated transport film 54a and the facilitated transport film 54b formed are supported. In the following description, when it is not necessary to distinguish the facilitated transport film 54a and the facilitated transport film 54b, both are collectively referred to as the facilitated transport film 54.
As the forming material of the support 52, various known materials can be used as long as they can exhibit this function.

ここで、本発明の製造方法において、支持体52は、単層であってもよいが、図2に示すように、多孔質膜52aと補助支持膜52bとからなる2層構成であるのが好ましい。このような2層構成を有することにより、支持体52は、上記の酸性ガス透過性、促進輸送膜54となる塗布組成物の塗布および促進輸送膜54の支持という機能を、より確実に発現する。
なお、支持体52が単層である場合には、形成材料としては、以下に多孔質膜52aおよび補助支持膜52bで例示する各種の材料が利用可能である。
Here, in the manufacturing method of the present invention, the support body 52 may be a single layer, but as shown in FIG. 2, it has a two-layer structure including a porous film 52a and an auxiliary support film 52b. preferable. By having such a two-layer structure, the support 52 more reliably expresses the functions of acid gas permeability, application of the coating composition to be the facilitated transport film 54, and support of the facilitated transport film 54. .
In the case where the support 52 is a single layer, various materials exemplified below as the porous film 52a and the auxiliary support film 52b can be used as the forming material.

この2層構成の支持体52では、多孔質膜52aが促進輸送膜54側となる。
多孔質膜52aは、耐熱性を有し、また加水分解性の少ない材料からなることが好ましい。このような多孔質膜52aとしては、具体的には、ポリスルホン、ポリエーテルスルホン、ポリプロピレンおよびセルロースなどのメンブレンフィルター膜、ポリアミドやポリイミドの界面重合薄膜、ポリテトラフルオロエチレン(PTFE)や高分子量ポリエチレンの延伸多孔膜等が例示される。
中でも、PTFEや高分子量ポリエチレンの延伸多孔膜は、高い空隙率を有し、酸性ガス(特に炭酸ガス)の拡散阻害が小さく、さらに、強度、製造適性などの観点から好ましい。その中でも、耐熱性を有し、また加水分解性の少ない等の点で、PTFEの延伸多孔膜が、好適に利用される。
In this two-layered support 52, the porous membrane 52a is on the facilitated transport membrane 54 side.
The porous membrane 52a is preferably made of a material having heat resistance and low hydrolyzability. Specific examples of the porous membrane 52a include membrane filter membranes such as polysulfone, polyethersulfone, polypropylene and cellulose, interfacial polymerized thin films of polyamide and polyimide, polytetrafluoroethylene (PTFE) and high molecular weight polyethylene. An example is a stretched porous membrane.
Among them, a stretched porous membrane of PTFE or high molecular weight polyethylene has a high porosity, is small in inhibition of diffusion of acidic gas (especially carbon dioxide gas), and is preferable from the viewpoints of strength and manufacturing suitability. Among them, a stretched porous membrane of PTFE is preferably used in terms of heat resistance and low hydrolyzability.

多孔質膜52aは、使用環境下において、水分を含有した促進輸送膜54が多孔部分に浸み込み易くなり、かつ、膜厚分布や経時での性能劣化を引き起こさないために、疎水性であるのが好ましい。この点に関しては、支持体が一層構成である場合も同様である。
また、多孔質膜52aは、孔の最大孔径が1μm以下であるのが好ましい。
さらに、多孔質膜52aの孔の平均孔径は、0.001〜10μmが好ましく、0.002〜5μmがより好ましく、0.005〜1μmが特に好ましい。多孔質膜52aの平均孔径をこの範囲とすることにより、後述する接着剤の塗布領域は接着剤を十分に染み込ませ、かつ、多孔質膜52aが酸性ガスの通過の妨げとなることを好適に防止でき、さらに、後述する塗布組成物を塗布する際に、毛管現象などにより膜面が不均一になることを防げる。
The porous membrane 52a is hydrophobic in order that the facilitated transport membrane 54 containing moisture can easily penetrate into the porous portion in the use environment and does not cause deterioration in film thickness distribution or performance over time. Is preferred. The same applies to the case where the support has a single layer structure.
The porous membrane 52a preferably has a maximum pore diameter of 1 μm or less.
Furthermore, the average pore diameter of the pores of the porous membrane 52a is preferably 0.001 to 10 μm, more preferably 0.002 to 5 μm, and particularly preferably 0.005 to 1 μm. By setting the average pore diameter of the porous membrane 52a within this range, it is preferable that the adhesive application region described later sufficiently infiltrates the adhesive and that the porous membrane 52a prevents the passage of the acid gas. Further, when the coating composition described later is applied, it is possible to prevent the film surface from becoming non-uniform due to capillary action or the like.

補助支持膜52bは、多孔質膜52aの補強用に備えられるものである。
多孔質膜52aは、要求される強度、耐延伸性および気体透過性を満たすものであれば、各種の物が利用可能である。例えば、不織布、織布、ネット、および、平均孔径が0.001〜10μmのメッシュなどを、適宜、選択して用いることができる。
The auxiliary support film 52b is provided to reinforce the porous film 52a.
Various materials can be used as the porous membrane 52a as long as it satisfies the required strength, stretch resistance and gas permeability. For example, a nonwoven fabric, a woven fabric, a net, and a mesh having an average pore diameter of 0.001 to 10 μm can be appropriately selected and used.

補助支持膜52bも、前述の多孔質膜52aと同様、耐熱性を有し、また加水分解性の少ない素材からなることが好ましい。
この点を考慮すると、不織布、織布、編布を構成する繊維としては、耐久性や耐熱性に優れる、ポリプロピレン(PP)などのポリオレフィン、アラミド(商品名)などの改質ポリアミド、ポリテトラフルオロエチレン、ポリフッ化ビニリデンなどのフッ素含有樹脂などからなる繊維が好ましい。メッシュを構成する樹脂材料も同様の素材を用いるのが好ましい。これらの材料のうち、安価で力学的強度の強いPPからなる不織布は、特に好適に例示される。
The auxiliary support film 52b is also preferably made of a material having heat resistance and low hydrolyzability, like the porous film 52a described above.
Considering this point, the fibers constituting the nonwoven fabric, woven fabric, and knitted fabric are excellent in durability and heat resistance, polyolefin such as polypropylene (PP), modified polyamide such as aramid (trade name), polytetrafluoro Fibers made of fluorine-containing resins such as ethylene and polyvinylidene fluoride are preferred. It is preferable to use the same material as the resin material constituting the mesh. Among these materials, a non-woven fabric made of PP that is inexpensive and has high mechanical strength is particularly preferably exemplified.

支持体52が補助支持膜52bを有することにより、力学的強度を向上させることができる。そのため、図示例のRtoRを利用する製造方法であっても、支持体52に皺がよることを防止でき、生産性を高めることもできる。   When the support body 52 has the auxiliary support film 52b, the mechanical strength can be improved. Therefore, even in the manufacturing method using RtoR in the illustrated example, wrinkles on the support 52 can be prevented and productivity can be increased.

支持体52は、薄すぎると強度に難がある。この点を考慮すると、多孔質膜52aの膜厚は5〜100μm、補助支持膜52bの膜厚は50〜300μmが好ましい。
また、支持体52を単層にする場合には、支持体52の厚さは、30〜500μmが好ましい。
If the support 52 is too thin, the strength is difficult. Considering this point, the thickness of the porous membrane 52a is preferably 5 to 100 μm, and the thickness of the auxiliary support membrane 52b is preferably 50 to 300 μm.
Moreover, when making the support body 52 into a single layer, as for the thickness of the support body 52, 30-500 micrometers is preferable.

支持体ロール52Rから送り出された支持体52、および、処理済支持体ロール56Rから送り出された処理済支持体56は、長手方向に搬送されつつ、次いで、塗布部14に搬送され、促進輸送膜54aおよび促進輸送膜54bとなる塗布組成物を塗布される。
なお、以下の説明において、支持体52と処理済支持体56とを区別する必要が無い倍には、両者を代表して、支持体52のみを標記する。
The support body 52 sent out from the support body roll 52R and the processed support body 56 sent out from the processed support body roll 56R are transported in the longitudinal direction and then transported to the coating unit 14 to facilitate transport film. The coating composition to be 54a and the facilitated transport film 54b is applied.
In the following description, only the support body 52 is shown as a representative of both the support body 52 and the processed support body 56 when it is not necessary to distinguish between them.

本発明の製造方法において、支持体52の搬送速度は、支持体52の種類や塗布組成物の粘度等に応じて、適宜、設定すればよい。
ここで、支持体52の搬送速度が速すぎると、塗布組成物の塗膜の膜厚均一性の低下や塗布組成物の乾燥が不十分になるおそれがあり、遅過ぎると生産性が低下する。この点を考慮すると、支持体52の搬送速度は、0.5m/min以上が好ましく、0.75〜200m/minがより好ましく、1〜200m/分が特に好ましい。
In the production method of the present invention, the conveying speed of the support 52 may be appropriately set according to the type of the support 52 and the viscosity of the coating composition.
Here, if the conveying speed of the support 52 is too fast, there is a risk that the coating film thickness uniformity of the coating composition is reduced and the coating composition is insufficiently dried, and if it is too slow, the productivity is lowered. . Considering this point, the conveyance speed of the support 52 is preferably 0.5 m / min or more, more preferably 0.75 to 200 m / min, and particularly preferably 1 to 200 m / min.

促進輸送膜54(促進輸送膜54aおよび促進輸送膜54b)は、親水性ポリマー等の親水性化合物、酸性ガスと反応するキャリアおよび水等を含有する。
従って、このような促進輸送膜54を形成するための塗布組成物は、親水性化合物、キャリアおよび水(常温水または加温水)、あるいはさらに、架橋剤等の必要となる成分を含む組成物(塗料/塗布液)ものである。なお、親水性化合物は、架橋、一部架橋および未架橋のいずれでも良く、また、これらが混合されたものでもよい。
The facilitated transport film 54 (the facilitated transport film 54a and the facilitated transport film 54b) contains a hydrophilic compound such as a hydrophilic polymer, a carrier that reacts with an acidic gas, water, and the like.
Therefore, the coating composition for forming such a facilitated transport film 54 is a composition containing a hydrophilic compound, a carrier and water (room temperature water or warm water), or further a necessary component such as a crosslinking agent ( Paint / coating liquid). The hydrophilic compound may be crosslinked, partially crosslinked, or uncrosslinked, or a mixture of these.

親水性化合物はバインダとして機能するものであり、促進輸送膜54において、水分を保持して、キャリアによる二酸化炭素等のガスの分離機能を発揮させる。また、親水性化合物は、耐熱性の観点から、架橋構造を有するのが好ましい。   The hydrophilic compound functions as a binder, holds moisture in the facilitated transport film 54, and exhibits a function of separating a gas such as carbon dioxide by the carrier. Moreover, it is preferable that a hydrophilic compound has a crosslinked structure from a heat resistant viewpoint.

親水性化合物は、水に溶けて塗布液を形成できると共に、促進輸送膜54が高い親水性(保湿性)を有するのが好ましいという観点から、親水性が高いものが好ましい。
具体的には、親水性化合物は、生理食塩液の吸水量が0.5g/g以上の親水性を有することが好ましく、同1g/g以上の親水性を有することがより好ましく、同5g/g以上の親水性を有することがさらに好ましく、同10g/g以上の親水性を有することが特に好ましく、さらには、同20g/g以上の親水性を有することが最も好ましい。
From the viewpoint that the hydrophilic compound can be dissolved in water to form a coating solution, and the facilitated transport film 54 preferably has high hydrophilicity (moisturizing properties), those having high hydrophilicity are preferable.
Specifically, the hydrophilic compound preferably has a hydrophilicity of 0.5 g / g or more, more preferably 1 g / g or more, more preferably 5 g / g of the physiological saline. More preferably, it has a hydrophilicity of g or more, particularly preferably has a hydrophilicity of 10 g / g or more, and most preferably has a hydrophilicity of 20 g / g or more.

親水性化合物の重量平均分子量は、安定な膜を形成し得る範囲で、適宜、選択すればよい。具体的には、20,000〜2,000,000が好ましく、25,000〜2,000,000がより好ましく、30,000〜2,000,000が特に好ましい。
親水性化合物の重量平均分子量を20,000以上とすることで、安定して十分な膜強度を有する促進輸送膜54を得ることができる。
特に、親水性化合物が架橋可能基として−OHを有する場合には、親水性化合物は、重量平均分子量が30,000以上であるのが好ましい。この際には、重量平均分子量は更に好ましくは40,000以上であり、より好ましくは、50,000以上である。また、親水性化合物が架橋可能基として−OHを有する場合には、製造適性の観点から、重量平均分子量は、6,000,000以下であることが好ましい。
また、架橋可能基として−NH2を有する場合には、親水性化合物は、重量平均分子量が10,000以上であるものが好ましい。この際には、親水性化合物の重量平均分子量は、15,000以上であるのがより好ましく、20,000以上であるのが特に好ましい。また、親水性化合物が、架橋可能基として−NH2を有する場合には、製造適性の観点から、重量平均分子量は、1,000,000以下であるのが好ましい。
なお、親水性化合物の重量平均分子量は、例えば、親水性化合物としてPVAを用いる場合には、JIS K 6726に準じて測定した値を用いればよい。また、市販品を用いる場合には、カタログ、仕様書などで公称される分子量を用いればよい。
What is necessary is just to select the weight average molecular weight of a hydrophilic compound suitably in the range which can form a stable film | membrane. Specifically, 20,000 to 2,000,000 is preferable, 25,000 to 2,000,000 is more preferable, and 30,000 to 2,000,000 is particularly preferable.
By setting the weight average molecular weight of the hydrophilic compound to 20,000 or more, the facilitated transport film 54 having a stable and sufficient film strength can be obtained.
In particular, when the hydrophilic compound has —OH as a crosslinkable group, the hydrophilic compound preferably has a weight average molecular weight of 30,000 or more. In this case, the weight average molecular weight is more preferably 40,000 or more, and more preferably 50,000 or more. When the hydrophilic compound has —OH as a crosslinkable group, the weight average molecular weight is preferably 6,000,000 or less from the viewpoint of production suitability.
Also, when having -NH 2 as crosslinkable groups, hydrophilic compounds are those preferably has a weight average molecular weight of 10,000 or more. In this case, the weight average molecular weight of the hydrophilic compound is more preferably 15,000 or more, and particularly preferably 20,000 or more. When the hydrophilic compound has —NH 2 as a crosslinkable group, the weight average molecular weight is preferably 1,000,000 or less from the viewpoint of production suitability.
For example, when PVA is used as the hydrophilic compound, the weight average molecular weight of the hydrophilic compound may be a value measured according to JIS K 6726. Moreover, when using a commercial item, what is necessary is just to use the molecular weight nominally mentioned in a catalog, a specification, etc.

親水性化合物を形成する架橋可能基としては、耐加水分解性の架橋構造を形成し得るものが、好ましく選択される。
具体的には、ヒドロキシ基、アミノ基、塩素原子、シアノ基、カルボキシ基、および、エポキシ基等が例示される。これらの中でも、アミノ基およびヒドロキシ基が好ましく例示される。さらに、最も好ましくは、キャリアとの親和性およびキャリア担持効果の観点から、ヒドロキシ基が例示される。
As the crosslinkable group forming the hydrophilic compound, those capable of forming a hydrolysis-resistant crosslinked structure are preferably selected.
Specific examples include a hydroxy group, an amino group, a chlorine atom, a cyano group, a carboxy group, and an epoxy group. Among these, an amino group and a hydroxy group are preferably exemplified. Furthermore, most preferably, a hydroxy group is illustrated from the viewpoint of affinity with a carrier and a carrier carrying effect.

親水性化合物としては、具体的には、単一の架橋可能基を有するものとしては、ポリアリルアミン、ポリアクリル酸、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリルアミド、ポリエチレンイミン、ポリビニルアミン、ポリオルニチン、ポリリジン、ポリエチレンオキサイド、水溶性セルロース、デンプン、アルギン酸、キチン、ポリスルホン酸、ポリヒドロキシメタクリレート、ポリ−N−ビニルアセトアミドなどが例示される。最も好ましくはポリビニルアルコールである。また、親水性化合物としては、これらの共重合体も例示される。   Specific examples of hydrophilic compounds include those having a single crosslinkable group such as polyallylamine, polyacrylic acid, polyvinyl alcohol, polyvinylpyrrolidone, polyacrylamide, polyethyleneimine, polyvinylamine, polyornithine, polylysine, Examples include polyethylene oxide, water-soluble cellulose, starch, alginic acid, chitin, polysulfonic acid, polyhydroxymethacrylate, poly-N-vinylacetamide and the like. Most preferred is polyvinyl alcohol. Moreover, as a hydrophilic compound, these copolymers are also illustrated.

また、複数の架橋可能基を有する親水性化合物としては、ポリビニルアルコール−ポリアクリル酸共重合体が例示される。ポリビニルアルコール−ポリアクリル塩共重合体は、吸水能が高い上に、高吸水時においてもハイドロゲルの強度が大きいため好ましい。
ポリビニルアルコール−ポリアクリル酸共重合体におけるポリアクリル酸の含有率は、例えば1〜95モル%、好ましくは2〜70モル%、より好ましくは3〜60モル%、特に好ましくは5〜50モル%である。なお、アクリル酸の含有率は、公知の合成方法で制御することができる。
なお、ポリビニルアルコール−ポリアクリル酸共重合体において、ポリアクリル酸は、塩であってもよい。この際におけるポリアクリル酸塩としては、ナトリウム塩、カリウム塩等のアルカリ金属塩の他、アンモニウム塩や有機アンモニウム塩等が例示される。
Examples of the hydrophilic compound having a plurality of crosslinkable groups include polyvinyl alcohol-polyacrylic acid copolymers. A polyvinyl alcohol-polyacrylic salt copolymer is preferable because of its high water absorption ability and high hydrogel strength even at high water absorption.
The content of polyacrylic acid in the polyvinyl alcohol-polyacrylic acid copolymer is, for example, 1 to 95 mol%, preferably 2 to 70 mol%, more preferably 3 to 60 mol%, and particularly preferably 5 to 50 mol%. It is. The content of acrylic acid can be controlled by a known synthesis method.
In the polyvinyl alcohol-polyacrylic acid copolymer, the polyacrylic acid may be a salt. Examples of the polyacrylic acid salt in this case include ammonium salts and organic ammonium salts in addition to alkali metal salts such as sodium salts and potassium salts.

ポリビニルアルコールは市販品としても入手可能である。具体的には、PVA117(クラレ社製)、ポバール(クラレ製)、ポリビニルアルコール(アルドリッチ社製)、J−ポバール(日本酢ビ・ポバール社製)等が例示される。分子量のグレードは種々存在するが、重量平均分子量が130,000〜300,000のものが好ましい。
ポリビニルアルコール−ポリアクリル酸塩共重合体(ナトリウム塩)も、市販品として入手可能である。例えば、クラストマーAP20(クラレ社製)が例示される。
Polyvinyl alcohol is also available as a commercial product. Specific examples include PVA117 (manufactured by Kuraray Co., Ltd.), poval (manufactured by Kuraray), polyvinyl alcohol (manufactured by Aldrich), J-poval (manufactured by Nippon Vinegarten Poval). Although there are various molecular weight grades, those having a weight average molecular weight of 130,000 to 300,000 are preferred.
A polyvinyl alcohol-polyacrylate copolymer (sodium salt) is also available as a commercial product. For example, Crustomer AP20 (made by Kuraray Co., Ltd.) is exemplified.

なお、本発明の製造方法の促進輸送膜54において、親水性化合物は、2種以上を混合して使用してもよい。   In the facilitated transport film 54 of the production method of the present invention, two or more hydrophilic compounds may be mixed and used.

塗布組成物における親水性化合物の含有量は、形成した促進輸送膜54において、親水性化合物がバインダーとして機能し、かつ、水分を十分に保持できる量を、親水性組成物やキャリアの種類等に応じて、適宜、設定すればよい。
具体的には、促進輸送膜54における含有量が、0.5〜50質量%となる量が好ましく、0.75〜30質量%となる量がより好ましく、1〜15質量%となる量が特に好ましい。親水性化合物の含有量を、この範囲とすることにより、上述のバインダとしての機能および水分保持機能を、安定して、好適に発現できる。
The content of the hydrophilic compound in the coating composition is such that the hydrophilic compound functions as a binder and can sufficiently retain moisture in the formed facilitated transport film 54, depending on the type of the hydrophilic composition or carrier. Accordingly, it may be set appropriately.
Specifically, the amount of the facilitated transport film 54 is preferably 0.5 to 50% by mass, more preferably 0.75 to 30% by mass, and 1 to 15% by mass. Particularly preferred. By setting the content of the hydrophilic compound within this range, the above-mentioned function as a binder and the moisture retention function can be stably and suitably expressed.

親水性化合物の架橋構造は、熱架橋、紫外線架橋、電子線架橋、放射線架橋、光架橋等、公知の手法により形成できる。
好ましくは光架橋もしくは熱架橋であり、最も好ましくは熱架橋である。
The crosslinked structure of the hydrophilic compound can be formed by a known method such as thermal crosslinking, ultraviolet crosslinking, electron beam crosslinking, radiation crosslinking, or photocrosslinking.
Photocrosslinking or thermal crosslinking is preferred, and thermal crosslinking is most preferred.

また、塗布組成物は、架橋剤を含有するのが好ましい。
架橋剤としては、親水性化合物と反応し、熱架橋や光架橋等の架橋し得る官能基を2以上有する架橋剤を含むものが選択される。また、形成された架橋構造は、耐加水分解性の架橋構造となるのが好ましい。
このような観点から、塗布組成物に添加される架橋剤としては、エポキシ架橋剤、多価グリシジルエーテル、多価アルコール、多価イソシアネート、多価アジリジン、ハロエポキシ化合物、多価アルデヒド、多価アミン、有機金属系架橋剤などが好適に例示される。より好ましくは多価アルデヒド、有機金属系架橋剤およびエポキシ架橋剤であり、中でも、アルデヒド基を2以上有するグルタルアルデヒドやホルムアルデヒドなどの多価アルデヒドが好ましい。
Moreover, it is preferable that a coating composition contains a crosslinking agent.
As the crosslinking agent, one containing a crosslinking agent that reacts with a hydrophilic compound and has two or more functional groups capable of crosslinking such as thermal crosslinking or photocrosslinking is selected. The formed crosslinked structure is preferably a hydrolysis-resistant crosslinked structure.
From such a viewpoint, as a crosslinking agent added to the coating composition, an epoxy crosslinking agent, a polyvalent glycidyl ether, a polyhydric alcohol, a polyvalent isocyanate, a polyvalent aziridine, a haloepoxy compound, a polyvalent aldehyde, a polyvalent amine, An organic metal type crosslinking agent etc. are illustrated suitably. More preferred are polyvalent aldehydes, organometallic crosslinking agents and epoxy crosslinking agents, and among them, polyvalent aldehydes such as glutaraldehyde and formaldehyde having two or more aldehyde groups are preferred.

エポキシ架橋剤としては、エポキシ基を2以上有する化合物であり、4以上有する化合物も好ましい。エポキシ架橋剤は市販品としても入手可能であり、例えば、トリメチロールプロパントリグリシジルエーテル(共栄社化学株式会社製、エポライト100MF等)、ナガセケムテックス社製EX−411、EX−313、EX−614B、EX−810、EX−811、EX−821、EX−830、日油株式会社製エピオールE400などが例示される。
また、エポキシ架橋剤に類似する化合物として、環状エーテルを有するオキセタン化合物も、また、好ましく使用される。オキセタン化合物としては、官能基を2以上有する多価グリシジルエーテルが好ましく、市販品としては、例えばナガセケムテックス社製EX−411、EX−313、EX−614B、EX−810、EX−811、EX−821、EX−830、などが例示される。
As an epoxy crosslinking agent, it is a compound which has 2 or more of epoxy groups, and the compound which has 4 or more is also preferable. Epoxy crosslinking agents are also available as commercial products, for example, trimethylolpropane triglycidyl ether (manufactured by Kyoeisha Chemical Co., Ltd., Epolite 100MF, etc.), Nagase ChemteX Corporation EX-411, EX-313, EX-614B, Examples include EX-810, EX-811, EX-821, EX-830, NOF Corporation Epiol E400, and the like.
Moreover, the oxetane compound which has cyclic ether as a compound similar to an epoxy crosslinking agent is also used preferably. The oxetane compound is preferably a polyvalent glycidyl ether having two or more functional groups, and commercially available products include, for example, EX-411, EX-313, EX-614B, EX-810, EX-811, EX manufactured by Nagase ChemteX Corporation. -821, EX-830, and the like.

多価グリシジルエーテルとしては、例えば、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、グリセロールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ソルビトールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、プロピレングリコールグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル等が例示される。   Examples of the polyvalent glycidyl ether include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, glycerol polyglycidyl ether, diglycerol polyglycidyl ether, polyglycerol polyglycidyl ether, sorbitol polyglycidyl ether, pentaerythritol polyglycidyl ether, propylene Examples include glycol glycidyl ether and polypropylene glycol diglycidyl ether.

多価アルコールとしては、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、グリセリン、ポリグリセリン、プロピレングリコール、ジエタノールアミン、トリエタノールアミン、ポリオキシプロピル、オキシエチエンオキシプロピレンブロック共重合体、ペンタエリスリトール、ソビトール等が例示される。   Examples of the polyhydric alcohol include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, glycerin, polyglycerin, propylene glycol, diethanolamine, triethanolamine, polyoxypropyl, and oxyethylene oxypropylene block copolymer. Examples include coalescence, pentaerythritol, and sobitol.

多価イソシアネートとしては、例えば、2,4−トルイレンジイソシアネート、ヘキサメチレンジイソシアネート等が例示される。
多価アジリジンとしては、例えば、2,2−ビスヒドロキシメチルブタノール−トリス[3−(1−アシリジニル)プロピオネート]、1,6−ヘキサメチレンジエチレンウレア、ジフェニルメタン−ビス−4,4’−N,N’−ジエチレンウレア等が例示される。
Examples of the polyvalent isocyanate include 2,4-toluylene diisocyanate and hexamethylene diisocyanate.
Examples of the polyvalent aziridines include 2,2-bishydroxymethylbutanol-tris [3- (1-acylidinyl) propionate], 1,6-hexamethylenediethyleneurea, diphenylmethane-bis-4,4′-N, N. Examples include '-diethylene urea.

ハロエポキシ化合物としては、例えば、エピクロルヒドリン、α−メチルクロルヒドリン等が例示される。
多価アルデヒドとしては、例えば、グルタルアルデヒド、グリオキサール等が例示される。
多価アミンとしては、例えば、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、ポリエチレンイミン等が例示される。
さらに、有機金属系架橋剤としては、例えば、有機チタン架橋剤、有機ジルコニア架橋剤等が例示される。
Examples of the haloepoxy compound include epichlorohydrin and α-methylchlorohydrin.
Examples of the polyvalent aldehyde include glutaraldehyde and glyoxal.
Examples of the polyvalent amine include ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, and polyethyleneimine.
Furthermore, examples of the organometallic crosslinking agent include organic titanium crosslinking agents and organic zirconia crosslinking agents.

例えば、親水性化合物として、重量平均分子量が130,000以上のポリビニルアルコールを用いる場合には、この親水性化合物と反応性が良好で、加水分解耐性も優れている架橋構造が形成可能である点から,エポキシ架橋剤やグルタルアルデヒドが好ましく利用される。
また、親水性化合物として、ポリビニルアルコール−ポリアクリル酸共重合体を用いる場合は、エポキシ架橋剤やグルタルアルデヒドが好ましく利用される。
また、親水性化合物として、重量平均分子量が10,000以上のポリアリルアミンを用いる場合には、この親水性化合物と反応性が良好で、加水分解耐性も優れている架橋構造が形成可能である点から、エポキシ架橋剤、グルタルアルデヒド、および、有機金属架橋剤が好ましく利用される。
さらに、親水性化合物として、ポリエチレンイミンやポリアリルアミンを用いる場合には、エポキシ架橋剤が好ましく利用される。
For example, when polyvinyl alcohol having a weight average molecular weight of 130,000 or more is used as the hydrophilic compound, it is possible to form a crosslinked structure having good reactivity with this hydrophilic compound and excellent hydrolysis resistance. Therefore, an epoxy crosslinking agent and glutaraldehyde are preferably used.
Moreover, when using a polyvinyl alcohol-polyacrylic acid copolymer as a hydrophilic compound, an epoxy crosslinking agent and glutaraldehyde are preferably utilized.
In addition, when a polyallylamine having a weight average molecular weight of 10,000 or more is used as the hydrophilic compound, it is possible to form a crosslinked structure that has good reactivity with the hydrophilic compound and excellent hydrolysis resistance. Therefore, an epoxy crosslinking agent, glutaraldehyde, and an organometallic crosslinking agent are preferably used.
Further, when polyethyleneimine or polyallylamine is used as the hydrophilic compound, an epoxy crosslinking agent is preferably used.

架橋剤の量は、塗布組成物に添加する親水性化合物や架橋剤の種類に応じて、適宜、設定すればよい。
具体的には、親水性化合物が有する架橋可能基量100質量部に対して0.001〜80質量部が好ましく、0.01〜60質量部がより好ましく、0.1〜50質量部が特に好ましい。架橋剤の含有量を上記範囲とすることにより、架橋構造の形成性が良好であり、かつ、形状維持性に優れる促進輸送膜を得ることができる。
また、親水性化合物が有する架橋可能基に着目すれば、架橋構造は、親水性化合物が有する架橋可能基100molに対し、架橋剤0.001〜80molを反応させて形成されたものであるのが好ましい。
What is necessary is just to set the quantity of a crosslinking agent suitably according to the kind of hydrophilic compound and crosslinking agent which are added to a coating composition.
Specifically, the amount is preferably 0.001 to 80 parts by weight, more preferably 0.01 to 60 parts by weight, and particularly preferably 0.1 to 50 parts by weight with respect to 100 parts by weight of the crosslinkable group possessed by the hydrophilic compound. preferable. By setting the content of the cross-linking agent in the above range, a facilitated transport film having good cross-linking structure formation and excellent shape maintainability can be obtained.
Further, when focusing on the crosslinkable group possessed by the hydrophilic compound, the crosslinked structure is formed by reacting 0.001 to 80 mol of a crosslinking agent with respect to 100 mol of the crosslinkable group possessed by the hydrophilic compound. preferable.

促進輸送膜54において、キャリア(酸性ガスキャリア)は、酸性ガス(例えば、炭酸ガス(CO2))と反応して、酸性ガスを輸送するものである。 In the facilitated transport film 54, the carrier (acid gas carrier) reacts with an acid gas (for example, carbon dioxide gas (CO 2 )) to transport the acid gas.

キャリアは、酸性ガスと親和性を有し、かつ、塩基性を示す水溶性の化合物である。具体的には、アルカリ金属化合物、窒素含有化合物および硫黄酸化物等が例示される。
なお、キャリアは、間接的に酸性ガスと反応するものでも、キャリア自体が、直接、酸性ガスと反応するものでもよい。
前者は、供給ガス中に含まれる他のガスと反応し、塩基性を示し、その塩基性化合物と酸性ガスが反応するものなどが例示される。より具体的には、スチーム(水分)と反応してOH-を放出し、そのOH-がCO2と反応することで、促進輸送膜54中に選択的にCO2を取り込むことができる化合物であり、例えば、アルカリ金属化合物である。
後者は、キャリア自体が塩基性であるようなもので、例えば、窒素含有化合物や硫黄酸化物である。
The carrier is a water-soluble compound having affinity with acidic gas and showing basicity. Specific examples include alkali metal compounds, nitrogen-containing compounds, and sulfur oxides.
The carrier may react indirectly with the acid gas, or the carrier itself may react directly with the acid gas.
The former reacts with other gas contained in the supply gas, shows basicity, and the basic compound reacts with acidic gas. More specifically, OH react with steam (water) - was released, the OH - that reacts with CO 2, a compound can be incorporated selectively CO 2 in facilitated transport membrane 54 For example, an alkali metal compound.
The latter is such that the carrier itself is basic, for example, a nitrogen-containing compound or a sulfur oxide.

アルカリ金属化合物としては、アルカリ金属炭酸塩、アルカリ金属重炭酸塩、および、アルカリ金属水酸化物等が例示される。ここで、アルカリ金属としては、セシウム、ルビジウム、カリウム、リチウム、および、ナトリウムから選ばれたアルカリ金属元素が好ましく用いられる。なお、本発明において、アルカリ金属化合物とは、アルカリ金属そのもののほか、その塩およびそのイオンも含む。   Examples of the alkali metal compound include alkali metal carbonates, alkali metal bicarbonates, and alkali metal hydroxides. Here, as the alkali metal, an alkali metal element selected from cesium, rubidium, potassium, lithium, and sodium is preferably used. In addition, in this invention, an alkali metal compound contains the salt and its ion other than alkali metal itself.

アルカリ金属炭酸塩としては、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸ルビジウム、および、炭酸セシウム等が例示される。
アルカリ金属重炭酸塩としては、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素ルビジウム、および、炭酸水素セシウム等が例示される。
さらに、アルカリ金属水酸化物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、および、水酸化セシウム等が例示される。
これらの中でも、アルカリ金属炭酸塩が好ましく、また、酸性ガスとの親和性が良いという観点から、水に対する溶解度の高いカリウム、ルビジウム、および、セシウムを含む化合物が好ましい。
Examples of the alkali metal carbonate include lithium carbonate, sodium carbonate, potassium carbonate, rubidium carbonate, and cesium carbonate.
Examples of the alkali metal bicarbonate include lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, rubidium hydrogen carbonate, and cesium hydrogen carbonate.
Furthermore, examples of the alkali metal hydroxide include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, and cesium hydroxide.
Among these, alkali metal carbonates are preferable, and compounds having high solubility in water, potassium, rubidium, and cesium are preferable from the viewpoint of good affinity with acidic gas.

また、キャリアとしてアルカリ金属化合物を用いる際には、2種以上のキャリアを併用してもよい。
促進輸送膜54中に2種以上のキャリアが存在することにより、膜中で異なるキャリアを距離的に離間させることができる。これにより、複数のキャリアの潮解性の違いによって、促進輸送膜54の吸水性に起因して、製造時等に促進輸送膜54同士や、促進輸送膜54と他の部材とが貼着すること(ブロッキング)を、好適に抑制できる。
また、ブロッキングの抑制効果を、より好適に得られる等の点で、2種以上のアルカリ金属化合物をキャリアとして用いる場合には、潮解性を有する第1化合物と、第1化合物よりも潮解性が低く比重が小さい第2化合物を含むのが好ましい。一例として、第1化合物としては炭酸セシウムが、第2化合物としては炭酸カリウムが、例示される。
Moreover, when using an alkali metal compound as a carrier, two or more kinds of carriers may be used in combination.
When two or more kinds of carriers are present in the facilitated transport film 54, different carriers can be separated from each other in the film. As a result, due to the difference in deliquescence of a plurality of carriers, the facilitated transport film 54 or the facilitated transport film 54 and other members are adhered to each other due to the water absorption of the facilitated transport film 54 at the time of manufacture. (Blocking) can be suitably suppressed.
Moreover, when using 2 or more types of alkali metal compounds as a carrier by the point of being able to obtain the blocking inhibitory effect more suitably, the deliquescence property is more excellent than the first compound having deliquescence and the first compound. It is preferable to include a second compound having a low specific gravity. As an example, the first compound is exemplified by cesium carbonate, and the second compound is exemplified by potassium carbonate.

窒素含有化合物としては、グリシン、アラニン、セリン、プロリン、ヒスチジン、タウリン、ジアミノプロピオン酸などのアミノ酸類、ピリジン、ヒスチジン、ピペラジン、イミダゾール、トリアジンなどのヘテロ化合物類、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、モノプロパノールアミン、ジプロパノールアミン、トリプロパノールアミンなどのアルカノールアミン類、クリプタンド[2.1]、クリプタンド[2.2]などの環状ポリエーテルアミン類、クリプタンド[2.2.1]、クリプタンド[2.2.2]などの双環式ポリエーテルアミン類、ポルフィリン、フタロシアニン、エチレンジアミン四酢酸等が例示される。
さらに、硫黄化合物としては、シスチン、システインなどのアミノ酸類、ポリチオフェン、ドデシルチオール等が例示される。
Nitrogen-containing compounds include amino acids such as glycine, alanine, serine, proline, histidine, taurine, diaminopropionic acid, hetero compounds such as pyridine, histidine, piperazine, imidazole, triazine, monoethanolamine, diethanolamine, triethanolamine , Alkanolamines such as monopropanolamine, dipropanolamine and tripropanolamine, cyclic polyetheramines such as cryptand [2.1] and cryptand [2.2], cryptand [2.2.1] and cryptand [ And bicyclic polyetheramines such as 2.2.2], porphyrin, phthalocyanine, ethylenediaminetetraacetic acid and the like.
Further, examples of the sulfur compound include amino acids such as cystine and cysteine, polythiophene, dodecylthiol and the like.

塗布組成物におけるキャリアの含有量は、キャリアや親水性化合物の種類等に応じて、適宜、設定すればよい。具体的には、促進輸送膜54におけるキャリアの量が、0.3〜30質量%となる量が好ましく、0.5〜25質量%となる量がより好ましく、1〜20質量%となる量が特に好ましい。
塗布組成物におけるキャリアの含有量を、上記範囲とすることにより、塗布前の塩析を好適に防ぐことができ、さらに、形成した促進輸送膜54が、酸性ガスの分離機能を確実に発揮できる。
また、塗布組成物における親水性化合物とキャリアとの量比は、親水性化合物:キャリアの質量比で1:9〜2:3以下が好ましく、1:4〜2:3以下がより好ましく、3:7〜2:3が特に好ましい。
What is necessary is just to set content of the carrier in a coating composition suitably according to the kind etc. of a carrier or a hydrophilic compound. Specifically, the amount of the carrier in the facilitated transport film 54 is preferably 0.3 to 30% by mass, more preferably 0.5 to 25% by mass, and 1 to 20% by mass. Is particularly preferred.
By setting the content of the carrier in the coating composition within the above range, salting out before coating can be suitably prevented, and the facilitated transport film 54 formed can reliably exhibit the function of separating acidic gas. .
Moreover, the amount ratio of the hydrophilic compound to the carrier in the coating composition is preferably 1: 9 to 2: 3 or less, more preferably 1: 4 to 2: 3 or less, in terms of the hydrophilic compound: carrier mass ratio. : 7-2: 3 is particularly preferable.

塗布組成物は、必要に応じて、増粘剤を含有してもよい。
増粘剤としては、例えば、寒天、カルボキシメチルセルロース、カラギナン、キタンサンガム、グァーガム、ペクチン等の増粘多糖類が好ましい。中でも、製膜性、入手の容易性、コストの点から、カルボキシメチセルロースが好ましい。
カルボキシメチルセルロースを用いることにより、少量の含有量で、所望粘度の塗布組成物が容易に得られるうえ、塗布液に含まれる溶媒以外の成分の少なくとも一部が塗布液中で溶解できずに析出してしまう恐れも少ない。
The coating composition may contain a thickener as necessary.
As the thickener, for example, thickening polysaccharides such as agar, carboxymethylcellulose, carrageenan, chitansan gum, guar gum and pectin are preferable. Among these, carboxymethylcellulose is preferable from the viewpoints of film forming property, availability, and cost.
By using carboxymethyl cellulose, a coating composition having a desired viscosity can be easily obtained with a small amount of content, and at least a part of components other than the solvent contained in the coating solution cannot be dissolved in the coating solution and deposited. There is little fear of it.

塗布組成物における増粘剤の含有量は、組成物(塗布液)中の増粘剤の含有量は、目的とする粘度に調節可能であれば、できるだけ少ないほうが好ましい。
一般的な指標としては、10質量%以下が好ましく、0.1〜5質量%がより好ましく、0.1〜2質量%以下がより好ましい。
The content of the thickener in the coating composition is preferably as small as possible as long as the content of the thickener in the composition (coating liquid) can be adjusted to the target viscosity.
As a general index, 10% by mass or less is preferable, 0.1 to 5% by mass is more preferable, and 0.1 to 2% by mass or less is more preferable.

塗布組成物(促進輸送膜54)は、このような親水性化合物、架橋剤およびキャリア、あるいはさらに増粘剤に加え、必要に応じて、各種の成分を含有してもよい。   The coating composition (facilitated transport film 54) may contain various components as necessary in addition to such a hydrophilic compound, a crosslinking agent and a carrier, or a thickener.

このような成分としては、ジブチルヒドロキシトルエン(BHT)等の酸化防止剤、炭素数3〜20のアルキル基または炭素数3〜20のフッ化アルキル基と親水性基とを有する化合物やシロキサン構造を有する化合物等の特定化合物、オクタン酸ナトリウムや1−ヘキサスルホン酸ナトリウム等の界面活性剤、ポリオレフィン粒子やポリメタクリル酸メチル粒子等のポリマー粒子等が例示される。
その他、必要に応じて、触媒、保湿(吸湿)剤、補助溶剤、膜強度調節剤、欠陥検出剤等を用いてもよい。
Examples of such components include an antioxidant such as dibutylhydroxytoluene (BHT), a compound having 3 to 20 carbon atoms or a fluorinated alkyl group having 3 to 20 carbon atoms and a hydrophilic group, and a siloxane structure. Specific compounds such as compounds having a surfactant, surfactants such as sodium octoate and sodium 1-hexasulfonate, polymer particles such as polyolefin particles and polymethyl methacrylate particles, and the like.
In addition, a catalyst, a moisturizing (moisture absorbing) agent, an auxiliary solvent, a film strength adjusting agent, a defect detecting agent and the like may be used as necessary.

塗布組成物は、公知の方法で調製すればよい。すなわち、まず、親水性化合物、キャリア、および、必要に応じて添加する各種の成分を、それぞれ適量で水(常温水または加温水)に添加して、十分、攪拌することで、促進輸送膜54となる塗布組成物を調製する。
この塗布組成物の調製では、必要に応じて、攪拌しつつ加熱することで、各成分の溶解を促進させてもよい。また、親水性化合物を水に加えて溶解した後、キャリアを徐々に加えて攪拌することで、親水性化合物の析出(塩析)を効果的に防ぐことができる。
What is necessary is just to prepare a coating composition by a well-known method. That is, first, the facilitated transport film 54 is obtained by adding a hydrophilic compound, a carrier, and various components to be added as necessary to water (room temperature water or warm water) in appropriate amounts, and stirring sufficiently. A coating composition is prepared.
In the preparation of the coating composition, if necessary, dissolution of each component may be promoted by heating with stirring. Moreover, after adding a hydrophilic compound to water and melt | dissolving, precipitation (salting out) of a hydrophilic compound can be effectively prevented by adding a carrier gradually and stirring.

ここで、促進輸送膜54aおよび促進輸送膜54bとなる塗布組成物は、塗布時において、温度が15〜35℃で、かつ、粘度が0.1〜5Pa・secであるのが好ましい。なお、粘度は、B型粘度系による回転数60rpmにおける粘度測定値である。
本発明においては、塗布時における塗布組成物の温度および粘度を、この範囲とすることにより、塗布組成物の塗膜における各成分の沈降の防止、後述する塗布装置36における不要な塗布組成物の流出、キャリアの析出(塩析)、塗布組成物(塗膜)への気泡の混入等を防止し、かつ、均一な膜厚の塗膜を形成できる。
なお、塗布組成物が、15〜35℃において、B型粘度系による回転数60rpmにおける粘度が0.1〜5Pa・secであることは、以下のように確認すればよい。すなわち、調製した塗布組成物をステンレス製の容器(例えば、内径4cm、高さ12cm)内に投入し、粘度計円筒(ローター)が、十分、塗布組成物に浸るようにする。次いで、このステンレス容器を温度調整の可能な水槽に浸漬し、投入した塗布組成物の温度を15℃から35℃の範囲に調整しつつ、B型粘度計(例えば、テックジャム社製、BL21〜100,000mPa・s / KN3312481)を動作させ、回転数60rpmにおける温度ごとの値を読み取り、JIS Z8803に準じて塗布液の粘度を測定する。
Here, it is preferable that the coating composition to be the facilitated transport film 54a and the facilitated transport film 54b has a temperature of 15 to 35 ° C. and a viscosity of 0.1 to 5 Pa · sec at the time of coating. In addition, a viscosity is a viscosity measured value in rotation speed 60rpm by a B type viscosity system.
In the present invention, by setting the temperature and viscosity of the coating composition at the time of coating within this range, it is possible to prevent sedimentation of each component in the coating film of the coating composition, and to prevent unnecessary coating composition in the coating apparatus 36 described later. It is possible to prevent outflow, carrier precipitation (salting out), mixing of bubbles into the coating composition (coating film), and the like, and to form a coating film with a uniform film thickness.
In addition, what is necessary is just to confirm as follows that the coating composition is 15-5 degreeC, and the viscosity in the rotation speed 60rpm by a B-type viscosity system is 0.1-5 Pa.sec. That is, the prepared coating composition is put into a stainless steel container (for example, an inner diameter of 4 cm and a height of 12 cm) so that the viscometer cylinder (rotor) is sufficiently immersed in the coating composition. Next, this stainless steel container is immersed in a temperature-adjustable water tank, and while adjusting the temperature of the applied coating composition to a range of 15 ° C. to 35 ° C., a B-type viscometer (for example, BL21 to TECH Jam Co., Ltd.). 100,000 mPa · s / KN3312481) is operated, the value for each temperature at a rotational speed of 60 rpm is read, and the viscosity of the coating solution is measured according to JIS Z8803.

本発明においては、最初の促進輸送膜54aを形成する塗布組成物と、2層目の促進輸送膜54bと形成する塗布組成物とは、同じものであってもよく、あるいは、組成、含有する成分の種類や数、pH、含有する各成分の濃度、粘度等が、互いに異なるものであってもよい。
すなわち、本発明においては、最初の促進輸送膜54aと2層目の促進輸送膜54bとは、同じ組成の膜であっても、異なる組成の膜であってもよい。
In the present invention, the coating composition for forming the first facilitated transport film 54a and the coating composition to be formed for the second facilitated transport film 54b may be the same, or may contain the composition. The type and number of components, pH, concentration of each component contained, viscosity, and the like may be different from each other.
That is, in the present invention, the first facilitated transport film 54a and the second facilitated transport film 54b may be films having the same composition or different compositions.

また、3層以上の促進輸送膜を形成する場合には、全ての促進輸送膜を同じ塗布組成物で形成してもよく、あるいは、全ての促進輸送膜を異なる塗布組成物で形成してもよく、あるいは、2層目以降の促進輸送膜は同じ塗布組成物で形成して最初の促進輸送膜54aのみ異なる塗布組成物で形成してもよく、あるいは、最初の促進輸送膜54aと2層目以降の1以上の促進輸送膜とを同じ塗布組成物で形成して、それ以外の促進輸送膜を異なる組成の塗布組成物(組成は、互いに同じでも異なってもよい)で形成してもよい。
すなわち、本発明においては、最初の促進輸送膜54aを形成する塗布組成物(初期成膜工程)と、それ以降の少なくとも1層の促進輸送膜を形成する塗布組成物(積層膜形成工程)とにおいて、同じ塗布組成物を用いても、異なる塗布組成物を用いてもよい。
When forming three or more facilitated transport films, all facilitated transport films may be formed of the same coating composition, or all facilitated transport films may be formed of different coating compositions. Alternatively, the second and subsequent facilitated transport films may be formed of the same coating composition and only the first facilitated transport film 54a may be formed of a different coating composition, or the first facilitated transport film 54a and two layers may be formed. One or more facilitated transport films after the first may be formed of the same coating composition, and other facilitated transport films may be formed of coating compositions having different compositions (compositions may be the same or different). Good.
That is, in the present invention, a coating composition for forming the first facilitated transport film 54a (initial film forming process) and a coating composition for forming at least one facilitated transport film thereafter (laminated film forming process) In the above, the same coating composition or different coating compositions may be used.

前述のように、塗布部14は、長手方向に搬送される支持体52(処理済支持体56)に、このような塗布組成物を塗布する部位である。
図示例において、塗布部14は、塗布装置36とバックアップローラ38とから構成される。すなわち、支持体52は、バックアップローラ38によって所定の塗布位置に保たれつつ搬送されて、塗布装置36によって塗布組成物を塗布され、塗布組成物の塗膜(液膜)を形成される。
As described above, the application unit 14 is a part that applies such a coating composition to the support 52 (processed support 56) conveyed in the longitudinal direction.
In the illustrated example, the coating unit 14 includes a coating device 36 and a backup roller 38. That is, the support body 52 is conveyed while being kept at a predetermined application position by the backup roller 38, and the application composition is applied by the application device 36 to form a coating film (liquid film) of the application composition.

塗布装置36は、公知のものが、各種、利用可能である。
具体的には、ロールコータ、ダイレクトグラビアコータ、オフセットグラビアコータ、一本ロールキスコータ、3本リバースロールコータ、正回転ロールコータ、カーテンフローコータ、エクストルージョンダイコータ、エアードクターコータ、ブレードコータ、ロッドコータ、ナイフコータ、スクイズコータ、リバースロールコータ、バーコータ等が例示される。
中でも、塗布組成物の好ましい粘度や塗布組成物の塗布量等を考慮すると、ロールコータ、バーコータ、正回転ロールコータ、ナイフコータ等は好適に利用される。
As the coating device 36, various known devices can be used.
Specifically, roll coater, direct gravure coater, offset gravure coater, single roll kiss coater, 3 reverse roll coater, forward rotation roll coater, curtain flow coater, extrusion die coater, air doctor coater, blade coater, rod coater And knife coaters, squeeze coaters, reverse roll coaters, bar coaters and the like.
Among these, considering the preferable viscosity of the coating composition, the coating amount of the coating composition, and the like, a roll coater, a bar coater, a normal rotation roll coater, a knife coater, and the like are preferably used.

ここで、本発明の製造方法においては、最初の促進輸送膜54aを形成する際(初期膜形成工程)には、塗布装置34は、塗膜の厚さ(支持体52に塗布する塗布組成物の厚さ)が0.01〜3mmとなるように、支持体52に塗布組成物を塗布する。
なお、促進輸送膜を3回以上の塗布で形成する場合(3層以上で促進輸送膜の全体を形成する場合)には、同様の理由で、最下層および最上層以外の促進輸送膜の形成工程も、塗布組成物の塗膜の厚さを0.01〜3mmとするのが好ましい。すなわち、3回以上の促進輸送膜の形成工程を行う場合には、下層に促進輸送膜を有し、かつ、上層にさらに促進輸送膜を形成される促進輸送膜の形成工程は、積層膜形成工程の条件を満たしつつ、初期膜形成工程の塗膜厚の条件も満たすのが好ましい。
Here, in the manufacturing method of the present invention, when the first facilitated transport film 54a is formed (initial film forming step), the coating device 34 is configured to apply the coating thickness (the coating composition to be applied to the support 52). The coating composition is applied to the support 52 so that the thickness of the substrate is 0.01 to 3 mm.
In addition, when forming a facilitated-transport film | membrane by application | coating 3 times or more (when forming the whole facilitated-transport film | membrane by 3 layers or more), formation of the facilitated-transport film | membranes other than the lowest layer and the top layer for the same reason. Also in the process, the thickness of the coating film of the coating composition is preferably 0.01 to 3 mm. That is, when performing the facilitated transport film forming process three times or more, the facilitated transport film forming process in which the facilitated transport film is formed in the lower layer and the facilitated transport film is further formed in the upper layer is a laminated film formation. It is preferable to satisfy the conditions of the coating film thickness in the initial film forming process while satisfying the process conditions.

最初の促進輸送膜54aの形成において、塗膜の厚さが0.01mm未満では、目的とする機能を発現する促進輸送膜54aを形成することができない等の不都合が生じる。
また、塗膜の厚さが3mmを超えると、気泡や異物の混入に起因する欠陥の発生、後述する乾燥部18で十分な乾燥が行えず未乾燥状態が生じる等の不都合が生じる。
この点を考慮すると、最初の促進輸送膜54aにおける塗布組成物の塗膜の厚さは0.05〜2.5mmが好ましく、0.1〜2mmがより好ましい。
In the formation of the first facilitated transport film 54a, when the thickness of the coating film is less than 0.01 mm, inconveniences such as being unable to form the facilitated transport film 54a that expresses the intended function occur.
On the other hand, when the thickness of the coating film exceeds 3 mm, there are problems such as generation of defects due to mixing of bubbles and foreign matters, and insufficient drying in the drying unit 18 described later, resulting in an undried state.
Considering this point, the thickness of the coating film of the coating composition in the first facilitated transport film 54a is preferably 0.05 to 2.5 mm, more preferably 0.1 to 2 mm.

また、本発明の製造方法において、後述する塗布組成物の乾燥によって形成する最初の促進輸送膜54aの膜厚は、促進輸送膜54aの組成等に応じて、目的とする性能を得られる膜厚を、適宜、設定すればよい。具体的には、1〜100μmが好ましく、10〜80μmがより好ましい。
すなわち、本発明の製造方法においては、最初の促進輸送膜54aを形成する際には、0.01〜3mmの塗膜厚で上記厚さの促進輸送膜54aが得られるように、塗布組成物を調製するのが好ましい。
Further, in the production method of the present invention, the initial facilitated transport film 54a formed by drying the coating composition to be described later has a thickness that can achieve the desired performance depending on the composition of the facilitated transport film 54a and the like. May be set as appropriate. Specifically, 1-100 micrometers is preferable and 10-80 micrometers is more preferable.
That is, in the production method of the present invention, when the first facilitated transport film 54a is formed, the coating composition is formed so that the facilitated transport film 54a having the above thickness is obtained with a coating thickness of 0.01 to 3 mm. Is preferably prepared.

他方、2層目(2層目以降)の促進輸送膜54bを形成する際(積層膜形成工程)における塗布組成物の塗膜厚は、塗布組成物における親水性化合物やキャリア等の濃度、目的とする促進輸送膜54の膜厚等に応じて、適宜、決定すればよい。
具体的には、促進輸送膜54bを形成する際の塗膜厚は0.05〜2.5mmが好ましく、0.1〜2mmがより好ましい。
2層目の促進輸送膜54bの塗膜厚を、この範囲とすることにより、2層目の促進輸送膜54bとなる塗膜の乾燥を好適に行える、2層目の促進輸送膜54bの欠陥を防止できる等の点で好ましい。
なお、3層以上で促進輸送膜の全体を形成する場合には、最下層および最上層以外の促進輸送膜を形成する際の塗膜厚は、前述のように0.01〜3mmとするのが好ましく、0.05〜2.5mmがより好ましく、0.1〜2mmが特に好ましい。
On the other hand, the coating film thickness of the coating composition when forming the second layer (second and subsequent layers) facilitated transport film 54b (laminated film forming step) is the concentration of the hydrophilic compound or carrier in the coating composition, the purpose What is necessary is just to determine suitably according to the film thickness etc. of the facilitated-transport film | membrane 54 to make.
Specifically, the coating thickness when forming the facilitated transport film 54b is preferably 0.05 to 2.5 mm, and more preferably 0.1 to 2 mm.
By setting the coating film thickness of the second layer facilitated transport film 54b within this range, the coating film that becomes the second layer facilitated transport film 54b can be suitably dried. Defects in the second layer facilitated transport film 54b This is preferable in that it can be prevented.
When the entire facilitated transport film is formed of three or more layers, the coating thickness when forming the facilitated transport film other than the lowermost layer and the uppermost layer is set to 0.01 to 3 mm as described above. Is preferable, 0.05 to 2.5 mm is more preferable, and 0.1 to 2 mm is particularly preferable.

また、本発明の製造方法において、後述する塗布組成物の乾燥によって形成する2層目(2層目以降)の促進輸送膜54bの膜厚は、促進輸送膜54bの組成や目的とする促進輸送膜54の厚さ等に応じて、目的とする厚さや性能を得られる膜厚を、適宜、設定すればよい。具体的には、1〜100μmが好ましく、10〜80μmがより好ましい。
すなわち、最初の促進輸送膜54aと同様、前述の塗膜厚で、この膜厚の促進輸送膜54bが得られるように、塗布組成物54を調製するのが好ましい。
In the production method of the present invention, the thickness of the facilitated transport film 54b of the second layer (second and subsequent layers) formed by drying the coating composition described later is the composition of the facilitated transport film 54b and the intended facilitated transport. What is necessary is just to set suitably the film thickness from which the target thickness and performance are obtained according to the thickness of the film | membrane 54, etc. Specifically, 1-100 micrometers is preferable and 10-80 micrometers is more preferable.
That is, like the first facilitated transport film 54a, it is preferable to prepare the coating composition 54 so that the facilitated transport film 54b having this film thickness can be obtained with the above-described coating film thickness.

なお、本発明おいて、最初の促進輸送膜54aと2層目の促進輸送膜54b(さらには、3層目以降の促進郵送膜)の厚さは、同じでも異なってもよい。また、3層以上の促進輸送膜を有する場合には、2層目以降の促進輸送膜の厚さは、同じでも異なってもよい。   In the present invention, the thickness of the first facilitated transport film 54a and the second facilitated transport film 54b (and the third and subsequent facilitated mail films) may be the same or different. In the case of having three or more facilitated transport films, the thickness of the second and subsequent facilitated transport films may be the same or different.

さらに、本発明において、最初の促進輸送膜54aと2層目の促進輸送膜54b(さらには、3層目以降の促進郵送膜)との合計膜厚は、2〜200μmが好ましく、20〜160μmがより好ましい。
促進輸送膜54aと2層目の促進輸送膜54bとの合計膜厚を、この範囲とすることにより、良好な原料ガスの処理効率や酸性ガスの分離性能を安定して得られる等の点で好ましい。
Furthermore, in the present invention, the total film thickness of the first facilitated transport film 54a and the second facilitated transport film 54b (further, the third and subsequent facilitated mail films) is preferably 2 to 200 μm, and preferably 20 to 160 μm. Is more preferable.
By making the total film thickness of the facilitated transport film 54a and the second facilitated transport film 54b within this range, it is possible to stably obtain good raw material gas processing efficiency and acidic gas separation performance. preferable.

前述のように、供給部12および塗布部14は、ハウジング26の中に配置される。さらに、このハウジング26の中には、温湿度測定手段28および温湿度調節手段30が配置される。
温湿度測定手段28は、ハウジング26内の温度および湿度を測定するものである。温湿度測定手段28は、公知の温度センサや湿度センサを用いて構成すればよい。
また、温湿度調節手段30は、温湿度測定手段28によるハウジング26内の温度および湿度の測定結果に応じて、ハウジング26内の温度および湿度を調節するものである。温湿度調節手段28も、公知の除湿手段や加湿手段、加熱装置や冷却装置を用いて構成すればよい。
As described above, the supply unit 12 and the application unit 14 are disposed in the housing 26. Further, a temperature / humidity measuring means 28 and a temperature / humidity adjusting means 30 are arranged in the housing 26.
The temperature / humidity measuring means 28 measures the temperature and humidity in the housing 26. The temperature / humidity measuring means 28 may be configured using a known temperature sensor or humidity sensor.
The temperature / humidity adjusting means 30 adjusts the temperature and humidity in the housing 26 according to the measurement result of the temperature and humidity in the housing 26 by the temperature / humidity measuring means 28. The temperature / humidity adjusting means 28 may also be configured using a known dehumidifying means, humidifying means, heating device, or cooling device.

製造装置10は、2層目の促進輸送膜54a(および、3層目以降の促進輸送膜)を形成する際に、温湿度測定手段によってハウジング26内の温度および湿度を測定し、その測定結果に応じて、温湿度調節手段30がハウジング26内の温度および湿度を調節することにより、ハウジング26内の温度を10〜40℃に、同湿度を2〜50%RHに、管理する。この点に関しては、後に詳述する。   When forming the second layer facilitated transport film 54a (and the third and subsequent facilitated transport films), the manufacturing apparatus 10 measures the temperature and humidity in the housing 26 by the temperature / humidity measuring means, and the measurement result Accordingly, the temperature / humidity adjusting means 30 adjusts the temperature and humidity in the housing 26 to manage the temperature in the housing 26 to 10 to 40 ° C. and the humidity to 2 to 50% RH. This will be described in detail later.

塗布部14において塗布組成物を塗布された支持体52(処理済支持体56)は、裏面(塗布組成物の塗布面と逆面)に当接するパスローラ40aに案内されて、乾燥部18に搬送される。
乾燥部18(乾燥工程)は、支持体52に塗布された塗布組成物から水の少なくとも一部を除去して乾燥(あるいはさらに、親水性化合物を架橋)することで、最初の促進輸送膜54aを形成して処理済支持体56とし、また、2層目の促進輸送膜54bを形成して、酸性ガス分離膜50を作製する部位である。
なお、本発明の製造方法においては、塗布組成物を乾燥した後、必要に応じて、親水性化合物の架橋を行って、促進輸送膜54aや促進輸送膜54bを形成してもよい。
The support 52 (treated support 56) coated with the coating composition in the coating unit 14 is guided by the pass roller 40a that contacts the back surface (the surface opposite to the coating surface of the coating composition) and conveyed to the drying unit 18. Is done.
The drying unit 18 (drying step) removes at least a part of water from the coating composition coated on the support 52 and dries (or further crosslinks the hydrophilic compound), thereby the first facilitated transport film 54a. The processed support 56 is formed, and the second layer facilitated transport film 54b is formed to produce the acid gas separation membrane 50.
In the production method of the present invention, after the coating composition is dried, the facilitated transport film 54a and the facilitated transport film 54b may be formed by crosslinking the hydrophilic compound as necessary.

乾燥方法は、温風乾燥や支持体52の加熱による乾燥方法等、水の除去による乾燥を行う公知の方法が、各種、利用可能である。
温風乾燥を行う場合には、温風の風速は、塗布組成物を迅速に乾燥できると共に、塗布組成物の塗膜(ゲル膜)が崩れない速度を、適宜、設定すればよい。具体的には、0.5〜200m/分が好ましく、0.75〜200m/分がより好ましく、1〜200m/分が特に好ましい。
また、温風の温度は、支持体52の変形などが生じず、かつ、塗布組成物を迅速に乾燥できる温度を、適宜、設定すればよい。具体的には、膜面温度で、1〜120℃が好ましく、2〜115℃がより好ましく、3〜110℃が特に好ましい。
As the drying method, various known methods for drying by removing water, such as hot air drying or a drying method by heating the support 52, can be used.
When performing warm air drying, the speed of the warm air may be set as appropriate so that the coating composition can be dried quickly and the coating film (gel film) of the coating composition does not collapse. Specifically, 0.5 to 200 m / min is preferable, 0.75 to 200 m / min is more preferable, and 1 to 200 m / min is particularly preferable.
Further, the temperature of the warm air may be appropriately set to a temperature at which the support 52 is not deformed and the coating composition can be dried quickly. Specifically, the film surface temperature is preferably 1 to 120 ° C, more preferably 2 to 115 ° C, and particularly preferably 3 to 110 ° C.

支持体52の加熱による乾燥を行う場合には、支持体52の変形などが生じず、かつ、塗布組成物を迅速に乾燥できる温度を、適宜、設定すればよい。また、支持体52の加熱に、乾燥風の吹き付けを併用してもよい。
具体的には、支持体52の温度を60〜120℃として行うのが好ましく、60〜90℃として行うのがより好ましく、70〜80℃として行うのが特に好ましい。また、この際において、膜面温度は、15〜80℃が好ましく、30〜70℃がより好ましい。
When drying the support 52 by heating, the temperature at which the support 52 is not deformed and the coating composition can be dried quickly may be set as appropriate. Moreover, you may use blowing of a dry wind for heating of the support body 52 together.
Specifically, the temperature of the support 52 is preferably 60 to 120 ° C, more preferably 60 to 90 ° C, and particularly preferably 70 to 80 ° C. In this case, the film surface temperature is preferably 15 to 80 ° C, and more preferably 30 to 70 ° C.

乾燥部18で塗布組成物の塗膜を乾燥された支持体52すなわち処理済支持体56、および、乾燥部18で塗布組成物の塗膜を乾燥された処理済支持体すなわち酸性ガス分離膜50は、パスローラ40aに案内されて、次いで、巻取部24に搬送される。
巻取部24は、巻取り軸42に処理済支持体56を巻き取って処理済支持体ロール56Rとし、また、巻取り軸42に酸性ガス分離膜50を巻き取って、分離膜ロール50Rとするのものである。
The support 52 dried from the coating composition coating in the drying unit 18, that is, the treated support 56, and the treated support dried from the coating composition in the drying unit 18, that is, the acid gas separation membrane 50. Is guided to the pass roller 40 a and then conveyed to the winding unit 24.
The take-up unit 24 winds the treated support 56 around the take-up shaft 42 to form a treated support roll 56R, and winds the acidic gas separation membrane 50 around the take-up shaft 42 to form a separation membrane roll 50R. To do.

巻取部24は、前述の巻取り軸42と、3本のパスローラ40c〜40eを有する。
処理済支持体56は、パスローラ40c〜40eによって所定の搬送駅路を案内されて、巻取り軸42(処理済支持体ロール56R)によって巻き取られ、処理済支持体ロール56Rとされる。
また、酸性ガス分離膜50も、同様に、パスローラ40c〜40eによって所定の搬送駅路を案内されて、巻取り軸42(分離膜ロール50R)によって巻き取られ、分離膜ロール50Rとされる。
ここで、3本のパスローラ40c〜40eは、テンションカッタとしても作用しており、処理済支持体56等を蛇行するように、案内する。
The winding unit 24 includes the above-described winding shaft 42 and three pass rollers 40c to 40e.
The processed support 56 is guided along a predetermined transport station path by the pass rollers 40c to 40e, and wound up by the winding shaft 42 (processed support roll 56R) to be a processed support roll 56R.
Similarly, the acidic gas separation membrane 50 is guided along a predetermined transport station path by the pass rollers 40c to 40e, and taken up by the take-up shaft 42 (separation membrane roll 50R) to form the separation membrane roll 50R.
Here, the three pass rollers 40c to 40e also act as tension cutters, and guide the processed support 56 and the like to meander.

以下、製造装置10の作用の一例を説明することにより、本発明の酸性ガス分離膜の製造方法について、より詳細に説明する。   Hereinafter, the production method of the acidic gas separation membrane of the present invention will be described in more detail by explaining an example of the operation of the production apparatus 10.

まず、支持体ロール52Rを供給部12の回転軸34に装着し、回転軸34を回転して支持体ロール52Rから支持体52を送り出す。次いで、支持体ロール52Rから送り出した支持体52を、塗布部14(バックアップローラ38)、パスローラ40a、乾燥部18、パスローラ40bおよびパスローラ40c〜40eを経て、巻取り軸42に至る所定の搬送経路に通し(挿通/通紙)、支持体52の先端を巻取り軸42に巻き付ける。
さらに、塗布装置36に、必要な量の塗布組成物を充填する。
First, the support roll 52R is mounted on the rotating shaft 34 of the supply unit 12, and the rotating shaft 34 is rotated to feed the support 52 from the support roll 52R. Subsequently, the support 52 sent out from the support roll 52R passes through the coating unit 14 (backup roller 38), the pass roller 40a, the drying unit 18, the pass roller 40b, and the pass rollers 40c to 40e, and reaches a take-up shaft 42. The tip of the support body 52 is wound around the take-up shaft 42.
Further, the coating device 36 is filled with a necessary amount of the coating composition.

所定の搬送経路に支持体52を通し、さらに、塗布装置36に塗布組成物を充填したら、回転軸34、巻取り軸42、および、バックアップローラ38等を同期して駆動し、支持体52の搬送を開始する。
なお、この際においては、必要に応じて、温湿度測定手段28および温湿度調節手段30によって、供給部12および塗布部14を収容するハウジング26の温度および湿度を、所定の範囲に管理してもよい。
When the support body 52 is passed through a predetermined transport path and the coating device 36 is filled with the coating composition, the rotary shaft 34, the winding shaft 42, the backup roller 38, etc. are driven in synchronism with each other. Start conveyance.
In this case, the temperature and humidity of the housing 26 housing the supply unit 12 and the application unit 14 are controlled within a predetermined range by the temperature / humidity measuring unit 28 and the temperature / humidity adjusting unit 30 as necessary. Also good.

支持体ロール52Rから送り出された支持体52は、長手方向に搬送されつつ、まず、塗布部14において、バックアップローラ38によって所定の塗布位置に支持されつつ搬送されて、塗布装置36によって、最初の促進輸送膜54aとなる塗布組成物を、所定の塗布厚(塗布量)となるように塗布される。
なお、この塗布組成物の塗布は、前述のように、塗膜の厚さが0.01〜3mmとなるように行う。また、塗布時における塗布組成物は、温度が15〜35℃で、粘度が0.1〜5Pa・secであるのが好ましいのも、前述の通りである。
The support body 52 sent out from the support body roll 52R is first transported while being supported at a predetermined application position by the backup roller 38 in the coating unit 14 while being transported in the longitudinal direction. The coating composition to be the facilitated transport film 54a is applied so as to have a predetermined coating thickness (coating amount).
In addition, application | coating of this coating composition is performed so that the thickness of a coating film may be 0.01-3 mm as mentioned above. As described above, the coating composition at the time of coating preferably has a temperature of 15 to 35 ° C. and a viscosity of 0.1 to 5 Pa · sec.

最初の促進輸送膜54aとなる塗布組成物を塗布された支持体52は、次いで、パスローラ40aに案内されて乾燥部18に至り、乾燥部18において塗布組成物が乾燥されることにより、最初の促進輸送膜54aが形成された処理済支持体56とされる。
処理済支持体56は、パスローラ40bに案内されて、巻取部20に搬送され、パスローラ40c〜40eによって所定の搬送経路を案内されて、巻取り軸42に巻き取られ、処理済支持体ロール56Rとされる。
The support 52 coated with the coating composition to be the first facilitated transport film 54a is then guided by the pass roller 40a to reach the drying unit 18, where the coating composition is dried, The treated support 56 is provided with the facilitated transport film 54a.
The processed support 56 is guided by the pass roller 40b, conveyed to the winding unit 20, guided along a predetermined conveyance path by the pass rollers 40c to 40e, wound around the winding shaft 42, and processed support roll. 56R.

所定長の処理済支持体56を巻回してなる処理済支持体ロール56Rを作製したら、支持体52の搬送を停止する。次いで、乾燥部18よりも下流で処理済支持体56を切断し、処理済支持体ロール56Rに巻き取り、処理済支持体ロール56Rを製造装置10から取り外す。さらに、支持体ロール52Rを回転軸34から取り外し、残った支持体52を取り除く。   When the processed support roll 56R formed by winding the processed support 56 having a predetermined length is produced, the conveyance of the support 52 is stopped. Next, the processed support 56 is cut downstream of the drying unit 18, wound around the processed support roll 56 </ b> R, and the processed support roll 56 </ b> R is removed from the manufacturing apparatus 10. Further, the support roll 52R is removed from the rotating shaft 34, and the remaining support 52 is removed.

次いで、温湿度測定手段28によって供給部12および塗布部14を収容するハウジング26の温度および湿度を測定し、その測定結果に応じて、温湿度調節手段30によってハウジング26内の温度および湿度を調節して、ハウジング26内部の温度が10〜40℃の範囲内に、同湿度が10〜50%RHの範囲内になるように管理する。   Next, the temperature and humidity of the housing 26 that accommodates the supply unit 12 and the coating unit 14 are measured by the temperature / humidity measuring unit 28, and the temperature and humidity in the housing 26 are adjusted by the temperature / humidity adjusting unit 30 according to the measurement result. Then, the housing 26 is managed so that the temperature inside the housing 26 is in the range of 10 to 40 ° C. and the humidity is in the range of 10 to 50% RH.

その上で、処理済支持体ロール56Rを供給部12の回転軸34に装着し、回転軸34を回転して処理済支持体ロール56Rから処理済支持体56を送り出す。次いで、処理済支持体ロール56Rから送り出した処理済支持体56を、先と同様に、塗布部14〜巻取り軸42に至る所定の搬送経路に通し、処理済支持体56の先端を巻取り軸42に巻き付ける。
さらに、塗布装置36に、必要な量の塗布組成物を充填する。なお、この塗布組成物は、最初の促進輸送膜54aを形成した塗布組成物と、同じでも、異なってもよいのは、前述のとおりである。
Then, the processed support roll 56R is mounted on the rotating shaft 34 of the supply unit 12, and the processed support 56 is fed from the processed support roll 56R by rotating the rotating shaft 34. Next, the processed support 56 sent out from the processed support roll 56R is passed through a predetermined transport path from the coating unit 14 to the winding shaft 42 in the same manner as described above, and the tip of the processed support 56 is wound up. Wrap around the shaft 42.
Further, the coating device 36 is filled with a necessary amount of the coating composition. As described above, this coating composition may be the same as or different from the coating composition on which the first facilitated transport film 54a is formed.

ハウジング26内部の温度および湿度を適正に管理した状態となり、所定の搬送経路に処理済支持体56を通し、さらに、塗布装置36に塗布組成物を充填したら、回転軸34、巻取り軸42、および、バックアップローラ36等を同期して駆動し、支持体52の搬送を開始する。   When the temperature and humidity inside the housing 26 are properly controlled, the processed support 56 is passed through a predetermined transport path, and the coating device 36 is filled with the coating composition, the rotating shaft 34, the winding shaft 42, Then, the backup roller 36 and the like are driven in synchronization, and the conveyance of the support 52 is started.

処理済支持体ロール56Rから送り出された処理済支持体56は、先と同様に、長手方向に搬送されつつ、塗布部14において、バックアップローラ38によって所定の塗布位置に支持されつつ搬送されて、塗布装置36によって2層目の促進輸送膜54bとなる塗布組成物を、所定の塗布厚(塗布量)となるように塗布される。
ここで、本発明の製造方法においては、供給部12および塗布部14を収容するハウジング26の温度および湿度を測定し、その測定結果に応じてハウジング26内の温度および湿度を調節して、ハウジング26内部の温度を10〜40℃に、同湿度を10〜50%RHに、それぞれ管理(制御)しているので、2層目の促進輸送膜54bとなる塗布組成物を、全面的に均一に塗布できる。
The processed support 56 sent out from the processed support roll 56R is transported while being supported in a predetermined application position by the backup roller 38 in the coating unit 14 while being transported in the longitudinal direction, as before. The coating composition that forms the second facilitated transport film 54b is applied by the coating device 36 so as to have a predetermined coating thickness (coating amount).
Here, in the manufacturing method of the present invention, the temperature and humidity of the housing 26 that accommodates the supply unit 12 and the application unit 14 are measured, and the temperature and humidity in the housing 26 are adjusted according to the measurement result, and the housing Since the internal temperature is controlled (controlled) to 10 to 40 ° C. and the same humidity to 10 to 50% RH, the coating composition to be the second layer facilitated transport film 54b is uniformly distributed over the entire surface. Can be applied.

前述のように、促進輸送膜を利用する酸性ガス分離膜では、水素の透過の抑制や促進輸送膜に欠陥が生じるのを防止するため、厚膜の促進輸送膜を形成することが要求されている。厚膜の促進輸送膜を形成するためには、塗布組成物を厚く塗布しればよいが、塗布組成物の塗膜が厚過ぎると、塗膜の乾燥を適正に行うことができず、凹凸発生や、キャリア等の偏在が生じる場合が有る。
これに対し、促進輸送膜を、重ねて、複数回、形成することにより、この問題を解決して、トータルで厚膜の促進輸送膜を形成できる。すなわち、最初の促進輸送膜54aを形成した後に、塗布組成物を塗布、乾燥して、2層目の促進輸送膜54bを形成し、必要に応じて、さらに重ねて促進輸送膜を形成することにより、目的とする厚膜の促進輸送膜を形成できる。
As described above, in an acidic gas separation membrane using a facilitated transport membrane, it is required to form a thick facilitated transport membrane in order to suppress hydrogen permeation and prevent defects in the facilitated transport membrane. Yes. In order to form a facilitated transport film with a thick film, it is only necessary to apply a thick coating composition. However, if the coating composition is too thick, the coating film cannot be dried properly and unevenness is generated. In addition, uneven distribution of carriers or the like may occur.
On the other hand, by forming the facilitated transport film a plurality of times, this problem can be solved and a thick facilitated transport film can be formed in total. That is, after forming the first facilitated transport film 54a, the coating composition is applied and dried to form the second facilitated transport film 54b, and further, if necessary, the facilitated transport film is formed. Thus, the intended thick facilitated transport film can be formed.

前述のように、最初の促進輸送膜54aは、親水性である。また、2層目の促進輸送膜54bとなる塗布組成物は多くの水を含有する。従って、通常に考えれば、最初の促進輸送膜54aの上に塗布組成物を塗布する際には、非常に良好な塗布性(塗り付き)で塗布が行えるはずである。
しかしながら、本発明者の検討によれば、促進輸送膜の上に、促進輸送膜となる塗布組成物を塗布すると、塗布組成物が弾かれて、塗布組成物が塗布されない部分が、ピンホール状に、多々、発生する場合が有る。
As described above, the first facilitated transport film 54a is hydrophilic. Moreover, the coating composition used as the 2nd facilitated-transport film | membrane 54b contains many waters. Therefore, when considered normally, when the coating composition is applied on the first facilitated transport film 54a, it should be possible to apply the coating composition with very good coating properties (coating).
However, according to the study of the present inventor, when a coating composition to be a facilitated transport film is applied on the facilitated transport film, the coating composition is repelled, and the portion where the coating composition is not applied is pinhole-shaped. In many cases, it may occur.

本発明者は、この問題を解決するために、鋭意、検討を重ねた。その結果、促進輸送膜の吸水性が高いことに原因があること、および、2層目(2層目以降)の促進輸送膜の形成(積層膜形成工程)において、2層目の促進輸送膜54bとなる塗布組成物を塗布するまで、最初の促進輸送膜54a(先に形成された促進輸送膜)が曝される空間の湿度および温度を、上記範囲にすることにより、この弾きの問題を解決できることを見い出した。   The present inventor has intensively studied to solve this problem. As a result, the facilitated transport film has a high water absorption, and in the formation of the second layer (second and subsequent layers) facilitated transport film (laminated film forming step), the second facilitated transport film By applying the humidity and temperature of the space to which the first facilitated transport film 54a (previously formed facilitated transport film) is exposed to the above range until the coating composition to be 54b is applied, this problem of flipping is reduced. I found it possible to solve it.

促進輸送膜を用いる酸性ガス分離膜は、水蒸気分圧を有するガス環境下で使用される場合が多い。また、一般的に、促進輸送膜を有する酸性ガス分離膜は、促進輸送膜の吸水性が高いほど、酸性ガスの分離速度(透過速度)が高くなる傾向にある。
そのため、促進輸送膜は、超吸水性樹脂などの吸水性が高い親水性化合物をバインダとして用い、このバインダにキャリアを分散してなる構成を有する。また、キャリアも吸水性が高いもの多い。さらに、促進輸送膜に、必要に応じて添加される添加剤も、吸水性の高いものを用いるのが一般的である。
そのため、促進輸送膜は、非常に高い吸水性を有する。
An acid gas separation membrane using a facilitated transport membrane is often used in a gas environment having a water vapor partial pressure. In general, an acid gas separation membrane having a facilitated transport membrane tends to have a higher acid gas separation rate (permeation rate) as the facilitated transport membrane has higher water absorption.
Therefore, the facilitated transport film has a configuration in which a hydrophilic compound having high water absorption such as a super water absorbent resin is used as a binder and carriers are dispersed in the binder. Many carriers also have high water absorption. Furthermore, it is common to use a highly water-absorbing additive added to the facilitated transport film as necessary.
Therefore, the facilitated transport film has very high water absorption.

ところが、吸水性が高いために、最初の促進輸送膜54aは、2層目の促進輸送膜54bの形成の際に、処理済支持体ロール56Rから送り出され、塗布部14によって塗布組成物を塗布されるまでの間に、空気中の水分を吸水して、表面に水分が付着して、多数の水滴のようになってしまう。
RtoRでは、処理済支持体56を搬送しつつ塗布組成物を塗布するので、塗膜厚の調節等の際に、塗膜に剪断力がかかる。この際に、塗布組成物に拡散されなかった水滴が、潤滑剤のように作用してしまい、水滴の上に塗布された塗布組成物が滑って、その上から弾かれるように移動してしまい、塗布組成物が塗布されない部分が生じる。
その結果、最初の促進輸送膜54aの上に形成された塗布組成物の塗膜には、多数のピンホールが点在して形成されたような状態になってしまう。このような塗膜を乾燥して、2層目の促進輸送膜54bを形成しても、形成された促進輸送膜54bには、膜厚が薄い部分や、膜が形成されない欠陥部が生じてしまう。
However, since the water absorption is high, the first facilitated transport film 54a is fed from the treated support roll 56R when the second facilitated transport film 54b is formed, and the coating composition 14 is coated with the coating composition. In the meantime, moisture in the air is absorbed, and moisture adheres to the surface, resulting in a large number of water droplets.
In RtoR, since the coating composition is applied while the treated support 56 is being conveyed, a shearing force is applied to the coating film when the coating film thickness is adjusted. At this time, the water droplets that have not been diffused into the coating composition act like a lubricant, and the coating composition applied onto the water droplets slips and moves so as to be repelled from above. A part where the coating composition is not applied is generated.
As a result, the coating film of the coating composition formed on the first facilitated transport film 54a is in a state in which a large number of pinholes are scattered. Even if such a coating film is dried to form the second facilitated transport film 54b, the formed facilitated transport film 54b has a thin portion or a defective portion where the film is not formed. End up.

これに対し、本発明の製造方法を実施する製造装置10では、2層目の促進輸送膜54bの形成において、ハウジング26内(塗布組成物の塗布までに最初の促進輸送膜54aが曝される空間)の温度および湿度を、10〜40℃、10〜50%RHに管理する。
そのため、最初の促進輸送膜54aの表面に水分が付着することを防止して、最初の促進輸送膜54aの表面の全面に、均一に、2層目の促進輸送膜54bとなる塗布組成物を塗布して、欠陥が無い、全面的に均一な促進輸送膜54bを形成できる。
On the other hand, in the manufacturing apparatus 10 that performs the manufacturing method of the present invention, the first facilitated transport film 54a is exposed in the housing 26 (before the coating composition is applied) in forming the second facilitated transport film 54b. The temperature and humidity of the space are controlled to 10 to 40 ° C. and 10 to 50% RH.
Therefore, it is possible to prevent moisture from adhering to the surface of the first facilitated transport film 54a, and uniformly apply the coating composition that forms the second facilitated transport film 54b on the entire surface of the first facilitated transport film 54a. By coating, a uniform facilitated transport film 54b having no defects can be formed on the entire surface.

ハウジング26内の温度が10℃未満では、最初の促進輸送膜54aに膜割れが発生してしまう等の不都合が生じる。
他方、ハウジング内の温度が40℃を超えると、湿度が適正範囲でも水分の絶対量が多いので、最初の促進輸送膜54aの表面に水分が付着することを十分に防止できず、塗布組成物の塗膜の弾きが生じてしまう。
以上の点を考慮すると、ハウジング26内の温度は15〜35℃が好ましい。
When the temperature in the housing 26 is lower than 10 ° C., there arises a disadvantage that the initial facilitated transport film 54a is cracked.
On the other hand, if the temperature in the housing exceeds 40 ° C., the absolute amount of moisture is large even in a proper humidity range, so that it is not possible to sufficiently prevent moisture from adhering to the surface of the first facilitated transport film 54a. This will cause the film to be repelled.
Considering the above points, the temperature in the housing 26 is preferably 15 to 35 ° C.

また、ハウジング26内の湿度が10%RH未満では、最初の促進輸送膜54aに膜割れが発生してしまう等の不都合が生じる。
他方、ハウジング26内の湿度が50%RHを超えると、最初の促進輸送膜54aの表面に水分が付着することを十分に防止できず、塗布組成物の塗膜の弾きが生じてしまう。
以上の点を考慮すると、ハウジング26内の湿度は、20〜45%RHが好ましく、20〜40%RHがより好ましい。
In addition, when the humidity in the housing 26 is less than 10% RH, inconveniences such as film breakage occur in the first facilitated transport film 54a.
On the other hand, when the humidity in the housing 26 exceeds 50% RH, moisture cannot be sufficiently prevented from adhering to the surface of the first facilitated transport film 54a, and the coating film of the coating composition is repelled.
Considering the above points, the humidity in the housing 26 is preferably 20 to 45% RH, and more preferably 20 to 40% RH.

本発明の製造方法において、2層目の促進輸送膜となる塗布組成物は、最初の促進輸送膜54aに対する接触角が90°未満であるのが好ましい。すなわち、最初の促進輸送膜54aに対する、2層目の促進輸送膜となる塗布組成物の接触角が90°未満となるように、促進輸送膜すなわち塗布組成物の組成を調節するのが好ましい。
本発明においては、このようにハウジング26内の温度および湿度の管理を行い、かつ、最初の促進輸送膜54aに対する、2層目の促進輸送膜となる塗布組成物の接触角が90°未満にすることにより、より均一で良好な面状を有するな塗布組成物の塗膜を形成して、より高品位な2層目の促進輸送膜54bを形成できる。
In the production method of the present invention, the coating composition to be the second facilitated transport film preferably has a contact angle with respect to the first facilitated transport film 54a of less than 90 °. That is, it is preferable to adjust the composition of the facilitated transport film, that is, the coating composition, so that the contact angle of the coating composition to be the second facilitated transport film with respect to the first facilitated transport film 54a is less than 90 °.
In the present invention, the temperature and humidity in the housing 26 are managed as described above, and the contact angle of the coating composition to be the second facilitated transport film with respect to the first facilitated transport film 54a is less than 90 °. By doing so, it is possible to form a coating film of a coating composition having a more uniform and good surface shape and to form a second layer of facilitated transport film 54b of higher quality.

2層目の促進輸送膜54bを形成においても、塗布時における塗布組成物は、温度が15〜35℃で、粘度が0.1〜5Pa・secであるのが好ましいのは、前述の通りである。   Even when the second facilitated transport film 54b is formed, the coating composition at the time of coating preferably has a temperature of 15 to 35 ° C. and a viscosity of 0.1 to 5 Pa · sec as described above. is there.

2層目の促進輸送膜54bとなる塗布組成物を塗布された処理済支持体56は、次いで、パスローラ40aに案内されて乾燥部18に至り、乾燥部18において塗布組成物が乾燥されることにより、最初の促進輸送膜54aに加え、2層目の促進輸送膜54bが形成された酸性ガス分離膜50とされる。この酸性ガス分離膜50は、全面に均一に塗布された塗布組成物で形成された、欠陥等の無い均一な促進輸送膜54bを有するものである。
酸性ガス分離膜50は、パスローラ40bに案内されて、巻取部20に搬送され、パスローラ40c〜40eによって所定の搬送経路を案内されて、巻取り軸42に巻き取られ、分離膜ロール50Rとされる。
The treated support 56 coated with the coating composition to be the second layer facilitated transport film 54b is then guided by the pass roller 40a to reach the drying unit 18, where the coating composition is dried. Thus, the acidic gas separation membrane 50 in which the second facilitated transport membrane 54b is formed in addition to the first facilitated transport membrane 54a is obtained. The acidic gas separation membrane 50 has a uniform facilitated transport membrane 54b formed of a coating composition uniformly applied to the entire surface and having no defects.
The acidic gas separation membrane 50 is guided by the pass roller 40b, conveyed to the winding unit 20, guided along a predetermined conveyance path by the pass rollers 40c to 40e, wound around the winding shaft 42, and separated from the separation membrane roll 50R. Is done.

図示例の製造装置10においては、供給部12および塗布部14を囲んでハウジング26を形成し、その内部の温度および湿度を所定の範囲に管理している。しかしながら、本発明においては、2層目の促進輸送膜54bの形成において、塗布組成物が塗布されるまでに、最初の促進輸送膜54aが曝される空間の温度および湿度を所定の範囲に管理すればよい。
従って、例えば図示例であれば、塗布装置36による塗布組成物の塗布位置よりも下流側の空間は、温度および湿度の管理を行わなくてもよい。
しかしながら、管理を行う空間形成の容易性等を考慮すれば、図示例のように、供給部12および塗布部14を囲んでハウジング26を形成し、その内部の温度および湿度を管理するのが好ましい。
In the manufacturing apparatus 10 in the illustrated example, a housing 26 is formed so as to surround the supply unit 12 and the coating unit 14, and the temperature and humidity inside the housing 26 are managed within a predetermined range. However, in the present invention, in the formation of the second facilitated transport film 54b, the temperature and humidity of the space to which the first facilitated transport film 54a is exposed are controlled within a predetermined range before the coating composition is applied. do it.
Therefore, for example, in the illustrated example, the space downstream of the position where the coating composition is applied by the coating device 36 need not be managed for temperature and humidity.
However, in consideration of the ease of forming a space for performing management, it is preferable to form the housing 26 so as to surround the supply unit 12 and the application unit 14 and to manage the temperature and humidity therein as in the illustrated example. .

なお、本発明の製造方法においては、最初の促進輸送膜54a(初期膜形成工程)および2層目の促進輸送膜54b(積層膜形成工程)に関わらず、塗膜の乾燥後、巻き取られるまでに促進輸送膜が曝される空間、すなわち、乾燥部18の出口〜巻取部20までに促進輸送膜54aおよび54bが曝される空間においても、温度および湿度を所定の範囲に管理するのが好ましい。   In the production method of the present invention, the coated film is wound after being dried regardless of the first facilitated transport film 54a (initial film forming process) and the second facilitated transport film 54b (laminated film forming process). Even in the space where the facilitated transport film is exposed, that is, in the space where the facilitated transport films 54a and 54b are exposed from the outlet of the drying unit 18 to the winding unit 20, the temperature and humidity are controlled within a predetermined range. Is preferred.

具体的には、乾燥部18の出口〜巻取部20までに促進輸送膜が曝される空間の湿度を、10〜60%RHに管理するのが好ましく、10〜40%RHに管理するのがより好ましい。また、乾燥部18の出口〜巻取部20までに促進輸送膜が曝される空間の温度を、15〜35℃に管理するのが好ましく、20〜30℃に管理するのがより好ましい。
これにより、形成した促進輸送膜の吸湿を防止して、吸湿に起因して、他部材との接触による膜剥がれが生じることを防止できる。
Specifically, it is preferable to manage the humidity of the space where the facilitated transport film is exposed from the outlet of the drying unit 18 to the winding unit 20 to 10 to 60% RH, and to 10 to 40% RH. Is more preferable. Moreover, it is preferable to manage the temperature of the space where the facilitated transport film is exposed from the outlet of the drying unit 18 to the winding unit 20 to 15 to 35 ° C, and more preferably to 20 to 30 ° C.
Thereby, moisture absorption of the formed facilitated-transport film | membrane can be prevented, and it can prevent that the film | membrane peeling by contact with another member arises due to moisture absorption.

このような乾燥部18の出口〜巻取部20の温度および湿度の管理は、基本的に、前述の塗布組成物が塗布されるまでに促進輸送膜54aが存在する空間と同様に行えばよい。例えば、乾燥部18の出口から巻取部20に至る酸性ガス分離膜50および処理済支持体56の搬送経路、および、巻取部20をハウジングで囲み、このハウジング内の温度および湿度を公知の手段で測定して、ハウジング内の温度および湿度を、目的とする値となるように公知の手段で管理すればよい。   The management of the temperature and humidity of the outlet of the drying unit 18 to the winding unit 20 may be basically performed in the same manner as the space where the facilitated transport film 54a exists before the coating composition is applied. . For example, the acidic gas separation membrane 50 and the transport path of the treated support 56 from the outlet of the drying unit 18 to the winding unit 20 and the winding unit 20 are surrounded by a housing, and the temperature and humidity in the housing are known. The temperature and humidity in the housing may be measured by the means and managed by a known means so as to achieve the target values.

また、以上の例では、最初の促進輸送膜54aおよび2層目の促進輸送膜54bを形成して、2層構成の促進輸送膜を有する酸性ガス分離膜50を形成している。
しかしながら、本発明においては、2層目の促進輸送膜54bの形成と同様の操作(積層膜形成工程)を繰り返し行うことで、3層以上の促進輸送膜を有する酸性ガス分離膜を形成してもよい。
なお、促進輸送膜の形成工程の繰り返し回数は、促進輸送膜の組成や、目的とする膜厚等に応じて、適宜、決定すればよいが、生産性、膜厚、促進輸送膜の膜質等を考慮すれば、通常、2回(図示例のような2層)〜3回程度である。
In the above example, the first facilitated transport film 54a and the second facilitated transport film 54b are formed to form the acidic gas separation membrane 50 having the facilitated transport film having a two-layer structure.
However, in the present invention, an acidic gas separation membrane having three or more facilitated transport membranes is formed by repeatedly performing the same operation (laminated film forming step) as the formation of the second facilitated transport membrane 54b. Also good.
In addition, the number of repetitions of the facilitated transport film formation process may be determined as appropriate according to the composition of the facilitated transport film, the target film thickness, etc., but productivity, film thickness, film quality of the facilitated transport film, etc. Is usually 2 times (2 layers as in the illustrated example) to 3 times.

図示例の製造装置10は、塗布部14および乾燥部18を1つのみ有し、すなわち、促進輸送膜を1層のみ形成できる装置で、2回の操作を行うことにより、最初の促進輸送膜54aおよび2層目の促進輸送膜54bを形成している。
しかしながら、本発明の製造方法では、図3に模式的に示すように、2つ(あるいは3以上)の塗布部14aおよび乾燥部18aと、塗布部14bおよび乾燥部18bとを有する製造装置を用いて、最初の促進輸送膜54aおよび2層目の促進輸送膜54bを形成して、酸性ガス分離膜50を作製してもよい。
The manufacturing apparatus 10 in the illustrated example has only one coating unit 14 and drying unit 18, that is, an apparatus that can form only one layer of a facilitated transport film. 54a and the second facilitated transport film 54b are formed.
However, in the manufacturing method of the present invention, as schematically shown in FIG. 3, a manufacturing apparatus having two (or three or more) coating units 14a and drying units 18a, and coating units 14b and drying units 18b is used. The acidic gas separation membrane 50 may be manufactured by forming the first facilitated transport membrane 54a and the second facilitated transport membrane 54b.

この際においては、例えば、上流の乾燥部18aの直下流(乾燥部18aの少なくとも一部を含んでもよい)から下流側の塗布部14bを含む空間46において、温度および湿度を10〜40℃、10〜50%RHに管理して、上流の塗布部14aおよび乾燥部18aで最初の促進輸送膜54aを形成し、下流の塗布部14bおよび乾燥部18bで2層目の促進輸送膜54bを形成すればよい。   In this case, for example, in the space 46 including the application unit 14b downstream from the upstream drying unit 18a (which may include at least a part of the drying unit 18a), the temperature and humidity are 10 to 40 ° C. The first facilitated transport film 54a is formed by the upstream coating unit 14a and the drying unit 18a, and the second facilitated transport film 54b is formed by the downstream coating unit 14b and the drying unit 18b. do it.

また、この装置を用いて、3層以上の促進輸送膜を形成する場合には、先と同様に1回目の操作で最初の促進輸送膜54aおよび2層目の促進輸送膜54bを形成した後、巻き取ったロールを、供給側に装着して、ロールおよび上流側の塗布部14aを含む空間48において、温度および湿度を10〜40℃、10〜50%RHに管理して、2回目の操作で3層目の促進輸送膜を形成すればよい。
あるいは、1回目の操作で、最初の促進輸送膜54aのみを形成し、巻き取ったロールを、供給側に装着して、空間48および空間46の両方において、温度および湿度を10〜40℃、10〜50%RHに管理して、2回目の操作で2層目および3層目の促進輸送膜を形成してもよい。
さらに、以上の操作を繰り返すことで、4層以上の促進輸送膜を有する酸性ガス分離膜を形成してもよい。
Further, in the case of forming three or more layers of facilitated transport films using this apparatus, after the first facilitated transport film 54a and the second facilitated transport film 54b are formed by the first operation as before. The wound roll is mounted on the supply side, and the temperature and humidity are controlled at 10 to 40 ° C. and 10 to 50% RH in the space 48 including the roll and the upstream application unit 14a. A third facilitated transport film may be formed by the operation.
Alternatively, in the first operation, only the first facilitated transport film 54a is formed, the wound roll is mounted on the supply side, and the temperature and humidity are set to 10 to 40 ° C. in both the space 48 and the space 46. The second layer and the third layer facilitated transport film may be formed by the second operation under the control of 10 to 50% RH.
Furthermore, an acidic gas separation membrane having four or more layers of facilitated transport membranes may be formed by repeating the above operation.

以上の本発明の第1の態様は、2層目の促進輸送膜54bの形成工程において、塗布組成物が塗布されるまで、最初の促進輸送膜52aが曝される空間の温湿度を調節することにより、2層目の促進輸送膜54bとなる塗布組成物をハジキを生じることなく均一に塗布し、欠陥等の無い均一な促進輸送膜52bを形成している。
これに対し、本発明の第2の態様は、2層目の促進輸送膜54bの形成工程(積層膜形成工程)において、最初の促進輸送膜54aの吸水による重量増加率が40質量%以下となる条件下で、塗布組成物の塗布を行う。具体的には、処理済支持体ロール56Rに巻回された処理済支持体56の促進輸送膜54aが外気に暴露された時点(促進輸送膜54aが、塗布のために外気に暴露された時点)から、2層目の促進輸送膜54bの塗布組成物を塗布されるまでにおける、最初の促進輸送膜54aの吸水による重量増加率が40%質量以下となる条件下で、2層目の促進輸送膜54bの塗布組成物の塗布を行う。
好ましくは、最初の促進輸送膜54aの乾燥を終了した時点から、最初の促進輸送膜54aが曝される空間の温度および湿度の管理等を行って、最初の促進輸送膜54aの吸水を抑制する。すなわち、本発明の第2の態様においては、最初の促進輸送膜54a(前の促進輸送膜)の乾燥を終了した時点から、2層目の促進輸送膜54b(今回の促進輸送膜)の塗布組成物を塗布する時点までにおいて、最初の促進輸送膜54aの吸水による重量増加率が40%質量以下となるようにするのが好ましい。
一例として、前述のように、乾燥部18の出口から、巻取部20までの搬送経路および巻取部20をハウジングで囲い、ハウジング内の温度および湿度を測定して管理することで、乾燥後の最初の促進輸送膜54aの吸水を抑制して、処理済支持体56を巻回した処理済支持体ロール56Rとする。次いで、この最初の促進輸送膜54aの吸水を抑制した処理済支持体ロール56Rを、2層目の促進輸送膜54bの形成に供給することで、最初の促進輸送膜54aの乾燥を終了した時点から、2層目の促進輸送膜54bの塗布組成物を塗布する時点までにおいて、最初の促進輸送膜54aの吸水による重量増加率が40%質量以下となるようにするのが好ましい。
The first aspect of the present invention described above adjusts the temperature and humidity of the space to which the first facilitated transport film 52a is exposed until the coating composition is applied in the step of forming the second facilitated transport film 54b. As a result, the coating composition to be the second facilitated transport film 54b is uniformly coated without causing repellency to form a uniform facilitated transport film 52b free from defects.
In contrast, in the second aspect of the present invention, in the formation process (laminated film formation process) of the second facilitated transport film 54b, the weight increase rate due to water absorption of the first facilitated transport film 54a is 40% by mass or less. The coating composition is applied under the following conditions. Specifically, when the facilitated transport film 54a of the treated support 56 wound around the treated support roll 56R is exposed to the outside air (when the facilitated transport film 54a is exposed to the outside air for application). To the second layer facilitated transport film 54b until the weight increase rate due to water absorption of the first facilitated transport film 54a is 40% by mass or less. The coating composition for the transport film 54b is applied.
Preferably, from the time when the drying of the first facilitated transport film 54a is completed, the temperature and humidity of the space to which the first facilitated transport film 54a is exposed are managed to suppress water absorption of the first facilitated transport film 54a. . That is, in the second aspect of the present invention, the application of the second facilitated transport film 54b (current facilitated transport film) is started after the drying of the first facilitated transport film 54a (previous facilitated transport film) is completed. By the time the composition is applied, it is preferable that the weight increase rate of the first facilitated transport film 54a due to water absorption is 40% by mass or less.
As an example, as described above, the conveyance path from the outlet of the drying unit 18 to the winding unit 20 and the winding unit 20 are surrounded by a housing, and the temperature and humidity in the housing are measured and managed, so that after drying The first facilitated transport film 54a is suppressed in water absorption to obtain a treated support roll 56R around which the treated support 56 is wound. Next, when the dried support transport film 54a has been dried by supplying the treated support roll 56R in which the water absorption of the first facilitated transport film 54a is suppressed to the formation of the second facilitated transport film 54b. Thus, it is preferable that the rate of weight increase due to water absorption of the first facilitated transport film 54a is 40% or less by the time when the coating composition for the second facilitated transport film 54b is applied.

この方法でも、同様に、最初の促進輸送膜54aの表面に水分が付着することを防止して、この水分に起因する塗布組成物の弾きを防止し、最初の促進輸送膜54aの上に全面に均一に塗布組成物を塗布して、欠陥等の無い均一な2層目の促進輸送膜54bを形成できる。   Similarly, in this method, it is possible to prevent moisture from adhering to the surface of the first facilitated transport film 54a, and to prevent the coating composition from repelling due to the moisture, and to cover the entire surface of the first facilitated transport film 54a. The coating composition can be applied uniformly to form a uniform second facilitated transport film 54b free from defects.

本発明の第2の態様において、最初の促進輸送膜54aの吸水による重量増加率が40質量%を超える条件下で、2層目の促進輸送膜54bとなる塗布組成物の塗布を行うと、先と同様に、最初の促進輸送膜54aの表面に水分が付着することを十分に防止できず、塗布組成物の塗膜の弾きが生じて、均一な2層目の促進輸送膜54bを形成できない。
また、最初の促進輸送膜54aの表面に水分が付着することを、より好適に防止できる等の点で、最初の促進輸送膜54aの吸水による重量増加率が30%質量以下となる条件下で、2層目の促進輸送膜54bとなる塗布組成物を塗布するのが好ましい。
In the second aspect of the present invention, when the coating composition that becomes the second facilitated transport film 54b is applied under the condition that the weight increase rate due to water absorption of the first facilitated transport film 54a exceeds 40% by mass, Similarly to the above, it is not possible to sufficiently prevent moisture from adhering to the surface of the first facilitated transport film 54a, and the coating film of the coating composition is repelled to form a uniform second facilitated transport film 54b. Can not.
Moreover, under the condition that the weight increase rate due to water absorption of the first facilitated transport film 54a is 30% or less in terms of more suitably preventing moisture from adhering to the surface of the first facilitated transport film 54a. It is preferable to apply a coating composition that becomes the second facilitated transport film 54b.

最初の促進輸送膜54aの吸水による重量増加率が40質量%以下となる条件下で、塗布組成物の塗布を行う方法は、各種の方法が利用可能である。
一例として、2層目の促進輸送膜の形成において、最初の促進輸送膜54aに塗布組成物が塗布されるまでの間で、最初の促進輸送膜54aが曝される空間の温度および/または湿度を調節して、最初の促進輸送膜54aの吸水による重量増加率を40質量%以下とする方法が例示される。すなわち、最初の促進輸送膜54aの吸水による重量増加率が40質量%以下となるように、図1のハウジンク26内や、図3の空間46や空間48の温度および/または湿度を制御する。
また、図1に示す製造装置10における供給部12と塗布部14との間や、図3における塗布部14の上流や、乾燥部18aと塗布部14bとの間に、加熱手段、風等による水分の除去手段(ワイピング手段)、水分を吸引する吸引手段、水分を除湿する手段等を設けて、最初の促進輸送膜54aの吸水による重量増加率が質量40%以下となる条件下で、塗布組成物の塗布を行う方法も利用可能である。
さらに、最初の促進輸送膜54aの塗布および乾燥後に保護フィルム等で膜面を保護し、2層目の促進輸送膜54bの塗布を行う直前に保護フィルム等を剥離することで、最初の促進輸送膜54aの吸水による重量増加率が質量40%以下となる条件下で、塗布組成物の塗布を行う方法も、利用可能である。
Various methods can be used as the method of applying the coating composition under the condition that the weight increase rate due to water absorption of the first facilitated transport film 54a is 40% by mass or less.
As an example, in the formation of the second facilitated transport film, the temperature and / or humidity of the space to which the first facilitated transport film 54a is exposed until the coating composition is applied to the first facilitated transport film 54a. Is adjusted so that the rate of weight increase due to water absorption of the first facilitated transport film 54a is 40% by mass or less. That is, the temperature and / or humidity of the housing 26 in FIG. 1 and the space 46 and the space 48 in FIG. 3 are controlled so that the weight increase rate due to water absorption of the first facilitated transport film 54a is 40% by mass or less.
Moreover, between the supply part 12 and the application part 14 in the manufacturing apparatus 10 shown in FIG. 1, the upstream of the application part 14 in FIG. 3, and between the drying part 18a and the application part 14b, a heating means, a wind, etc. Water removal means (wiping means), suction means for sucking moisture, means for dehumidifying moisture, etc. are provided, and coating is performed under the condition that the weight increase rate due to water absorption of the first facilitated transport film 54a is 40% or less. A method of applying the composition can also be used.
Further, after the first facilitated transport film 54a is applied and dried, the film surface is protected with a protective film or the like, and the protective film or the like is peeled off immediately before the second facilitated transport film 54b is applied. A method of applying the coating composition under conditions where the weight increase rate of the film 54a due to water absorption is 40% or less can also be used.

以上の例は、本発明の酸性ガス分離膜の製造方法を、RtoRを利用して行った例であるが、本発明は、これ以外にも、各種の製造方法が利用可能である。
例えば、長尺な支持体52ではなく、カットシート状の支持体を搬送しつつ、同様に最初の促進輸送膜52aおよび2層目の促進輸送膜52bの作成を行って、酸性ガス分離膜を作製してもよい。
Although the above example is the example which performed the manufacturing method of the acidic gas separation membrane of this invention using RtoR, this invention can utilize various manufacturing methods besides this.
For example, the first facilitated transport membrane 52a and the second facilitated transport membrane 52b are prepared in the same manner while conveying the cut sheet-shaped support instead of the long support 52, and the acidic gas separation membrane is formed. It may be produced.

あるいは、支持体を搬送することなく、いわゆるバッチ式(枚葉式)の処理によって、初の促進輸送膜52aおよび2層目の促進輸送膜52bの作成を行って、酸性ガス分離膜を作製してもよい。
バッチ式の処理でも、例えば塗布組成物の塗膜厚を調節する際に、塗膜に剪断力が掛かるため、同様の塗布組成物の弾きが生じる可能性が有る。しかしながら、2層目(2層目以降)の促進輸送膜52bを形成する際に、塗布組成物を塗布するまでの間、最初の塗布組成物が曝される空間の温度および湿度を測定して、管理することにより、あるいは、最初の促進輸送膜54aの吸水による重量増加率が40%質量以下となる条件下で塗布組成物の塗布を行うことにより、適正に塗布組成物を塗布して、均一な促進輸送膜52bを形成できる。
Alternatively, the first facilitated transport membrane 52a and the second facilitated transport membrane 52b are prepared by a so-called batch-type (single-wafer) process without transporting the support to produce an acid gas separation membrane. May be.
Even in the batch-type treatment, for example, when the coating film thickness of the coating composition is adjusted, a shearing force is applied to the coating film, so that the same coating composition may be repelled. However, when forming the second layer (second layer and later) facilitated transport film 52b, the temperature and humidity of the space to which the first coating composition is exposed are measured until the coating composition is applied. By applying the coating composition under management, or by applying the coating composition under the condition that the weight increase rate due to water absorption of the first facilitated transport film 54a is 40% by mass or less, the coating composition is properly applied, A uniform facilitated transport film 52b can be formed.

しかしながら、高い生産性が得られる、均一な促進輸送膜を形成できる等の点で、本発明においては、図1や図3に示すようなRtoRを利用して、酸性ガス分離膜を製造するのが好ましい。   However, in the present invention, an acid gas separation membrane is manufactured using RtoR as shown in FIGS. 1 and 3 in that high productivity can be obtained and a uniform facilitated transport membrane can be formed. Is preferred.

以上、本発明の酸性ガス分離膜の製造方法について詳細に説明したが、本発明は上述の例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行ってもよいのは、もちろんである。   As mentioned above, although the manufacturing method of the acidic gas separation membrane of this invention was demonstrated in detail, this invention is not limited to the above-mentioned example, Even if various improvements and changes are performed in the range which does not deviate from the summary of this invention. Of course it is good.

以下、本発明の具体的実施例を挙げ、本発明の酸性ガス分離膜の製造方法について、より詳細に説明する。   Hereinafter, the specific example of this invention is given and the manufacturing method of the acidic gas separation membrane of this invention is demonstrated in detail.

[実施例1]
<塗布組成物の調製>
ポリビニルアルコール−ポリアクリル酸共重合体(クラレ社製 クラストマーAP−20を2.4質量%、架橋剤(和光純薬社製 25質量%グルタルアルデヒド水溶液)を0.01質量%、含む水溶液を調製した。この水溶液に、1M塩酸をpH1.7になるまで添加して、架橋させた。
架橋後、40%炭酸セシウム水溶液(稀産金属社製)を炭酸セシウム濃度が6.0重量%になるように添加した。すなわち、本例では、炭酸セシウムが促進輸送膜54のキャリアとなる。
さらに、界面活性剤(日油社製 1質量%ラピゾールA−90)を0.003質量%、添加して、塗布組成物を調製した。
<酸性ガス分離膜の作製>
[Example 1]
<Preparation of coating composition>
A polyvinyl alcohol-polyacrylic acid copolymer (Kuraray Co., Ltd., Clastomer AP-20, 2.4% by mass) and a crosslinking agent (Wako Pure Chemical Industries, Ltd., 25% by mass glutaraldehyde aqueous solution), 0.01% by mass, are prepared. To this aqueous solution, 1M hydrochloric acid was added until the pH reached 1.7 to cause crosslinking.
After crosslinking, a 40% aqueous cesium carbonate solution (manufactured by Rare Metal Co., Ltd.) was added so that the concentration of cesium carbonate was 6.0% by weight. That is, in this example, cesium carbonate serves as a carrier for the facilitated transport film 54.
Furthermore, 0.003 mass% of surfactant (manufactured by NOF Corporation, 1 mass% Rapisol A-90) was added to prepare a coating composition.
<Production of acid gas separation membrane>

幅が500mmで、厚さ200μmの長尺な(多孔質)支持体52(PP不織布の表面に多孔質のPTFEを積層してなる積層体(GE社製))をロール状に巻回してなる支持体ロール52Rを用意した。   A long (porous) support 52 having a width of 500 mm and a thickness of 200 μm (a laminate (manufactured by GE Corp.) obtained by laminating porous PTFE on the surface of a PP nonwoven fabric) is wound into a roll shape. A support roll 52R was prepared.

まず、多孔質PTFE側に塗布組成物が塗布されるように、支持体ロール52Rを図1に示す製造装置10の供給部12の回転軸34に装着した。次いで、支持体ロール52Rから支持体52を送り出し、前述のように、塗布部14および乾燥部18を経て、巻取部20に至る所定の搬送経路で通して、支持体52の先端を巻取り軸42に巻き付けた。
他方、調製した塗布組成物を、必要量、塗布部14の塗布装置36に充填した。
First, the support roll 52R was mounted on the rotating shaft 34 of the supply unit 12 of the manufacturing apparatus 10 shown in FIG. 1 so that the coating composition was applied to the porous PTFE side. Subsequently, the support body 52 is sent out from the support body roll 52R, and as described above, the support body 52 passes through the coating unit 14 and the drying unit 18 through a predetermined conveyance path to the winding unit 20 to wind up the tip of the support body 52. It was wound around the shaft 42.
On the other hand, a necessary amount of the prepared coating composition was filled in the coating device 36 of the coating unit 14.

以上の準備を終了した後に、支持体52の搬送を開始して、前述のように、塗布部14において支持体52の表面に塗布組成物を塗布し、乾燥部18で塗布組成物を乾燥して最初の促進輸送膜54aを形成して処理済支持体56とし、さらに、作製した処理済支持体56を巻取り軸42に巻き取って、処理済支持体ロール56Rとした。なお、温湿度測定手段28および温湿度調節手段30は、未作動である。
支持体52の搬送速度は、3m/minとした。
塗布組成物の塗布は、塗膜厚が1mmとなるように行った。この塗布組成物の厚さは、乾燥によって形成される促進輸送膜の厚さが0.03mmとなる厚さである。
さらに、乾燥部18における乾燥は温風乾燥炉を用い、70℃、80℃、90℃、100℃、110℃および120℃の多段階の加熱温度で行った。
After completing the above preparation, the support 52 is started to be transported, and as described above, the coating composition is applied to the surface of the support 52 in the coating unit 14, and the coating composition is dried in the drying unit 18. Then, the first facilitated transport film 54a is formed as the treated support 56, and the prepared treated support 56 is wound around the take-up shaft 42 to obtain a treated support roll 56R. The temperature / humidity measuring means 28 and the temperature / humidity adjusting means 30 are not activated.
The conveyance speed of the support body 52 was 3 m / min.
The coating composition was applied so that the coating thickness was 1 mm. The thickness of the coating composition is such that the facilitated transport film formed by drying has a thickness of 0.03 mm.
Furthermore, drying in the drying unit 18 was performed using a warm air drying furnace at multi-stage heating temperatures of 70 ° C., 80 ° C., 90 ° C., 100 ° C., 110 ° C., and 120 ° C.

積層体24を100m、作製した時点で、支持体52の搬送を停止し、パスローラ40bの直下流で処理済支持体56を切断した。次いで、処理済支持体56を最後まで巻き取って、処理済支持体ロール56Rを巻取り軸42から取り外した。
さらに、支持体ロール52Rおよび製造装置10内に残っている支持体52等も、装置から取り除いた。
When 100 m of the laminate 24 was produced, the conveyance of the support 52 was stopped and the processed support 56 was cut immediately downstream of the pass roller 40b. Next, the processed support 56 was wound up to the end, and the processed support roll 56 </ b> R was removed from the winding shaft 42.
Further, the support roll 52R and the support 52 remaining in the manufacturing apparatus 10 were also removed from the apparatus.

処理済支持体ロール56Rや支持体ロール52R等を取り外した後、温湿度測定手段28および温湿度調節手段30を作動して、温湿度測定手段28によってハウジング26内部の温度および湿度を測定し、その測定結果に応じて、温湿度調節手段30によって温度および湿度を調節して、ハウジング26内部の温度を22℃±3℃に、同湿度を30%RH±5%RHに、管理した。   After removing the treated support roll 56R, the support roll 52R, etc., the temperature / humidity measuring means 28 and the temperature / humidity adjusting means 30 are operated, and the temperature and humidity inside the housing 26 are measured by the temperature / humidity measuring means 28, According to the measurement result, the temperature and humidity were adjusted by the temperature / humidity adjusting means 30, and the temperature inside the housing 26 was controlled to 22 ° C. ± 3 ° C., and the humidity was controlled to 30% RH ± 5% RH.

次いで、巻取り軸42から取り外した処理済支持体ロール56Rを、最初の促進輸送膜54a側に塗布組成物が塗布されるように、製造装置10の供給部12の回転軸34に装着した。次いで、先と同様に、処理済支持体ロール56Rから処理済支持体56を引き出して、巻取部20まで通して先端を巻取り軸42に巻き付けた。
さらに、調製した塗布組成物を、塗布部14の塗布装置36に、必要量、充填した。
Next, the treated support roll 56R removed from the winding shaft 42 was mounted on the rotating shaft 34 of the supply unit 12 of the manufacturing apparatus 10 so that the coating composition was applied to the first facilitated transport film 54a side. Next, similarly to the above, the processed support 56 was pulled out from the processed support roll 56 </ b> R, passed through the winding unit 20, and the tip was wound around the winding shaft 42.
Furthermore, a necessary amount of the prepared coating composition was filled in the coating device 36 of the coating unit 14.

以上の準備を終了した後に、最初の促進輸送膜54aと同様にして、2層目の促進輸送膜54bを形成して(すなわち、2層目の塗布組成物の塗膜厚は1mmで、乾燥後の膜厚は0.03mm)、酸性ガス分離膜50を作製し、巻取り軸42に巻き取って、60mの酸性ガス分離膜50を巻回してなる分離膜ロール50Rを作製した。
すなわち、この酸性ガス分離膜50は、最初(1層目)の促進輸送膜54aの膜厚が0.03mm、2層目の促進輸送膜54bの膜厚が0.03mmで、合計で厚さ0.06mmの促進輸送膜を有する。
After completing the above preparation, the second facilitated transport film 54b is formed in the same manner as the first facilitated transport film 54a (that is, the coating thickness of the coating composition of the second layer is 1 mm, and drying is performed). The subsequent film thickness was 0.03 mm), and the acidic gas separation membrane 50 was produced, wound around the take-up shaft 42, and the separation membrane roll 50R formed by winding the acidic gas separation membrane 50 of 60 m was produced.
That is, the acidic gas separation membrane 50 has a total thickness of 0.03 mm for the first (first layer) facilitated transport membrane 54a and 0.03 mm for the second facilitated transport membrane 54b. It has a facilitated transport membrane of 0.06 mm.

[実施例2〜5]
2層目の促進輸送膜54bの形成におけるハウジング26内部の温度を25℃±3℃に、同湿度を40%RH±5%RHに管理した以外(実施例2);
2層目の促進輸送膜54bの形成におけるハウジング26内部の温度を18℃±3℃に、同湿度を45%RH±5%RHに管理した以外(実施例3);
2層目の促進輸送膜54bの形成におけるハウジング26内部の温度を30℃±3℃に、同湿度を45%RH±5%RHに管理した以外(実施例4); および、
2層目の促進輸送膜54bの形成におけるハウジング26内部の温度を15℃±3℃に、同湿度を25%RH±5%RHに管理した以外(実施例5); は、実施例1と同様にして、分離膜ロール50Rを作製した。
[Examples 2 to 5]
Example 2 except that the temperature inside the housing 26 was controlled to 25 ° C. ± 3 ° C. and the humidity was controlled to 40% RH ± 5% RH in the formation of the second layer facilitated transport film 54b (Example 2);
Example 2 except that the temperature inside the housing 26 was controlled to 18 ° C. ± 3 ° C. and the humidity was controlled to 45% RH ± 5% RH in the formation of the second layer facilitated transport film 54b (Example 3);
In the formation of the second facilitated transport film 54b, the temperature inside the housing 26 is controlled to 30 ° C. ± 3 ° C. and the humidity is controlled to 45% RH ± 5% RH (Example 4);
Except for controlling the temperature inside the housing 26 to 15 ° C. ± 3 ° C. and the same humidity to 25% RH ± 5% RH in the formation of the second layer facilitated transport film 54b (Example 5); Similarly, a separation membrane roll 50R was produced.

[比較例1]
2層目の促進輸送膜54bの形成の際に、ハウジング26内の温度および湿度の管理を行わない以外は、実施例1と同様にして、分離膜ロール50Rを作製した。
なお、ハウジング26内部の温度は、23〜30℃、同湿度は、50〜60%RHであった。
[Comparative Example 1]
A separation membrane roll 50R was produced in the same manner as in Example 1 except that the temperature and humidity in the housing 26 were not managed when forming the second facilitated transport membrane 54b.
The temperature inside the housing 26 was 23 to 30 ° C., and the humidity was 50 to 60% RH.

[比較例2]
最初の促進輸送膜54aの形成において、塗布組成物の塗膜厚を0.005mmとした以外は、実施例1と同様にして、分離膜ロール50Rを作製した。
この塗布組成物の厚さは、乾燥によって形成される促進輸送膜の厚さが0.00015mmとなる厚さである。すなわち、この酸性ガス分離膜50は、最初(1層目)の促進輸送膜54aの膜厚が0.00015mm、2層目の促進輸送膜54bの膜厚が0.03mmで、合計で厚さ0.03015mmの促進輸送膜を有する。
[Comparative Example 2]
In the formation of the first facilitated transport film 54a, a separation membrane roll 50R was produced in the same manner as in Example 1 except that the coating thickness of the coating composition was 0.005 mm.
The thickness of this coating composition is such that the facilitated transport film formed by drying has a thickness of 0.00015 mm. That is, the acidic gas separation membrane 50 has a total thickness of 0.00015 mm for the first (first layer) facilitated transport membrane 54 a and 0.03 mm for the second facilitated transport membrane 54 b. It has a facilitated transport membrane of 0.03015 mm.

[比較例3]
最初の促進輸送膜54aの形成において、塗布組成物の塗膜厚を4mmとした以外は、実施例1と同様にして、分離膜ロール50Rを作製した。
この塗布組成物の厚さは、乾燥によって形成される促進輸送膜の厚さが0.120mとなる厚さである。すなわち、この酸性ガス分離膜50は、最初(1層目)の促進輸送膜54aの膜厚が0.120mm、2層目の促進輸送膜54bの膜厚が0.03mmで、合計で厚さ0.150mmの促進輸送膜を有する。
[Comparative Example 3]
In the formation of the first facilitated transport film 54a, a separation membrane roll 50R was produced in the same manner as in Example 1 except that the coating thickness of the coating composition was 4 mm.
The thickness of the coating composition is such that the facilitated transport film formed by drying has a thickness of 0.120 m. That is, the acid gas separation membrane 50 has a total thickness of 0.120 mm for the first (first layer) facilitated transport membrane 54 a and 0.03 mm for the second facilitated transport membrane 54 b. It has a facilitated transport membrane of 0.150 mm.

[比較例4]
2層目の促進輸送膜54bの形成におけるハウジング26内部の温度を5℃±3℃に、同湿度を20%RH±5%RHに、管理した以外は、実施例1と同様にして、分離膜ロール50Rを作製した。
[Comparative Example 4]
Separation in the same manner as in Example 1 except that the temperature inside the housing 26 is controlled to 5 ° C. ± 3 ° C. and the humidity is controlled to 20% RH ± 5% RH in the formation of the second layer facilitated transport film 54b. A film roll 50R was produced.

[実施例6]
最初の促進輸送膜54aの形成において、塗布組成物に含まれるキャリアである炭酸セシウムの添加量を6.0質量%から1.0質量%に変更し、かつ、2層目の促進輸送膜54bの形成において、ハウジング26内部の温度を25℃±3℃に、同湿度を55〜60%RHに管理した以外は、実施例1と同様にして、分離膜ロール50Rを作製した。
なお、この条件下において、処理済支持体ロール56Rから2層目の促進輸送膜54bの塗布組成物の塗布までにおける、最初の促進輸送膜54aの吸水による重量増加率を測定したところ、20質量%であった。
[Example 6]
In the formation of the first facilitated transport film 54a, the amount of cesium carbonate as a carrier contained in the coating composition is changed from 6.0% by mass to 1.0% by mass, and the second facilitated transport film 54b is formed. A separation membrane roll 50R was produced in the same manner as in Example 1 except that the temperature inside the housing 26 was controlled at 25 ° C. ± 3 ° C. and the humidity was controlled at 55-60% RH.
Under these conditions, the weight increase rate due to water absorption of the first facilitated transport film 54a from the treated support roll 56R to the application of the coating composition of the second facilitated transport film 54b was measured. %Met.

[ガス透過性試験]
各分離膜ロール50Rから酸性ガス分離膜50を引き出し、任意の位置で切り抜いて、直径47mmの円形の酸性ガス分離膜50を作製した。なお、円形の酸性ガス分離膜50は、幅方向の500mmに対して、100mm間隔で4箇所、サンプリングした。
PTFEメンブレンフィルター(孔径0.10μm、ADVANTEC社製)を2枚用いて、切り抜いた円形の酸性ガス分離膜50を膜両面から挟んで透過試験サンプル(有効面積2.40cm2)を作製した。
テストガスとしてCO2/H2:10/90(容積比)の混合ガスを用いた。この混合ガスを、相対湿度70%、流量100ml/分、温度130℃、全圧3atmの条件で、作製した各透過試験サンプルに供給した。なお、透過側にはArガス(流量90ml/分)をフローさせた。
透過してきたガスをガスクロマトグラフで分析し、H2透過速度とCO2透過速度との比から分離係数αを算出し、以下の様に評価した。
A: 4箇所全てでα≧80。
B: 1箇所でも10<α<80が含まれる。
C: 1箇所でもα≦10が含まれる。
結果を下記の表に示す。
[Gas permeability test]
The acidic gas separation membrane 50 was pulled out from each separation membrane roll 50R and cut out at an arbitrary position to produce a circular acidic gas separation membrane 50 having a diameter of 47 mm. The circular acidic gas separation membrane 50 was sampled at four locations at intervals of 100 mm with respect to 500 mm in the width direction.
A permeation test sample (effective area 2.40 cm 2 ) was prepared using two PTFE membrane filters (pore size 0.10 μm, manufactured by ADVANTEC) and sandwiching a cut-out circular acidic gas separation membrane 50 from both sides of the membrane.
A mixed gas of CO 2 / H 2 : 10/90 (volume ratio) was used as a test gas. This mixed gas was supplied to each produced permeation test sample under the conditions of a relative humidity of 70%, a flow rate of 100 ml / min, a temperature of 130 ° C., and a total pressure of 3 atm. Ar gas (flow rate 90 ml / min) was allowed to flow on the permeate side.
The permeated gas was analyzed with a gas chromatograph, and the separation factor α was calculated from the ratio of the H 2 permeation rate and the CO 2 permeation rate, and evaluated as follows.
A: α ≧ 80 in all four places.
B: 10 <α <80 is included even at one place.
C: α ≦ 10 is included even at one location.
The results are shown in the table below.

上記表に示すように、最初の促進輸送膜54aの形成における塗布組成物の塗膜厚が0.01〜3mmで、かつ、2層目の促進輸送膜54bの形成において、ハウジング内の温度を10〜40℃、湿度を10〜50%RHに管理した実施例1〜5、および、最初の促進輸送膜54aの吸水による重量増加率が20質量%となる条件とした実施例6は、いずれも、良好な分離係数を実現している。特に、ハウジング26内の温度および湿度を、共に、好ましい範囲に管理した実施例1〜3は、全ての点で分離係数が80以上という、優れた炭酸ガスの分離性能を実現している。
これに対し、ハウジング26内の温度および湿度のいずれかが、温度10〜40℃および湿度10〜50%RHを超える比較例1および比較例4は、2層目の促進輸送膜54bの形成の際に最初の促進輸送膜54aが吸湿してしまい、これにより、前述の2層目の促進輸送膜54bの塗布組成物の弾きが生じて、適正な促進輸送膜が形成できず、分離係数が低くなってしまったと考えられる。
さらに、最初の促進輸送膜54aの形成において、塗膜の厚さが0.01mm未満である比較例2は、目的とする機能を発現する最初の促進輸送膜54aを形成できず、また、最初の促進輸送膜54aの形成において、塗膜の厚さが3mmを超える比較例3は、気泡等の混入による欠陥の発生や、塗膜の乾燥が不十分であり、共に、分離係数が低くなってしまったと考えられる。
以上の結果より、本発明の効果が明らかである。
As shown in the above table, the coating thickness of the coating composition in the formation of the first facilitated transport film 54a is 0.01 to 3 mm, and the temperature in the housing is set in the formation of the second facilitated transport film 54b. Examples 1 to 5 in which the humidity is controlled to 10 to 40 ° C. and the humidity to 10 to 50% RH, and Example 6 in which the weight increase rate due to water absorption of the first facilitated transport film 54a is 20% by mass, Also achieves a good separation factor. In particular, Examples 1 to 3 in which the temperature and humidity in the housing 26 are both controlled within a preferable range achieve an excellent carbon dioxide gas separation performance with a separation factor of 80 or more in all respects.
On the other hand, Comparative Example 1 and Comparative Example 4 in which either the temperature or humidity in the housing 26 exceeds the temperature of 10 to 40 ° C. and the humidity of 10 to 50% RH are the formation of the second layer facilitated transport film 54b. In this case, the first facilitated transport film 54a absorbs moisture, and this causes the coating composition of the second facilitated transport film 54b to be repelled, so that an appropriate facilitated transport film cannot be formed and the separation factor is increased. It is thought that it became low.
Furthermore, in the formation of the first facilitated transport film 54a, Comparative Example 2 in which the thickness of the coating film is less than 0.01 mm cannot form the first facilitated transport film 54a that expresses the intended function. In the formation of the facilitated transport film 54a, in Comparative Example 3 in which the thickness of the coating film exceeds 3 mm, the generation of defects due to mixing of bubbles and the like, and the drying of the coating film are insufficient, and the separation factor is low. It is thought that it has been.
From the above results, the effects of the present invention are clear.

水素ガスの製造や天然ガスの精製等に用いられる酸性ガス分離膜の製造に好適に利用可能である。   It can be suitably used for the production of an acid gas separation membrane used for the production of hydrogen gas or the purification of natural gas.

10 製造装置
12 供給部
14 塗布部
18 乾燥部
20 巻取部
26 ハウジング
28 温湿度測定手段
30 温湿度調節手段
34 回転軸
36 塗布装置
38 バックアップローラ
40a,40b,40c,40d,40e パスローラ
42 巻取り軸
46、48 空間
50 酸性ガス分離膜
50R 分離膜ロール
52 (多孔質)支持体
52R 支持体ロール
54a,54b 促進輸送膜
56 処理済支持体
56R 処理済支持体ロール
DESCRIPTION OF SYMBOLS 10 Manufacturing apparatus 12 Supply part 14 Application | coating part 18 Drying part 20 Winding part 26 Housing 28 Temperature / humidity measuring means 30 Temperature / humidity adjusting means 34 Rotating shaft 36 Coating apparatus 38 Backup roller 40a, 40b, 40c, 40d, 40e Pass roller 42 Winding Axis 46, 48 Space 50 Acid gas separation membrane 50R Separation membrane roll 52 (Porous) support 52R Support roll 54a, 54b Promoted transport membrane 56 Treated support 56R Treated support roll

Claims (14)

多孔質支持体の表面に、酸性ガスと反応するキャリア、および、前記キャリアを担持するための親水性化合物を含有する、温度が15〜35℃で、粘度が0.1〜5Pa・secである塗布組成物を、膜厚が0.01〜3mmとなるように塗布し、塗布した塗布組成物を乾燥することにより、最初の促進輸送膜を形成する初期膜形成工程と、
先に形成された促進輸送膜の表面に、酸性ガスと反応するキャリア、および、前記キャリアを担持するための親水性化合物を含有する、温度が15〜35℃で、粘度が0.1〜5Pa・secである塗布組成物を塗布し、塗布した塗布組成物を乾燥して促進輸送膜を形成する、1回以上の積層膜形成工程とを有し、
かつ、前記積層膜形成工程においては、前記塗布組成物を塗布するまでに前の工程で形成された促進輸送膜が曝される空間の温度および湿度を測定して、温度が10〜40℃、湿度が10〜50%RHとなるように、前記空間の温度および湿度を管理することを特徴とする酸性ガス分離膜の製造方法。
The surface of the porous support contains a carrier that reacts with an acid gas and a hydrophilic compound for supporting the carrier , the temperature is 15 to 35 ° C., and the viscosity is 0.1 to 5 Pa · sec. An initial film forming step of forming the first facilitated transport film by applying the coating composition so that the film thickness is 0.01 to 3 mm and drying the applied coating composition;
The surface of the facilitated transport film formed in advance contains a carrier that reacts with an acidic gas and a hydrophilic compound for supporting the carrier , the temperature is 15 to 35 ° C., and the viscosity is 0.1 to 5 Pa. Applying a coating composition that is sec, and drying the applied coating composition to form a facilitated transport film, and one or more laminated film forming steps;
And in the laminated film forming step, the temperature and humidity of the space to which the facilitated transport film formed in the previous step is exposed before applying the coating composition are measured, and the temperature is 10 to 40 ° C., A method for producing an acidic gas separation membrane, wherein the temperature and humidity of the space are controlled so that the humidity is 10 to 50% RH.
長尺な被処理物を巻回してなる被処理物ロールから、前記被処理物を送り出して、長手方向に搬送しつつ処理を行い、処理済の被処理物をロール状に巻回して処理済ロールとする、ロール・トゥ・ロール方式を用いる請求項1に記載の酸性ガス分離膜の製造方法。   From the workpiece roll formed by winding a long workpiece, the workpiece is sent out, processed while being conveyed in the longitudinal direction, and the processed workpiece is wound into a roll and processed. The method for producing an acidic gas separation membrane according to claim 1, wherein a roll-to-roll system is used as a roll. 前記多孔質支持体を巻回してなる支持体ロールから多孔質支持体を送り出し、前記多孔質支持体を長手方向に搬送しつつ、前記初期膜形成工程あるいはさらに1回以上の前記積層膜形成工程を行った後、処理済の被処理物をロール状に巻回して処理済ロールとし、その後、この処理済ロールから処理済の被処理物を送り出して、前記積層膜形成工程を行うものであり、
前記処理済ロールから処理済の被処理物を送り出して積層膜形成工程を行う際には、前記処理済の被処理物を送り出す処理済ロールが存在する空間、および、前記塗布組成物を塗布するまでに前記促進輸送膜が曝される空間において、前記温度および湿度の管理を行う請求項2に記載の酸性ガス分離膜の製造方法。
The initial film forming step or further one or more of the laminated film forming steps while feeding the porous support from a support roll formed by winding the porous support and transporting the porous support in the longitudinal direction After that, the processed object to be processed is wound into a roll shape to form a processed roll, and then the processed object to be processed is sent out from this processed roll to perform the laminated film forming step. ,
When the processed object to be processed is sent out from the processed roll and the laminated film forming step is performed, the space in which the processed roll for supplying the processed object to be processed exists, and the coating composition is applied. The method for producing an acid gas separation membrane according to claim 2, wherein the temperature and humidity are managed in a space where the facilitated transport membrane is exposed.
前記初期膜形成工程および積層膜形成工程において、前記塗布組成物の乾燥から処理済の被処理物をロール状に巻回するまでに、形成した促進輸送膜が曝される空間の温度および湿度を測定して、温度および湿度が所定の範囲となるように、前記空間の温度および湿度を管理する請求項2または3に記載の酸性ガス分離膜の製造方法。   In the initial film forming step and the laminated film forming step, the temperature and humidity of the space to which the formed facilitated transport film is exposed from the drying of the coating composition to the winding of the processed object to be processed in a roll shape. The method for producing an acidic gas separation membrane according to claim 2 or 3, wherein the temperature and humidity of the space are managed so that the temperature and humidity are within a predetermined range by measurement. 前記初期膜形成工程における塗布組成物と、少なくとも1回の前記積層膜形成工程における塗布組成物とが、同じ組成物である請求項1〜4のいずれか1項に記載の酸性ガス分離膜の製造方法。 The acidic gas separation membrane according to any one of claims 1 to 4 , wherein the coating composition in the initial film forming step and the coating composition in at least one of the laminated film forming steps are the same composition. Production method. 前記初期膜形成工程における塗布組成物と、少なくとも1回の前記積層膜形成工程における塗布組成物とが、異なる組成物である請求項1〜5のいずれか1項に記載の酸性ガス分離膜の製造方法。 The acidic gas separation membrane according to any one of claims 1 to 5 , wherein the coating composition in the initial film forming step and the coating composition in the laminated film forming step at least once are different compositions. Production method. 前記塗布組成物が、前記キャリアとして炭酸セシウムを、前記親水性化合物としてポリビニルアルコール−ポリアクリル酸共重合体を、それぞれ含み、さらに、架橋剤を含有する請求項1〜6のいずれか1項に記載の酸性ガス分離膜の製造方法。 7. The coating composition according to claim 1 , wherein the coating composition contains cesium carbonate as the carrier, polyvinyl alcohol-polyacrylic acid copolymer as the hydrophilic compound, and further contains a crosslinking agent. The manufacturing method of the acidic gas separation membrane of description. 多孔質支持体の表面に、酸性ガスと反応するキャリア、および、前記キャリアを担持するための親水性化合物を含有する、温度が15〜35℃で、粘度が0.1〜5Pa・secである塗布組成物を、膜厚が0.01〜3mmとなるように塗布し、塗布した塗布組成物を乾燥することにより、最初の促進輸送膜を形成する初期膜形成工程と、
先に形成された促進輸送膜の表面に、酸性ガスと反応するキャリア、および、前記キャリアを担持するための親水性化合物を含有する、温度が15〜35℃で、粘度が0.1〜5Pa・secである塗布組成物を塗布し、塗布した塗布組成物を乾燥して促進輸送膜を形成する、1回以上の積層膜形成工程とを有し、
かつ、前記積層膜形成工程においては、前の工程で形成された前記促進輸送膜の吸水による重量増加率が40質量%以下となる条件下で、前記塗布組成物の塗布を行うことを特徴とする酸性ガス分離膜の製造方法。
The surface of the porous support contains a carrier that reacts with an acid gas and a hydrophilic compound for supporting the carrier , the temperature is 15 to 35 ° C., and the viscosity is 0.1 to 5 Pa · sec. An initial film forming step of forming the first facilitated transport film by applying the coating composition so that the film thickness is 0.01 to 3 mm and drying the applied coating composition;
The surface of the facilitated transport film formed in advance contains a carrier that reacts with an acidic gas and a hydrophilic compound for supporting the carrier , the temperature is 15 to 35 ° C., and the viscosity is 0.1 to 5 Pa. Applying a coating composition that is sec, and drying the applied coating composition to form a facilitated transport film, and one or more laminated film forming steps;
And in the said laminated film formation process, the said coating composition is apply | coated on the conditions from which the weight increase rate by the water absorption of the said facilitated-transport film | membrane formed at the previous process will be 40 mass% or less. A method for producing an acidic gas separation membrane.
長尺な被処理物を巻回してなる被処理物ロールから、前記被処理物を送り出して、長手方向に搬送しつつ処理を行い、処理済の被処理物をロール状に巻回して処理済ロールとする、ロール・トゥ・ロール方式を用いる請求項8に記載の酸性ガス分離膜の製造方法。 From the workpiece roll formed by winding a long workpiece, the workpiece is sent out, processed while being conveyed in the longitudinal direction, and the processed workpiece is wound into a roll and processed. The method for producing an acidic gas separation membrane according to claim 8 , wherein a roll-to-roll method is used. 前記初期膜形成工程における塗布組成物と、少なくとも1回の前記積層膜形成工程における塗布組成物とが、同じ組成物である請求項8または9に記載の酸性ガス分離膜の製造方法。 The method for producing an acidic gas separation membrane according to claim 8 or 9 , wherein the coating composition in the initial film forming step and the coating composition in the laminated film forming step at least once are the same composition. 前記初期膜形成工程における塗布組成物と、少なくとも1回の前記積層膜形成工程における塗布組成物とが、異なる組成物である請求項8〜10のいずれか1項に記載の酸性ガス分離膜の製造方法。 The acidic gas separation membrane according to any one of claims 8 to 10 , wherein the coating composition in the initial film forming step and the coating composition in at least one of the laminated film forming steps are different compositions. Production method. 前記積層膜形成工程において、前記塗布組成物を塗布する促進輸送膜が存在する空間の温度および湿度の少なくとも一方を制御することで、前の工程で形成された前記促進輸送膜の吸水による重量増加率が40質量%以下となる条件下として前記塗布組成物の塗布を行う請求項8〜11のいずれか1項に記載の酸性ガス分離膜の製造方法。 In the laminated film forming step, the weight increase due to water absorption of the facilitated transport film formed in the previous step is controlled by controlling at least one of the temperature and humidity of the space where the facilitated transport film on which the coating composition is applied is present. The method for producing an acidic gas separation membrane according to any one of claims 8 to 11, wherein the coating composition is applied under a condition that the rate is 40% by mass or less. 前記塗布組成物が、前記キャリアとして炭酸セシウムを、前記親水性化合物としてポリビニルアルコール−ポリアクリル酸共重合体を、それぞれ含み、さらに、架橋剤を含有する請求項8〜12のいずれか1項に記載の酸性ガス分離膜の製造方法。 The coating composition according to any one of claims 8 to 12 , further comprising a cesium carbonate as the carrier, a polyvinyl alcohol-polyacrylic acid copolymer as the hydrophilic compound, and a crosslinking agent. The manufacturing method of the acidic gas separation membrane of description. 前記初期膜形成工程および積層膜形成工程において、前記塗布組成物の乾燥から処理済の被処理物をロール状に巻回するまでに、形成した促進輸送膜が曝される空間の温度および湿度を測定して、温度および湿度が所定の範囲となるように、前記空間の温度および湿度を管理する請求項9〜13のいずれか1項に記載の酸性ガス分離膜の製造方法。
In the initial film forming step and the laminated film forming step, the temperature and humidity of the space to which the formed facilitated transport film is exposed from the drying of the coating composition to the winding of the processed object to be processed in a roll shape. The method for producing an acidic gas separation membrane according to any one of claims 9 to 13 , wherein the temperature and humidity of the space are managed so that the temperature and humidity are in a predetermined range by measurement.
JP2013181389A 2013-09-02 2013-09-02 Method for producing acid gas separation membrane Expired - Fee Related JP6159624B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013181389A JP6159624B2 (en) 2013-09-02 2013-09-02 Method for producing acid gas separation membrane
PCT/JP2014/071937 WO2015029884A1 (en) 2013-09-02 2014-08-21 Process for producing acidic-gas separation film
TW103129617A TW201509512A (en) 2013-09-02 2014-08-28 Acidic gas separation membrane manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013181389A JP6159624B2 (en) 2013-09-02 2013-09-02 Method for producing acid gas separation membrane

Publications (2)

Publication Number Publication Date
JP2015047565A JP2015047565A (en) 2015-03-16
JP6159624B2 true JP6159624B2 (en) 2017-07-05

Family

ID=52586444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013181389A Expired - Fee Related JP6159624B2 (en) 2013-09-02 2013-09-02 Method for producing acid gas separation membrane

Country Status (3)

Country Link
JP (1) JP6159624B2 (en)
TW (1) TW201509512A (en)
WO (1) WO2015029884A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6046537B2 (en) * 2013-03-29 2016-12-14 富士フイルム株式会社 Method and apparatus for producing composite for acid gas separation
JP7089356B2 (en) * 2017-11-15 2022-06-22 住友化学株式会社 Manufacturing method and manufacturing equipment for acid gas separation membrane sheet
DE102019005373A1 (en) * 2019-07-30 2021-02-04 Sartorius Stedim Biotech Gmbh Mechanically stable ultrafiltration membrane and process for its manufacture
US11642629B2 (en) 2020-03-20 2023-05-09 Saudi Arabian Oil Company Multi-layer composite gas separation membranes, methods for preparation, and use

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4759258B2 (en) * 2004-12-07 2011-08-31 ローツェ株式会社 Coating film, film forming method and film forming apparatus
JP2011161387A (en) * 2010-02-10 2011-08-25 Fujifilm Corp Gas separation membrane, method for manufacturing the same, method for separating gas mixture using the same, gas separation membrane module and gas separator
WO2011099587A1 (en) * 2010-02-10 2011-08-18 富士フイルム株式会社 Gas separation membrane, method for producing same, and gas separation method, module and separation apparatus each using the gas separation membrane
JP2013049042A (en) * 2011-01-12 2013-03-14 Fujifilm Corp Composition for forming carbon dioxide separation membrane, carbon dioxide separation membrane and method for manufacturing the same, and carbon dioxide separating apparatus

Also Published As

Publication number Publication date
TW201509512A (en) 2015-03-16
WO2015029884A1 (en) 2015-03-05
JP2015047565A (en) 2015-03-16

Similar Documents

Publication Publication Date Title
JP6177115B2 (en) Method for producing composite
JP5990555B2 (en) Method for producing acid gas separation membrane and wound product of acid gas separation membrane
JP6156837B2 (en) Method for producing complex for acid gas separation
JP6156838B2 (en) Method for producing complex for acid gas separation
JP6046537B2 (en) Method and apparatus for producing composite for acid gas separation
JP5484361B2 (en) Method and apparatus for producing composite for carbon dioxide separation
JP6159624B2 (en) Method for producing acid gas separation membrane
WO2015107803A1 (en) Method for producing acidic-gas-separating laminate, acidic-gas-separating laminate, and acidic-gas-separating module
JP2016137462A (en) Spiral type module for acidic gas separation
JP6276598B2 (en) Acid gas separation module
US10183257B2 (en) Method of producing composite
WO2016121436A1 (en) Acidic gas separation module
JP2015027651A (en) Acidic gas separation module
WO2015098839A1 (en) Process for producing composite, and composite
JP5975951B2 (en) Method for producing facilitated transport separation membrane
JP2015061721A (en) Acidic gas separation layer, acidic gas separation layer manufacturing method, and acidic gas separation module
JP6145431B2 (en) Acid gas separation module manufacturing method and acid gas separation module
JP5972232B2 (en) Acid gas separation module
JP6005003B2 (en) Spiral module for acid gas separation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160923

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170612

R150 Certificate of patent or registration of utility model

Ref document number: 6159624

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees