JP6157318B2 - Carbazole compound and lithium ion battery to which carbazole compound is added - Google Patents

Carbazole compound and lithium ion battery to which carbazole compound is added Download PDF

Info

Publication number
JP6157318B2
JP6157318B2 JP2013228093A JP2013228093A JP6157318B2 JP 6157318 B2 JP6157318 B2 JP 6157318B2 JP 2013228093 A JP2013228093 A JP 2013228093A JP 2013228093 A JP2013228093 A JP 2013228093A JP 6157318 B2 JP6157318 B2 JP 6157318B2
Authority
JP
Japan
Prior art keywords
lithium ion
group
carbazole compound
lithium
ion battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013228093A
Other languages
Japanese (ja)
Other versions
JP2015086201A (en
Inventor
秀典 相原
秀典 相原
大輔 平山
大輔 平山
青木 雅裕
雅裕 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sagami Chemical Research Institute (Sagami CRI)
Original Assignee
Sagami Chemical Research Institute (Sagami CRI)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sagami Chemical Research Institute (Sagami CRI) filed Critical Sagami Chemical Research Institute (Sagami CRI)
Priority to JP2013228093A priority Critical patent/JP6157318B2/en
Publication of JP2015086201A publication Critical patent/JP2015086201A/en
Application granted granted Critical
Publication of JP6157318B2 publication Critical patent/JP6157318B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Indole Compounds (AREA)
  • Secondary Cells (AREA)

Description

本発明は、過充電防止剤として有用なカルバゾール化合物と、該カルバゾール化合物を含むリチウムイオン電池用電解液、及び該電解液を用いてなるリチウムイオン電池に関する。   The present invention relates to a carbazole compound useful as an overcharge inhibitor, an electrolytic solution for a lithium ion battery containing the carbazole compound, and a lithium ion battery using the electrolytic solution.

リチウムイオン電池は、金属酸リチウム塩を正極、グラファイト等を負極に持ち、六フッ化リン酸リチウム等の電解質を有機溶媒に溶解した電解液にて両極間を満たした構造を持つ。リチウムイオン電池は、携帯電話やパソコン、さらには航空機にまで幅広く用いられているが、規定容量を超えた充電(過充電)を行うと、正極や電解液に用いる有機溶媒が分解し、電池素子の膨張や爆発を起こすことがあり、安全性の点で大きな課題である。   Lithium ion batteries have a structure in which a metal oxide lithium salt is used as a positive electrode, graphite or the like is used as a negative electrode, and an electrolyte solution such as lithium hexafluorophosphate dissolved in an organic solvent is filled between both electrodes. Lithium ion batteries are widely used in mobile phones, personal computers, and even aircraft, but when charged beyond the specified capacity (overcharge), the organic solvent used in the positive electrode and electrolyte solution decomposes and battery elements May cause expansion and explosion, which is a major issue in terms of safety.

過充電防止剤とは、過充電時に電極等の電池構成部材に先立って酸化又は還元を受け、自らの拡散によって電荷を対極へ受け渡すことで電池構成部材を保護する剤である。これまでにリチウムイオン電池に用いる過充電防止剤としては、例えば特許文献1〜3に開示されている化合物があるが、カルバゾール類が過充電防止剤として用いられた例は全くない。   The overcharge preventing agent is an agent that protects the battery constituent member by undergoing oxidation or reduction prior to the battery constituent member such as an electrode during overcharge, and delivering charges to the counter electrode by its own diffusion. Up to now, as an overcharge inhibitor used for a lithium ion battery, for example, there are compounds disclosed in Patent Documents 1 to 3, but there is no example in which carbazoles are used as an overcharge inhibitor.

また、本発明のカルバゾール化合物に類する物質が特許文献4又は5に開示されているものの、カルバゾール窒素原子上にフルオロアルキル基を持つことを特徴とする本発明のカルバゾール化合物とは異なる。さらに特許文献4及び5には、カルバゾール類を過充電防止剤として用いた記述は一切ない。   Moreover, although the substance similar to the carbazole compound of this invention is disclosed by patent document 4 or 5, it differs from the carbazole compound of this invention characterized by having a fluoroalkyl group on a carbazole nitrogen atom. Furthermore, Patent Documents 4 and 5 have no description using carbazoles as an overcharge inhibitor.

特開1997−017447号公報JP 1997-017447 A WO2007−097912WO2007-097912 WO2006−094069WO2006-094069 特表2012−505860号公報Special table 2012-505860 gazette 特開平10−134845号公報JP-A-10-134845

本発明の課題は、リチウムイオン電池における過充電を防止する効果を持つカルバゾール化合物と、該カルバゾール化合物を含むことで過充電防止効果を備えたリチウムイオン電池用電解液、及び該電解液を用いてなる過充電が抑制されたリチウムイオン電池を提供することにある。   An object of the present invention is to provide a carbazole compound having an effect of preventing overcharge in a lithium ion battery, an electrolyte solution for a lithium ion battery having an overcharge prevention effect by containing the carbazole compound, and the electrolyte solution. Another object of the present invention is to provide a lithium ion battery in which overcharge is suppressed.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、一般式(1)で示されるカルバゾール化合物が、リチウムイオン電池における過充電の防止に適した酸化電位と優れた酸化還元耐性を持つことを見出し、また、本化合物を含むリチウムイオン電池用電解液及び該電解液を用いてなるリチウムイオン電池が、本化合物を含まない場合と比べ、過充電を抑制する効果があることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that the carbazole compound represented by the general formula (1) has an oxidation potential suitable for preventing overcharge in lithium ion batteries and excellent redox resistance. In addition, the lithium ion battery electrolyte solution containing the present compound and the lithium ion battery using the electrolyte solution have an effect of suppressing overcharge as compared to the case of not containing the compound. The headline and the present invention were completed.

即ち本発明は、一般式(1)   That is, the present invention relates to the general formula (1)

Figure 0006157318
Figure 0006157318

(式中、R及びRは、各々独立に、炭素数1〜6のフルオロアルキル基を表す。)で示されるカルバゾール化合物に関する。 (Wherein, R 1 and R 2 each independently represents a fluoroalkyl group having 1 to 6 carbon atoms).

また本発明は、一般式(2)   The present invention also provides a general formula (2)

Figure 0006157318
Figure 0006157318

(式中、Rは、炭素数1〜6のフルオロアルキル基を表す。)で示される3,6−ジヒドロキシカルバゾールと一般式ROSOCF(式中、Rは、炭素数1〜6のフルオロアルキル基を表す。)で示されるトリフルオロメタンスルホン酸エステルとを塩基の存在下反応させることを特徴とする一般式(1) (Wherein R 1 represents a fluoroalkyl group having 1 to 6 carbon atoms) and a general formula R 2 OSO 2 CF 3 (wherein R 2 represents 1 carbon atom) And a trifluoromethanesulfonic acid ester represented by the general formula (1), wherein the trifluoromethanesulfonic acid ester represented by (6) is reacted in the presence of a base.

Figure 0006157318
Figure 0006157318

(式中、R及びRは、各々独立に、炭素数1〜6のフルオロアルキル基を表す。)で示されるカルバゾール化合物の製造方法に関する。 (Wherein R 1 and R 2 each independently represents a fluoroalkyl group having 1 to 6 carbon atoms).

また本発明は、一般式(1)で示されるカルバゾール化合物を含むリチウムイオン電池用電解液に関する。   Moreover, this invention relates to the electrolyte solution for lithium ion batteries containing the carbazole compound shown by General formula (1).

さらに本発明は、一般式(1)で示されるカルバゾール化合物を含むリチウムイオン電池用電解液を用いてなるリチウムイオン電池に関するものである。   Furthermore, this invention relates to the lithium ion battery which uses the electrolyte solution for lithium ion batteries containing the carbazole compound shown by General formula (1).

以下に本発明をさらに詳細に説明する。   The present invention is described in further detail below.

本発明のカルバゾール化合物におけるR及びRの定義について説明する。 The definitions of R 1 and R 2 in the carbazole compound of the present invention will be described.

及びRで表される炭素数1〜6のフルオロアルキル基は、直鎖状、分岐状又は環状フルオロアルキル基のいずれでもよく、トリフルオロメチル基、ジフルオロメチル基、ペルフルオロエチル基、2,2,2−トリフルオロエチル基、1,1−ジフルオロエチル基、2,2−ジフルオロエチル基、ペルフルオロプロピル基、2,2,3,3,3−ペンタフルオロプロピル基、2,2,3,3−テトラフルオロプロピル基、3,3,3−トリフルオロプロピル基、1,1−ジフルオロプロピル基、ペルフルオロイソプロピル基、2,2,2−トリフルオロ−1−(トリフルオロメチル)エチル基、ペルフルオロシクロプロピル基、2,2,3,3−テトラフルオロシクロプロピル基、ペルフルオロブチル基、2,2,3,3,4,4,4−ヘプタフルオロブチル基、3,3,4,4,4−ペンタフルオロブチル基、4,4,4−トリフルオロブチル基、1,2,2,3,3,3−ヘキサフルオロ−1−(トリフルオロメチル)プロピル基、1−(トリフルオロメチル)プロピル基、1−メチル−3,3,3−トリフルオロプロピル基、ペルフルオロシクロブチル基、2,2,3,3,4,4−ヘキサフルオロシクロブチル基、ペルフルオロペンチル基、2,2,3,3,4,4,5,5,5−ノナフルオロペンチル基、3,3,4,4,5,5,5−ヘプタフルオロペンチル基、4,4,5,5,5−ペンタフルオロペンチル基、5,5,5−トリフルオロペンチル基、1,2,2,3,3,3−ヘキサフルオロ−1−(ペルフルオロエチル)プロピル基、2,2,3,3,3−ペンタフルオロ−1−(ペルフルオロエチル)プロピル基、ペルフルオロシクロペンチル基、ペルフルオロヘキシル基、2,2,3,3,4,4,5,5,6,6,6−ウンデカフルオロヘキシル基、3,3,4,4,5,5,6,6,6−ノナフルオロヘキシル基、4,4,5,5,6,6,6−ヘプタフルオロヘキシル基、5,5,6,6,6−ペンプタフルオロヘキシル基、6,6,6−トリフルオロヘキシル基、ペルフルオロシクロヘキシル基等を例示することができる。電解液に対する溶解性が良い点で、直鎖上フルオロアルキル基、具体的にはトリフルオロメチル基、ジフルオロメチル基、ペルフルオロエチル基、2,2,2−トリフルオロエチル基、2,2−ジフルオロエチル基、ペルフルオロプロピル基又は2,2,3,3,3−ペンタフルオロプロピル基、2,2,3,3−テトラフルオロプロピル基が好ましく、合成容易である点で2,2−ジフルオロエチル基、2,2,2−トリフルオロエチル基、2,2,3,3−テトラフルオロプロピル基がさらに好ましく、さらに2,2,2−トリフルオロエチル基がことさら好ましい。 The C1-C6 fluoroalkyl group represented by R 1 and R 2 may be any of a linear, branched or cyclic fluoroalkyl group, such as a trifluoromethyl group, a difluoromethyl group, a perfluoroethyl group, 2 , 2,2-trifluoroethyl group, 1,1-difluoroethyl group, 2,2-difluoroethyl group, perfluoropropyl group, 2,2,3,3,3-pentafluoropropyl group, 2,2,3 , 3-tetrafluoropropyl group, 3,3,3-trifluoropropyl group, 1,1-difluoropropyl group, perfluoroisopropyl group, 2,2,2-trifluoro-1- (trifluoromethyl) ethyl group, Perfluorocyclopropyl group, 2,2,3,3-tetrafluorocyclopropyl group, perfluorobutyl group, 2,2,3,3,4,4,4 Heptafluorobutyl group, 3,3,4,4,4-pentafluorobutyl group, 4,4,4-trifluorobutyl group, 1,2,2,3,3,3-hexafluoro-1- (tri Fluoromethyl) propyl group, 1- (trifluoromethyl) propyl group, 1-methyl-3,3,3-trifluoropropyl group, perfluorocyclobutyl group, 2,2,3,3,4,4-hexafluoro Cyclobutyl group, perfluoropentyl group, 2,2,3,3,4,4,5,5,5-nonafluoropentyl group, 3,3,4,4,5,5,5-heptafluoropentyl group, 4,4,5,5,5-pentafluoropentyl group, 5,5,5-trifluoropentyl group, 1,2,2,3,3,3-hexafluoro-1- (perfluoroethyl) propyl group, 2,2,3,3,3- Pentafluoro-1- (perfluoroethyl) propyl group, perfluorocyclopentyl group, perfluorohexyl group, 2,2,3,3,4,4,5,5,6,6,6-undecafluorohexyl group, 3, 3,4,4,5,5,6,6,6-nonafluorohexyl group, 4,4,5,5,6,6,6-heptafluorohexyl group, 5,5,6,6,6- Pentafluorohexyl group, 6,6,6-trifluorohexyl group, perfluorocyclohexyl group and the like can be exemplified. A fluoroalkyl group on a straight chain, specifically a trifluoromethyl group, a difluoromethyl group, a perfluoroethyl group, a 2,2,2-trifluoroethyl group, and a 2,2-difluoro, in terms of good solubility in the electrolyte An ethyl group, a perfluoropropyl group, or a 2,2,3,3,3-pentafluoropropyl group or a 2,2,3,3-tetrafluoropropyl group is preferred, and a 2,2-difluoroethyl group is easy in synthesis. 2,2,2-trifluoroethyl group and 2,2,3,3-tetrafluoropropyl group are more preferable, and 2,2,2-trifluoroethyl group is more preferable.

次に本発明の製造方法について説明する。   Next, the manufacturing method of this invention is demonstrated.

本発明のカルバゾール化合物(1)は、次の反応式(3)に示される方法により製造することができる。   The carbazole compound (1) of the present invention can be produced by the method shown in the following reaction formula (3).

Figure 0006157318
Figure 0006157318

(式中、R及びRは、各々独立に、炭素数1〜6のフルオロアルキル基を表す。)
本発明の製造方法は、3,6−ジヒドロキシカルバゾール(2)を塩基と反応させ、続いてR−OSOCFで示されるトリフルオロメタンスルホン酸エステルと反応させ、本発明のカルバゾール化合物(1)を製造する方法であり、一般的なWilliamson合成の反応条件を適用することにより、収率よく目的物を得ることができる。
(In the formula, R 1 and R 2 each independently represents a fluoroalkyl group having 1 to 6 carbon atoms.)
In the production method of the present invention, 3,6-dihydroxycarbazole (2) is reacted with a base and subsequently reacted with a trifluoromethanesulfonic acid ester represented by R 2 -OSO 2 CF 3 , to thereby produce the carbazole compound (1 The target product can be obtained in high yield by applying general Williamson synthesis reaction conditions.

本発明の製造方法に用いる3,6−ジヒドロキシカルバゾールは、参考例−1〜3に示した方法を用いて製造することができる。   3,6-Dihydroxycarbazole used in the production method of the present invention can be produced using the method shown in Reference Examples-1 to 1-3.

本発明の製造方法に用いることのできる塩基としては、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等の金属水酸化物、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸セシウム等の炭酸塩、酢酸カリウム、酢酸ナトリウム等の酢酸塩、リン酸カリウム、リン酸ナトリウム等のリン酸塩、ナトリウムメトキシド、カリウムメトキシド、ナトリウムエトキシド、カリウムイソプロピルオキシド、カリウムtert−ブトキシド等の金属アルコキシド、水素化ナトリウム、水素化カリウム、水素化カルシウム等の水素化金属、塩化エチルマグネシウム、臭化イソプロピルマグネシウム、メチルリチウム、ブチルリチウム等のアルキル金属、リチウムジイソプロピルアミド、リチウム2,2,6,6−テトラメチルピペリジド等の金属アミドを例示することができる。取り扱いが容易である点で、炭酸塩、金属アルコキシド又は水素化金属が好ましく、水素化金属がさらに好ましい。塩基と3,6−ジヒドロキシカルバゾールとのモル比に特に制限はないが、収率が良い点で1:2〜10:1から適宜選ばれた比が好ましく、経済的な観点から1:1〜4:1から適宜選ばれた比がさらに好ましい。   Examples of the base that can be used in the production method of the present invention include metal hydroxides such as sodium hydroxide, potassium hydroxide, and calcium hydroxide, carbonates such as sodium carbonate, potassium carbonate, lithium carbonate, cesium carbonate, and potassium acetate. , Acetates such as sodium acetate, phosphates such as potassium phosphate and sodium phosphate, metal alkoxides such as sodium methoxide, potassium methoxide, sodium ethoxide, potassium isopropyl oxide and potassium tert-butoxide, sodium hydride, Metal hydrides such as potassium hydride and calcium hydride, alkyl metals such as ethyl magnesium chloride, isopropyl magnesium bromide, methyl lithium and butyl lithium, lithium diisopropylamide, lithium 2,2,6,6-tetramethylpiperidide Gold It can be exemplified amides. From the viewpoint of easy handling, carbonates, metal alkoxides or metal hydrides are preferred, and metal hydrides are more preferred. Although there is no restriction | limiting in particular in the molar ratio of a base and 3, 6- dihydroxy carbazole, The ratio suitably selected from 1: 2-10: 1 is preferable at the point of a good yield, and it is 1: 1-1 from an economical viewpoint. A ratio appropriately selected from 4: 1 is more preferable.

−OSOCFで示されるトリフルオロメタンスルホン酸エステルは、当業者のよく知る一般的な合成法に従って製造することができ、また市販品を用いてもよい。トリフルオロメタンスルホン酸エステルと3,6−ジヒドロキシカルバゾールとのモル比に特に制限はないが、収率が良い点で1:2〜10:1から適宜選ばれた比が好ましく、1:1〜4:1から適宜選ばれた比が経済的にさらに好ましい。 The trifluoromethanesulfonic acid ester represented by R 2 -OSO 2 CF 3 can be produced according to a general synthesis method well known to those skilled in the art, or a commercially available product may be used. Although there is no restriction | limiting in particular in the molar ratio of a trifluoromethanesulfonic acid ester and 3, 6- dihydroxy carbazole, The ratio suitably selected from 1: 2-10: 1 is preferable at the point with a sufficient yield, and 1: 1-4. A ratio appropriately selected from 1 is more preferable economically.

本発明の製造方法は溶媒中で実施することができる。用いることのできる溶媒に特に制限はなく、反応を阻害しない溶媒であればよい。該溶媒として具体的には、ジエチルエーテル、テトラヒドロフラン(THF)、ジオキサン等のエーテル、トルエン、キシレン、メシチレン等の芳香族炭化水素、ジメチルホルムアミド(DMF)、ジメチルスルホキシド等を例示することができ、これらを任意の比で混合して用いてもよい。溶媒の使用量に特に制限は無い。収率がよい点でTHFを用いることが望ましい。   The production method of the present invention can be carried out in a solvent. There is no restriction | limiting in particular in the solvent which can be used, What is necessary is just a solvent which does not inhibit reaction. Specific examples of the solvent include ethers such as diethyl ether, tetrahydrofuran (THF), dioxane, aromatic hydrocarbons such as toluene, xylene, mesitylene, dimethylformamide (DMF), dimethyl sulfoxide, and the like. May be mixed at an arbitrary ratio. There is no restriction | limiting in particular in the usage-amount of a solvent. It is desirable to use THF in terms of a good yield.

本発明の製造方法を実施する際の反応温度には特に制限はないが、0〜150℃から適宜選択された温度にて実施することができ、収率が良い点で、20〜100℃から適宜選択された温度にて実施することが好ましい。   Although there is no restriction | limiting in particular in the reaction temperature at the time of implementing the manufacturing method of this invention, it can implement at the temperature suitably selected from 0-150 degreeC, and 20-20 degreeC is a point with a good yield. It is preferable to carry out at an appropriately selected temperature.

本発明のカルバゾール化合物(1)は、反応の終了後に通常の処理を行うことで得ることができる。必要に応じて、蒸留、再結晶、カラムクロマトグラフィー又は昇華等で精製してもよい。   The carbazole compound (1) of the present invention can be obtained by performing a usual treatment after the reaction is completed. If necessary, it may be purified by distillation, recrystallization, column chromatography or sublimation.

次に、本発明のカルバゾール化合物を含むリチウムイオン電池用電解液(以下、本発明の電解液という)の調製方法について説明する。   Next, a method for preparing an electrolytic solution for a lithium ion battery containing the carbazole compound of the present invention (hereinafter referred to as the electrolytic solution of the present invention) will be described.

本発明の電解液は、リチウムイオン電池用電解液に本発明のカルバゾール化合物を添加することにより調製することができる。   The electrolytic solution of the present invention can be prepared by adding the carbazole compound of the present invention to a lithium ion battery electrolytic solution.

リチウムイオン電池用電解液は、当業者が通常用いるものであれば特に制限はなく、市販品を用いてもよい。また、リチウムイオン電池用電解液は、支持電解質を有機溶媒に溶解させることによっても得られる。支持電解質としては、過塩素酸リチウム、四フッ化ホウ酸リチウム、六フッ化リン酸リチウム、六フッ化ヒ酸リチウム、六フッ化アンチモン酸リチウム、トリフルオロメタンスルホン酸リチウム、リチウムビス(トリフルオロメタンスルホン)イミド、テトラキス(ペルフルオロフェニル)ホウ酸リチウム等を例示することができ、リチウムイオン電池の性能が良い点で、四フッ化ホウ酸リチウム又は六フッ化リン酸リチウムが好ましい。リチウムイオン電池用電解液に用いる有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、4−フルオロエチレンカーボネート等の炭酸エステル、ギ酸メチル、ギ酸エチル、ギ酸プロピル、酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、γ−ラクトン等のエステル、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、1,4−ジオキサン等のエーテル、アセトニトリル、プロピオニトリル、バレロニトリル、グルタロニトリル、アジポニトリル、メトキシアセトニトリル、3−メトキシプロピオニトリル等のニトリル、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリジノン、N−メチルオキサゾリジノン等のアミドを例示することができ、これらを混合して用いてもよい。溶解性が良い点で、エステル又は炭酸エステルが好ましく、リチウムイオン電池の性能が良い点で、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート又はこれらの混合溶媒がさらに好ましい。   The electrolyte solution for lithium ion batteries is not particularly limited as long as those skilled in the art normally use, and commercially available products may be used. Moreover, the electrolyte solution for lithium ion batteries can also be obtained by dissolving the supporting electrolyte in an organic solvent. Supporting electrolytes include lithium perchlorate, lithium tetrafluoroborate, lithium hexafluorophosphate, lithium hexafluoroarsenate, lithium hexafluoroantimonate, lithium trifluoromethanesulfonate, lithium bis (trifluoromethanesulfone ) Imido, tetrakis (perfluorophenyl) lithium borate and the like can be exemplified, and lithium tetrafluoroborate or lithium hexafluorophosphate is preferred from the viewpoint of good performance of the lithium ion battery. Examples of the organic solvent used in the electrolyte for lithium ion batteries include carbonates such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and 4-fluoroethylene carbonate, methyl formate, ethyl formate, propyl formate, and methyl acetate. , Ethyl acetate, butyl acetate, methyl propionate, ethyl propionate, methyl butyrate, γ-lactone, esters, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 1,4-dioxane Such as ether, acetonitrile, propionitrile, valeronitrile, glutaronitrile, adiponitrile, methoxyacetonitrile, nitrile such as 3-methoxypropionitrile, N, N-dimethyl Formamide, N, N- dimethylacetamide, N- methylpyrrolidinone, can be exemplified N- methyloxazolidinone amides, dimethylsulfoxide and the like, may be used by mixing them. From the viewpoint of good solubility, an ester or a carbonate is preferable, and from the viewpoint of good performance of a lithium ion battery, ethylene carbonate, propylene carbonate, dimethyl carbonate, ethyl methyl carbonate, or a mixed solvent thereof is more preferable.

本発明の電解液の調製をする際、リチウムイオン電池用電解液に添加する本発明のカルバゾール化合物の量は、0.01重量%以上20重量%以下から適宜選ばれた量であることが好ましく、過充電防止効果が高い点で、0.1重量%以上10重量%以下から適宜選ばれた量であることがさらに好ましい。   When preparing the electrolytic solution of the present invention, the amount of the carbazole compound of the present invention added to the electrolytic solution for a lithium ion battery is preferably an amount appropriately selected from 0.01% by weight to 20% by weight. Further, it is more preferable that the amount is appropriately selected from 0.1% by weight or more and 10% by weight or less from the viewpoint of high overcharge prevention effect.

次に、本発明の電解液を使用するリチウムイオン電池(以下、本発明のリチウムイオン電池という)の作成方法について説明する。   Next, a method for producing a lithium ion battery (hereinafter referred to as the lithium ion battery of the present invention) using the electrolytic solution of the present invention will be described.

本発明のリチウムイオン電池は、正極及び負極によりセパレータを挟み、これらをセルケースに収納した後、本発明の電解液を注入することで作成される。正極の材質としては、当業者が通常用いるものであれば特に制限はなく、具体的にはコバルト酸リチウム、マンガン酸リチウム、ニッケル酸リチウム、リチウム(マンガン−コバルト複合酸化物)、リチウム(ニッケル−マンガン−コバルト複合酸化物)、リチウム五酸化バナジウム、バナジン酸リチウム、リチウム(オリビン型リン酸鉄)等を例示することができる。電池の性能が良い点で、コバルト酸リチウム、マンガン酸リチウム、ニッケル酸リチウム、リチウム(マンガン−コバルト複合酸化物)、リチウム(ニッケル−マンガン−コバルト複合酸化物)又はリチウム(オリビン型リン酸鉄)が好ましい。負極の材質としては、リチウムを可逆的に吸蔵及び放出できるものであれば特に制限はなく、具体的には、リチウム金属、グラッシーカーボン、天然黒鉛等の炭素、アルミニウム;ケイ素;ゲルマニウム;スズ;鉛;インジウム;亜鉛;チタンから選ばれる1種類以上の元素とリチウムとの合金、チタン酸リチウム、リン;バナジウム;スズ;銅;ニッケル;コバルト;鉄から選ばれる1種類以上の元素を含有するリチウムチタン複合酸化物等を例示することができる。電池の性能が良い点で、グラッシーカーボン、天然黒鉛、ケイ素;スズ;チタンから選ばれる1種類以上の元素とリチウムとの合金又はチタン酸リチウムが好ましい。セパレータの材質としては、当業者が通常用いるものであれば特に制限はなく、具体的には、ポリオレフィン樹脂、フッ素系樹脂、ガラス繊維、ポリエステル樹脂、芳香族ポリアミド樹脂、ポリオキシアルキレン樹脂等を例示することができる。電池の性能が良い点で、ポリオレフィン樹脂又はフッ素系樹脂が好ましい。セルケースの材質としては、当業者が通常用いるものであれば特に制限はなく、具体的には、ステンレス、アルミ合金、チタン合金、ニッケル合金等を例示することができる。耐久性が良い点で、ステンレス又はチタン合金が好ましい。   The lithium ion battery of the present invention is prepared by sandwiching a separator between a positive electrode and a negative electrode, storing them in a cell case, and then injecting the electrolytic solution of the present invention. The material of the positive electrode is not particularly limited as long as it is a material commonly used by those skilled in the art. Specifically, lithium cobaltate, lithium manganate, lithium nickelate, lithium (manganese-cobalt composite oxide), lithium (nickel- (Manganese-cobalt composite oxide), lithium vanadium pentoxide, lithium vanadate, lithium (olivine-type iron phosphate), and the like. Lithium cobaltate, lithium manganate, lithium nickelate, lithium (manganese-cobalt composite oxide), lithium (nickel-manganese-cobalt composite oxide) or lithium (olivine iron phosphate) in terms of good battery performance Is preferred. The material of the negative electrode is not particularly limited as long as it can reversibly occlude and release lithium. Specifically, carbon such as lithium metal, glassy carbon, natural graphite, aluminum, silicon, germanium, tin, lead An alloy of lithium and one or more elements selected from indium, zinc and titanium, lithium titanate, phosphorus; vanadium; tin; copper; nickel; cobalt; lithium titanium containing one or more elements selected from iron A composite oxide etc. can be illustrated. In view of good battery performance, glassy carbon, natural graphite, silicon; tin; an alloy of lithium and one or more elements selected from titanium and titanium, or lithium titanate is preferable. The material of the separator is not particularly limited as long as it is usually used by those skilled in the art, and specific examples include polyolefin resin, fluorine resin, glass fiber, polyester resin, aromatic polyamide resin, polyoxyalkylene resin, and the like. can do. From the viewpoint of good battery performance, polyolefin resin or fluorine resin is preferable. The material of the cell case is not particularly limited as long as those skilled in the art normally use, and specific examples include stainless steel, aluminum alloy, titanium alloy, nickel alloy and the like. From the viewpoint of good durability, stainless steel or titanium alloy is preferable.

本発明のカルバゾール化合物は、リチウムイオン電池の過充電を抑制する過充電防止剤として有用であり、これを含むリチウムイオン電池用電解液を用いてなるリチウムイオン電池の安全性を向上させることができる。   The carbazole compound of the present invention is useful as an overcharge inhibitor that suppresses overcharge of a lithium ion battery, and can improve the safety of a lithium ion battery using an electrolyte for a lithium ion battery containing the same. .

次に、本発明を実施例、参考例、試験例及び比較例によって詳細に説明するが、本発明はこれらに限定されるものではない。   Next, although an Example, a reference example, a test example, and a comparative example demonstrate this invention in detail, this invention is not limited to these.

本発明のカルバゾール化合物の同定には、以下の分析方法を用いた。H−NMR及び19F−NMRの測定には、Bruker ULTRASHIELD PLUS AVANCE III(400MHzおよび376MHz)を用いた。H−NMRは、重クロロホルム(CDCl)又は重アセトンを測定溶媒とし、内部標準物質としてテトラメチルシラン(TMS)を用いて測定した。19F−NMRは、重クロロホルム(CDCl)又は重アセトンを測定溶媒とし、内部標準物質としてベンゾトリフルオリドを用いて測定した。質量分析は、SHIMADZU社製 GCMS−QP2010を用いて行った。融点(mp)は、メトラートレード社製 MP70を用いて測定した。サイクリックボルタンメトリー(CV)の測定は、北斗電工株式会社製 HSV−100を用いて行った。CV測定は、10mMの本発明のカルバゾール化合物及び0.1Mの支持電解質(六フッ化リン酸テトラブチルアンモニウム)を含むエチレンカーボネート/エチルメチルカーボネート混合溶液(重量比:3/7)を調製し、これに作用電極としてグラッシーカーボン、基準電極としてAg/AgCl、対極として白金を挿入し、30,50,100,200mV/sの各走査速度にて行った。CV測定の結果から、酸化還元電位(E1/2)及び拡散係数Dを算出した。E1/2は、可逆なボルタノグラムにおける酸化及び還元ピークの半波電位である。拡散係数D(cm/s)は、式(4)
=2.69×10(3/2)AD(1/2)(1/2)c (4)
(式中、Iは酸化ピーク電流値(A)、nは移動電子数、Aは作用電極面積(cm)、vは電位の走査速度(V/s)及びcはカルバゾール化合物の濃度(mol/cm)を表す。)に従って算出した。
The following analysis method was used for identification of the carbazole compound of the present invention. For measurement of 1 H-NMR and 19 F-NMR, Bruker ULTRASHIELD PLUS AVANCE III (400 MHz and 376 MHz) was used. 1 H-NMR was measured using deuterated chloroform (CDCl 3 ) or deuterated acetone as a measurement solvent and tetramethylsilane (TMS) as an internal standard substance. 19 F-NMR was measured using deuterated chloroform (CDCl 3 ) or deuterated acetone as a measurement solvent and benzotrifluoride as an internal standard substance. Mass spectrometry was performed using GCMS-QP2010 manufactured by SHIMADZU. The melting point (mp) was measured using MP70 manufactured by METTLER TRADE. Cyclic voltammetry (CV) was measured using HSV-100 manufactured by Hokuto Denko Corporation. For CV measurement, an ethylene carbonate / ethyl methyl carbonate mixed solution (weight ratio: 3/7) containing 10 mM of the carbazole compound of the present invention and 0.1 M of a supporting electrolyte (tetrabutylammonium hexafluorophosphate) was prepared, Glassy carbon was inserted as a working electrode, Ag / AgCl as a reference electrode, and platinum as a counter electrode, and scanning was performed at 30, 50, 100, and 200 mV / s. From the results of CV measurement, the oxidation-reduction potential (E 1/2 ) and the diffusion coefficient D were calculated. E 1/2 is the half-wave potential of the oxidation and reduction peaks in the reversible voltagram. The diffusion coefficient D (cm 2 / s) is given by equation (4)
I p = 2.69 × 10 5 n (3/2) AD (1/2) v (1/2) c (4)
(Wherein I p is the oxidation peak current value (A), n is the number of mobile electrons, A is the working electrode area (cm 2 ), v is the potential scanning speed (V / s), and c is the concentration of the carbazole compound ( mol / cm 3 ).

実施例−1 Example-1

Figure 0006157318
Figure 0006157318

アルゴン雰囲気下、参考例−3にて合成した3,6−ジヒドロキシ−N−(2,2,2−トリフルオロエチル)カルバゾール(2.01g,7.11mmol)をTHF(50mL)に溶解し、ここに0℃にて水素化ナトリウム(60%油分散,587mg,14.6mmol)を加え、同温にて30分撹拌した。この溶液を室温まで昇温した後、トリフルオロメタンスルホン酸(2,2,2−トリフルオロエチル)(3.80g,16.4mmol)を加え、加熱還流下で22時間撹拌した。反応溶液にクロロホルム及び水を加え、水層を分離後、有機層を硫酸ナトリウムで乾燥した。乾燥剤をろ別後、ろ液を減圧濃縮し、粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフィー(溶離液:クロロホルム/ヘキサン)及び再結晶(クロロホルム/ヘキサン)で精製し、3,6−ビス(2,2,2−トリフルオロエトキシ)−N−(2,2,2−トリフルオロエチル)カルバゾールを白色固体(mp:147.9〜148.3℃)として得た(2.07g,収率65%)。
H−NMR(400MHz,CDCl):δ4.46(q,J=8.2Hz,4H),δ4.73(q,J=8.7Hz,2H),δ7.19(dd,J=8.8,2.5Hz,2H),δ7.34(d,J=8.8Hz,2H),δ7.56(d,J=2.5Hz,2H).
19F−NMR(376MHz,CDCl):δ−74.5(t,J=8.2Hz,6F),δ−70.9(t,J=8.7Hz,3F).
MS(EI,0.92V):m/z(%)=445(M,76),362(100),223(30).
1/2:1.31V(vs.Ag/AgCl).
D:2.9×10−6cm/s.
Under an argon atmosphere, 3,6-dihydroxy-N- (2,2,2-trifluoroethyl) carbazole (2.01 g, 7.11 mmol) synthesized in Reference Example-3 was dissolved in THF (50 mL). Sodium hydride (60% oil dispersion, 587 mg, 14.6 mmol) was added thereto at 0 ° C., and the mixture was stirred at the same temperature for 30 minutes. The temperature of the solution was raised to room temperature, trifluoromethanesulfonic acid (2,2,2-trifluoroethyl) (3.80 g, 16.4 mmol) was added, and the mixture was stirred for 22 hours with heating under reflux. Chloroform and water were added to the reaction solution, the aqueous layer was separated, and the organic layer was dried over sodium sulfate. After the desiccant was filtered off, the filtrate was concentrated under reduced pressure to obtain a crude product. The crude product was purified by silica gel column chromatography (eluent: chloroform / hexane) and recrystallization (chloroform / hexane), and 3,6-bis (2,2,2-trifluoroethoxy) -N- (2, 2,2-Trifluoroethyl) carbazole was obtained as a white solid (mp: 147.9-148.3 ° C.) (2.07 g, yield 65%).
1 H-NMR (400 MHz, CDCl 3 ): δ 4.46 (q, J = 8.2 Hz, 4H), δ 4.73 (q, J = 8.7 Hz, 2H), δ 7.19 (dd, J = 8 .8, 2.5 Hz, 2H), δ 7.34 (d, J = 8.8 Hz, 2H), δ 7.56 (d, J = 2.5 Hz, 2H).
19 F-NMR (376 MHz, CDCl 3 ): δ-74.5 (t, J = 8.2 Hz, 6F), δ-70.9 (t, J = 8.7 Hz, 3F).
MS (EI, 0.92 V): m / z (%) = 445 (M <+> , 76), 362 (100), 223 (30).
E1 / 2 : 1.31 V (vs. Ag / AgCl).
D: 2.9 × 10 −6 cm 2 / s.

参考例−1 Reference Example-1

Figure 0006157318
Figure 0006157318

アルゴン雰囲気下、オートクレーブ容器にナトリウムエトキシド(8.94g,131mmol)、3,6−ジブロモカルバゾール(7.00g,21.5mmol)、ヨウ化銅(I)(8.20g,43.1mmol)、DMF(7mL)及びエタノール(24.5mL)を加え、120℃で20時間撹拌した。反応終了後、反応溶液に酢酸エチルを加え、シリカゲルろ過を行い、ろ液を減圧濃縮し、粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフィー(溶離液:酢酸エチル/ヘキサン)で精製し、3,6−ジエトキシカルバゾールを白色固体として得た(4.39g,収率80%)。
H−NMR(400MHz,CDCl):δ1.47(t,J=7.0Hz,6H),δ4.14(q,J=7.0Hz,4H),δ7.04(dd,J=8.7,2.5Hz,2H),δ7.27(d,J=8.7Hz,2H),δ7.48(d,J=2.5Hz,2H),δ7.74(brs,1H).
Under an argon atmosphere, sodium ethoxide (8.94 g, 131 mmol), 3,6-dibromocarbazole (7.00 g, 21.5 mmol), copper (I) iodide (8.20 g, 43.1 mmol), DMF (7 mL) and ethanol (24.5 mL) were added and stirred at 120 ° C. for 20 hours. After completion of the reaction, ethyl acetate was added to the reaction solution, silica gel filtration was performed, and the filtrate was concentrated under reduced pressure to obtain a crude product. The crude product was purified by silica gel column chromatography (eluent: ethyl acetate / hexane) to give 3,6-diethoxycarbazole as a white solid (4.39 g, yield 80%).
1 H-NMR (400 MHz, CDCl 3 ): δ 1.47 (t, J = 7.0 Hz, 6H), δ 4.14 (q, J = 7.0 Hz, 4H), δ 7.04 (dd, J = 8 .7, 2.5 Hz, 2H), δ 7.27 (d, J = 8.7 Hz, 2H), δ 7.48 (d, J = 2.5 Hz, 2H), δ 7.74 (brs, 1H).

参考例−2 Reference example-2

Figure 0006157318
Figure 0006157318

アルゴン雰囲気下、参考例−1にて合成した3,6−ジエトキシカルバゾール(5.01g,19.6mmol)をTHF(100mL)に溶解した。この溶液を0℃まで冷却し、n−ブチルリチウム/ヘキサン溶液(1.60M,14.7mL,23.5mmol)をゆっくりと滴下し、45分間撹拌した後、室温で減圧濃縮した。得られた残渣をTHF(100mL)及びN,N’−ジメチルプロピレンウレア(10mL)を加えて溶解した後、この溶液を0℃に冷却し、トリフルオロメタンスルホン酸(2,2,2−トリフルオロエチル)(8.05g,34.7mmol)を加え、同温にて1時間、さらに室温で16時間撹拌した。反応終了後、反応溶液にクロロホルム及び飽和塩化アンモニウム水を加え、水層を分離後、有機層を硫酸ナトリウムで乾燥した。乾燥剤をろ別後、ろ液を減圧濃縮し、粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフィー(溶離液:クロロホルム/ヘキサン)で精製し、3,6−ジエトキシ−N−(2,2,2−トリフルオロエチル)カルバゾールを白色固体(mp:140.9〜141.2℃)として得た(3.81g,収率58%)。
H−NMR(400MHz,CDCl):δ1.47(t,J=7.0Hz,6H),δ4.14(q,J=7.0Hz,4H),δ4.71(q,J=8.8Hz,2H),δ7.10(dd,J=8.9,2.5Hz,2H),δ7.27(d,J=8.9Hz,2H),δ7.49(d,J=2.5Hz,2H).
19F−NMR(376MHz,CDCl):δ−71.0(t,J=8.8Hz,3F).
MS(EI,0.92V):m/z(%)=337(M,95),308(100),280(42).
1/2:1.10V(vs.Ag/AgCl).
D:3.6×10−6cm/s.
Under an argon atmosphere, 3,6-diethoxycarbazole (5.01 g, 19.6 mmol) synthesized in Reference Example-1 was dissolved in THF (100 mL). The solution was cooled to 0 ° C., an n-butyllithium / hexane solution (1.60 M, 14.7 mL, 23.5 mmol) was slowly added dropwise, stirred for 45 minutes, and then concentrated under reduced pressure at room temperature. The resulting residue was dissolved by adding THF (100 mL) and N, N′-dimethylpropyleneurea (10 mL), and then the solution was cooled to 0 ° C. and trifluoromethanesulfonic acid (2,2,2-trifluoro). Ethyl) (8.05 g, 34.7 mmol) was added, and the mixture was stirred at the same temperature for 1 hour and further at room temperature for 16 hours. After completion of the reaction, chloroform and saturated aqueous ammonium chloride were added to the reaction solution, the aqueous layer was separated, and the organic layer was dried over sodium sulfate. After the desiccant was filtered off, the filtrate was concentrated under reduced pressure to obtain a crude product. The crude product was purified by silica gel column chromatography (eluent: chloroform / hexane), and 3,6-diethoxy-N- (2,2,2-trifluoroethyl) carbazole was converted into a white solid (mp: 140.9 to 141.2 ° C.) (3.81 g, yield 58%).
1 H-NMR (400 MHz, CDCl 3 ): δ 1.47 (t, J = 7.0 Hz, 6H), δ 4.14 (q, J = 7.0 Hz, 4H), δ 4.71 (q, J = 8) 8 Hz, 2H), δ 7.10 (dd, J = 8.9, 2.5 Hz, 2H), δ 7.27 (d, J = 8.9 Hz, 2H), δ 7.49 (d, J = 2. 5Hz, 2H).
19 F-NMR (376 MHz, CDCl 3 ): δ-71.0 (t, J = 8.8 Hz, 3F).
MS (EI, 0.92 V): m / z (%) = 337 (M + , 95), 308 (100), 280 (42).
E1 / 2 : 1.10 V (vs. Ag / AgCl).
D: 3.6 × 10 −6 cm 2 / s.

参考例−3 Reference example-3

Figure 0006157318
Figure 0006157318

アルゴン雰囲気下、参考例−2にて合成した3,6−ジエトキシ−N−(2,2,2−トリフルオロエチル)カルバゾール(3.71g,11.0mmol)をジクロロメタン(222mL)に溶解した。この溶液を−78℃に冷却し、三臭化ホウ素−ジクロロメタン溶液(1.1M,20.5mL,22.6mmol)を滴下し、同温にて2時間、さらに室温で24時間撹拌した。反応終了後、反応溶液に酢酸エチル及び水を加え、水層を分離後、有機層を硫酸マグネシウムで乾燥した。乾燥剤をろ別後、ろ液を減圧濃縮し、3,6−ジヒドロキシ−N−(2,2,2−トリフルオロエチル)カルバゾールを白色固体として得た(3.09g,収率100%)。
H−NMR(400MHz,重アセトン):δ5.09(q,J=9.2Hz,2H),δ7.02(dd,J=8.7,2.4Hz,2H),δ7.43(d,J=8.7Hz,2H),δ7.45(d,J=2.4Hz,2H),δ8.01(s,2H).
19F−NMR(376MHz,重アセトン):δ−71.1(t,J=9.2Hz,3F).
Under an argon atmosphere, 3,6-diethoxy-N- (2,2,2-trifluoroethyl) carbazole (3.71 g, 11.0 mmol) synthesized in Reference Example-2 was dissolved in dichloromethane (222 mL). The solution was cooled to −78 ° C., boron tribromide-dichloromethane solution (1.1 M, 20.5 mL, 22.6 mmol) was added dropwise, and the mixture was stirred at the same temperature for 2 hours and further at room temperature for 24 hours. After completion of the reaction, ethyl acetate and water were added to the reaction solution, the aqueous layer was separated, and the organic layer was dried over magnesium sulfate. After the desiccant was filtered off, the filtrate was concentrated under reduced pressure to obtain 3,6-dihydroxy-N- (2,2,2-trifluoroethyl) carbazole as a white solid (3.09 g, yield 100%). .
1 H-NMR (400 MHz, heavy acetone): δ 5.09 (q, J = 9.2 Hz, 2H), δ 7.02 (dd, J = 8.7, 2.4 Hz, 2H), δ 7.43 (d , J = 8.7 Hz, 2H), δ 7.45 (d, J = 2.4 Hz, 2H), δ 8.01 (s, 2H).
19 F-NMR (376 MHz, heavy acetone): δ-71.1 (t, J = 9.2 Hz, 3F).

参考例−4 Reference example-4

Figure 0006157318
Figure 0006157318

アルゴン雰囲気下、3,6−ジ−tert−ブチルカルバゾール(2.96g,10.6mmol)をTHF(45mL)に溶解し、ここに室温にてn−ブチルリチウム/ヘキサン溶液(1.64M,6.45mL,10.6mmol)をゆっくりと滴下した。室温で30分間撹拌した後、−78℃に冷却し、オクタフルオロトルエン(3.00g,12.7mmol)を加え、同温にて1時間、さらに室温で16時間撹拌した。反応終了後、反応溶液にジエチルエーテル及び水を加え、水層を分離後、有機層を硫酸ナトリウムで乾燥した。乾燥剤をろ別後、ろ液を減圧濃縮し、粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフィー(溶離液:ヘキサン)及び再結晶(95%エタノール)で精製し、3,6−ジ−tert−ブチル−N− [2,3,5,6−テトラフルオロ−4−(トリフルオロメチル)フェニル] カルバゾールを白色固体(mp:209.8〜210.8℃)として得た(4.71g,収率89%)。
H−NMR(400MHz,CDCl):δ1.46(s,18H),δ7.06(d,J=8.6Hz,2H),δ7.50(dd,J=8.6,1.9Hz,2H),δ8.12(d,J=1.9Hz,2H).
19F−NMR(376MHz,CDCl):δ−140.5(d,J=10.6Hz,2F),δ−139.6(qd,J=21.7,10.6Hz,2F),δ−56.5(t,J=21.7Hz,3F).
MS(EI,0.92V):m/z(%)=495(M,38),481(34),480(100),57(88),41(32).
1/2:1.57V(vs.Ag/AgCl).
D:2.9×10−6cm/s.
Under an argon atmosphere, 3,6-di-tert-butylcarbazole (2.96 g, 10.6 mmol) was dissolved in THF (45 mL), and this was dissolved in an n-butyllithium / hexane solution (1.64 M, 6 at room temperature). .45 mL, 10.6 mmol) was slowly added dropwise. After stirring at room temperature for 30 minutes, the mixture was cooled to −78 ° C., octafluorotoluene (3.00 g, 12.7 mmol) was added, and the mixture was stirred at the same temperature for 1 hour and further at room temperature for 16 hours. After completion of the reaction, diethyl ether and water were added to the reaction solution, the aqueous layer was separated, and the organic layer was dried over sodium sulfate. After the desiccant was filtered off, the filtrate was concentrated under reduced pressure to obtain a crude product. The crude product was purified by silica gel column chromatography (eluent: hexane) and recrystallization (95% ethanol), and 3,6-di-tert-butyl-N- [2,3,5,6-tetrafluoro- 4- (Trifluoromethyl) phenyl] carbazole was obtained as a white solid (mp: 209.8-210.8 ° C.) (4.71 g, 89% yield).
1 H-NMR (400 MHz, CDCl 3 ): δ 1.46 (s, 18H), δ 7.06 (d, J = 8.6 Hz, 2H), δ 7.50 (dd, J = 8.6, 1.9 Hz) , 2H), δ 8.12 (d, J = 1.9 Hz, 2H).
19 F-NMR (376 MHz, CDCl 3 ): δ-140.5 (d, J = 10.6 Hz, 2F), δ-139.6 (qd, J = 21.7, 10.6 Hz, 2F), δ -56.5 (t, J = 21.7 Hz, 3F).
MS (EI, 0.92 V): m / z (%) = 495 (M + , 38), 481 (34), 480 (100), 57 (88), 41 (32).
E1 / 2 : 1.57 V (vs. Ag / AgCl).
D: 2.9 × 10 −6 cm 2 / s.

試験例−1
アルゴン雰囲気下、六フッ化リン酸リチウム(1.52g,10.0mmol)及び実施例−1にて合成した3,6−ビス(2,2,2−トリフルオロエトキシ)−N−(2,2,2−トリフルオロエチル)カルバゾール(445mg,1.00mmol)を量りとり、エチレンカーボネート/エチルメチルカーボネート混合溶媒(体積比:30/70)を用いて10mLにメスアップし、電解液を得た。
Test Example-1
Under an argon atmosphere, lithium hexafluorophosphate (1.52 g, 10.0 mmol) and 3,6-bis (2,2,2-trifluoroethoxy) -N- (2, synthesized in Example-1) 2,2-trifluoroethyl) carbazole (445 mg, 1.00 mmol) was weighed and made up to 10 mL using an ethylene carbonate / ethyl methyl carbonate mixed solvent (volume ratio: 30/70) to obtain an electrolytic solution. .

リチウムイオン電池は、セパレータ6(無機フィラー含有ポリオレフィン、日本板硝子製)を挟んで正極1(活物質:コバルト酸リチウム、単層シートプレス品、パイオトレック製)、負極4(活物質:天然球状グラファイト、単層シートプレス品、パイオトレック製)を対向配置し、負極ステンレス製キャップ3にステンレス製板バネ5を設置し、負極4、セパレータ6および正極1からなる積層体をコイン型セル内に収納した。この積層体に上記3,6−ビス(2,2,2−トリフルオロエトキシ)−N−(2,2,2−トリフルオロエチル)カルバゾールを含有した電解液を注入した後、ガスケット7を配置後、正極ステンレス製キャップ2をかぶせ、コイン型セルケースをかしめることで電池素子を得た(図1)。   The lithium ion battery has a positive electrode 1 (active material: lithium cobaltate, single-layer sheet press product, manufactured by Piotrek) and negative electrode 4 (active material: natural spherical graphite) with a separator 6 (inorganic filler-containing polyolefin, manufactured by Nippon Sheet Glass) interposed therebetween. , Single layer sheet press product, manufactured by Piotrec Co., Ltd.), a stainless steel leaf spring 5 is installed on the negative electrode stainless steel cap 3, and a laminate composed of the negative electrode 4, the separator 6 and the positive electrode 1 is stored in a coin-type cell. did. After injecting an electrolytic solution containing the above 3,6-bis (2,2,2-trifluoroethoxy) -N- (2,2,2-trifluoroethyl) carbazole into this laminate, a gasket 7 is arranged. Thereafter, a positive electrode stainless steel cap 2 was put on and a coin-type cell case was caulked to obtain a battery element (FIG. 1).

上記電池素子をマルチチャンネルポテンショスタット/ガルバノスタット(VMP−3)を用いて、25℃の恒温条件下、0.1Cの充電電流で上限電圧を4.2Vとして充電し、続いて0.1Cの放電電流で3.0Vとなるまで放電した。この操作を3回行った後に25℃の恒温条件下、0.2Cの充電電流で定電流充電を行い、4.95Vを上限電圧として、電池容量が規定の2倍(6mAh)になるまで充電を行った。この時の電圧は4.3Vであった(図2)。   The battery element was charged with a multi-channel potentiostat / galvanostat (VMP-3) at a constant temperature of 25 ° C. with a charging current of 0.1 C and an upper limit voltage of 4.2 V, and then 0.1 C The battery was discharged until the discharge current reached 3.0V. After this operation is performed three times, constant current charging is performed at a charging current of 0.2 C under a constant temperature condition of 25 ° C., and charging is performed until the battery capacity reaches a prescribed double (6 mAh) with 4.95 V as the upper limit voltage. Went. The voltage at this time was 4.3 V (FIG. 2).

比較例−1
3,6−ビス(2,2,2−トリフルオロエトキシ)−N−(2,2,2−トリフルオロエチル)カルバゾールに代え、参考例−4にて合成した3,6−ジ−tert−ブチル−N− [2,3,5,6−テトラフルオロ−4−(トリフルオロメチル)フェニル] カルバゾール(149mg,0.30mmol)を用いた以外は、試験例−1と同様に行った。作成したリチウムイオン電池を6mAhまで充電を行った時の電圧は4.7Vであった(図2)。
Comparative Example-1
3,6-di-tert-synthesized in Reference Example 4 instead of 3,6-bis (2,2,2-trifluoroethoxy) -N- (2,2,2-trifluoroethyl) carbazole Test was performed in the same manner as in Test Example 1 except that butyl-N- [2,3,5,6-tetrafluoro-4- (trifluoromethyl) phenyl] carbazole (149 mg, 0.30 mmol) was used. The voltage when the prepared lithium ion battery was charged to 6 mAh was 4.7 V (FIG. 2).

比較例−2
カルバゾール化合物を添加しなかった他は、試験例−1と同様に行った。作成したリチウムイオン電池を5.2mAhまで充電した時、上限電圧(4.95V)に達し、それ以上の充電を行うことはできなかった(図2)。
Comparative Example-2
The test was performed in the same manner as in Test Example 1 except that the carbazole compound was not added. When the prepared lithium ion battery was charged to 5.2 mAh, the upper limit voltage (4.95 V) was reached, and further charging could not be performed (FIG. 2).

本発明のカルバゾール化合物を添加することにより、比較例1及び2に比べて充電に伴う電圧上昇が抑制されており、本発明のカルバゾール化合物が過充電防止剤として機能していることがわかる。   By adding the carbazole compound of the present invention, the voltage increase accompanying charging is suppressed as compared with Comparative Examples 1 and 2, and it can be seen that the carbazole compound of the present invention functions as an overcharge inhibitor.

試験例及び比較例で作成したリチウムイオン電池の概略図である。It is the schematic of the lithium ion battery created by the test example and the comparative example. 試験例及び比較例の充電曲線を示す図である。It is a figure which shows the charge curve of a test example and a comparative example.

1 正極
2 正極ステンレス製キャップ
3 負極ステンレス製キャップ
4 負極
5 ステンレス製板バネ
6 無機フィラー含浸ポリオレフィン多孔質セパレータ
7 ガスケット
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Positive electrode stainless cap 3 Negative electrode stainless steel cap 4 Negative electrode 5 Stainless steel leaf spring 6 Inorganic filler impregnation polyolefin porous separator 7 Gasket

本発明によれば、過充電時においてもリチウムイオン電池の電圧上昇を抑制することができるため、安全性に優れたリチウムイオン電池を提供することができる。また、本発明はリチウムイオン電池のみならず、ナトリウムイオン電池、リチウム硫黄電池、カルシウム;マグネシウム;アルミニウム等の金属負極電池等への利用も可能である。   According to the present invention, since the voltage rise of the lithium ion battery can be suppressed even during overcharge, a lithium ion battery excellent in safety can be provided. Further, the present invention can be used not only for lithium ion batteries but also for sodium ion batteries, lithium sulfur batteries, calcium negative electrodes, metal negative electrodes such as aluminum, and the like.

Claims (7)

一般式(1)
Figure 0006157318
(式中、R及びRは、各々独立に、炭素数1〜6のフルオロアルキル基を表す。)で示されるカルバゾール化合物。
General formula (1)
Figure 0006157318
(Wherein R 1 and R 2 each independently represents a fluoroalkyl group having 1 to 6 carbon atoms).
及びRが、各々独立に、炭素数1〜4のフルオロアルキル基である請求項1に記載のカルバゾール化合物。 The carbazole compound according to claim 1, wherein R 1 and R 2 are each independently a fluoroalkyl group having 1 to 4 carbon atoms. 及びRが、2,2,2−トリフルオロエチル基である請求項1又は2に記載のカルバゾール化合物。 The carbazole compound according to claim 1 or 2, wherein R 1 and R 2 are 2,2,2-trifluoroethyl groups. 一般式(2)
Figure 0006157318
(式中、Rは、炭素数1〜6のフルオロアルキル基を表す。)で示される3,6−ジヒドロキシカルバゾールと一般式ROSOCF(式中、Rは、炭素数1〜6のフルオロアルキル基を表す。)で示されるトリフルオロメタンスルホン酸エステルとを塩基の存在下反応させることを特徴とする一般式(1)
Figure 0006157318
(式中、R及びRは、各々独立に、炭素数1〜6のフルオロアルキル基を表す。)で示されるカルバゾール化合物の製造方法。
General formula (2)
Figure 0006157318
(Wherein R 1 represents a fluoroalkyl group having 1 to 6 carbon atoms) and a general formula R 2 OSO 2 CF 3 (wherein R 2 represents 1 carbon atom) And a trifluoromethanesulfonic acid ester represented by the general formula (1), wherein the trifluoromethanesulfonic acid ester represented by (6) is reacted in the presence of a base.
Figure 0006157318
(Wherein, R 1 and R 2 each independently represents. A fluoroalkyl group having 1 to 6 carbon atoms) The method of producing a carbazole compound represented by the.
Figure 0006157318
(式中、R及びRは、各々独立に、炭素数1〜6のフルオロアルキル基を表す。)で示されるカルバゾール化合物を含むリチウムイオン電池用電解液。
Figure 0006157318
(Wherein, R 1 and R 2 each independently represents. A fluoroalkyl group having 1 to 6 carbon atoms) an electrolyte for a lithium ion battery comprising a carbazole compound represented by.
カルバゾール化合物の含有量が、0.01重量%以上20重量%以下である請求項5に記載のリチウムイオン電池用電解液。   The electrolyte solution for a lithium ion battery according to claim 5, wherein the content of the carbazole compound is 0.01 wt% or more and 20 wt% or less. 請求項5又は6に記載のリチウムイオン電池用電解液を使用するリチウムイオン電池。   The lithium ion battery which uses the electrolyte solution for lithium ion batteries of Claim 5 or 6.
JP2013228093A 2013-11-01 2013-11-01 Carbazole compound and lithium ion battery to which carbazole compound is added Active JP6157318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013228093A JP6157318B2 (en) 2013-11-01 2013-11-01 Carbazole compound and lithium ion battery to which carbazole compound is added

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013228093A JP6157318B2 (en) 2013-11-01 2013-11-01 Carbazole compound and lithium ion battery to which carbazole compound is added

Publications (2)

Publication Number Publication Date
JP2015086201A JP2015086201A (en) 2015-05-07
JP6157318B2 true JP6157318B2 (en) 2017-07-05

Family

ID=53049378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013228093A Active JP6157318B2 (en) 2013-11-01 2013-11-01 Carbazole compound and lithium ion battery to which carbazole compound is added

Country Status (1)

Country Link
JP (1) JP6157318B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112015003328T5 (en) 2014-07-18 2017-04-13 Board Of Trustees Of Michigan State University Rechargeable lithium-ion cell with a redox shuttle additive
EP3545580A4 (en) 2016-11-22 2020-12-30 Board of Trustees of Michigan State University Rechargeable electrochemical cell
AU2018302335B2 (en) 2017-07-20 2020-07-16 Board Of Trustees Of Michigan State University Redox flow battery
CN111261872B (en) * 2020-01-21 2022-11-29 天津大学 Organic electrode material and preparation method and application thereof
CN114899478A (en) * 2022-05-18 2022-08-12 湖南大学 Carbazole nonaqueous electrolyte, preparation method thereof and lithium ion battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11219730A (en) * 1998-02-03 1999-08-10 Fuji Photo Film Co Ltd Nonaqueous electrolyte secondary battery
JP4506086B2 (en) * 2003-03-19 2010-07-21 コニカミノルタホールディングス株式会社 Organic electroluminescence device
CN102186860A (en) * 2008-10-16 2011-09-14 索尔维公司 N-phenyl carbazole-based host material for light-emitting diodes

Also Published As

Publication number Publication date
JP2015086201A (en) 2015-05-07

Similar Documents

Publication Publication Date Title
US11444329B2 (en) Functionalized silanes and electrolyte compositions and electrochemical devices containing them
JP5399559B2 (en) Non-aqueous electrolyte and lithium secondary battery containing silyl ester group-containing phosphonic acid derivative
JP5796756B2 (en) Ionic compound and method for producing the same
KR101422383B1 (en) Nonaqueous electrolyte solution containing cyclic sulfone compound, and lithium secondary battery
JP5695209B2 (en) Nonaqueous electrolyte containing phosphonosulfonic acid compound and lithium secondary battery
JP6157318B2 (en) Carbazole compound and lithium ion battery to which carbazole compound is added
KR102669779B1 (en) Ionic liquids with silane functional groups
EP3086397B1 (en) Nonaqueous electrolyte solution, electricity storage device using same, and phosphonoformic acid compound used in same
JP6101575B2 (en) Non-aqueous electrolyte additive, non-aqueous electrolyte, and lithium secondary battery
JP5684138B2 (en) Electric storage device and electrolyte used therefor
JP6430365B2 (en) Ionic compounds having a silyloxy group
JP2012216419A (en) Electricity storage device
CN107573371A (en) Cyclic disulfonic acid silicon substrate ester and preparation method thereof
US20190036167A1 (en) Electrolyte composition, secondary battery, and method for using secondary battery
US20170058062A1 (en) Use of particular polymers as charge storage means
JP5542827B2 (en) Non-aqueous electrolyte for lithium secondary battery containing unsaturated sultone compound, additive for lithium secondary battery, and lithium secondary battery
JP6208546B2 (en) Carbazole compound and electrolytic solution for lithium ion battery to which carbazole compound is added
JP5674600B2 (en) Non-aqueous electrolyte for lithium secondary battery containing cyclic sulfone compound, and lithium secondary battery
JP5875954B2 (en) Cyanoborate compound and electrolyte using the same
JP6723752B2 (en) Electrolyte for secondary battery
CN116315104A (en) Electrolyte, secondary battery and electric equipment
JP2015050144A (en) Lithium ion secondary battery and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170606

R150 Certificate of patent or registration of utility model

Ref document number: 6157318

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250