JP6155015B2 - Ammonia generator and exhaust purification device using the same - Google Patents

Ammonia generator and exhaust purification device using the same Download PDF

Info

Publication number
JP6155015B2
JP6155015B2 JP2012260591A JP2012260591A JP6155015B2 JP 6155015 B2 JP6155015 B2 JP 6155015B2 JP 2012260591 A JP2012260591 A JP 2012260591A JP 2012260591 A JP2012260591 A JP 2012260591A JP 6155015 B2 JP6155015 B2 JP 6155015B2
Authority
JP
Japan
Prior art keywords
nitrogen
enriched gas
ammonia
superheated steam
generating means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012260591A
Other languages
Japanese (ja)
Other versions
JP2014105142A (en
Inventor
吉弘 川田
吉弘 川田
佐藤 聡
聡 佐藤
水野 彰
彰 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Toyohashi University of Technology NUC
Original Assignee
Hino Motors Ltd
Toyohashi University of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd, Toyohashi University of Technology NUC filed Critical Hino Motors Ltd
Priority to JP2012260591A priority Critical patent/JP6155015B2/en
Publication of JP2014105142A publication Critical patent/JP2014105142A/en
Application granted granted Critical
Publication of JP6155015B2 publication Critical patent/JP6155015B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

本発明は、大気と水からアンモニアを生成することが可能なアンモニア発生装置及びそれを用いた排気浄化装置に関するものである。   The present invention relates to an ammonia generator capable of generating ammonia from air and water, and an exhaust purification device using the same.

従来より、ディーゼルエンジンにおいては、排気ガスが流通する排気管の途中に、酸素共存下でも選択的にNOx(窒素酸化物)を還元剤と反応させる性質を備えた選択還元型触媒を装備し、該選択還元型触媒の上流側に必要量の還元剤を添加して該還元剤を選択還元型触媒上で排気ガス中のNOxと還元反応させ、これによりNOxの排出濃度を低減し得るようにしたものがある。   Conventionally, a diesel engine is equipped with a selective catalytic reduction catalyst having the property of selectively reacting NOx (nitrogen oxide) with a reducing agent even in the presence of oxygen in the middle of an exhaust pipe through which exhaust gas flows. A necessary amount of reducing agent is added upstream of the selective catalytic reduction catalyst so that the reducing agent undergoes a reduction reaction with NOx in the exhaust gas on the selective catalytic reduction catalyst, thereby reducing the NOx emission concentration. There is what I did.

他方、プラント等における工業的な排煙脱硝処理の分野では、還元剤にアンモニア(NH3)を用いてNOxを還元浄化する手法の有効性が既に広く知られているところであるが、自動車の場合には、アンモニアそのものを搭載して走行することに関し安全確保が困難であるため、近年においては、毒性のない尿素水を還元剤として使用することが研究されている(例えば、特許文献1参照)。 On the other hand, in the field of industrial flue gas denitration treatment in plants and the like, the effectiveness of a method for reducing and purifying NOx using ammonia (NH 3 ) as a reducing agent is already widely known. Since it is difficult to ensure safety with respect to traveling with ammonia itself, in recent years, the use of non-toxic urea water as a reducing agent has been studied (see, for example, Patent Document 1). .

即ち、尿素水を選択還元型触媒の上流側で排気ガス中に添加すれば、該排気ガスの熱によって尿素水が次式によりアンモニアと炭酸ガスに加水分解され、選択還元型触媒上で排気ガス中のNOxがアンモニアにより良好に還元浄化されることになる。
[化1]
(NH22CO+H2O→2NH3+CO2
That is, if urea water is added to the exhaust gas upstream of the selective catalytic reduction catalyst, the urea water is hydrolyzed into ammonia and carbon dioxide gas by the following equation by the heat of the exhaust gas, and the exhaust gas is exhausted on the selective catalytic reduction catalyst. The NOx contained therein is reduced and purified well by ammonia.
[Chemical 1]
(NH 2 ) 2 CO + H 2 O → 2NH 3 + CO 2

特開2002−161732号公報JP 2002-161732 A

しかしながら、尿素水を選択還元型触媒の上流側で排気ガス中に添加するシステムでは、尿素水を貯留しておくための大型の尿素水タンクを車両に搭載しなければならないが、このような大型の尿素水タンクの搭載スペースを確保するのが難しいという問題があり、しかも、尿素水タンク内の尿素水の残量を監視して適宜補給しなければならないため、尿素水補給のインフラが未整備の現状にあって運転者の負担が大きいという問題があった。   However, in a system in which urea water is added to the exhaust gas upstream of the selective catalytic reduction catalyst, a large urea water tank for storing urea water must be mounted on the vehicle. There is a problem that it is difficult to secure the mounting space for the urea water tank, and it is necessary to monitor the remaining amount of urea water in the urea water tank and replenish it accordingly. However, there was a problem that the burden on the driver was heavy.

本発明は上述の実情に鑑みてなしたもので、大気と水からアンモニアを生成し得るアンモニア発生装置を提供することによって、大型の尿素水タンクの搭載や尿素水の補給を不要とすることを目的としている。   The present invention has been made in view of the above circumstances, and by providing an ammonia generator capable of generating ammonia from the atmosphere and water, it is unnecessary to mount a large urea water tank and replenish urea water. It is aimed.

本発明は、大気中から酸素を除去して窒素濃度の高い窒素富化ガスを生成する窒素富化ガス生成手段と、水を加熱して沸点以上の温度で完全に気体状態となった過熱水蒸気を生成し且つ前記窒素富化ガス生成手段から導いた窒素富化ガスを経由させて昇温する過熱水蒸気生成手段と、該過熱水蒸気生成手段から導いた過熱水蒸気及び窒素富化ガスを放電プラズマ中を通すことで反応させてアンモニアを生成する放電プラズマ反応器とを備え、前記窒素富化ガス生成手段が、窒素より酸素を透過し易い窒素富化膜から成る中空管を備え、該中空管内に大気を圧送して正圧をかけることで酸素富化ガスを管外に分離し且つ管内に残る窒素富化ガスを回収するように構成されており、前記過熱水蒸気生成手段が、水を加熱して水蒸気を生成する蒸発ユニットと、該蒸発ユニットから導いた水蒸気を沸点以上に過熱して過熱水蒸気を生成する過熱ユニットとにより構成されていることを特徴とするアンモニア発生装置、に係るものである。 The present invention provides a nitrogen-enriched gas generating means for removing oxygen from the atmosphere to generate a nitrogen-enriched gas having a high nitrogen concentration, and superheated steam that is completely in a gaseous state at a temperature above the boiling point by heating water. And a superheated steam generating means for raising the temperature via the nitrogen enriched gas introduced from the nitrogen enriched gas generating means, and the superheated steam and the nitrogen enriched gas introduced from the superheated steam generating means in the discharge plasma. A discharge plasma reactor that generates ammonia by reacting by passing through , wherein the nitrogen-enriched gas generating means includes a hollow tube made of a nitrogen-enriched film that is more permeable to oxygen than nitrogen, and the inside of the hollow tube The oxygen-enriched gas is separated from the pipe by recovering the nitrogen-enriched gas remaining in the pipe by applying atmospheric pressure to the atmosphere, and the superheated steam generating means heats the water. Evaporation to produce water vapor Knit, but according to the ammonia generating device, characterized in that it is constituted by a heating unit for generating a superheated steam superheated to above the boiling point of the water vapor derived from evaporation unit.

而して、このようにアンモニア発生装置を構成すれば、窒素富化ガス生成手段にて大気中から酸素を除去して窒素濃度の高い窒素富化ガスを生成する一方、過熱水蒸気生成手段にて水を加熱して沸点以上の温度で完全に気体状態となった過熱水蒸気を生成し、前記窒素富化ガス生成手段で生成された窒素富化ガスを前記過熱水蒸気生成手段を経由させて昇温した上で前記過熱水蒸気生成手段からの過熱水蒸気と一緒に放電プラズマ反応器に導入し、該放電プラズマ反応器にて放電プラズマ中に通すことにより過熱水蒸気と窒素富化ガスを反応させると、過熱水蒸気がH+とOH-、窒素富化ガス中の窒素はNに解離し、その後、HとNが結合してNH3(アンモニア)が生成されることになる。 Thus, if the ammonia generator is configured in this way, the nitrogen-enriched gas generating means removes oxygen from the atmosphere to generate a nitrogen-enriched gas having a high nitrogen concentration, while the superheated steam generating means The water is heated to generate superheated steam that is completely in a gaseous state at a temperature equal to or higher than the boiling point, and the nitrogen-enriched gas generated by the nitrogen-enriched gas generating means is heated through the superheated steam generating means. Then, the superheated steam from the superheated steam generating means is introduced into the discharge plasma reactor, and the superheated steam and the nitrogen-enriched gas are reacted by passing through the discharge plasma in the discharge plasma reactor. Water vapor is H + and OH , and nitrogen in the nitrogen-enriched gas is dissociated into N, and then H and N are combined to produce NH 3 (ammonia).

尚、窒素富化ガス生成手段で生成された窒素富化ガスを前記過熱水蒸気生成手段を経由させて昇温してから放電プラズマ反応器に導入しているのは、冷えた窒素富化ガスを過熱水蒸気と合流させてしまうと、該過熱水蒸気が温度低下して結露が生じる虞れがあるからである。   The nitrogen-enriched gas produced by the nitrogen-enriched gas producing means is heated through the superheated steam producing means and then introduced into the discharge plasma reactor because the cooled nitrogen-enriched gas is introduced into the discharge plasma reactor. This is because if it is combined with superheated steam, the temperature of the superheated steam may decrease and condensation may occur.

また、本発明においては、窒素富化ガス生成手段が、窒素より酸素を透過し易い窒素富化膜から成る中空管を備え、該中空管内に大気を圧送して正圧をかけることで酸素富化ガスを管外に分離し且つ管内に残る窒素富化ガスを回収するように構成されているので、大気中から簡便に酸素富化ガスを分離して窒素富化ガスを回収することが可能となる。 In the present invention, the nitrogen-enriched gas generating means includes a hollow tube made of a nitrogen-enriched membrane that is more permeable to oxygen than nitrogen, and oxygen is supplied by pumping the atmosphere into the hollow tube to apply a positive pressure. It is configured so as to recover the nitrogen-enriched gas remaining in and tube to separate the enriched gas outside the tube, be recovered nitrogen-rich gas to separate easily the oxygen-enriched gas from the atmosphere It becomes possible.

更に、本発明においては、過熱水蒸気生成手段が、水を加熱して水蒸気を生成する蒸発ユニットと、該蒸発ユニットから導いた水蒸気を沸点以上に過熱して過熱水蒸気を生成する過熱ユニットとにより構成されているので、蒸発ユニットで蒸発させた水蒸気を過熱ユニットで沸点以上に過熱するという二段加熱方式を採用することで簡便に過熱水蒸気を得ることが可能となる。 Further, in the present invention, the superheated steam generating means is composed of an evaporation unit that generates water vapor by heating water, and a superheat unit that generates superheated steam by heating the water vapor led from the evaporation unit to a boiling point or higher. Therefore , it is possible to easily obtain superheated steam by adopting a two-stage heating method in which the steam evaporated by the evaporation unit is heated to the boiling point or more by the superheat unit .

また、本発明においては、放電プラズマ反応器が、絶縁体から成る筒状の反応器本体と、該反応器本体の中心部に配置されたロッド状の放電電極と、前記反応器本体の外周部に配置されて前記放電電極との間で高電圧が印加されるようにした接地電極と、これら放電電極及び接地電極の相互間に形成される放電空間に充填された誘電体ペレットとにより構成されていることが好ましい。   Further, in the present invention, the discharge plasma reactor includes a cylindrical reactor body made of an insulator, a rod-shaped discharge electrode disposed at the center of the reactor body, and an outer peripheral portion of the reactor body. And a dielectric pellet filled in a discharge space formed between the discharge electrode and the ground electrode, so that a high voltage is applied between the discharge electrode and the discharge electrode. It is preferable.

このようにすれば、放電電極と接地電極との間に高電圧を印加した際に、放電空間内にバリア放電(無声放電や沿面放電)による放電プラズマ(非熱平衡プラズマ)が発生することになるが、放電空間に誘電体ペレットが充填されていることで、該各誘電体ペレット同士の接触点に電界が集中して強い放電プラズマが発生し易くなり、その強い放電プラズマにより効率良くアンモニアが生成されることになる。   In this way, when a high voltage is applied between the discharge electrode and the ground electrode, discharge plasma (non-thermal equilibrium plasma) due to barrier discharge (silent discharge or creeping discharge) is generated in the discharge space. However, since the discharge space is filled with dielectric pellets, an electric field is concentrated at the contact points between the dielectric pellets, and a strong discharge plasma is likely to be generated, and ammonia is efficiently generated by the strong discharge plasma. Will be.

更に、本発明は、エンジンからの排気ガスが流通する排気管の途中に、酸素共存下でも選択的にNOxをアンモニアと反応させる性質を有する選択還元型触媒を備え、該選択還元型触媒より上流側の排気管内にアンモニアを還元剤として添加するための還元剤添加装置として前述の如きアンモニア発生装置を用いたことを特徴とする排気浄化装置、に係るものでもある。   Furthermore, the present invention includes a selective reduction catalyst having a property of selectively reacting NOx with ammonia even in the presence of oxygen in the middle of an exhaust pipe through which exhaust gas from an engine flows, and upstream of the selective reduction catalyst. Further, the present invention relates to an exhaust emission control device characterized in that the above-described ammonia generator is used as a reducing agent addition device for adding ammonia as a reducing agent in the side exhaust pipe.

このようにすれば、格別なインフラ設備を必要とすることなく、大気と水からアンモニアを生成することが可能となり、選択還元型触媒の還元剤として尿素水を用いる必要がなくなるので、大型の尿素水タンクの搭載や尿素水の補給が不要となり、装置レイアウトの制約が大幅に緩和されると共に、運転者の負担も大幅に軽減されることになる。   In this way, ammonia can be generated from the atmosphere and water without the need for special infrastructure equipment, and it is not necessary to use urea water as a reducing agent for the selective catalytic reduction catalyst. There is no need to install a water tank or supply of urea water, so that restrictions on the layout of the device are greatly eased and the burden on the driver is also greatly reduced.

また、排気温度の低いエンジンスタート時や低速走行時等においても、大気と水から生成したアンモニアを選択還元型触媒の還元剤として排気管内に直接導入することが可能となるので、排気温度が選択還元型触媒の活性温度域に到達した段階から直ちに高いNOx低減性能を発揮させることが可能となる。   In addition, when starting an engine with a low exhaust temperature or running at a low speed, ammonia generated from the atmosphere and water can be directly introduced into the exhaust pipe as a reducing agent for the selective catalytic reduction catalyst. High NOx reduction performance can be exhibited immediately after reaching the active temperature range of the reduction catalyst.

即ち、従来においては、選択還元型触媒にアンモニアを添加することで約100℃以上の排気温度からNOx低減効果が得られるのに対し、尿素水がアンモニアと炭酸ガスに加水分解するのに少なくとも約180〜190℃の排気温度が必要であったため、これより低い排気温度が想定されるエンジンスタート時や低速走行時等に尿素水を添加してもNOx低減性能がなかなか高まらないという問題があったが、このような問題が解決されることになる。   That is, in the prior art, by adding ammonia to the selective catalytic reduction catalyst, an NOx reduction effect can be obtained from an exhaust temperature of about 100 ° C. or higher, whereas at least about the time for urea water to hydrolyze into ammonia and carbon dioxide Since an exhaust temperature of 180 to 190 ° C. was required, there was a problem that the NOx reduction performance was not improved easily even when urea water was added at the time of engine start or low speed running where a lower exhaust temperature was assumed. However, this problem will be solved.

上記した本発明のアンモニア発生装置及びそれを用いた排気浄化装置によれば、下記の如き種々の優れた効果を奏し得る。   According to the above-described ammonia generator of the present invention and the exhaust gas purification apparatus using the same, various excellent effects as described below can be obtained.

(I)本発明の請求項1に記載の発明によれば、大気と水からアンモニアを生成することができるので、例えば、選択還元型触媒の還元剤としてアンモニアを添加する還元剤添加装置として車両等に搭載するに際し、大型の尿素水タンクの搭載や尿素水の補給を不要とすることができ、これにより装置レイアウトの制約を大幅に緩和することができると共に、運転者の負担を大幅に軽減することができる。   (I) According to the first aspect of the present invention, since ammonia can be generated from the atmosphere and water, for example, a vehicle as a reducing agent addition device that adds ammonia as a reducing agent of a selective catalytic reduction catalyst. The installation of large urea water tanks and the replenishment of urea water can be made unnecessary, so that restrictions on equipment layout can be greatly eased and the burden on the driver can be greatly reduced. can do.

(II)本発明の請求項に記載の発明によれば、窒素富化ガスの中空管内に大気を圧送して正圧をかけるだけで、大気中から簡便に酸素富化ガスを分離して窒素濃度の高い窒素富化ガスを回収することができる。 According to the invention described in claim 1, (II) the present invention, only applying a positive pressure by pumping air into the hollow tube of the nitrogen-enriched gas, to separate easily the oxygen-enriched gas from the atmosphere A nitrogen-enriched gas having a high nitrogen concentration can be recovered.

(III)本発明の請求項に記載の発明によれば、蒸発ユニットで蒸発させた水蒸気を過熱ユニットで沸点以上に過熱するという二段加熱方式を採用することで簡便に過熱水蒸気を得ることができ、放電プラズマ反応器内で過熱水蒸気が窒素富化ガスとの合流により温度低下して結露を生じる虞れを確実に払拭することができる。 According to the invention described in claim 1, (III) the present invention, to obtain easily superheated steam by employing the two-stage heating method that overheated above the boiling point with superheated unit water vapor evaporated in the evaporation unit can be, discharge plasma reactor with superheated steam Ru can be reliably wiped fear that danger of condensation and temperature decrease by confluence of the nitrogen-enriched gas.

(IV)本発明の請求項に記載の発明によれば、放電空間に充填されている各誘電体ペレット同士の接触点に電界が集中して強い放電プラズマが発生し易くなるので、その強い放電プラズマにより効率良くアンモニアを生成することができる。 (IV) According to the invention described in claim 2 of the present invention, the electric field is concentrated at the contact points between the dielectric pellets filled in the discharge space, and a strong discharge plasma is easily generated. Ammonia can be efficiently generated by the discharge plasma.

(V)本発明の請求項に記載の発明によれば、既に(I)でも述べている如き大型の尿素水タンクの搭載や尿素水の補給を不要とすることができ、これにより装置レイアウトの制約を大幅に緩和することができると共に、運転者の負担を大幅に軽減することができるという効果に加え、排気温度の低いエンジンスタート時や低速走行時等においても、大気と水から生成したアンモニアを選択還元型触媒の還元剤として排気管内に直接導入することができるので、排気温度が選択還元型触媒の活性温度域に到達した段階から直ちに高いNOx低減性能を発揮させることができる。 (V) According to the invention described in claim 3 of the present invention, it is possible to eliminate the need for installing a large urea water tank and supplying urea water as already described in (I). In addition to the effect of significantly reducing the driver's constraints and drastically reducing the burden on the driver. Since ammonia can be directly introduced into the exhaust pipe as a reducing agent for the selective catalytic reduction catalyst, high NOx reduction performance can be exhibited immediately after the exhaust temperature reaches the active temperature range of the selective catalytic reduction catalyst.

本発明を実施する形態の一例を示す概略図である。It is the schematic which shows an example of the form which implements this invention.

以下本発明の実施の形態を図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明を実施する形態の一例を示すもので、本形態例においては、酸素共存下でも選択的にNOxをアンモニアと反応させる性質を有する選択還元型触媒1を用いた車両用の排気浄化装置に、前記選択還元型触媒1の上流側に還元剤としてアンモニア2を添加するための還元剤添加装置として後述のアンモニア発生装置3を適用した場合を例示しており、前記選択還元型触媒1は、エンジンからの排気ガス4が流通する排気管5の途中に備えられ、前記アンモニア発生装置3で生成されたアンモニア2が前記選択還元型触媒1より上流側の排気管5内に導入されるようになっている。   FIG. 1 shows an example of an embodiment for carrying out the present invention. In this embodiment, exhaust for vehicles using a selective catalytic reduction catalyst 1 having a property of selectively reacting NOx with ammonia even in the presence of oxygen. The case where an ammonia generating device 3 described later is applied as a reducing agent addition device for adding ammonia 2 as a reducing agent to the upstream side of the selective catalytic reduction catalyst 1 is illustrated in the purification device, and the selective catalytic reduction catalyst 1 is provided in the middle of an exhaust pipe 5 through which exhaust gas 4 from the engine flows, and ammonia 2 generated by the ammonia generator 3 is introduced into the exhaust pipe 5 upstream of the selective catalytic reduction catalyst 1. It has become so.

ここで、前記アンモニア発生装置3は、大気6中から酸素を除去して窒素濃度の高い窒素富化ガス7を生成する窒素富化ガス生成手段8と、水9を加熱して沸点以上の温度で完全に気体状態となった過熱水蒸気10を生成し且つ前記窒素富化ガス生成手段8から導いた窒素富化ガス7を経由させて昇温する過熱水蒸気生成手段11と、該過熱水蒸気生成手段11から導いた過熱水蒸気10及び窒素富化ガス7を放電プラズマ中を通すことで反応させてアンモニア2を生成する放電プラズマ反応器12とを備えている。   Here, the ammonia generator 3 is configured to remove oxygen from the atmosphere 6 to generate nitrogen-enriched gas 7 having a high nitrogen concentration and nitrogen-enriched gas generating means 8 that heats water 9 and has a temperature equal to or higher than the boiling point. The superheated steam generation means 11 that generates the superheated steam 10 in a completely gaseous state and raises the temperature via the nitrogen enriched gas 7 introduced from the nitrogen enriched gas generation means 8, and the superheated steam generation means 11 is provided with a discharge plasma reactor 12 that generates ammonia 2 by reacting the superheated water vapor 10 and the nitrogen-enriched gas 7 led from 11 through the discharge plasma.

前記窒素富化ガス生成手段8は、窒素より酸素を透過し易いポリイミド製の窒素富化膜から成る多数の中空管13を筒状の容器15内に多数備えており、ポンプ14(又はコンプレッサ)により大気6を圧送して前記容器15の入側に送り込むと、前記大気6が各中空管13に振り分けられて流れるようになっているが、前記容器15の出側に配置したオリフィス16により流路を絞り込まれているので、各中空管13内で正圧がかかった状態となって該各中空管13を透過し易い酸素を多く含む酸素富化ガス17を管外に分離し、各中空管13を透過し難い窒素を多く含む窒素富化ガス7が管内に残って送り出されるようになっている。   The nitrogen-enriched gas generating means 8 includes a large number of hollow tubes 13 made of a polyimide nitrogen-enriched membrane made of polyimide, which is more permeable to oxygen than nitrogen, in a cylindrical container 15 and is provided with a pump 14 (or a compressor). ), The atmosphere 6 is distributed to the respective hollow tubes 13 and flows, but the orifice 16 disposed on the outlet side of the container 15. Since the flow path is narrowed by the above, the oxygen-enriched gas 17 containing a large amount of oxygen that easily passes through each hollow tube 13 in a state where a positive pressure is applied in each hollow tube 13 is separated outside the tube. The nitrogen-enriched gas 7 containing a large amount of nitrogen that is difficult to permeate the hollow tubes 13 remains in the tubes and is sent out.

更に、前記過熱水蒸気生成手段11は、水9を加熱して水蒸気9’を生成する蒸発ユニット18と、該蒸発ユニット18から導いた水蒸気9’を沸点以上に過熱して過熱水蒸気10を生成する過熱ユニット19とにより構成されており、蒸発ユニット18で蒸発させた水蒸気9’を過熱ユニット19で沸点以上に過熱するという二段加熱方式が採用されている。 Further, the superheated steam generation means 11 generates superheated steam 10 by heating the water 9 to generate the steam 9 ′ and superheating the steam 9 ′ led from the evaporation unit 18 to a boiling point or higher. A superheater unit 19 is used, and a two-stage heating method is employed in which the water vapor 9 ′ evaporated by the evaporator unit 18 is superheated to the boiling point or more by the superheater unit 19 .

前記蒸発ユニット18と前記過熱ユニット19には、電熱線の通電による発熱や、エンジンブロックの排熱を熱源とするヒータ20,21が装備されており、前記蒸発ユニット18の水入口22に対し図示しない水タンクから導いた水9がヒータ20により加熱されて蒸発し、その水蒸気9’が前記蒸発ユニット18の上側から抜き出され、前記過熱ユニット19内でヒータ21に巻き付けられた伝熱管23を通して更に沸点以上に過熱されて過熱水蒸気10として排出されるようになっている。   The evaporation unit 18 and the overheating unit 19 are equipped with heaters 20 and 21 that use heat generated by energizing a heating wire or exhaust heat from the engine block as a heat source, and are illustrated with respect to the water inlet 22 of the evaporation unit 18. The water 9 introduced from the water tank not heated is heated and evaporated by the heater 20, and the water vapor 9 ′ is extracted from the upper side of the evaporation unit 18 and passes through the heat transfer tube 23 wound around the heater 21 in the superheating unit 19. Further, it is heated to the boiling point or higher and discharged as superheated steam 10.

ここで、特別なインフラ設備が整わないと入手が難しい尿素水の場合は、できるだけ大量に貯留しておくために大型の尿素水タンクを必要とするが、どこでも簡単に入手して補給することができる水9の場合は、一度に大量に貯留しておく必要がなく、比較的小型の水タンクを搭載するだけで済むことになる。尚、この水タンクには、車載のクーラの結露水を回収して導き入れるような補給手段を備えることも可能である。   Here, in the case of urea water that is difficult to obtain unless special infrastructure facilities are in place, a large urea water tank is required to store as much as possible, but it can be easily obtained and replenished anywhere. In the case of the water 9 that can be produced, it is not necessary to store a large amount at a time, and it is only necessary to mount a relatively small water tank. The water tank may be provided with replenishing means for collecting and introducing the condensed water of the vehicle-mounted cooler.

また、前記蒸発ユニット18及び前記過熱ユニット19の夫々のヒータ20,21には、前記窒素富化ガス生成手段8から導いた窒素富化ガス7を流して加熱するための別の伝熱管24も巻き付けられており、前記窒素富化ガス7も前記過熱水蒸気10と殆ど変わらない温度まで昇温されるようになっている。   In addition, the heaters 20 and 21 of the evaporation unit 18 and the superheat unit 19 are provided with another heat transfer tube 24 for flowing and heating the nitrogen-enriched gas 7 introduced from the nitrogen-enriched gas generating means 8. The nitrogen-enriched gas 7 is also heated to a temperature that is almost the same as that of the superheated steam 10.

また、前記放電プラズマ反応器12は、絶縁体から成る筒状の反応器本体25と、該反応器本体25の中心部に配置されたロッド状の放電電極26と、前記反応器本体25の外周部に配置されて前記放電電極26との間で高電圧が印加されるようにした接地電極27と、これら放電電極26及び接地電極27の相互間に形成される放電空間28に充填された誘電体ペレット29(例えばアルミナペレット等)とにより構成されており、前記過熱ユニット19の各伝熱管23,24から送り出される過熱水蒸気10と窒素富化ガス7が前記反応器本体25内の放電空間28に導入されるようになっている。尚、図中30は放電電極26に接続された高電圧を印加するための電源、31は接地電極27に接続されたアースを示す。   The discharge plasma reactor 12 includes a cylindrical reactor body 25 made of an insulator, a rod-shaped discharge electrode 26 disposed at the center of the reactor body 25, and an outer periphery of the reactor body 25. And a dielectric electrode filled in a discharge space 28 formed between the discharge electrode 26 and the ground electrode 27. The ground electrode 27 is disposed between the discharge electrode 26 and a high voltage to be applied to the discharge electrode 26. The superheated steam 10 and the nitrogen-enriched gas 7 sent out from the heat transfer tubes 23 and 24 of the superheat unit 19 are discharged into the discharge space 28 in the reactor main body 25. To be introduced. In the figure, reference numeral 30 denotes a power source for applying a high voltage connected to the discharge electrode 26, and 31 denotes a ground connected to the ground electrode 27.

而して、窒素富化ガス生成手段8にて大気6中から酸素富化ガス17を除去して窒素濃度の高い窒素富化ガス7を生成する一方、過熱水蒸気生成手段11にて蒸発ユニット18で蒸発させた水蒸気9’を過熱ユニット19で沸点以上に過熱するという二段加熱方式により過熱水蒸気10を生成し、前記窒素富化ガス生成手段8で生成された窒素富化ガス7を前記過熱水蒸気生成手段11の蒸発ユニット18及び過熱ユニット19を伝熱管24を介し経由させて昇温した上で前記過熱水蒸気生成手段11からの過熱水蒸気10と一緒に放電プラズマ反応器12に導入し、該放電プラズマ反応器12にて放電プラズマ中に通すことにより過熱水蒸気10と窒素富化ガス7を反応させると、過熱水蒸気10がH+とOH-、窒素富化ガス7中の窒素はNに解離し、その後、HとNが結合してNH3(アンモニア2)が生成されることになる。 Thus, the nitrogen-enriched gas generating means 8 removes the oxygen-enriched gas 17 from the atmosphere 6 to generate the nitrogen-enriched gas 7 having a high nitrogen concentration, while the superheated steam generating means 11 generates the evaporation unit 18. The superheated steam 10 is generated by a two-stage heating method in which the steam 9 ′ evaporated in step 1 is heated to a boiling point or higher by the superheat unit 19 and the nitrogen-enriched gas 7 generated by the nitrogen-enriched gas generating means 8 is heated. After raising the temperature of the evaporation unit 18 and the superheat unit 19 of the water vapor generating means 11 via the heat transfer tube 24, the temperature is introduced into the discharge plasma reactor 12 together with the superheated water vapor 10 from the superheated water vapor generating means 11, reaction of superheated steam 10 and nitrogen-rich gas 7 by passing during the discharge plasma in a discharge plasma reactor 12, superheated steam 10 is H + and OH -, nitrogen in the nitrogen-enriched gas 7 Dissociated into, then, NH 3 (ammonia 2) by bonding H and N will be is produced.

ここで、放電電極26と接地電極27との間に高電圧を印加した際には、放電空間28内にバリア放電(無声放電や沿面放電)による放電プラズマ(非熱平衡プラズマ)が発生することになるが、放電空間28に誘電体ペレット29が充填されていることで、該各誘電体ペレット29同士の接触点に電界が集中して強い放電プラズマが発生し易くなり、その強い放電プラズマにより効率良くアンモニア2が生成されることになる。   Here, when a high voltage is applied between the discharge electrode 26 and the ground electrode 27, discharge plasma (non-thermal equilibrium plasma) due to barrier discharge (silent discharge or creeping discharge) is generated in the discharge space 28. However, since the discharge pellets 28 are filled with the dielectric pellets 29, the electric field is concentrated at the contact points between the dielectric pellets 29 and a strong discharge plasma is easily generated. Ammonia 2 is well produced.

尚、窒素富化ガス生成手段8で生成された窒素富化ガス7を伝熱管24を介し前記過熱水蒸気生成手段11を経由させて昇温してから放電プラズマ反応器12に導入しているのは、冷えた窒素富化ガス7を過熱水蒸気10と合流させてしまうと、該過熱水蒸気10が温度低下して結露が生じる虞れがあるからである。   The nitrogen-enriched gas 7 produced by the nitrogen-enriched gas producing means 8 is introduced into the discharge plasma reactor 12 after being heated through the heat transfer tube 24 and the superheated steam producing means 11. This is because if the cooled nitrogen-enriched gas 7 is merged with the superheated steam 10, the temperature of the superheated steam 10 may decrease and condensation may occur.

以上に述べた通り、上記形態例によれば、大気6と水9からアンモニア2を生成することができるので、選択還元型触媒1の還元剤としてアンモニア2を添加する還元剤添加装置として車両に搭載するに際し、大型の尿素水タンクの搭載や尿素水の補給を不要とすることができ、これにより装置レイアウトの制約を大幅に緩和することができると共に、運転者の負担を大幅に軽減することができる。   As described above, according to the above-described embodiment, ammonia 2 can be generated from the atmosphere 6 and the water 9, so that the reducing agent addition device that adds ammonia 2 as the reducing agent of the selective catalytic reduction catalyst 1 is applied to the vehicle. When installing, it is not necessary to install a large urea water tank or replenish the urea water, which can greatly ease the restrictions on the layout of the equipment and greatly reduce the burden on the driver. Can do.

また、排気温度の低いエンジンスタート時や低速走行時等においても、大気6と水9から生成したアンモニア2を選択還元型触媒1の還元剤として排気管5内に直接導入することができるので、排気温度が選択還元型触媒1の活性温度域に到達した段階から直ちに高いNOx低減性能を発揮させることができる。   Further, even when the engine is started at a low exhaust temperature or at low speed, ammonia 2 generated from the atmosphere 6 and water 9 can be directly introduced into the exhaust pipe 5 as a reducing agent of the selective catalytic reduction catalyst 1. High NOx reduction performance can be exhibited immediately after the exhaust temperature reaches the activation temperature range of the selective catalytic reduction catalyst 1.

即ち、従来においては、選択還元型触媒1にアンモニア2を添加することで約100℃以上の排気温度からNOx低減効果が得られるのに対し、尿素水がアンモニア2と炭酸ガスに加水分解するのに少なくとも約180〜190℃の排気温度が必要であったため、これより低い排気温度が想定されるエンジンスタート時や低速走行時等に尿素水を添加してもNOx低減性能がなかなか高まらないという問題があったが、このような問題が解決されることになる。   In other words, conventionally, by adding ammonia 2 to the selective catalytic reduction catalyst 1, an NOx reduction effect can be obtained from an exhaust temperature of about 100 ° C. or higher, whereas urea water is hydrolyzed into ammonia 2 and carbon dioxide gas. Because an exhaust temperature of at least about 180 to 190 ° C. was necessary, NOx reduction performance would not increase easily even if urea water was added at the time of engine start or low speed running, etc., where an exhaust temperature lower than this was assumed. However, this problem will be solved.

尚、本発明のアンモニア発生装置及びそれを用いた排気浄化装置は、上述の形態例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   The ammonia generator of the present invention and the exhaust gas purification apparatus using the same are not limited to the above-described embodiments, and various changes can be made without departing from the scope of the present invention. is there.

1 選択還元型触媒
2 アンモニア
3 アンモニア発生装置
4 排気ガス
5 排気管
6 大気
7 窒素富化ガス
8 窒素富化ガス生成手段
9 水
9’ 水蒸気
10 過熱水蒸気
11 過熱水蒸気生成手段
12 放電プラズマ反応器
13 中空管
17 酸素富化ガス
18 蒸発ユニット
19 過熱ユニット
25 反応器本体
26 放電電極
27 接地電極
28 放電空間
29 誘電体ペレット
DESCRIPTION OF SYMBOLS 1 Selective reduction type | mold catalyst 2 Ammonia 3 Ammonia generator 4 Exhaust gas 5 Exhaust pipe 6 Atmosphere 7 Nitrogen rich gas 8 Nitrogen rich gas production | generation means 9 Water 9 'Water vapor 10 Superheated water vapor 11 Superheated water vapor production means 12 Discharge plasma reactor 13 Hollow tube 17 Oxygen-enriched gas 18 Evaporation unit 19 Superheat unit 25 Reactor body 26 Discharge electrode 27 Ground electrode 28 Discharge space 29 Dielectric pellet

Claims (3)

大気中から酸素を除去して窒素濃度の高い窒素富化ガスを生成する窒素富化ガス生成手段と、水を加熱して沸点以上の温度で完全に気体状態となった過熱水蒸気を生成し且つ前記窒素富化ガス生成手段から導いた窒素富化ガスを経由させて昇温する過熱水蒸気生成手段と、該過熱水蒸気生成手段から導いた過熱水蒸気及び窒素富化ガスを放電プラズマ中を通すことで反応させてアンモニアを生成する放電プラズマ反応器とを備え
前記窒素富化ガス生成手段が、窒素より酸素を透過し易い窒素富化膜から成る中空管を備え、該中空管内に大気を圧送して正圧をかけることで酸素富化ガスを管外に分離し且つ管内に残る窒素富化ガスを回収するように構成されており、
前記過熱水蒸気生成手段が、水を加熱して水蒸気を生成する蒸発ユニットと、該蒸発ユニットから導いた水蒸気を沸点以上に過熱して過熱水蒸気を生成する過熱ユニットとにより構成されていることを特徴とするアンモニア発生装置。
A nitrogen-enriched gas generating means that removes oxygen from the atmosphere to generate a nitrogen-enriched gas having a high nitrogen concentration, and generates superheated steam that is completely in a gaseous state at a temperature above the boiling point by heating water; and A superheated steam generating means for raising the temperature via the nitrogen-enriched gas introduced from the nitrogen-enriched gas generating means, and passing the superheated steam and the nitrogen-enriched gas guided from the superheated steam generating means through the discharge plasma. A discharge plasma reactor that reacts to produce ammonia ;
The nitrogen-enriched gas generating means includes a hollow tube made of a nitrogen-enriched membrane that is more permeable to oxygen than nitrogen, and the oxygen-enriched gas is removed from the tube by pumping the atmosphere into the hollow tube and applying a positive pressure. And is configured to recover the nitrogen-enriched gas remaining in the tube,
The superheated steam generating means is composed of an evaporation unit that generates water vapor by heating water, and a superheat unit that generates superheated steam by heating the water vapor derived from the evaporation unit to a boiling point or higher. An ammonia generator.
放電プラズマ反応器が、絶縁体から成る筒状の反応器本体と、該反応器本体の中心部に配置されたロッド状の放電電極と、前記反応器本体の外周部に配置されて前記放電電極との間で高電圧が印加されるようにした接地電極と、これら放電電極及び接地電極の相互間に形成される放電空間に充填された誘電体ペレットとにより構成されていることを特徴とする請求項に記載のアンモニア発生装置。 A discharge plasma reactor includes a tubular reactor body made of an insulator, a rod-shaped discharge electrode disposed in a central portion of the reactor body, and an outer peripheral portion of the reactor body. And a dielectric pellet filled in a discharge space formed between the discharge electrode and the ground electrode. The ammonia generator according to claim 1 . エンジンからの排気ガスが流通する排気管の途中に、酸素共存下でも選択的にNOxをアンモニアと反応させる性質を有する選択還元型触媒を備え、該選択還元型触媒より上流側の排気管内にアンモニアを還元剤として添加するための還元剤添加装置として請求項1又は2に記載のアンモニア発生装置を用いたことを特徴とする排気浄化装置。 A selective reduction catalyst having the property of selectively reacting NOx with ammonia even in the presence of oxygen is provided in the middle of an exhaust pipe through which exhaust gas from the engine circulates. Ammonia is present in the exhaust pipe upstream of the selective reduction catalyst. An exhaust gas purification apparatus using the ammonia generator according to claim 1 or 2 as a reducing agent addition apparatus for adding as a reducing agent.
JP2012260591A 2012-11-29 2012-11-29 Ammonia generator and exhaust purification device using the same Expired - Fee Related JP6155015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012260591A JP6155015B2 (en) 2012-11-29 2012-11-29 Ammonia generator and exhaust purification device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012260591A JP6155015B2 (en) 2012-11-29 2012-11-29 Ammonia generator and exhaust purification device using the same

Publications (2)

Publication Number Publication Date
JP2014105142A JP2014105142A (en) 2014-06-09
JP6155015B2 true JP6155015B2 (en) 2017-06-28

Family

ID=51026942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012260591A Expired - Fee Related JP6155015B2 (en) 2012-11-29 2012-11-29 Ammonia generator and exhaust purification device using the same

Country Status (1)

Country Link
JP (1) JP6155015B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104289085A (en) * 2014-10-30 2015-01-21 李玉忠 Efficient and energy-saving bad odor and waste gas purification treating system
CN106677863B (en) * 2017-02-14 2022-05-17 北京工业大学 Non-thermal plasma enhanced urea-SCR NO removalxSystem and method
CN110539845B (en) * 2019-09-30 2023-04-25 中船澄西船舶修造有限公司 Platform-free structure of wood chip ship generator and preassembling method of generator piping
CN115672022B (en) * 2022-10-26 2023-05-26 承德信通首承科技有限责任公司 Middle denitration process for oxidized pellets

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19903533A1 (en) * 1999-01-29 2000-08-10 Degussa Process for the selective catalytic reduction of nitrogen oxides in oxygen-containing exhaust gases
DE19951976A1 (en) * 1999-10-28 2001-05-10 Degussa Process for the plasma-catalytic generation of ammonia
JP5468732B2 (en) * 2007-09-27 2014-04-09 国立大学法人豊橋技術科学大学 Urea reformer and exhaust gas purifier equipped with the same
WO2010033530A2 (en) * 2008-09-17 2010-03-25 University Of Minnesota Non-thermal plasma synthesis with carbon component
GB201014304D0 (en) * 2010-08-27 2010-10-13 Akay Galip Intensified integrated biomass-to-energy carrier conversion process
JP2012154241A (en) * 2011-01-26 2012-08-16 Hino Motors Ltd On-board ammonia production device and method for producing ammonia on-board

Also Published As

Publication number Publication date
JP2014105142A (en) 2014-06-09

Similar Documents

Publication Publication Date Title
JP6155015B2 (en) Ammonia generator and exhaust purification device using the same
JP5719857B2 (en) Exhaust purification system and ozone generator
WO2006054632A1 (en) Exhaust purification apparatus
JP6122283B2 (en) Ammonia generator and exhaust purification device using the same
WO2015005066A1 (en) Exhaust gas treatment method, and exhaust gas treatment device
US20230391716A1 (en) Method and system for preparing urea by coupling denitration with electrocatalytic reduction
JP2021032230A (en) Internal combustion engine system
JP5000602B2 (en) Exhaust purification device and control method thereof
JP4599989B2 (en) Ammonia production method and denitration method
JP5222616B2 (en) Exhaust purification device
KR20150043068A (en) An ammonia gas generator by using solid ammonium salt
JP2007182805A (en) Exhaust emission control device
JP2007182804A (en) Exhaust emission control device
JP5765376B2 (en) Exhaust gas purification device for internal combustion engine
JP6540104B2 (en) Exhaust purification system for internal combustion engine
JP2023031403A (en) Heavy hydrogen recovery method and heavy hydrogen recovery facility
JP2010121530A (en) Exhaust gas treatment device
JP4266304B2 (en) Exhaust gas denitration method and denitration apparatus
JP5468732B2 (en) Urea reformer and exhaust gas purifier equipped with the same
JP2013136995A (en) System for supplying ammonia to scr converter
JP3863610B2 (en) Ammonia detoxification method and apparatus
JP2007209897A (en) Apparatus and method for decomposing and removing nitrogen oxide in combustion exhaust gas
JP2005013807A (en) Nitrogen oxide treatment apparatus
JP7414933B1 (en) High purity hydrogen production equipment and production method using ammonia
JP6179258B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170605

R150 Certificate of patent or registration of utility model

Ref document number: 6155015

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees