JP6154777B2 - High-speed convolution approximation device, high-speed convolution approximation method, program - Google Patents

High-speed convolution approximation device, high-speed convolution approximation method, program Download PDF

Info

Publication number
JP6154777B2
JP6154777B2 JP2014091387A JP2014091387A JP6154777B2 JP 6154777 B2 JP6154777 B2 JP 6154777B2 JP 2014091387 A JP2014091387 A JP 2014091387A JP 2014091387 A JP2014091387 A JP 2014091387A JP 6154777 B2 JP6154777 B2 JP 6154777B2
Authority
JP
Japan
Prior art keywords
array
signal
frequency conversion
discrete
numbered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014091387A
Other languages
Japanese (ja)
Other versions
JP2015210637A (en
Inventor
島内 末廣
末廣 島内
仲 大室
仲 大室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2014091387A priority Critical patent/JP6154777B2/en
Publication of JP2015210637A publication Critical patent/JP2015210637A/en
Application granted granted Critical
Publication of JP6154777B2 publication Critical patent/JP6154777B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、デジタル信号とFIR(有限長インパルス応答)フィルタとの畳込演算を近似的に高速に実行する高速畳込近似装置、高速畳込近似方法、プログラムに関する。   The present invention relates to a high-speed convolution approximation apparatus, a high-speed convolution approximation method, and a program that execute a convolution operation between a digital signal and an FIR (finite impulse response) filter at approximately high speed.

デジタル信号と有限長インパルス応答フィルタ(FIRフィルタ)との畳込演算を高速に実行する高速畳込技術は、大規模な畳込演算を必要とする信号処理を効率的に実現する場合に有用である。大規模な畳込演算を必要とする信号処理の例として、音響信号に室内の伝達特性を付与する場合などがある。畳込演算は、例えば非特許文献1に開示されたoverlap-save手法に基づいて実現することができる。   High-speed convolution technology that performs a convolution operation between a digital signal and a finite-length impulse response filter (FIR filter) at high speed is useful for efficiently realizing signal processing that requires a large-scale convolution operation. is there. As an example of signal processing that requires a large-scale convolution operation, there is a case where an indoor transfer characteristic is given to an acoustic signal. The convolution operation can be realized based on, for example, the overlap-save method disclosed in Non-Patent Document 1.

以下、図1を参照して非特許文献1の高速畳込近似装置9について説明する。図1は、非特許文献1の高速畳込近似装置9の構成を示すブロック図である。図1に示すように、非特許文献1の高速畳込近似装置9は、インパルス応答周波数特性保持部101と、入力信号周波数特性保持部102と、合成信号周波数特性生成部103と、合成信号配列逆変換部104と、窓かけ重畳部105を含む。   Hereinafter, the high-speed convolution approximation device 9 of Non-Patent Document 1 will be described with reference to FIG. FIG. 1 is a block diagram showing the configuration of the high-speed convolution approximation device 9 of Non-Patent Document 1. As shown in FIG. 1, a high-speed convolution approximation device 9 of Non-Patent Document 1 includes an impulse response frequency characteristic holding unit 101, an input signal frequency characteristic holding unit 102, a combined signal frequency characteristic generating unit 103, and a combined signal array. An inverse conversion unit 104 and a windowing superimposing unit 105 are included.

インパルス応答周波数特性保持部101は、有限の長さL以下のフィルタインパルス応答の配列hの後半に全体として長さ2Lとなる様に零配列を結合して得られる配列に(高速)離散フーリエ変換(FFTまたはDFT)を適用して得た2L個の係数を保持する(ステップS101、以下適宜「ステップ」を省略して表記)。入力信号周波数特性保持部102は、入力信号xの過去2L点に遡り蓄積された配列を、離散周波数変換して得られた2L個の係数を保持する(S102)。次に、合成信号周波数特性生成部103は、有限の長さL以下のフィルタインパルス応答の配列hの後半に全体として長さ2Lとなる様に零配列を結合して得られる配列の離散フーリエ変換に相当する2L個の係数と、過去2L点に遡り蓄積された入力信号xの配列の離散周波数変換に相当する2L個の係数と、を各離散周波数毎に乗算して2L個の合成信号周波数変換係数を生成する(S103)。合成信号配列逆変換部104は、合成信号周波数特性生成部103において生成された合成信号周波数変換係数を、例えば、逆(高速)離散フーリエ変換(IFFT、IDFT)により、逆離散周波数変換する(S104)。窓かけ重畳部105は、合成信号配列逆変換部104から得られる2L点の合成信号の配列に、前半L点を零倍、後半L点を1倍する2L点の窓関数を乗じ、後半L点の合成信号を得、L点過去の入力信号に対して、同様に得られている合成信号の配列の後半L点と結合する(S105)。ステップS105の実行により、出力信号yが得られる。   The impulse response frequency characteristic holding unit 101 is a (fast) discrete Fourier transform into an array obtained by combining zero arrays so that the overall length becomes 2L in the second half of the array h of filter impulse responses of finite length L or less. 2L coefficients obtained by applying (FFT or DFT) are held (step S101, hereinafter, “step” is omitted as appropriate). The input signal frequency characteristic holding unit 102 holds 2L coefficients obtained by performing discrete frequency conversion on the array accumulated retroactively to the past 2L points of the input signal x (S102). Next, the synthesized signal frequency characteristic generation unit 103 performs discrete Fourier transform of an array obtained by combining the zero array so that the overall length becomes 2L in the second half of the array h of filter impulse responses having a finite length L or less. And 2L coefficients corresponding to discrete frequency conversion of the array of input signals x accumulated retroactively in the past 2L points, and multiplied by 2L for each discrete frequency. A conversion coefficient is generated (S103). The composite signal array inverse transform unit 104 performs inverse discrete frequency transform on the composite signal frequency transform coefficient generated by the composite signal frequency characteristic generation unit 103 by, for example, inverse (fast) discrete Fourier transform (IFFT, IDFT) (S104). ). The windowing superimposing unit 105 multiplies the 2L-point composite signal array obtained from the composite signal array inverse transform unit 104 by a window function of 2L points that multiplies the first half L point by zero and the second half L point by 1 to obtain the second half L A composite signal of points is obtained and combined with the latter half L of the array of composite signals obtained in the same manner for the input signal of the past L points (S105). By executing step S105, an output signal y is obtained.

ここで、図1(非特許文献1)の窓かけ重畳部105のように2L点の合成信号の配列のL点を切り出して、1ステップ過去(Lサンプル過去)の信号と結合して、出力信号を得る場合、合成信号周波数特性の配列に雑音抑圧のような非線形な信号処理を施した場合、上記のLサンプル毎の出力信号のつなぎ目に不連続が生じ、音声信号であれば、異音の発生の原因となる。   Here, the L point of the array of 2L synthesized signals is cut out like the windowing superimposing unit 105 in FIG. 1 (Non-Patent Document 1), combined with the signal of one step past (L sample past), and output. When obtaining a signal, when non-linear signal processing such as noise suppression is performed on the array of the synthesized signal frequency characteristics, discontinuity occurs at the joint of the output signal for each L sample, and if the signal is an audio signal, abnormal noise Cause the occurrence of

このため、特許文献1では、処理のステップをLサンプル間隔ではなく、L/2サンプル間隔で実行した。以下、図2を参照して、特許文献1の高速畳込近似装置8について説明する。図2は、特許文献1の高速畳込近似装置8の構成を示すブロック図である。図2に示すように、特許文献1の高速畳込近似装置8は、図1の高速畳込近似装置9と同じ構成要件として、インパルス応答周波数特性保持部101と、入力信号周波数特性保持部102と、合成信号周波数特性生成部103を含む。特許文献1の高速畳込近似装置8は、図1の高速畳込近似装置9に含まれない構成要件として、奇数成分虚数部抽出部107と、加算部110と、信号処理部106と、信号処理配列逆変換部108と、ハニング窓かけ重畳部109を含む。   For this reason, in Patent Document 1, processing steps are executed at L / 2 sample intervals instead of L sample intervals. Hereinafter, with reference to FIG. 2, the high-speed convolution approximation apparatus 8 of Patent Document 1 will be described. FIG. 2 is a block diagram showing the configuration of the high-speed convolution approximation device 8 of Patent Document 1. As shown in FIG. 2, the high-speed convolution approximation device 8 of Patent Document 1 has an impulse response frequency characteristic holding unit 101 and an input signal frequency characteristic holding unit 102 as the same configuration requirements as the high-speed convolution approximation device 9 of FIG. And a synthesized signal frequency characteristic generation unit 103. The high-speed convolution approximation device 8 of Patent Document 1 includes, as configuration requirements not included in the high-speed convolution approximation device 9 of FIG. 1, an odd component imaginary part extraction unit 107, an addition unit 110, a signal processing unit 106, a signal A processing array inverse transform unit 108 and a Hanning windowing overlap unit 109 are included.

インパルス応答周波数特性保持部101、入力信号周波数特性保持部102、合成信号周波数特性生成部103は、前述と同様の動作(S101〜S103)を実行する。   The impulse response frequency characteristic holding unit 101, the input signal frequency characteristic holding unit 102, and the combined signal frequency characteristic generation unit 103 perform the same operations (S101 to S103) as described above.

奇数成分虚数部抽出部107は、合成信号周波数変換係数からなる配列において最も低い離散周波数を偶数番目の配列の最初の係数として、合成信号周波数変換係数からなる配列中の奇数番目の離散周波数に対応する係数からなる配列を逆離散周波数変換した結果の虚数部と、所定の配列を逆離散周波数変換した結果とが等しくなるような、所定の配列を奇数成分虚数配列として抽出する(S107)。加算部110は、奇数成分虚数配列と、偶数番目の成分からなる配列を要素毎に加算する(S110)。信号処理部106は、加算された配列を必要に応じて信号処理する(S106)。信号処理部106は、必要に応じた信号処理を行う構成であるため、適宜省略可能である。図2において、信号処理部106は適宜省略可能であることを示すために点線で表している。信号処理配列逆変換部108は、加算された配列、あるいは加算された配列に所定の信号処理を施した配列を逆離散周波数変換して、時間領域の信号配列を取得する(S108)。ハニング窓かけ重畳部109は、取得された時間領域の信号配列に、図8に示すような形状のハニング窓を施して、1ステップ(L/2サンプル)過去の信号配列と重畳する(S109)。   The odd-numbered component imaginary part extraction unit 107 corresponds to the odd-numbered discrete frequency in the array of the synthesized signal frequency conversion coefficients, with the lowest discrete frequency in the array of the synthesized signal frequency conversion coefficients as the first coefficient of the even-numbered array. A predetermined array is extracted as an odd-numbered component imaginary number array such that the imaginary part of the result obtained by performing the inverse discrete frequency conversion on the array including the coefficients to be equal to the result obtained by performing the inverse discrete frequency conversion on the predetermined array (S107). The adding unit 110 adds an odd-numbered component imaginary number array and an array of even-numbered components element by element (S110). The signal processing unit 106 performs signal processing on the added array as necessary (S106). The signal processing unit 106 is configured to perform signal processing as necessary, and can be omitted as appropriate. In FIG. 2, the signal processing unit 106 is indicated by a dotted line to indicate that it can be omitted as appropriate. The signal processing array inverse transform unit 108 performs inverse discrete frequency transform on the added array or an array obtained by performing predetermined signal processing on the added array to obtain a time domain signal array (S108). The Hanning window overlap superimposing unit 109 applies a Hanning window having a shape as shown in FIG. 8 to the acquired signal arrangement in the time domain, and superimposes the signal arrangement in the past by one step (L / 2 samples) (S109). .

図1の合成信号配列逆変換部104は、2L点の周波数領域の配列を、2L点の時間領域の配列に変換するのに対し、図2に示される信号処理配列逆変換部108は、L点の周波数領域の配列をL点の時間領域の配列に変換する。また、信号処理に伴う両端の不連続性を緩和するため、特許文献1の高速畳込近似装置8は、ハニング窓かけ重畳部109を含む構成とした。前述したように、ハニング窓かけ重畳部109は、図8に示すような形状のハニング窓をL点の時間領域に変換された信号に乗じて、なめらかに1ステップ(L/2サンプル)過去の信号と重畳して信号を出力する。   1 converts the 2L point frequency domain array into a 2L point time domain array, whereas the signal processing array inverse transform unit 108 shown in FIG. The frequency domain array of points is converted to an L point time domain array. In addition, in order to alleviate the discontinuity at both ends due to signal processing, the high-speed convolution approximation device 8 of Patent Document 1 is configured to include a Hanning windowing overlap unit 109. As described above, the Hanning window overlap superimposing unit 109 multiplies the Hanning window having the shape shown in FIG. 8 by the signal converted into the L-point time domain, and smoothly performs one step (L / 2 samples) in the past. Superimposes the signal and outputs the signal.

図2の高速畳込近似装置8は、L点の配列を変換する信号処理配列逆変換部108に整合させるために、合成信号周波数特性の2L点の配列をL点の配列に変換することを目的とし、奇数成分虚数部抽出部107を含む構成としている。   The high-speed convolution approximation device 8 of FIG. 2 converts the 2L point array of the synthesized signal frequency characteristic into an L point array in order to match the signal processing array inverse transform unit 108 that transforms the L point array. For the purpose, an odd component imaginary part extraction unit 107 is included.

特開2005−63137号公報JP 2005-63137 A

J. J. Shynk,"Frequency-domain and multirate adaptive filtering", Signal Processing Magazine, IEEE, Volume:9, Issue: 1, pp.14-37(Date of Publication:Jan. 1992)J. J. Shynk, "Frequency-domain and multirate adaptive filtering", Signal Processing Magazine, IEEE, Volume: 9, Issue: 1, pp.14-37 (Date of Publication: Jan. 1992)

ところが、図2に示す構成では、信号配列の両端の不連続性のために、周波数分解能の低い配列に対して、信号処理を施すことになり、信号処理性能の低下を引き起こす場合がある。そこで、本発明では、信号処理に用いる信号の周波数分解能を高めることができる高速畳込近似装置を提供することを目的とする。   However, in the configuration shown in FIG. 2, due to the discontinuity at both ends of the signal array, signal processing is performed on the array with low frequency resolution, which may cause a decrease in signal processing performance. Accordingly, an object of the present invention is to provide a high-speed convolution approximation device that can increase the frequency resolution of a signal used for signal processing.

本発明の高速畳込近似装置は、合成信号周波数特性生成部と、奇数成分虚数部抽出部と、偶数成分窓かけ補正部と、加算部と、信号処理配列逆変換部と、平方根ハニング窓かけ重畳部とを含む。   The high-speed convolution approximation device of the present invention includes a composite signal frequency characteristic generation unit, an odd component imaginary part extraction unit, an even component windowing correction unit, an addition unit, a signal processing array inverse conversion unit, and a square root Hanning windowing. And a superimposing unit.

合成信号周波数特性生成部は、有限の長さL以下のフィルタインパルス応答の配列hの後半に全体として長さ2Lとなる様に零配列を結合して得られる配列の離散フーリエ変換に相当する2L個の係数と、過去2L点に遡り蓄積された入力信号xの配列の離散周波数変換に相当する2L個の係数と、を各離散周波数毎に乗算して2L個の合成信号周波数変換係数を生成する。奇数成分虚数部抽出部は、合成信号周波数変換係数からなる配列において最も低い離散周波数を偶数番目の配列の最初の係数として、合成信号周波数変換係数からなる配列中の奇数番目の離散周波数に対応する係数からなる配列を逆離散周波数変換した結果の虚数部と、所定の配列を逆離散周波数変換した結果とが等しくなるような、所定の配列を奇数成分虚数配列として抽出する。偶数成分窓かけ補正部は、合成信号周波数変換係数からなる配列中の偶数番目の離散周波数に対応する係数からなる配列に、半周期がLのサイン関数からなる平方根ハニング窓を時間領域において適用した場合と等価な周波数領域の処理を実行して偶数成分窓かけ補正配列を取得する。加算部は、奇数成分虚数配列と、偶数成分窓かけ補正配列を加算する。信号処理配列逆変換部は、加算された配列、あるいは加算された配列に所定の信号処理を施した配列を逆離散周波数変換して、時間領域の信号配列を取得する。平方根ハニング窓かけ重畳部は、取得された時間領域の信号配列に平方根ハニング窓を施して、過去の信号配列と重畳する。   The synthesized signal frequency characteristic generator generates 2L corresponding to the discrete Fourier transform of the array obtained by combining the zero array so that the length becomes 2L as a whole in the second half of the array h of filter impulse responses having a finite length L or less. 2L coefficients corresponding to the discrete frequency transform of the array of the input signal x accumulated retroactively in the past 2L points are multiplied for each discrete frequency to generate 2L synthesized signal frequency transform coefficients. To do. The odd-numbered component imaginary part extraction unit corresponds to the odd-numbered discrete frequency in the array of the synthesized signal frequency conversion coefficients, with the lowest discrete frequency in the array of the synthesized signal frequency conversion coefficients as the first coefficient of the even-numbered array. A predetermined array is extracted as an odd-numbered component imaginary number array so that the imaginary part of the result of inverse discrete frequency conversion of the array of coefficients is equal to the result of inverse discrete frequency conversion of the predetermined array. The even component windowing correction unit applies a square root Hanning window consisting of a sine function with a half cycle L in the time domain to an array consisting of coefficients corresponding to even-numbered discrete frequencies in the array consisting of synthesized signal frequency conversion coefficients. A frequency domain process equivalent to the case is executed to obtain an even component windowed correction array. The adder adds the odd component imaginary number array and the even component windowed correction array. The signal processing array inverse conversion unit performs inverse discrete frequency conversion on the added array or an array obtained by performing predetermined signal processing on the added array to obtain a time domain signal array. The square root Hanning window overlap superimposing unit applies a square root Hanning window to the acquired signal arrangement in the time domain and superimposes it on the past signal arrangement.

本発明の高速畳込近似装置によれば、信号処理に用いる信号の周波数分解能を高めることができる。   According to the high-speed convolution approximation apparatus of the present invention, the frequency resolution of a signal used for signal processing can be increased.

非特許文献1の高速畳込近似装置の構成を示すブロック図。The block diagram which shows the structure of the high-speed convolution approximation apparatus of a nonpatent literature 1. FIG. 特許文献1の高速畳込近似装置の構成を示すブロック図。The block diagram which shows the structure of the high-speed convolution approximation apparatus of patent document 1. FIG. 実施例1の高速畳込近似装置の構成を示すブロック図。1 is a block diagram illustrating a configuration of a high-speed convolution approximation device according to a first embodiment. 実施例1の高速畳込近似装置の動作を示すフローチャート。5 is a flowchart illustrating the operation of the high-speed convolution approximation apparatus according to the first embodiment. 合成信号周波数特性の配列を偶数、奇数番目に分解し、時間領域に変換して、巡回畳込の影響を受けた出力と線形畳込による出力の結合配列を取得する動作について説明する図。The figure explaining the operation | movement which decomposes | disassembles the arrangement | sequence of a synthetic | combination signal frequency characteristic into even number and odd number, converts it into a time domain, and acquires the coupling | bonding arrangement | sequence of the output influenced by cyclic convolution, and the output by linear convolution. 偶数番目の信号系列とサイン窓付きの奇数番目の信号系列により線形畳み込みによる出力を近似する動作について説明する図。The figure explaining the operation | movement which approximates the output by a linear convolution by the even-numbered signal sequence and the odd-numbered signal sequence with a sine window. サイン窓付きの線形畳込による出力を近似する動作について説明する図。The figure explaining the operation | movement which approximates the output by linear convolution with a sine window. ハニング窓関数を例示する図。The figure which illustrates a Hanning window function. 平方根ハニング窓関数を例示する図。The figure which illustrates a square root Hanning window function.

図2の合成信号周波数特性生成部103で生成される2L個の要素からなる合成周波数特性の配列を図5に示すように、Y(0),...,Y(2L-1)とすると、この特性の配列を時間領域に変換した場合、L個の巡回畳込の影響を受けた出力yc(0),...,yc(L-1)とL個の線形畳込による出力yl(0),...,yl(L-1)の結合配列が得られる。ここで、所望の信号は線形畳込による出力yl(0),...,yl(L-1)のみであり、巡回畳込の影響を受けた出力yc(0),...,yc(L-1)は、出力信号yを得るにあたり不要である。   Assuming that Y (0),..., Y (2L-1) is an array of synthesized frequency characteristics composed of 2L elements generated by the synthesized signal frequency characteristics generating unit 103 in FIG. , When the array of this characteristic is transformed into the time domain, the output yc (0), ..., yc (L-1) affected by the L cyclic convolutions and the output yl by the L linear convolutions A combined sequence of (0), ..., yl (L-1) is obtained. Here, the desired signal is only the output yl (0), ..., yl (L-1) by linear convolution, and the output yc (0), ..., yc affected by cyclic convolution (L-1) is not necessary for obtaining the output signal y.

線形畳込による出力yl(k),k=0,...,L-1は、合成周波数特性の配列Y(0),...,Y(2L-1)のうち奇数番目の成分を零として逆離散周波数変換することで得られる信号配列a(k) ,k=0,...,L-1と、Y(0),...,Y(2L-1)のうち偶数番目の成分を零として逆離散周波数変換することで得られる信号配列b(k) ,k=0,...,L-1との和であり、
yl(k)=a(k)+b(k)…(式1)
と表すことができる。
The output yl (k), k = 0, ..., L-1 by linear convolution is the odd-numbered component of the composite frequency characteristic array Y (0), ..., Y (2L-1). The signal array a (k), k = 0, ..., L-1 and Y (0), ..., Y (2L-1) even numbers obtained by inverse discrete frequency conversion as zero Is a sum of signal array b (k), k = 0, ..., L-1 obtained by inverse discrete frequency transform with zero component
yl (k) = a (k) + b (k) (Formula 1)
It can be expressed as.

式1に従って周波数領域で線形畳込に起因する成分の配列を得るためには、まず前述のa(k),b(k)それぞれを周波数変換したL点の系列を得る必要がある。図6に示すように、a(k)の周波数領域での成分の配列は、偶数番目のL点の配列Y(0),Y(2)...,Y(2L-2)として、直接得ることができる。一方の奇数番目のL点の配列Y(1),Y(3)...,Y(2L-1)からは、直接b(k)の周波数領域での成分の配列を得ることはできない。図2の構成では、奇数成分虚数部抽出部107によって、時間領域において、sw(k)b(k)という、平方根ハニング窓sw(k)のかかったb(k)の周波数領域配列が得られる。つまり、図2の構成では、時間領域において、
yl'(k)=a(k)+sw(k)b(k)…(式2)
と表される信号を周波数領域で近似していることになる。式2をさらに書き換えると、
yl'(k)=a(k)+sw(k)b(k)
= [a(k)+b(k)]+[ sw(k)-1]b(k)
=yl(k)+ [ sw(k)-1]b(k)…(式3)
となる。つまり、推定値yl’(k)は、yl(k)と、その近似誤差(sw(k)-1)b(k)の和として表される。したがって、図2の構成では、時間領域における線形畳込の出力yl(k)の配列を、周波数領域において、近似的に計算していることになる。
In order to obtain an arrangement of components resulting from linear convolution in the frequency domain according to Equation 1, it is first necessary to obtain a series of L points obtained by frequency-transforming each of the aforementioned a (k) and b (k). As shown in FIG. 6, the arrangement of components in the frequency domain of a (k) is directly arranged as an even-numbered L-point arrangement Y (0), Y (2) ..., Y (2L-2). Can be obtained. On the other hand, the arrangement of components in the frequency domain of b (k) cannot be obtained directly from the arrangement of odd-numbered L points Y (1), Y (3) ..., Y (2L-1). In the configuration of FIG. 2, the odd-component imaginary part extraction unit 107 obtains a frequency domain array of b (k) with a square root Hanning window sw (k) called sw (k) b (k) in the time domain. . That is, in the configuration of FIG.
yl '(k) = a (k) + sw (k) b (k) (Formula 2)
Is approximated in the frequency domain. If Equation 2 is further rewritten,
yl '(k) = a (k) + sw (k) b (k)
= [a (k) + b (k)] + [sw (k) -1] b (k)
= yl (k) + [sw (k) -1] b (k) ... (Formula 3)
It becomes. That is, the estimated value yl ′ (k) is expressed as the sum of yl (k) and its approximation error (sw (k) −1) b (k). Therefore, in the configuration of FIG. 2, the array of linear convolution outputs yl (k) in the time domain is approximately calculated in the frequency domain.

通常、雑音抑圧のような非線形な信号処理を周波数領域で実行する場合、まず、処理対象の時間信号からL点の配列を切り出し、その両端の不連続性を解消するために、図9のような、平方根ハニング窓を信号に乗じてから、周波数変換を実行する。そして、信号処理後、逆周波数変換により時間信号の配列に戻した後に、再度、平方根ハニング窓を乗じて、今度は信号処理の出力歪みに起因する不連続性を相殺しながら信号を重畳させる。平方根ハニング窓を処理前と処理後で2回乗じることで、全体としては、完全再構成の性質を有するハニング窓を乗じて重畳したことになり、信号処理を何も施していない場合には、入力信号と出力信号とが完全に一致する。   Normally, when nonlinear signal processing such as noise suppression is performed in the frequency domain, first, an array of L points is extracted from the time signal to be processed, and discontinuities at both ends thereof are eliminated, as shown in FIG. The frequency conversion is executed after the signal is multiplied by the square root Hanning window. Then, after the signal processing, the signal is returned to the time signal array by inverse frequency conversion, and then multiplied by the square root Hanning window, and the signal is superimposed while canceling the discontinuity due to the output distortion of the signal processing. By multiplying the square root Hanning window twice before and after the processing, the whole is multiplied by the Hanning window having the property of complete reconstruction, and when no signal processing is performed, The input signal and the output signal completely match.

ところが、図2に示す構成では、信号処理部106に入力される信号は、例え近似であるにせよ、線形畳込の出力信号からL点の配列を切り出して得られる周波数領域の信号配列に相当する。すなわち、線形畳込の出力信号にL点の方形窓を乗じ、周波数変換した信号配列に信号処理を施すことになる。方形窓により切り出された信号配列の周波数変換結果は、信号配列の両端の不連続性のために、一般に、周波数分解能が低くなる。このため、周波数分解能の低い配列に対して、信号処理を施すことになり、信号処理性能の低下を引き起こす。   However, in the configuration shown in FIG. 2, the signal input to the signal processing unit 106 is equivalent to a frequency domain signal array obtained by cutting out the array of L points from the output signal of the linear convolution even though it is an approximation. To do. In other words, the signal processing is performed on the signal array obtained by multiplying the output signal of the linear convolution by the L-point square window and converting the frequency. The frequency conversion result of the signal array cut out by the rectangular window generally has a low frequency resolution due to the discontinuity at both ends of the signal array. For this reason, signal processing is performed on an array having a low frequency resolution, causing a reduction in signal processing performance.

前述したように、本発明では、図2の構成において信号処理部106に与える信号の周波数分解能を高め、性能向上を図ることを目的とする。   As described above, an object of the present invention is to improve the frequency resolution of the signal given to the signal processing unit 106 in the configuration of FIG. 2 and improve the performance.

以下、本発明の実施の形態について、詳細に説明する。なお、同じ機能を有する構成部には同じ番号を付し、重複説明を省略する。   Hereinafter, embodiments of the present invention will be described in detail. In addition, the same number is attached | subjected to the structure part which has the same function, and duplication description is abbreviate | omitted.

以下、図3、図4を参照して、本発明の実施例1の高速畳込近似装置1について説明する。図3は、本実施例の高速畳込近似装置1の構成を示すブロック図である。図4は、本実施例の高速畳込近似装置1の動作を示すフローチャートである。図3に示すように、本実施例の高速畳込近似装置1は、図2の高速畳込近似装置8と同じ、インパルス応答周波数特性保持部101と、入力信号周波数特性保持部102と、合成信号周波数特性生成部103と、奇数成分虚数部抽出部107と、信号処理部106と、信号処理配列逆変換部108を含む。また、本実施例の高速畳込近似装置1は、図2の高速畳込近似装置8に含まれない偶数成分窓かけ補正部111を含む。また、本実施例の高速畳込近似装置1は、図2の高速畳込近似装置8のハニング窓かけ重畳部109の代わりに、平方根ハニング窓かけ重畳部112を含み、図2の高速畳込近似装置8の加算部110の代わりに、加算部113を含む構成である。   Hereinafter, the high-speed convolution approximation apparatus 1 according to the first embodiment of the present invention will be described with reference to FIGS. FIG. 3 is a block diagram illustrating a configuration of the high-speed convolution approximation apparatus 1 according to the present embodiment. FIG. 4 is a flowchart showing the operation of the high-speed convolution approximation apparatus 1 of the present embodiment. As shown in FIG. 3, the high-speed convolution approximation device 1 of this embodiment is the same as the high-speed convolution approximation device 8 of FIG. 2, and an impulse response frequency characteristic holding unit 101, an input signal frequency characteristic holding unit 102, and a synthesis A signal frequency characteristic generation unit 103, an odd component imaginary part extraction unit 107, a signal processing unit 106, and a signal processing array inverse conversion unit 108 are included. Further, the high-speed convolution approximation device 1 of the present embodiment includes an even component windowing correction unit 111 that is not included in the high-speed convolution approximation device 8 of FIG. Further, the high-speed convolution approximation device 1 of this embodiment includes a square root Hanning windowing superimposing unit 112 instead of the Hanning windowing superimposing unit 109 of the high-speed convolution approximation device 8 of FIG. Instead of the addition unit 110 of the approximation device 8, the addition unit 113 is included.

本実施例の高速畳込近似装置1のインパルス応答周波数特性保持部101、入力信号周波数特性保持部102、合成信号周波数特性生成部103、奇数成分虚数部抽出部107は、前述したステップS101、S102、S103、S107を前述同様に実行する。次に、偶数成分窓かけ補正部111は、合成信号周波数変換係数からなる配列中の偶数番目の離散周波数に対応する係数からなる配列に、半周期がLのサイン関数からなる平方根ハニング窓を時間領域において適用した場合と等価な周波数領域の処理を実行して偶数成分窓かけ補正配列を取得する(S111)。加算部113は、奇数成分虚数配列と、偶数成分窓かけ補正配列を加算する(S113)。以下、本実施例の高速畳込近似装置1の信号処理部106、信号処理配列逆変換部108は、前述したステップS106(必要に応じて)、S108を実行する。平方根ハニング窓かけ重畳部112は、取得された時間領域の信号配列に平方根ハニング窓を施して、過去の信号配列と重畳する(S112)。   The impulse response frequency characteristic holding unit 101, the input signal frequency characteristic holding unit 102, the combined signal frequency characteristic generation unit 103, and the odd component imaginary part extraction unit 107 of the high-speed convolution approximation apparatus 1 of the present embodiment are the same as the above-described steps S101 and S102. , S103, and S107 are executed in the same manner as described above. Next, the even component windowing correction unit 111 sets a square root Hanning window consisting of a sine function having a half cycle of L to an array consisting of coefficients corresponding to even-numbered discrete frequencies in the array consisting of synthesized signal frequency conversion coefficients. A frequency domain process equivalent to that applied in the domain is executed to obtain an even component windowed correction array (S111). The adder 113 adds the odd component imaginary number array and the even component window correction array (S113). Hereinafter, the signal processing unit 106 and the signal processing array inverse transformation unit 108 of the high-speed convolution approximation apparatus 1 according to the present embodiment execute the above-described steps S106 (if necessary) and S108. The square root Hanning window overlap superimposing unit 112 performs a square root Hanning window on the acquired signal arrangement in the time domain and superimposes it on the past signal arrangement (S112).

図2の高速畳込近似装置8が、図6のように、線形畳込の出力yl(k)に方形窓を施して切り出したときの周波数変換配列を近似しているのに対し、本実施例の高速畳込近似装置1は、図7に示すように、平方根ハニング窓を施して切り出されたsw(k)yl(k)の周波数配列を近似する構成をとっている。   The high-speed convolution approximation device 8 of FIG. 2 approximates the frequency conversion array when the linear convolution output yl (k) is cut out by applying a rectangular window as shown in FIG. As shown in FIG. 7, the example high-speed convolution approximation device 1 has a configuration that approximates the frequency array of sw (k) yl (k) cut out by applying a square root Hanning window.

奇数番目の要素の配列Y(1),Y(3),...,Y(2L-1)については、図2と同様に、奇数成分虚数部抽出部107を適用することで、結果的に、平方根ハニング窓が適用されたsw(k)b(k)の周波数変換に相当する値が得られる。一方、偶数番目の要素の配列Y(0),Y(2),...,Y(2L-2)については、周波数領域内で、近似的に平方根ハニング窓を適用する偶数成分窓かけ補正部111を新たに導入することで、平方根ハニング窓の近似sw’(k)が適用されたsw’(k)a(k)の周波数変換に相当する値を得る。偶数成分窓かけ補正部111と奇数成分虚数部抽出部107から出力される配列を加算部13で加算することで、平方根ハニング窓が施された線形畳込の出力sw(k)yl(k)の周波数変換の近似値を得ることができ、信号処理部106に周波数分解能が向上した信号配列を入力することができる。   As for the array of odd-numbered elements Y (1), Y (3),..., Y (2L-1), as in FIG. In addition, a value corresponding to frequency conversion of sw (k) b (k) to which the square root Hanning window is applied is obtained. On the other hand, for even-numbered element arrays Y (0), Y (2), ..., Y (2L-2), even-numbered component windowing correction that applies a square root Hanning window approximately in the frequency domain By newly introducing the unit 111, a value corresponding to the frequency conversion of sw ′ (k) a (k) to which the approximation sw ′ (k) of the square root Hanning window is applied is obtained. The adder 13 adds the arrays output from the even component windowing correction unit 111 and the odd component imaginary part extraction unit 107, so that the output sw (k) yl (k) of the linear convolution subjected to the square root Hanning window. The approximate value of the frequency conversion can be obtained, and a signal array with improved frequency resolution can be input to the signal processing unit 106.

信号処理配列逆変換部108によって得られる時間領域の信号配列は、あらかじめ、信号処理前に平方根ハニング窓が施された信号が入力されることと整合させるため、平方根ハニング窓を施して、過去のステップの信号配列と重畳する平方根ハニング窓かけ重畳部112へと入力され、出力信号yが得られる。   The time domain signal array obtained by the signal processing array inverse transform unit 108 is subjected to a square root Hanning window in order to match the input of a signal that has been subjected to the square root Hanning window before the signal processing in advance. The signal is input to the square root Hanning windowing superimposing unit 112 which is superimposed on the signal arrangement of the step, and an output signal y is obtained.

<偶数成分窓かけ補正部111>
以下に、偶数成分窓かけ補正部111の具体的な実現方法について説明する。例えば、偶数成分窓かけ補正部111は、偶数番目の要素の配列Y(0),Y(2),...,Y(2L-2)を一旦、L点の逆離散周波数変換によって時間信号の配列に変換し、そこで、平方根ハニング窓sw(k)を適用した後、再び、離散周波数変換によって、周波数領域に変換したものを所望の信号配列として取得することが出来る。しかしながら、この手順に従うと、演算量の増加が避けられない。そのため、偶数成分窓かけ補正部111は、周波数領域において、直接等価な処理を実行するように構成することを考える。厳密に等価な処理は、偶数成分窓かけ補正部111は、平方根ハニング窓sw(k)を離散周波数変換してなる信号配列と、偶数番目の離散周波数に対応する係数からなる配列Y(0),Y(2),...,Y(2L-2)との巡回畳込を実行すればよい。ただし、この場合も、巡回畳込に要する演算量は依然として大きい。そこで、本実施例では、偶数成分窓かけ補正部111は、平方根ハニング窓sw(k)を離散周波数変換してなる信号配列の要素のうち、その大きさが大きい順にK個の要素のみを用いて、偶数番目の離散周波数に対応する係数からなる配列との巡回畳込を実行する(S111)。なお、KをK<Lを充たす整数とし、KはLの10分の1程度とすれば好適である。本実施例の高速畳込近似装置1は、上述のように、偶数成分窓かけ補正部111が、K個の要素に限り巡回畳込を実行することで、演算量の増加を抑えながら、精度の高い近似を実現することができる。
<Even-numbered component window correction unit 111>
Hereinafter, a specific method of realizing the even component window correction unit 111 will be described. For example, the even component windowing correction unit 111 temporarily converts the even-numbered element array Y (0), Y (2),..., Y (2L-2) into a time signal by inverse discrete frequency conversion of the L point. Then, after applying the square root Hanning window sw (k), the signal converted into the frequency domain by discrete frequency conversion can be obtained again as a desired signal array. However, if this procedure is followed, an increase in the amount of calculation is inevitable. For this reason, it is considered that the even-numbered component window correction unit 111 is configured to directly perform equivalent processing in the frequency domain. Strictly equivalent processing is performed by the even component windowing correction unit 111. The signal array formed by performing discrete frequency conversion on the square root Hanning window sw (k) and the array Y (0) including coefficients corresponding to the even-numbered discrete frequencies. , Y (2), ..., Y (2L-2) may be executed. However, in this case as well, the amount of computation required for cyclic convolution is still large. Therefore, in this embodiment, the even component window correction unit 111 uses only K elements in descending order of the elements of the signal array formed by performing discrete frequency conversion on the square root Hanning window sw (k). Then, cyclic convolution with an array of coefficients corresponding to even-numbered discrete frequencies is executed (S111). It is preferable that K is an integer satisfying K <L, and K is about 1/10 of L. As described above, the high-speed convolution approximation apparatus 1 according to the present embodiment is configured so that the even component windowing correction unit 111 performs cyclic convolution only on K elements, thereby suppressing an increase in the amount of calculation. A high approximation of can be realized.

<入力信号周波数特性保持部102>
以下に、入力信号周波数特性保持部102の具体的な実現方法について説明する。例えば、入力信号周波数特性保持部102は、2L点の時間領域の参照信号配列を直接、離散周波数変換してもよい。
<Input Signal Frequency Characteristic Holding Unit 102>
A specific method for realizing the input signal frequency characteristic holding unit 102 will be described below. For example, the input signal frequency characteristic holding unit 102 may directly perform discrete frequency conversion on the 2L-point time domain reference signal array.

また、入力信号周波数特性保持部102は、2L点の時間領域の参照信号配列を、前半のL点と後半のL点の2つに分割し、両者の各要素の和として構成されるL点の配列を離散周波数変換して、偶数番目の周波数領域の配列を得、前半のL点と後半のL点の2つに分割された両者の各要素の差を離散周波数が0.5ポイントシフトされるように変調窓を乗じた後に、L点の離散周波数変換を施すことで、奇数番目の周波数領域の配列を得てもよい。   Further, the input signal frequency characteristic holding unit 102 divides the 2L-point time domain reference signal array into two parts, the first half L point and the second half L point, and is configured as the sum of the respective elements of the two points. The discrete frequency transform is performed to obtain an even-numbered frequency domain array, and the difference between each element divided into the first half L point and the second half L point is shifted 0.5 points of the discrete frequency. After multiplying the modulation window as described above, an odd-numbered frequency domain array may be obtained by performing discrete frequency conversion at point L.

本実施例の高速畳込近似装置1は、線形畳込を周波数領域において近似的に高速に実行し、後段に続く、周波数領域における非線形な信号処理部と密に結合され、なおかつ、後段の信号処理部106にとって、周波数分解能の高い信号を与えることを可能とした。これにより、信号処理部106に与える信号の周波数分解能を高め、全体として性能向上を図ることができた。   The high-speed convolution approximation apparatus 1 according to the present embodiment performs linear convolution approximately at high speed in the frequency domain, and is closely coupled to a non-linear signal processing unit in the frequency domain following the latter stage, and further includes a signal in the rear stage. The processing unit 106 can be given a signal with high frequency resolution. As a result, the frequency resolution of the signal applied to the signal processing unit 106 can be increased, and the overall performance can be improved.

<発明のポイント>
本発明の高速畳込近似装置は、線形畳込を周波数領域で実現する際に、近似対象を、方形窓で切り出された線形畳込出力の周波数信号配列とするのではなく、平方根ハニング窓で切り出された線形畳込出力の周波数領域信号配列とすることで、後段に続き、信号処理部の性能を高く維持する構成を実現している。
<Points of invention>
The high-speed convolution approximation apparatus of the present invention, when realizing linear convolution in the frequency domain, does not use an approximation target as a frequency signal array of linear convolution output cut out by a rectangular window, but by a square root Hanning window. By adopting a frequency domain signal array of the extracted linear convolution output, a configuration that maintains the performance of the signal processing unit high is realized following the subsequent stage.

平方根ハニング窓で切り出された線形畳込出力の周波数領域信号配列を近似するために、合成信号周波数特性の奇数番目の配列に、逆周波数変換を施すことなく、平方根ハニング窓を適用した時間信号配列の周波数変換配列を得る奇数成分虚数部抽出部107と、合成信号周波数特性の偶数番目の配列に、逆周波数変換を施すことなく、時間領域において平方根ハニング窓を施すのと近似的に等価な処理を実行する偶数成分窓かけ補正部111を設け、奇数成分虚数部抽出部107の出力と偶数成分窓かけ補正部111の出力を加算することで、全体として、平方根ハニング窓によって周波数分解能を向上させた周波数変換配列の生成を可能とした。   In order to approximate the frequency domain signal array of the linear convolution output clipped by the square root Hanning window, the time signal array applying the square root Hanning window to the odd-numbered array of the synthesized signal frequency characteristics without performing inverse frequency transform An odd component imaginary part extraction unit 107 that obtains a frequency transform array and a processing that is approximately equivalent to performing a square root Hanning window in the time domain without performing inverse frequency transform on the even array of the synthesized signal frequency characteristics. By adding the output of the odd-numbered component imaginary part extraction unit 107 and the output of the even-numbered component windowing correction unit 111, the frequency resolution is improved by the square root Hanning window as a whole. It was possible to generate a frequency conversion array.

上述の各種の処理は、記載に従って時系列に実行されるのみならず、処理を実行する装置の処理能力あるいは必要に応じて並列的にあるいは個別に実行されてもよい。その他、本発明の趣旨を逸脱しない範囲で適宜変更が可能であることはいうまでもない。   The various processes described above are not only executed in time series according to the description, but may also be executed in parallel or individually as required by the processing capability of the apparatus that executes the processes. Needless to say, other modifications are possible without departing from the spirit of the present invention.

また、上述の構成をコンピュータによって実現する場合、各装置が有すべき機能の処理内容はプログラムによって記述される。そして、このプログラムをコンピュータで実行することにより、上記処理機能がコンピュータ上で実現される。   Further, when the above-described configuration is realized by a computer, processing contents of functions that each device should have are described by a program. The processing functions are realized on the computer by executing the program on the computer.

この処理内容を記述したプログラムは、コンピュータで読み取り可能な記録媒体に記録しておくことができる。コンピュータで読み取り可能な記録媒体としては、例えば、磁気記録装置、光ディスク、光磁気記録媒体、半導体メモリ等どのようなものでもよい。   The program describing the processing contents can be recorded on a computer-readable recording medium. As the computer-readable recording medium, for example, any recording medium such as a magnetic recording device, an optical disk, a magneto-optical recording medium, and a semiconductor memory may be used.

また、このプログラムの流通は、例えば、そのプログラムを記録したDVD、CD−ROM等の可搬型記録媒体を販売、譲渡、貸与等することによって行う。さらに、このプログラムをサーバコンピュータの記憶装置に格納しておき、ネットワークを介して、サーバコンピュータから他のコンピュータにそのプログラムを転送することにより、このプログラムを流通させる構成としてもよい。   The program is distributed by selling, transferring, or lending a portable recording medium such as a DVD or CD-ROM in which the program is recorded. Furthermore, the program may be distributed by storing the program in a storage device of the server computer and transferring the program from the server computer to another computer via a network.

このようなプログラムを実行するコンピュータは、例えば、まず、可搬型記録媒体に記録されたプログラムもしくはサーバコンピュータから転送されたプログラムを、一旦、自己の記憶装置に格納する。そして、処理の実行時、このコンピュータは、自己の記録媒体に格納されたプログラムを読み取り、読み取ったプログラムに従った処理を実行する。また、このプログラムの別の実行形態として、コンピュータが可搬型記録媒体から直接プログラムを読み取り、そのプログラムに従った処理を実行することとしてもよく、さらに、このコンピュータにサーバコンピュータからプログラムが転送されるたびに、逐次、受け取ったプログラムに従った処理を実行することとしてもよい。また、サーバコンピュータから、このコンピュータへのプログラムの転送は行わず、その実行指示と結果取得のみによって処理機能を実現する、いわゆるASP(Application Service Provider)型のサービスによって、上述の処理を実行する構成としてもよい。なお、本形態におけるプログラムには、電子計算機による処理の用に供する情報であってプログラムに準ずるもの(コンピュータに対する直接の指令ではないがコンピュータの処理を規定する性質を有するデータ等)を含むものとする。   A computer that executes such a program first stores, for example, a program recorded on a portable recording medium or a program transferred from a server computer in its own storage device. When executing the process, the computer reads a program stored in its own recording medium and executes a process according to the read program. As another execution form of the program, the computer may directly read the program from a portable recording medium and execute processing according to the program, and the program is transferred from the server computer to the computer. Each time, the processing according to the received program may be executed sequentially. Also, the program is not transferred from the server computer to the computer, and the above-described processing is executed by a so-called ASP (Application Service Provider) type service that realizes the processing function only by the execution instruction and result acquisition. It is good. Note that the program in this embodiment includes information that is used for processing by an electronic computer and that conforms to the program (data that is not a direct command to the computer but has a property that defines the processing of the computer).

また、この形態では、コンピュータ上で所定のプログラムを実行させることにより、本装置を構成することとしたが、これらの処理内容の少なくとも一部をハードウェア的に実現することとしてもよい。   In this embodiment, the present apparatus is configured by executing a predetermined program on a computer. However, at least a part of these processing contents may be realized by hardware.

Claims (8)

有限の長さL以下のフィルタインパルス応答の配列hの後半に全体として長さ2Lとなる様に零配列を結合して得られる配列の離散フーリエ変換に相当する2L個の係数と、過去2L点に遡り蓄積された入力信号xの配列の離散周波数変換に相当する2L個の係数と、を各離散周波数毎に乗算して2L個の合成信号周波数変換係数を生成する合成信号周波数特性生成部と、
前記合成信号周波数変換係数からなる配列において最も低い離散周波数を偶数番目の配列の最初の係数として、前記合成信号周波数変換係数からなる配列中の奇数番目の離散周波数に対応する係数からなる配列を逆離散周波数変換した結果の虚数部と、所定の配列を逆離散周波数変換した結果とが等しくなるような、前記所定の配列を奇数成分虚数配列として抽出する奇数成分虚数部抽出部と、
前記合成信号周波数変換係数からなる配列中の偶数番目の離散周波数に対応する係数からなる配列に、半周期がLのサイン関数からなる平方根ハニング窓を時間領域において適用した場合と等価な周波数領域の処理を実行して偶数成分窓かけ補正配列を取得する偶数成分窓かけ補正部と、
前記奇数成分虚数配列と、前記偶数成分窓かけ補正配列を加算する加算部と、
前記加算された配列、あるいは前記加算された配列に所定の信号処理を施した配列を逆離散周波数変換して、時間領域の信号配列を取得する信号処理配列逆変換部と、
前記取得された時間領域の信号配列に前記平方根ハニング窓を施して、過去の信号配列と重畳する平方根ハニング窓かけ重畳部と、
を含む高速畳込近似装置。
2L coefficients corresponding to the discrete Fourier transform of the array obtained by combining the zero array so that the length is 2L as a whole in the second half of the array h of filter impulse responses of finite length L or less, and the past 2L points A combined signal frequency characteristic generation unit that generates 2L combined signal frequency conversion coefficients by multiplying each discrete frequency by 2L coefficients corresponding to the discrete frequency conversion of the array of input signals x accumulated retroactively to ,
The lowest discrete frequency in the array of synthesized signal frequency conversion coefficients is set as the first coefficient of the even-numbered array, and the array of coefficients corresponding to odd-numbered discrete frequencies in the array of synthesized signal frequency conversion coefficients is reversed. An odd component imaginary part extraction unit that extracts the predetermined array as an odd component imaginary array such that the imaginary part of the result of discrete frequency conversion and the result of inverse discrete frequency conversion of the predetermined array are equal;
A frequency domain equivalent to the case where a square root Hanning window consisting of a sine function whose half cycle is L is applied in the time domain to an array consisting of coefficients corresponding to even-numbered discrete frequencies in the array consisting of the composite signal frequency transform coefficients. An even component window correction unit that executes processing to obtain an even component window correction array;
An adder that adds the odd component imaginary number array and the even component window correction array;
A signal processing array inverse transform unit that obtains a time-domain signal array by performing inverse discrete frequency conversion on the added array or an array obtained by performing predetermined signal processing on the added array;
Applying the square root Hanning window to the acquired signal arrangement in the time domain, and superimposing a square root Hanning window overlaid unit on a past signal arrangement;
High-speed convolution approximation device.
請求項1に記載の高速畳込近似装置であって、
前記偶数成分窓かけ補正部が、
前記平方根ハニング窓を離散周波数変換してなる信号配列と、前記偶数番目の離散周波数に対応する係数からなる配列との巡回畳込を実行する
高速畳込近似装置。
The high-speed convolution approximation device according to claim 1,
The even component window correction unit is
A high-speed convolution approximation apparatus that performs cyclic convolution of a signal array obtained by performing discrete frequency conversion on the square root Hanning window and an array including coefficients corresponding to the even-numbered discrete frequencies.
請求項1に記載の高速畳込近似装置であって、
KをK<Lを充たす整数とし、
前記偶数成分窓かけ補正部が、
前記平方根ハニング窓を離散周波数変換してなる信号配列の要素のうち、その大きさが大きい順にK個の要素のみを用いて前記偶数番目の離散周波数に対応する係数からなる配列との巡回畳込を実行する
高速畳込近似装置。
The high-speed convolution approximation device according to claim 1,
Let K be an integer satisfying K <L,
The even component window correction unit is
Cyclic convolution with an array of coefficients corresponding to the even-numbered discrete frequencies using only K elements in descending order of the elements of the signal array formed by performing discrete frequency conversion on the square root Hanning window. A high-speed convolution approximation device.
請求項3に記載の高速畳込近似装置であって、
前記Kを前記Lの10分の1とする
高速畳込近似装置。
The fast convolution approximation device according to claim 3,
A high-speed convolution approximation device in which K is 1/10 of L.
有限の長さL以下のフィルタインパルス応答の配列hの後半に全体として長さ2Lとなる様に零配列を結合して得られる配列の離散フーリエ変換に相当する2L個の係数と、過去2L点に遡り蓄積された入力信号xの配列の離散周波数変換に相当する2L個の係数と、を各離散周波数毎に乗算して2L個の合成信号周波数変換係数を生成する合成信号周波数特性生成ステップと、
前記合成信号周波数変換係数からなる配列において最も低い離散周波数を偶数番目の配列の最初の係数として、前記合成信号周波数変換係数からなる配列中の奇数番目の離散周波数に対応する係数からなる配列を逆離散周波数変換した結果の虚数部と、所定の配列を逆離散周波数変換した結果とが等しくなるような、前記所定の配列を奇数成分虚数配列として抽出する奇数成分虚数部抽出ステップと、
前記合成信号周波数変換係数からなる配列中の偶数番目の離散周波数に対応する係数からなる配列に、半周期がLのサイン関数からなる平方根ハニング窓を時間領域において適用した場合と等価な周波数領域の処理を実行して偶数成分窓かけ補正配列を取得する偶数成分窓かけ補正ステップと、
前記奇数成分虚数配列と、前記偶数成分窓かけ補正配列を加算する加算ステップと、
前記加算された配列、あるいは前記加算された配列に所定の信号処理を施した配列を逆離散周波数変換して、時間領域の信号配列を取得する信号処理配列逆変換ステップと、
前記取得された時間領域の信号配列に前記平方根ハニング窓を施して、過去の信号配列と重畳する平方根ハニング窓かけ重畳ステップと、
を含む高速畳込近似方法。
2L coefficients corresponding to the discrete Fourier transform of the array obtained by combining the zero array so that the length is 2L as a whole in the second half of the array h of filter impulse responses of finite length L or less, and the past 2L points A composite signal frequency characteristic generation step of generating 2L composite signal frequency conversion coefficients by multiplying each discrete frequency by 2L coefficients corresponding to the discrete frequency conversion of the array of input signals x accumulated retroactively to ,
The lowest discrete frequency in the array of synthesized signal frequency conversion coefficients is set as the first coefficient of the even-numbered array, and the array of coefficients corresponding to odd-numbered discrete frequencies in the array of synthesized signal frequency conversion coefficients is reversed. An odd component imaginary part extraction step for extracting the predetermined array as an odd component imaginary number array such that the imaginary part of the result of the discrete frequency conversion is equal to the result of inverse discrete frequency conversion of the predetermined array;
A frequency domain equivalent to the case where a square root Hanning window consisting of a sine function whose half cycle is L is applied in the time domain to an array consisting of coefficients corresponding to even-numbered discrete frequencies in the array consisting of the composite signal frequency transform coefficients. An even component windowing correction step for performing processing to obtain an even component windowing correction array;
An addition step of adding the odd component imaginary number array and the even component window correction array;
A signal processing array inverse transform step for obtaining a time domain signal array by performing an inverse discrete frequency transform on the added array or an array obtained by performing predetermined signal processing on the added array;
Applying the square root Hanning window to the acquired signal arrangement in the time domain and superimposing the square root Hanning window over the past signal arrangement; and
Fast convolution approximation method including
請求項5に記載の高速畳込近似方法であって、
前記偶数成分窓かけ補正ステップが、
前記平方根ハニング窓を離散周波数変換してなる信号配列と、前記偶数番目の離散周波数に対応する係数からなる配列との巡回畳込を実行する
高速畳込近似方法。
The fast convolution approximation method according to claim 5,
The even component windowing correction step comprises:
A high-speed convolution approximation method for performing cyclic convolution between a signal array obtained by performing discrete frequency conversion on the square root Hanning window and an array including coefficients corresponding to the even-numbered discrete frequencies.
請求項5に記載の高速畳込近似方法であって、
KをK<Lを充たす整数とし、
前記偶数成分窓かけ補正ステップが、
前記平方根ハニング窓を離散周波数変換してなる信号配列の要素のうち、その大きさが大きい順にK個の要素のみを用いて前記偶数番目の離散周波数に対応する係数からなる配列との巡回畳込を実行する
高速畳込近似方法。
The fast convolution approximation method according to claim 5,
Let K be an integer satisfying K <L,
The even component windowing correction step comprises:
Cyclic convolution with an array of coefficients corresponding to the even-numbered discrete frequencies using only K elements in descending order of the elements of the signal array formed by performing discrete frequency conversion on the square root Hanning window. A fast convolution approximation method that performs
コンピュータを、請求項1から4の何れかに記載の高速畳込近似装置として機能させるためのプログラム。   The program for functioning a computer as a high-speed convolution approximation apparatus in any one of Claim 1 to 4.
JP2014091387A 2014-04-25 2014-04-25 High-speed convolution approximation device, high-speed convolution approximation method, program Active JP6154777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014091387A JP6154777B2 (en) 2014-04-25 2014-04-25 High-speed convolution approximation device, high-speed convolution approximation method, program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014091387A JP6154777B2 (en) 2014-04-25 2014-04-25 High-speed convolution approximation device, high-speed convolution approximation method, program

Publications (2)

Publication Number Publication Date
JP2015210637A JP2015210637A (en) 2015-11-24
JP6154777B2 true JP6154777B2 (en) 2017-06-28

Family

ID=54612781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014091387A Active JP6154777B2 (en) 2014-04-25 2014-04-25 High-speed convolution approximation device, high-speed convolution approximation method, program

Country Status (1)

Country Link
JP (1) JP6154777B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108872402B (en) * 2018-05-08 2021-08-06 天津大学 Ultrasonic Butterworth and Hanning window combined band-stop filtering method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8601604A (en) * 1986-06-20 1988-01-18 Philips Nv FREQUENCY DOMAIN BLOCK-ADAPTIVE DIGITAL FILTER.
JP4638695B2 (en) * 2003-07-31 2011-02-23 パナソニック株式会社 Signal processing apparatus and method
JP4049720B2 (en) * 2003-08-12 2008-02-20 日本電信電話株式会社 High-speed convolution approximation method, apparatus for implementing this method, program, and storage medium
JP3949089B2 (en) * 2003-08-12 2007-07-25 日本電信電話株式会社 Reverberation elimination method, apparatus for implementing this method, program, and storage medium

Also Published As

Publication number Publication date
JP2015210637A (en) 2015-11-24

Similar Documents

Publication Publication Date Title
US20100293214A1 (en) Method and System for Finite Impulse Response (FIR) Digital Filtering
KR102545961B1 (en) Multi-Rate System for Audio Processing
JP5364271B2 (en) Apparatus and method for optimal estimation of transducer parameters
US8825415B2 (en) Methods and apparatuses for estimation and compensation on nonlinearity errors
US9837098B2 (en) Reduced-delay subband signal processing system and method
JP4127094B2 (en) Reverberation generator and program
JP2018531555A6 (en) Amplitude response equalization without adaptive phase distortion for beamforming applications
JP6094479B2 (en) Audio processing apparatus, audio processing method, and recording medium recording audio processing program
JP6154777B2 (en) High-speed convolution approximation device, high-speed convolution approximation method, program
Bank et al. A delayed parallel filter structure with an FIR part having improved numerical properties
JP6248923B2 (en) Digital filter circuit, digital filter processing method, and digital filter processing program
JP7461020B2 (en) Audio signal processing device, audio signal processing system, audio signal processing method, and program
JP6087760B2 (en) Sound field recording / reproducing apparatus, method, and program
JP4049720B2 (en) High-speed convolution approximation method, apparatus for implementing this method, program, and storage medium
JP3920795B2 (en) Echo canceling apparatus, method, and echo canceling program
Sharif et al. Generic feasibility of perfect reconstruction with short FIR filters in multichannel systems
Harish et al. Perfect reconstruction of uniform samples from K-th order nonuniform samples
CN101879072A (en) Extraction and filtering method and device for ultrasonic imaging
US10224062B1 (en) Sample rate conversion with pitch-based interpolation filters
JP6151213B2 (en) Echo canceling device, echo canceling method, program
JP4814899B2 (en) Acoustic signal filter, filtering method therefor, program, and recording medium
JP6445417B2 (en) Signal waveform estimation apparatus, signal waveform estimation method, program
JP6662413B2 (en) Signal processing device, signal processing method, and signal processing program
JP7072167B2 (en) Imitation sound signal generator, electronic musical instrument, nonlinear system identification method
JP3949089B2 (en) Reverberation elimination method, apparatus for implementing this method, program, and storage medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170602

R150 Certificate of patent or registration of utility model

Ref document number: 6154777

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150