JP6153461B2 - Microbial recovery method - Google Patents

Microbial recovery method Download PDF

Info

Publication number
JP6153461B2
JP6153461B2 JP2013260423A JP2013260423A JP6153461B2 JP 6153461 B2 JP6153461 B2 JP 6153461B2 JP 2013260423 A JP2013260423 A JP 2013260423A JP 2013260423 A JP2013260423 A JP 2013260423A JP 6153461 B2 JP6153461 B2 JP 6153461B2
Authority
JP
Japan
Prior art keywords
target microorganism
sample
specimen
enzyme
washing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013260423A
Other languages
Japanese (ja)
Other versions
JP2015116140A (en
Inventor
恵美 安田
恵美 安田
澄江 佐藤
澄江 佐藤
星隆 松本
星隆 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yakult Honsha Co Ltd
Original Assignee
Yakult Honsha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yakult Honsha Co Ltd filed Critical Yakult Honsha Co Ltd
Priority to JP2013260423A priority Critical patent/JP6153461B2/en
Publication of JP2015116140A publication Critical patent/JP2015116140A/en
Application granted granted Critical
Publication of JP6153461B2 publication Critical patent/JP6153461B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

本発明は、酸性発酵乳を含む検体中の対象微生物を回収する方法、当該回収方法を利用する検体の品質判定方法及び対象微生物の活性評価方法に関する。   The present invention relates to a method for recovering a target microorganism in a sample containing acidic fermented milk, a method for determining the quality of a sample using the recovery method, and a method for evaluating the activity of the target microorganism.

従来から、各種微生物の回収は、飲食品検査、臨床検査、環境検査など、幅広い分野で必要とされている。例えば、ヨーグルトなどの発酵乳製品は、乳酸菌、ビフィズス菌、酵母等の各種微生物を利用しており、整腸作用などの効果を期待して広く飲食されているところ、その評価においては、有用微生物の「生菌数」が指標とされることが多いため、発酵乳製品から微生物を高収率かつ生きたままの状態で回収することが必要となっている。   Conventionally, collection of various microorganisms has been required in a wide range of fields such as food and beverage inspection, clinical inspection, and environmental inspection. For example, fermented dairy products such as yogurt use various microorganisms such as lactic acid bacteria, bifidobacteria and yeast, and are widely eaten and eaten with the expectation of effects such as intestinal regulation. Therefore, it is necessary to recover microorganisms from fermented milk products in a high yield and in a alive state.

遺伝子工学の発展に伴い、有用微生物自体やその代謝産物の生理効果に着目した研究も数多くなされている。最近では、飲食品中の有用微生物の状態や有効成分を調べることにより、微生物等の生理効果のメカニズムを探る研究も進展しており、その中では、生菌ばかりでなく死菌も各種の生理効果を奏することが判明している。関連の研究においては、一定数量以上の微生物を回収することが実験プロトコル上必要となることもあり、例えば、レクチンマイクロアレイなどの技術を用いて、回収後の微生物表面に存在する多糖や糖鎖が付加された菌体成分を解析する場合やシュガーマイクロアレイなどの技術を用いて、回収後の微生物表面に存在する蛋白質を解析する場合がこれにあたる。また、微生物の測定を正確かつ容易に行うため、これらの研究に供する試料には、実験を阻害する夾雑物の低減された精製度の高いサンプルの提供が求められることから飲食品や化粧品等をそのまま使用することはできず、検体中の微生物を高収率で、また、検体中の状態を反映したまま回収する方法が求められていた。   Along with the development of genetic engineering, many studies have focused on the physiological effects of useful microorganisms and their metabolites. Recently, research into the mechanisms of physiological effects of microorganisms by examining the state and active ingredients of useful microorganisms in foods and drinks has been progressing. Among them, not only live bacteria but also dead bacteria have various physiological functions. It has been found to be effective. In related research, it may be necessary to collect more than a certain amount of microorganisms in the experimental protocol. For example, using techniques such as lectin microarrays, polysaccharides and sugar chains present on the surface of microorganisms after collection may be used. This is the case when analyzing the added bacterial cell component or analyzing the protein present on the surface of the recovered microorganism using a technique such as sugar microarray. In addition, in order to accurately and easily measure microorganisms, it is necessary to provide samples with a high degree of purification with reduced contaminants that hinder the experiment. There has been a demand for a method for recovering microorganisms in a specimen in a high yield and reflecting the state in the specimen, since it cannot be used as it is.

微生物を回収する方法としては、例えば検体、すなわち飲食品、化粧品、医薬品などを適当な溶媒で希釈したうえ、微生物の生育に適した成分を含む寒天培地に塗布し、所定期間培養を行って増殖した微生物のコロニーを回収し、必要に応じ、更に集積培養して濃度を高めてから遠心分離などの手段を用いて微生物を回収する方法がある。   As a method for recovering microorganisms, for example, a sample, that is, a food, drink, cosmetics, pharmaceutical, or the like is diluted with an appropriate solvent, applied to an agar medium containing components suitable for the growth of microorganisms, and cultured for a predetermined period of time for proliferation. There is a method in which colonies of collected microorganisms are collected and, if necessary, further concentrated and cultured to increase the concentration, and then the microorganisms are collected using means such as centrifugation.

しかし、この方法では、培地上でコロニーを形成できる微生物しか検出することができず死菌の回収は不可能であること、寒天培地は検体中と環境が異なることなどから、当該寒天培地から採取した微生物が、元の検体中の状態を反映しているかが不明であるという問題点があった。また、検体中に培地を濁らせるような夾雑物が含まれていることも多いため、培養後に寒天培地上に出現したコロニーを検出する段階で検出が不正確となることもある。   However, with this method, only microorganisms that can form colonies on the medium can be detected, and it is impossible to recover dead bacteria, and the agar medium is collected from the agar medium because the environment differs from that in the sample. There is a problem that it is unclear whether or not the microorganisms reflected reflect the state in the original specimen. In addition, since the sample often contains impurities that make the medium turbid, detection may be inaccurate at the stage of detecting colonies that appear on the agar medium after culturing.

こうした問題を解決するための手段として、エマルジョン粒子と微生物を含む検体について、当該エマルジョン粒子を微生物の大きさよりも微粒子化し、その後濾過することで、微粒子化したエマルジョン粒子を除いたうえ微生物を回収する方法(特許文献1)が知られている。しかしながら、これらの方法は、煩雑な操作を要し、回収コストが高価であるとともに、処理後の検体の精製度が低く十分な量の微生物を回収できないため、回収された生菌及び死菌の表層構造の解析や検体の有効性確認等に用い難いという問題がある。また、微生物の活性を維持しつつ生菌を回収することも困難であった。   As a means for solving these problems, for the specimen containing emulsion particles and microorganisms, the emulsion particles are made finer than the size of the microorganisms, and then filtered to remove the finely divided emulsion particles and collect the microorganisms. A method (Patent Document 1) is known. However, these methods require cumbersome operations, are expensive to collect, and have a low degree of purification of the specimen after treatment, so that a sufficient amount of microorganisms cannot be collected. There is a problem that it is difficult to use for the analysis of the surface layer structure and the validity confirmation of the specimen. It was also difficult to recover viable bacteria while maintaining the activity of the microorganisms.

特開2006−94848号JP 2006-94848 A

従って、本発明は、簡易、低コスト、高収率かつ精製度高く検体中の微生物を回収する方法を提供することを課題とする。また、本発明は、微生物の活性を維持した状態で、生存率高くその回収を行う方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a method for recovering microorganisms in a sample simply, at low cost, in a high yield and with a high degree of purification. Another object of the present invention is to provide a method for recovering the microorganism with high survival rate while maintaining the activity of the microorganism.

本発明者らは、上記課題を解決するために鋭意研究した結果、酸性発酵乳を含む検体をpH5.4以上に調整する工程、検体を遠心分離する工程、および、検体もしくは対象微生物を含む画分に高分子有機物分解酵素を加え回収阻害因子を分解する工程を含む方法を用いることで、検体中の微生物の生死に関わらず、検体中の状態を反映したまま、当該微生物を簡易かつ高い精製度で高収率に回収できること、当該微生物が生きた微生物を含む場合には、その生存率、コロニー形成能等の活性を維持したまま回収できることを見出し、本発明を完成した。   As a result of diligent research to solve the above-mentioned problems, the present inventors have determined that a sample containing acidic fermented milk is adjusted to pH 5.4 or higher, a step of centrifuging the sample, and a sample containing the sample or the target microorganism. By using a method that includes the step of adding macromolecular organic matter degrading enzyme to the sample and decomposing the recovery inhibitor, the microorganism can be easily and highly purified while reflecting the state of the sample regardless of whether the microorganism in the sample is alive or dead. The present invention has been completed by finding that it can be recovered in a high yield with a high yield, and that when the microorganism contains a living microorganism, it can be recovered while maintaining the activity such as the survival rate and colony forming ability.

すなわち、本発明は、酸性発酵乳を含む検体からの対象微生物回収方法であって、以下のa)〜c)工程を含み、かつ、工程b)は工程a)の後に施すことを特徴とする微生物の回収方法を提供するものである。
a)検体溶液のpHを5.4以上に調整する工程、
b)検体を遠心分離する工程、および
c)検体もしくは対象微生物を含む画分に、高分子有機物分解酵素を加え回収阻害因子を分解する工程。
That is, the present invention is a method for recovering a target microorganism from a specimen containing acidic fermented milk, and includes the following steps a) to c), and step b) is performed after step a): A method for recovering microorganisms is provided.
a) adjusting the pH of the sample solution to 5.4 or higher,
b) a step of centrifuging the specimen, and c) a step of adding a macromolecular organic substance-degrading enzyme to the fraction containing the specimen or the target microorganism to decompose the collection inhibitor.

また、本発明は、前記回収方法を用いて前記対象微生物を回収し、回収された微生物を用いて前記検体の品質を判定することを特徴とする検体の品質判定方法を提供するものである。   The present invention also provides a sample quality determination method characterized by recovering the target microorganism using the recovery method and determining the quality of the sample using the recovered microorganism.

更に、本発明は、前記回収方法を用いて前記対象微生物を回収し、回収された対象微生物の活性を評価することを特徴とする対象微生物の活性評価方法を提供するものである。   Furthermore, the present invention provides a method for evaluating the activity of a target microorganism, wherein the target microorganism is recovered using the recovery method, and the activity of the recovered target microorganism is evaluated.

本発明の回収方法によれば、検体中の対象微生物である生菌と死菌とを簡易、低コスト、高収率かつ高い精製度をもって、検体中の状態を反映したまま、回収することができる。また、検体に含まれる微生物が生きた微生物である場合には、当該微生物を生きたまま活性を維持した状態で、高収率に回収することができる。従って、当該回収方法を用いて得た試料は、元の検体の品質判定や回収された微生物の活性評価を正確かつ簡易に実施できるものであり、飲食品や医薬品、化粧品などの品質判定や当該微生物の活性評価を行う際に有用である。   According to the recovery method of the present invention, it is possible to recover live and dead microorganisms as target microorganisms in a sample with simple, low cost, high yield and high purity while reflecting the state in the sample. it can. In addition, when the microorganism contained in the specimen is a living microorganism, the microorganism can be recovered in a high yield while maintaining the activity while being alive. Therefore, the sample obtained using the recovery method can accurately and easily perform the quality determination of the original specimen and the activity evaluation of the recovered microorganisms. This is useful when evaluating the activity of microorganisms.

本発明は、酸性発酵乳を含む検体をpH5.4以上に調整する工程、検体を遠心分離する工程、および、検体もしくは対象微生物を含む画分に高分子有機物分解酵素を加え回収阻害因子を分解する工程を経ることで、検体中に存在する回収阻害因子を低減し、検体中の状態を反映したまま、より多くの対象微生物を回収することを特徴とするものである。   The present invention includes a step of adjusting a sample containing acidic fermented milk to a pH of 5.4 or higher, a step of centrifuging the sample, and decomposing the collection inhibitor by adding a macromolecular organic substance-degrading enzyme to the fraction containing the sample or the target microorganism. Through this step, the collection inhibitory factor present in the specimen is reduced, and more target microorganisms are collected while reflecting the state in the specimen.

本発明において、「発酵乳」は、乳由来成分を含む発酵物であれば特に限定されず、例えば、牛乳、ヤギ乳、ヒツジ乳、ウマ乳等の獣乳、粉乳や脱脂粉乳からの還元乳、クリーム等の乳成分を含む培地を原料とし、これに乳酸菌やビフィズス菌、酵母等を添加発酵させた発酵物、またその加工物、希釈物、処理物等が挙げられ、乳および乳製品の成分規格等に関する省令(乳等省令)で規定されたはっ酵乳に限定されるものではない。   In the present invention, “fermented milk” is not particularly limited as long as it is a fermented product containing milk-derived components. For example, animal milk such as cow's milk, goat milk, sheep milk, horse milk, reduced milk from powdered milk or skimmed milk powder. In addition, fermented products obtained by adding and fermenting lactic acid bacteria, bifidobacteria, yeast, etc. to a medium containing milk components such as cream, processed products, diluted products, processed products, etc. It is not limited to fermented milk specified by a ministerial ordinance (Ministerial Ordinance on Milk, etc.) regarding ingredient specifications.

本発明の「酸性発酵乳を含む検体」(以下、検体ということがある)とは、発酵乳自体又は発酵乳を含む組成物のうちpHが5.4よりも低いものをいう。また、検体のpHは5.3以下であることが好ましく、さらにpHが3.0〜5.2、特にpHが3.4〜5.2であることが好ましい。検体の形態としては、飲食品、化粧品、医薬品等が挙げられ、飲食品もしくは化粧品が好ましく、飲食品が特に好ましい。検体のうち、例えば乳等省令でいうはっ酵乳や乳製品乳酸菌飲料等の飲食品には、通常生菌と死菌とが混在しており、加熱殺菌を施した加工食品等には、死菌のみが含まれている。本発明の回収方法は、生菌と死菌のいずれか、または両方を含む検体に用いることができるが、特に生菌を含むものに好適に用いられる。なお、本発明において生菌とは、コロニー形成能を有している菌のことをいう。また、死菌とはコロニー形成能を有していない菌をいい、死んだ菌だけではなく、コロニー形成能を失っており膜の安定性や酵素活性を有する菌等も包含する。   The “specimen containing acidic fermented milk” of the present invention (hereinafter sometimes referred to as “specimen”) refers to a fermented milk itself or a composition containing fermented milk having a pH lower than 5.4. Further, the pH of the specimen is preferably 5.3 or less, more preferably 3.0 to 5.2, and particularly preferably 3.4 to 5.2. Examples of the form of the sample include foods and drinks, cosmetics, pharmaceuticals, etc., foods and drinks or cosmetics are preferable, and foods and drinks are particularly preferable. Among the specimens, for example, fermented milk and dairy lactic acid bacteria beverages such as milk ordinances usually contain live bacteria and dead bacteria, and processed foods that have been heat-sterilized contain dead bacteria. Only included. The recovery method of the present invention can be used for specimens containing either or both live and dead bacteria, but is particularly suitable for those containing live bacteria. In addition, in this invention, a living microbe means the microbe which has colony formation ability. In addition, dead bacteria refer to bacteria that do not have colony-forming ability, and include not only dead bacteria but also bacteria that have lost colony-forming ability and have membrane stability and enzyme activity.

本発明において、「対象微生物」は特に限定されず、例えば、ラクトバチルス・カゼイ、ラクトバチルス・アシドフィルス、ラクトバチルス・プランタラム、ラクトバチルス・ブレビス、ラクトバチルス・コリニフォルミス、ラクトバチルス・ガセリ、ラクトバチルス・ゼアエ、ラクトバチルス・ジョンソニー、ラクトバチルス・デルブルッキィ サブスピーシーズ.デルブルッキィ、ラクトバチルス・デルブルッキィ サブスピーシーズ.ブルガリカス等のラクトバチルス属細菌、ストレプトコッカス・サーモフィルス等のストレプトコッカス属細菌、ラクトコッカス・ラクチス、ラクトコッカス・プランタラム、ラクトコッカス・ラフィノラクチス等のラクトコッカス属細菌、ロイコノストック・メセンテロイデス、ロイコノストック・メセンテロイデス サブスピーシーズ.クレモリス、ロイコノストック・ラクチス等のロイコノストック属細菌もしくはエンテロコッカス・フェーカリス、エンテロコッカス・フェシウム等のエンテロコッカス属細菌等などの乳酸菌や、ビフィドバクテリウム・ビフィダム、ビフィドバクテリウム・ブレーベ、ビフィドバクテリウム・ロンガム、ビフィドバクテリウム・アニマリス、ビフィドバクテリウム・アドレセンティス、ビフィドバクテリウム・アンギュラータム、ビフィドバクテリウム・カテヌラータム、ビフィドバクテリウム・シュードカテヌラータム等のビフィドバクテリウム属細菌、及びサッカロマイセス・セルビシエ等のサッカロマイセス属、シゾサッカロマイセス属等の酵母が挙げられ、このうち、対象微生物の回収率、生菌の生存率、菌のコロニー形成能の維持、菌体が有する生理効果の探索の点からは乳酸菌が好ましく、特にラクトバチルス属細菌が好ましい。なお、これらの微生物は1種又は2種以上含んでいてもよい。   In the present invention, the “target microorganism” is not particularly limited. For example, Lactobacillus casei, Lactobacillus acidophilus, Lactobacillus plantarum, Lactobacillus brevis, Lactobacillus coriniformis, Lactobacillus gasseri, lacto Bacillus zeae, Lactobacillus johnsonii, Lactobacillus delbrukki Subspecies. Delbrukki, Lactobacillus delbrukki Subspecies. Lactobacillus bacteria such as Bulgaricus, Streptococcus bacteria such as Streptococcus thermophilus, Lactococcus lactarus, Lactococcus plantarum, Lactococcus raffinolactis and other Lactococcus bacteria, Leuconostoc mesenteroides, Leucono Stock Mecenteroides Subspecies. Lactobacillus such as Cremoris, Leuconostoc lacticus, etc., or Enterococcus faecalis, Enterococcus facium, etc., lactic acid bacteria, Bifidobacterium bifidum, Bifidobacterium breve, Bifidobacteria Bifidobacterium such as Um longum, Bifidobacterium animaris, Bifidobacterium adrecentis, Bifidobacterium angularum, Bifidobacterium catenuratum, Bifidobacterium pseudocatenulatum Genus bacteria and yeasts such as Saccharomyces cerevisiae, Saccharomyces cerevisiae, etc., among which the recovery rate of target microorganisms, viability of viable bacteria, and colony-forming ability of bacteria , Preferably lactic acid bacteria in terms of the search for the physiological effects possessed by the bacteria, in particular Lactobacillus bacteria are preferred. In addition, these microorganisms may contain 1 type, or 2 or more types.

本発明において、「回収阻害因子」とは、検体に元来含まれている夾雑物の一種であり、検体からの対象微生物の分離回収において、当該微生物と、その他の夾雑物との分離を阻害する糖質や高分子有機物をいう。回収阻害因子が対象微生物に直接作用してその分離回収を妨げる場合や、回収阻害因子の存在により夾雑物が対象微生物の画分に残存し、精製度が低下する場合などがある。回収阻害因子は、物理的、化学的に分離回収を阻害する因子であれば特に制限はなく、検体中に存在する蛋白質、糖質、脂質、多糖類、果汁等の果実由来成分等を含む夾雑物が挙げられ、より具体的には、蛋白質、糖質、脂質、多糖類が挙げられる。   In the present invention, the “recovery inhibiting factor” is a kind of contaminants originally contained in the specimen, and inhibits separation of the microorganism from other contaminants in the separation and recovery of the target microorganism from the specimen. Carbohydrates and high molecular organic substances. There are cases where the collection inhibitory factor acts directly on the target microorganism to prevent its separation and recovery, or the presence of the collection inhibitory factor causes impurities to remain in the fraction of the target microorganism, resulting in a reduction in the degree of purification. The collection inhibitor is not particularly limited as long as it is a factor that physically and chemically inhibits the separation and recovery, and includes impurities such as proteins, carbohydrates, lipids, polysaccharides, fruit-derived components, etc. present in the sample. More specifically, examples include proteins, carbohydrates, lipids, and polysaccharides.

本発明の「検体のpHを5.4以上に調整する工程」(pH調整工程)としては、例えば検体にNaOHや緩衝液等のpH調整剤を加えてpHを5.4以上とする方法が挙げられる。本発明に至る研究において、発酵乳中では乳蛋白質がカゼインミセルとして対象微生物に接着し、遠心分離等における対象微生物の回収を妨げている可能性が示唆されている。一般的に、pHを上げると発酵乳中のカゼインミセルは、カゼインミセル同士の凝集がなくなり各カゼインミセルが溶液中に浮遊した状態へと変化することから、カゼインミセルを遠心分離により回収することができなくなる。そのため、pH調整工程により、カゼインミセルに接着している対象微生物も溶液中に浮遊し、対象微生物の回収率が更に低下することが予想されていた。しかし、意外にも、pH調整工程を施すことにより、回収阻害因子である乳蛋白質のみが遠心分離後の上清へと移行し、後述する分離工程により、検体中の対象微生物を効率よく回収できることが明らかとなった。これはpH調整工程でカゼインミセルと対象微生物の接着が破壊されたものと考えられるが詳細は不明である。対象微生物の回収率、生菌の生存率及び精製度向上の観点から、検体のpHはpH5.4〜pH10とすることが好ましく、pH5.8〜pH10とすることが更に好ましく、pH6〜pH8とすることが特に好ましい。pH調整に使用するpH調整剤は特に限定されず、NaOHやリン酸カルシウム等のリン酸緩衝液等の緩衝液を用いることができ、対象微生物の回収率を高める観点からはNaOHが特に好ましい。   As the “step of adjusting the pH of the specimen to 5.4 or higher” (pH adjusting step) of the present invention, for example, a method of adding a pH adjusting agent such as NaOH or a buffer to the specimen to adjust the pH to 5.4 or higher. Can be mentioned. In the research leading to the present invention, it has been suggested that milk protein adheres to target microorganisms as casein micelles in fermented milk, thereby hindering recovery of the target microorganisms by centrifugation or the like. Generally, when the pH is increased, the casein micelles in the fermented milk disappear from the aggregation of the casein micelles, and each casein micelle changes to a state of floating in the solution. Therefore, the casein micelles can be recovered by centrifugation. become unable. For this reason, it has been expected that the target microorganism adhered to the casein micelles also floats in the solution by the pH adjustment step, and the recovery rate of the target microorganism is further reduced. However, surprisingly, by performing the pH adjustment step, only the milk protein that is a recovery inhibitory factor is transferred to the supernatant after centrifugation, and the target microorganism in the sample can be efficiently recovered by the separation step described later. Became clear. This is considered that the adhesion between the casein micelle and the target microorganism was destroyed in the pH adjustment step, but the details are unknown. From the viewpoint of improving the recovery rate of target microorganisms, viability of live bacteria, and purification, the pH of the specimen is preferably pH 5.4 to pH 10, more preferably pH 5.8 to pH 10, and pH 6 to pH 8. It is particularly preferable to do this. The pH adjuster used for pH adjustment is not particularly limited, and a buffer solution such as a phosphate buffer solution such as NaOH or calcium phosphate can be used, and NaOH is particularly preferable from the viewpoint of increasing the recovery rate of the target microorganism.

本発明の「検体を遠心分離する工程」(分離工程)は、遠心分離により行われる。微生物の回収率、生存率の観点からは、遠心分離は、4℃〜10℃で、3000×g以上、特に7000〜8000×gで、8〜30分程度行うことが好ましい。分離工程は、pH調整や酵素処理を行った検体にそのまま施すこともできるが、検体中に存在する夾雑物、例えば糖質等の水溶性成分の除去効率をあげるため、溶媒(希釈液)を添加し検体を希釈してから行うことが好ましい。希釈の割合は特に制限されないが、検体を2〜10倍、好ましくは3〜6倍に希釈するよう溶媒を添加することが好ましい。希釈液としては、例えば水、ペプトン生理食塩水、ペプトン水、PBS(リン酸緩衝液)、リンゲル液、生理食塩水や、グリシン(Glycine)、2−(N−モリホリノ)エタンスルホン酸(Mes)、N−(2−アセトアミド)イミノ二酢酸(ADA)、N−2−ヒドロキシエチルピペラジン−N′−2−エタンスルホン酸(HEPES)、トリス(ヒドロキシメチル)アミノ−メタン(Tris)、イミダゾール(Imidazole)、2−(シクロヘキシルアミノ)プロパンスルホン酸(CHES)、3−(シクロヘキシルアミノ)プロパンスルホン酸(CAPS)、ナトリウム/カリウム リン酸塩(Na/K Phosphate)、ビス(2−ヒドロキシエチル)アミノ−トリス(ヒドロキシメチル)−メタン(Bis-Tris)及び3−モルフォリノプロパンスルホン酸(MOPS)を含む水溶液等を使用することができる。また、これらの溶媒はトレハロース、塩化ナトリウム、グルタミン酸、アルギニン、モノラウリン酸ポリオキシエチレンソルビタン(Tween20)等を含んでいてもよい。検体溶液のpH調整工程におけるpH調整に緩衝液を用いる場合には、緩衝液自体を希釈液として添加することによりpH調整と希釈を同時に行うことも可能である。   The “step of centrifuging a specimen” (separation step) of the present invention is performed by centrifugation. From the viewpoint of the recovery rate and survival rate of microorganisms, the centrifugation is preferably performed at 4 ° C. to 10 ° C. at 3000 × g or more, particularly 7000 to 8000 × g, for about 8 to 30 minutes. The separation step can be applied as it is to the sample subjected to pH adjustment or enzyme treatment, but in order to increase the removal efficiency of water-soluble components such as carbohydrates present in the sample, a solvent (diluent) is used. It is preferable to carry out after adding and diluting the specimen. The ratio of dilution is not particularly limited, but it is preferable to add a solvent so as to dilute the specimen 2 to 10 times, preferably 3 to 6 times. Examples of the diluent include water, peptone physiological saline, peptone water, PBS (phosphate buffer), Ringer's solution, physiological saline, glycine (Glycine), 2- (N-morpholino) ethanesulfonic acid (Mes), N- (2-acetamido) iminodiacetic acid (ADA), N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES), tris (hydroxymethyl) amino-methane (Tris), imidazole (Imidazole) 2- (cyclohexylamino) propanesulfonic acid (CHES), 3- (cyclohexylamino) propanesulfonic acid (CAPS), sodium / potassium phosphate (Na / K Phosphate), bis (2-hydroxyethyl) amino-tris It is possible to use an aqueous solution containing (hydroxymethyl) -methane (Bis-Tris) and 3-morpholinopropanesulfonic acid (MOPS). it can. These solvents may contain trehalose, sodium chloride, glutamic acid, arginine, monolauric acid polyoxyethylene sorbitan (Tween 20) and the like. When a buffer solution is used for pH adjustment in the pH adjustment step of the sample solution, pH adjustment and dilution can be performed simultaneously by adding the buffer solution itself as a diluent.

本発明の検体もしくは分離工程を経て分離した対象微生物を含む画分に、高分子有機物分解酵素を加え回収阻害因子を分解する工程(酵素処理工程)では、検体自体もしくは分離工程で得られた対象微生物を含む画分に、高分子有機物分解酵素を加え、当該対象微生物を含む画分に残存した回収阻害因子を分解する。また、対象微生物や検体の濃度により、適宜、溶媒を添加してもよい。高分子有機物分解酵素としては、回収阻害因子が蛋白質である場合は蛋白質分解酵素が、回収阻害因子が脂質である場合は、リパーゼ、ホスホリパーゼ等の脂質分解酵素が、回収阻害因子が多糖類である場合は、セルラーゼ、アミラーゼ、ペクチナーゼ等の多糖類分解酵素が使用できる。酵素処理は使用する酵素の至適温度付近で行えばよく、蛋白質分解酵素であれば37〜40℃が好ましい。酵素処理時の溶媒は、PBS、水、ペプトン生理食塩水、ペプトン水、リンゲル液、生理食塩水等が使用できる。   In the step (enzyme treatment step) of adding the macromolecular organic matter-degrading enzyme to the fraction containing the sample or the target microorganism separated through the separation step of the present invention and decomposing the recovery inhibitor (the enzyme treatment step), A macromolecular organic matter-degrading enzyme is added to the fraction containing the microorganism to decompose the recovery inhibitor remaining in the fraction containing the target microorganism. In addition, a solvent may be appropriately added depending on the concentration of the target microorganism or the specimen. As the macromolecular organic matter degrading enzyme, when the recovery inhibitor is a protein, the proteolytic enzyme is used. When the recovery inhibitor is a lipid, a lipolytic enzyme such as lipase or phospholipase is used, and the recovery inhibitor is a polysaccharide. In some cases, polysaccharide-degrading enzymes such as cellulase, amylase, and pectinase can be used. The enzyme treatment may be performed near the optimum temperature of the enzyme to be used, and 37 to 40 ° C. is preferable for a proteolytic enzyme. As the solvent for the enzyme treatment, PBS, water, peptone physiological saline, peptone water, Ringer's solution, physiological saline and the like can be used.

前記蛋白質分解酵素は、検体中の蛋白質の種類に応じて適宜選択すればよく、対象微生物の増殖を阻害しない酵素が好ましい。蛋白質分解酵素の具体例としては、プロテアーゼ、ペプチダーゼ、パパイン、トリプシン、キモトリプシン、プロナーゼ等が挙げられ、アルカリ性領域、中性領域又は酸性領域で反応至適pHを示すいずれの蛋白質分解酵素であってもよいが、中性領域で反応至適pHを示す蛋白質分解酵素が好ましい。   The proteolytic enzyme may be appropriately selected according to the type of protein in the specimen, and is preferably an enzyme that does not inhibit the growth of the target microorganism. Specific examples of proteolytic enzymes include protease, peptidase, papain, trypsin, chymotrypsin, pronase, etc., and any proteolytic enzyme that exhibits an optimum pH in the alkaline region, neutral region or acidic region. A proteolytic enzyme that exhibits an optimum reaction pH in the neutral region is preferred.

高分子有機物分解酵素としては、蛋白質分解酵素、特に、乳蛋白質分解酵素を用いることが、高い精製度、対象微生物の生存率、コロニー形成能維持等の効果が奏されるため好ましい。乳蛋白質分解酵素を用いる場合の処理条件は特に限定されないが、処理時のpHは、例えばプロテアーゼであればpH5.4〜pH10の範囲が好ましく、pH5.8〜pH10がより好ましく、pH6〜pH8の範囲が特に好ましい。また、酵素の添加量は、検体1gあたり0.15U以上が好ましく、0.15〜1.5Uがより好ましく、0.15〜0.3Uが特に好ましい。処理時間は5〜30分が好ましく、5〜10分が特に好ましい。ここで、力価(U)とは酵素の反応至適pH・温度において、1分間に1μmolの基質の反応に関与する酵素の活力(酵素力価)のことを示し、プロテアーゼであればカゼインを基質とし、酵素の反応至適pH・温度において、1分間に1μmolのチロシンを遊離する活性をいう。また、酵素処理の効率をあげるためには、検体もしくは分離工程を経て分離した対象微生物を含む画分を2〜10倍、特に2〜5倍に濃縮し、酵素処理を行うことが好ましい。この場合の酵素の添加量は元の検体の量から算出すればよく、例えば10gの検体に分離工程を施して得られた対象微生物を含む画分に対して溶媒を2gとなるように添加した場合は、1.5U以上の酵素を使用することが好ましい。酵素反応の停止は、冷却や加熱処理による酵素の失活など通常の手段を用いればよいが、菌の活性を維持し、生存率の低下を防ぐためには、検体を冷却して酵素反応を停止することが好ましい。また、本発明では、酵素処理を施すことにより、生菌の回収率が大幅に上昇することが見出された。酵素が対象微生物の細胞膜に作用して菌の生存が阻害されることが懸念されたが、意外にも、この酵素処理工程を施すことによって、生菌が多く回収され、検体中の生菌と死菌の割合を反映した状態で菌体を回収することが可能となった。また、菌体それぞれが分離し菌の表層構造に関連した解析をしやすい試料が得られるという点でも本発明の回収方法は非常に有用である。   It is preferable to use a proteolytic enzyme, in particular, a milk proteolytic enzyme, as the high molecular organic substance degrading enzyme because of its high purity, viability of the target microorganism, and maintenance of colony forming ability. The treatment conditions in the case of using milk proteolytic enzyme are not particularly limited, but the pH at the time of treatment is preferably in the range of pH 5.4 to pH 10, for example, protease, more preferably pH 5.8 to pH 10, and pH 6 to pH 8. A range is particularly preferred. In addition, the amount of enzyme added is preferably 0.15 U or more per gram of specimen, more preferably 0.15 to 1.5 U, and particularly preferably 0.15 to 0.3 U. The treatment time is preferably 5 to 30 minutes, particularly preferably 5 to 10 minutes. Here, the titer (U) indicates the activity (enzyme titer) of the enzyme involved in the reaction of 1 μmol of the substrate per minute at the optimum pH and temperature of the enzyme reaction. The activity of liberating 1 μmol of tyrosine per minute at the optimum pH and temperature of the enzyme reaction as a substrate. Further, in order to increase the efficiency of the enzyme treatment, it is preferable to concentrate the fraction containing the specimen or the target microorganism separated through the separation step 2 to 10 times, particularly 2 to 5 times, and perform the enzyme treatment. The amount of enzyme added in this case may be calculated from the amount of the original sample. For example, a solvent was added to a fraction containing the target microorganism obtained by subjecting a 10 g sample to the separation step to 2 g. In some cases, it is preferable to use an enzyme of 1.5 U or more. The enzyme reaction can be stopped by using normal means such as cooling or inactivating the enzyme by heat treatment. However, in order to maintain the fungal activity and prevent the survival rate from decreasing, the sample is cooled and the enzyme reaction is stopped. It is preferable to do. Further, in the present invention, it has been found that the recovery rate of viable bacteria is significantly increased by performing the enzyme treatment. It was feared that the enzyme acts on the cell membrane of the target microorganism and the survival of the fungus is inhibited, but surprisingly, by carrying out this enzyme treatment step, many viable bacteria are recovered, and the live bacteria in the specimen It became possible to collect the bacterial cells in a state reflecting the proportion of dead bacteria. In addition, the recovery method of the present invention is very useful in that each cell can be separated and a sample that can be easily analyzed in relation to the surface layer structure of the bacterium can be obtained.

上記分離工程、酵素処理工程では、所望の段階で、分離工程もしくは酵素処理工程を経た対象微生物に溶媒を加え洗浄することによる、対象微生物に洗浄回収処理を施す工程(洗浄回収工程)を行うことが好ましく、検体と回収阻害因子の性質に応じて、これらの工程を適宜組み合わせて使用できる。洗浄回収処理を施すことにより蛋白質や糖質等の夾雑物を十分に除去することができる。洗浄に使用する洗浄液のpHは特に限定されないが、pH3〜pH10のものを使用することができ、特にpH6〜pH10であることが好ましい。具体的には、ペプトン生理食塩水、ペプトン水、PBS、リンゲル液、生理食塩水や、Glycine、Mes、ADA、HEPES、Tris、Imidazole、CHES、CAPS、MOPS、Na/K Phosphate、Bis-Tris等を含む水溶液を洗浄液として使用することができるが、Glycine、Mes、ADA、HEPES、Tris、Imidazole、CHES、CAPS、MOPS、Na/K Phosphate及びBis-Trisのうち1種又は2種以上を含む水溶液を洗浄液として使用することが、蛋白質の回収量が高く、また、対象微生物が生菌である場合その生存率が高いため好ましく、対象微生物の活性維持、表層構造維持の観点から、Imidazole、CHES、CAPS、Bis-Tris、MOPSのうち1種又は2種以上を含む水溶液を洗浄液として使用することが特に好ましい。また、溶媒への添加物は、同様の観点からトレハロース、塩化ナトリウム、グルタミン酸、アルギニン、モノラウリン酸ポリオキシエチレンソルビタン(Tween20)が好ましく、トレハロースまたは塩化ナトリウムが特に好ましい。洗浄から対象微生物の回収までの具体例としては、例えば、酵素処理工程後の検体を溶媒によって2〜10倍程度に希釈し、分離工程と同様の条件で遠心分離し対象微生物を回収する方法が挙げられる。遠心分離後に溶媒を加え、洗浄回収する場合には、洗浄液となる溶媒の添加と遠心分離とを2回以上行うことが好ましい。また、対象微生物の回収方法としては、遠心分離のほか、抗体と対象微生物との抗原抗体反応による捕捉等が挙げられる。   In the separation step and the enzyme treatment step, a step of washing and collecting the target microorganism (washing and collecting step) is performed at a desired stage by adding a solvent to the target microorganism that has passed through the separation step or the enzyme treatment step and washing it. These steps can be used in appropriate combination depending on the properties of the sample and the recovery inhibitory factor. By performing the washing and recovery treatment, contaminants such as proteins and sugars can be sufficiently removed. The pH of the cleaning solution used for cleaning is not particularly limited, but a pH of 3 to 10 can be used, and pH 6 to 10 is particularly preferable. Specifically, peptone saline, peptone water, PBS, Ringer's solution, physiological saline, Glycine, Mes, ADA, HEPES, Tris, Imidazole, CHES, CAPS, MOPS, Na / K Phosphate, Bis-Tris, etc. An aqueous solution containing one or more of Glycine, Mes, ADA, HEPES, Tris, Imidazole, CHES, CAPS, MOPS, Na / K Phosphate and Bis-Tris can be used as a cleaning solution. It is preferable to use it as a washing solution because the amount of recovered protein is high and the survival rate is high when the target microorganism is a living microorganism. From the viewpoint of maintaining the activity of the target microorganism and maintaining the surface layer structure, Imidazole, CHES, CAPS It is particularly preferable to use an aqueous solution containing one or more of Bis-Tris and MOPS as a cleaning solution. From the same viewpoint, the additive to the solvent is preferably trehalose, sodium chloride, glutamic acid, arginine, or polyoxyethylene sorbitan monolaurate (Tween 20), and particularly preferably trehalose or sodium chloride. As a specific example from the washing to the recovery of the target microorganism, for example, there is a method in which the specimen after the enzyme treatment step is diluted about 2 to 10 times with a solvent and centrifuged under the same conditions as in the separation step to recover the target microorganism. Can be mentioned. When a solvent is added after centrifugation and washing and recovery are performed, it is preferable to add a solvent to be a washing solution and perform centrifugation twice or more. Examples of the method for collecting the target microorganism include centrifugation and capture by an antigen-antibody reaction between the antibody and the target microorganism.

pH調整工程、分離工程及び酵素処理工程は、分離工程をpH調整工程の後に施すこと以外は、前記のとおり適宜組み合わせて使用できる。また、分離工程はpH調整工程の直後に行う必要はなく、その間あるは同時に酵素処理工程等の処理を行ってもよいが、酵素処理の効率性、生菌の生存率の観点からは、酵素処理工程は、pH調整工程及び分離工程を経た後に行うことが好ましい。また、前述のとおり、分離工程、酵素処理工程では、所望の段階で、洗浄回収工程を行うことができる。例えば、検体のpH調整後、遠心分離により対象微生物を分離し、分離された対象微生物に酵素処理を施した後、当該酵素処理後の溶液に洗浄回収処理を行う方法、検体中にpH調整剤および高分子有機物分解酵素を添加し、酵素処理を施した後、遠心分離により対象微生物を分離し、分離された対象微生物に洗浄回収処理を行う方法、検体のpH調整後、遠心分離により対象微生物を分離し、分離された対象微生物に洗浄回収処理をし、得られた対象微生物に酵素処理を施したうえで、更に、洗浄回収を行う方法等が挙げられる。また、精製度の向上、対象微生物の生存率、コロニー形成能の維持等の観点からは、検体溶液のpH調整後、遠心分離により対象微生物と回収阻害因子を分離し、対象微生物を含む画分に酵素処理を施すことが好ましく、さらにその酵素処理後に複数回、洗浄回収処理を繰り返す方法がより好ましい。更に具体的には、酸性発酵乳を含む検体のpHを5.4以上に調整した後、遠心分離により対象微生物を分離し、分離された対象微生物に乳蛋白質分解酵素を作用させた後、当該酵素処理後の溶液に洗浄回収処理を行うことが特に好ましい。   The pH adjustment step, the separation step, and the enzyme treatment step can be used in appropriate combination as described above except that the separation step is performed after the pH adjustment step. Further, the separation step does not need to be performed immediately after the pH adjustment step, and during that time, the treatment such as the enzyme treatment step may be performed at the same time, but from the viewpoint of the efficiency of the enzyme treatment and the viability of viable bacteria The treatment step is preferably performed after the pH adjustment step and the separation step. Further, as described above, in the separation step and the enzyme treatment step, the washing and recovery step can be performed at a desired stage. For example, after adjusting the pH of the specimen, the target microorganism is separated by centrifugation, the separated target microorganism is subjected to an enzyme treatment, and then the solution after the enzyme treatment is washed and recovered. The pH adjuster in the specimen And a method of separating the target microorganism by centrifugation after adding an enzyme-degrading enzyme and polymer treatment, and washing and recovering the separated target microorganism, adjusting the pH of the specimen, and then subjecting the target microorganism to centrifugation And the like, and subjecting the separated target microorganisms to washing and recovery treatment, subjecting the obtained target microorganisms to enzyme treatment, and further washing and recovery methods. In addition, from the viewpoint of improving the degree of purification, maintaining the survival rate of the target microorganism, maintaining colony-forming ability, etc., after adjusting the pH of the sample solution, the target microorganism and the collection inhibitor are separated by centrifugation, and the fraction containing the target microorganism is obtained. It is preferable to subject the sample to an enzyme treatment, and a method of repeating the washing and collecting treatment a plurality of times after the enzyme treatment is more preferred. More specifically, after adjusting the pH of the specimen containing acidic fermented milk to 5.4 or more, the target microorganism is separated by centrifugation, and after the milk protein-degrading enzyme is allowed to act on the separated target microorganism, It is particularly preferred that the solution after the enzyme treatment is washed and recovered.

本発明の検体の品質判定方法は、例えば、発酵乳製品に対し、本発明を使用して微生物を回収し、寒天平板培養法等により処理後の検体の生菌数を測定(定量)、または、DAPI染色により生菌、死菌を含む総菌数を測定することにより、当該発酵乳製品の有用性を検証する場合、生菌数や総菌数から検体が設定された基準を満たしているかを判定する場合や検体のロット差の有無を判定する場合、検体中の汚染微生物の有無やその個数を測定する場合、生菌と死菌の比率から検体の保存状態や劣化を検証する場合などに用いることができる。発酵乳製品のpH調整工程及び回収阻害因子の分解工程を経た検体からは、培地を濁らせるような夾雑物が十分に低減されているため、寒天平板培養においては、対象微生物のコロニーの判別が容易になり、比較的小さなコロニーであっても判別が可能となる。結果的に、培養時間を短縮し、コロニーを検出する段階での判別の正確性が高まる。すなわち、従来のように夾雑物の比較的多い検体を用いて寒天平板培養法等により微生物を検出する場合に比較して、検体中の対象微生物を迅速、高感度に検出することができるため、検体、特に有用微生物を含む発酵乳製品など、生菌を含む飲食品の品質判定方法に好適に利用できる。生菌数の測定方法は特に制限されず、通常使用されている寒天平板法等を適宜用いればよい。対象微生物の増殖コロニーの検出は、目視あるいは市販の実体顕微鏡やディジタル光学顕微鏡の使用により行えばよいが、微小なコロニーの検出が容易になる点で、ディジタル光学顕微鏡の使用が好ましい。   The sample quality determination method of the present invention is, for example, for recovering a fermented milk product by using the present invention to collect microorganisms and measuring (quantitatively) the viable count of the sample after treatment by an agar plate culture method or the like, or When verifying the usefulness of the fermented dairy product by measuring the total number of bacteria including viable and dead bacteria by DAPI staining, does the sample satisfy the criteria set based on the number of viable and total bacteria? To determine the presence or number of contaminating microorganisms in a sample, to verify the storage state and deterioration of a sample from the ratio of live and dead bacteria, etc. Can be used. Samples that have undergone the pH adjustment process of fermented dairy products and the decomposition inhibitory factor decomposition process have sufficiently reduced contaminants that make the medium turbid. It becomes easy, and even a relatively small colony can be distinguished. As a result, the culture time is shortened and the accuracy of discrimination at the stage of detecting colonies is increased. In other words, compared to the case where microorganisms are detected by an agar plate culture method using a specimen having a relatively large amount of contaminants as in the past, the target microorganism in the specimen can be detected quickly and with high sensitivity. It can be suitably used in a method for judging the quality of foods and drinks containing live bacteria such as specimens, particularly fermented milk products containing useful microorganisms. The method for measuring the number of viable bacteria is not particularly limited, and a commonly used agar plate method or the like may be used as appropriate. Detection of the growing colonies of the target microorganism may be performed visually or by using a commercially available stereomicroscope or digital optical microscope, but the use of a digital optical microscope is preferred in terms of facilitating detection of minute colonies.

本発明の対象微生物の活性評価方法は、例えば、有用微生物を含む発酵乳製品などの検体から本発明を使用して、対象微生物を回収し、当該微生物の表層構造を電子顕微鏡等を用いて評価する場合、微生物からその生理活性に寄与する有効成分を特定する場合、抗体を用いた抗原抗体反応によって菌体の表層構造に変異が生じているか否かを判定する場合、通常の培養法によりコロニー形成能(CFU)を評価する場合、蛍光色素遊出法等を使用して膜安定性あるいは形態保持能を評価する場合、生菌と死菌の比率による生理活性強度の変化を評価する場合、生菌と死菌に含まれる成分の違いを評価する場合等に用いることができる。なお、例えば上記のような活性評価を生菌、死菌について別々に行いたい場合には、菌体の酵素活性、例えばエステラーゼ活性等を指標に用いることによって、あるいは菌の生死判別に使用される染色法によって生菌死菌を分離して試料とすることもできる。本発明の方法を経て回収された対象微生物は、従来の回収手段を用いた場合に比べ、生菌、死菌を問わず高収率で回収できること、培地等を介していないため製品中の対象微生物をそのままの状態で回収することができること、その表層構造への影響が少なく処理前の活性を維持していることから、活性評価方法に供する検体試料として好ましいものとなっている。   The target microorganism activity evaluation method of the present invention uses, for example, the present invention from a specimen such as a fermented milk product containing useful microorganisms, and the target microorganism is recovered and the surface layer structure of the microorganism is evaluated using an electron microscope or the like. When determining the active ingredient that contributes to its physiological activity from the microorganism, when determining whether or not the surface structure of the cell body has been mutated by the antigen-antibody reaction using the antibody, the colony can be obtained by a normal culture method. When assessing the ability to form (CFU), when assessing membrane stability or form retention using a fluorescent dye emigration method, etc., when assessing changes in physiological activity intensity due to the ratio of viable and dead bacteria, It can be used for evaluating the difference between components contained in live bacteria and dead bacteria. In addition, for example, when it is desired to perform the activity evaluation as described above separately for live bacteria and dead bacteria, it is used by using the enzyme activity of the bacterial cells, for example, esterase activity, as an index, or for determining the survival of the bacteria. It is also possible to separate live bacteria killed by a staining method into a sample. The target microorganism recovered through the method of the present invention can be recovered in a high yield regardless of whether it is live or dead, compared to the case of using conventional recovery means, and because it does not pass through a medium or the like, it is the target in the product. Since microorganisms can be recovered as they are, and their effects on the surface layer structure are small and the activity before the treatment is maintained, they are preferable as specimen samples used for the activity evaluation method.

以下、実施例を挙げて本発明の内容をさらに詳細に説明するが、本発明はこれらにより何ら制約されるものではない。   Hereinafter, the content of the present invention will be described in more detail with reference to examples, but the present invention is not limited by these.

試験例1 発酵乳製品へのpH調整及び分離処理における洗浄液の影響
滅菌容器にヤクルト(無脂乳固形分3.1%、乳脂肪分0.1%、pH3.5、株式会社ヤクルト本社製)を65mL移し、スターラーで撹拌しながら20%NaOH(終濃度0.24%)を一滴ずつ添加してpHを6.7〜6.9に調整した。次に蒸留水を全体が325mL(5倍量)となるように加えて速やかに撹拌し、遠心分離に供する試料とした。試料を30mL容の遠心チューブに分注し、遠心処理を施し(7000×g、10分、4℃:遠心機GRX-220(TOMY)使用(以下、試験例、実施例はすべて同機を使用))、上清をアスピレーターで除いた。集菌後の乳酸菌菌体(ラクトバチルス・カゼイ YIT9029(FERM-BP-1366))に表1に記載の各洗浄液を添加して懸濁し、同様の遠心分離を行い、上清を取り除いた(この作業を3回繰り返した)。回収された菌体を各洗浄液6mLに懸濁して試験試料とし、以下のとおり、総菌数(DAPI法)を測定した。また、遠心分離により回収した上清中の糖質量及び蛋白質量を次のとおり測定した。あわせて、pH調整を行っていない試料(pH3.5)に対し、上記と同様の遠心分離処理を行った。
Test Example 1 Effect of washing liquid on pH adjustment and separation treatment on fermented milk products Yakult (non-fat milk solid content 3.1%, milk fat content 0.1%, pH 3.5, manufactured by Yakult Honsha Co., Ltd.) Was added dropwise with 20% NaOH (final concentration 0.24%) while stirring with a stirrer to adjust the pH to 6.7 to 6.9. Next, distilled water was added so that the whole became 325 mL (5 times amount), and the mixture was rapidly stirred to prepare a sample for centrifugation. Dispense the sample into a 30 mL centrifuge tube and centrifuge (7000 × g, 10 minutes, 4 ° C .: use centrifuge GRX-220 (TOMY) (hereinafter, all test examples and examples use the same machine) ), And the supernatant was removed with an aspirator. After washing the lactic acid bacteria (Lactobacillus casei YIT9029 (FERM-BP-1366)), each washing solution shown in Table 1 was added and suspended, and the same centrifugation was performed to remove the supernatant (this The operation was repeated three times). The collected cells were suspended in 6 mL of each washing solution to obtain test samples, and the total number of bacteria (DAPI method) was measured as follows. In addition, the sugar mass and protein mass in the supernatant recovered by centrifugation were measured as follows. In addition, the same centrifugal treatment as described above was performed on a sample (pH 3.5) that was not adjusted for pH.

DAPI染色による総菌数の測定(DAPI法)
DAPI染色を用いて、試験試料の総菌数を測定した。試験試料をカウント用マイクロスライドグラスに10μL/well添加し、十分乾燥させて固定した後、100%EtOHで5分間処理してから十分乾燥させた。次に、各wellにVecta Shield with DAPI(Vector社)を4.6μL/well添加してカバーグラスを被せ、蛍光顕微鏡(OLYMPUS BX51)で検鏡し菌数を測定した(接眼レンズ10倍、対物レンズ100倍)。DAPI法による総菌数は全て、1試料に対し、1ウェル中の12視野を測定して平均値を求め、更にこれを3well測定して平均値を求めた。
フェノール硫酸法による中性糖質量の測定
菌体分離後の上清と、洗浄操作後の上清中の中性糖類をフェノール硫酸法で定量した。ガラス製の試験管に試料100μLを入れ、5%(w/v)フェノール水溶液100μLを添加して撹拌した後、濃硫酸500μLを添加して速やかに10秒間激しく撹拌した。室温で20分以上放置した後、ELISA用マイクロプレートを用いて490nm波長の吸収をARVOTM×3 Multilabel Readerで測定した。標準曲線は1% Glucose溶液を用いて作製した。
ブラッドフォード法による蛋白質量の測定
蛋白質の除去率を確認するため、菌体分離後と洗浄操作後の上清の蛋白質量をブラッドフォード法により測定した。マイクロプレート上で試料40μLに4倍希釈のProtein assay(Bio-Rad社CBB G-250色素)160μLを加えた後、595nm波長の吸収をARVOTM×3 Multilabel Readerで測定した。標準曲線は0.2%BSA溶液を用いて作製した。
糖質量、蛋白質量の測定はいずれも、2回行い、平均値を求めた。合計4回の遠心操作(菌体分離時の1回と洗浄時の3回)による上清のうち、4回目(最終回)の上清を上清1として回収した。
Measurement of total bacterial count by DAPI staining (DAPI method)
DAPI staining was used to determine the total bacterial count of the test sample. The test sample was added to a micro slide glass for counting at 10 μL / well, sufficiently dried and fixed, then treated with 100% EtOH for 5 minutes and then sufficiently dried. Next, 4.6 μL / well of Vecta Shield with DAPI (Vector) was added to each well, covered with a cover glass, and the number of bacteria was measured with a fluorescence microscope (OLYMPUS BX51) (eyepiece 10 ×, objective) Lens 100 times). The total number of bacteria by the DAPI method was determined by measuring 12 visual fields in one well for one sample to obtain an average value, and further measuring this for 3 wells to obtain the average value.
Measurement of Neutral Sugar Mass by the Phenol Sulfate Method The supernatant after separation of the cells and the neutral saccharide in the supernatant after the washing operation were quantified by the phenol sulfate method. 100 μL of the sample was put in a glass test tube, and 100 μL of 5% (w / v) aqueous phenol solution was added and stirred, and then 500 μL of concentrated sulfuric acid was added and rapidly stirred vigorously for 10 seconds. After standing at room temperature for 20 minutes or more, absorption at a wavelength of 490 nm was measured with an ARVO × 3 Multilabel Reader using an ELISA microplate. A standard curve was prepared using a 1% glucose solution.
Measurement of protein mass by Bradford method In order to confirm the protein removal rate, the protein mass of the supernatant after cell separation and washing was measured by the Bradford method. After adding 160 μL of 4-fold diluted protein assay (Bio-Rad CBB G-250 dye) to 40 μL of the sample on a microplate, absorption at a wavelength of 595 nm was measured with an ARVO × 3 Multilabel Reader. A standard curve was prepared using a 0.2% BSA solution.
Both the sugar mass and the protein mass were measured twice to obtain an average value. Of the supernatants obtained by a total of four centrifugation operations (one at the time of bacterial cell separation and three at the time of washing), the fourth (final) supernatant was recovered as supernatant 1.

Figure 0006153461
Figure 0006153461

その結果、総菌数は、どの洗浄液を使用した場合でも全体の50%以上を回収できたが、特にペプトン水、1/4 強度リンゲル液、PBSを使用することにより、より多くの菌数を回収することができた(表2)。上清中の糖質量を測定した結果、どの洗浄液を用いても糖質を除去できることが確認されたが、特に1/4 強度リンゲル液及び生理食塩水において、上清1(最終上清)で0に近い値を示し、これら2種類の洗浄液は糖質の除去に適していることが分かった(表3)。蛋白質の除去については、洗浄液間での上清1に含まれる蛋白質の差は数倍であり、洗浄液による差は小さかった(表4)。なお、ペプトン水の蛋白質量は7.4μg/mLだったため、この溶液については蛋白質の定量値から除いた補正値を示した。これらの結果から、溶媒にはどの洗浄液も使用することができること、菌の回収性の観点からはペプトン水、1/4 強度リンゲル液、PBSが好ましいことが確認された。また、pH調整しなかった試料は、遠心処理を行っても菌体が沈降せず乳酸菌菌体画分を得られなかった。   As a result, the total number of bacteria was able to be recovered by 50% or more regardless of which cleaning solution was used, but more bacteria were recovered especially by using peptone water, 1/4 strength Ringer's solution, and PBS. (Table 2). As a result of measuring the sugar mass in the supernatant, it was confirmed that the saccharides could be removed by using any washing solution. However, in the 1/4 strength Ringer's solution and physiological saline, it was 0 in the supernatant 1 (final supernatant). It was found that these two types of cleaning solutions are suitable for removing carbohydrates (Table 3). Regarding protein removal, the difference in the protein contained in the supernatant 1 between the washing solutions was several times, and the difference depending on the washing solution was small (Table 4). In addition, since the protein mass of peptone water was 7.4 μg / mL, the correction value excluding the protein quantitative value was shown for this solution. From these results, it was confirmed that any washing solution can be used as the solvent, and that peptone water, 1/4 strength Ringer's solution, and PBS are preferable from the viewpoint of recoverability of bacteria. In addition, in the sample that was not adjusted in pH, the bacterial cells did not settle even after centrifugation, and the lactic acid bacterial cell fraction could not be obtained.

Figure 0006153461
Figure 0006153461

Figure 0006153461
Figure 0006153461

Figure 0006153461
Figure 0006153461

試験例2 発酵乳製品へのpH調整及び分離処理におけるpH調整剤の影響
滅菌容器にヤクルトを65mL加え、スターラーで撹拌しながら20%NaOH(終濃度0.24%)、または0.1Mリン酸カリウム溶液(pH7.2)をそれぞれ単独で一滴ずつ添加してpHを表5に記載のとおりに調整した。調整後の溶液に、蒸留水を全体が325mL(5倍量)となるように加えて速やかに撹拌し、遠心分離に供する試料とした。試料を30mL容の遠心チューブに分注し、遠心処理を施し(8,000×g、10分、4℃)、上清をアスピレーターで除いた。上記5倍量希釈試料30mLから得られた集菌後の乳酸菌菌体に1/4強度リンゲル液6mLを添加して懸濁し、同様に遠心分離を行い、上清を取り除いた(この作業を3回繰り返した)。回収された菌体に1/4リンゲル液6mLを添加して懸濁し、試験試料とした。この試料を用いて、DAPI染色による総菌数(DAPI法)を測定した。また、遠心分離により回収した上清を用いて、フェノール硫酸法による中性糖質量、およびブラッドフォード法による蛋白質量を試験例1と同様に測定し、計4回の上清に含まれる糖質および蛋白質の合計量を求めた。なお、試験は2名で行いその平均値を求めた。
Test Example 2 Effect of pH adjuster on pH adjustment and separation treatment on fermented dairy products Add 65 mL of Yakult to a sterilized container and stir with a stirrer, 20% NaOH (final concentration 0.24%), or 0.1M phosphoric acid Potassium solution (pH 7.2) was added drop by drop individually and the pH was adjusted as described in Table 5. Distilled water was added to the adjusted solution so that the total was 325 mL (5 times the amount), and the mixture was rapidly stirred to prepare a sample for centrifugation. The sample was dispensed into a 30 mL centrifuge tube, centrifuged (8,000 × g, 10 minutes, 4 ° C.), and the supernatant was removed with an aspirator. 6 mL of 1/4 strength Ringer's solution was added to and suspended in the lactic acid bacteria after collection from 30 mL of the above 5-fold diluted sample, and centrifuged in the same manner to remove the supernatant (this operation was repeated three times). Repeated). 6 mL of 1/4 Ringer's solution was added and suspended in the collected bacterial cells to prepare test samples. Using this sample, the total number of bacteria by DAPI staining (DAPI method) was measured. In addition, using the supernatant recovered by centrifugation, the neutral sugar mass by the phenol-sulfuric acid method and the protein mass by the Bradford method were measured in the same manner as in Test Example 1, and carbohydrates contained in the supernatant for a total of 4 times And the total amount of protein was determined. In addition, the test was performed by two persons and the average value was calculated | required.

その結果、回収された乳酸菌の総菌数の検体自体(ヤクルト)に対する比率(回収総菌数比)は、pH調整剤として0.1Mリン酸カリウム溶液を用いた場合に比べ、NaOHを用いた場合が約71%と高かった。また、糖質と蛋白質の回収量はほぼ同程度であった(表5)。よって、pH調整剤としては、0.1Mリン酸カリウム溶液およびNaOHをどちらも使用できること、総菌数の回収率の面からは、NaOHがより好ましいことが確認された。   As a result, the ratio of the total number of collected lactic acid bacteria to the specimen itself (Yakult) (recovered total number of bacteria) was compared with the case where 0.1 M potassium phosphate solution was used as a pH adjuster. The case was as high as about 71%. The recovered amounts of carbohydrate and protein were almost the same (Table 5). Therefore, it was confirmed that both 0.1 M potassium phosphate solution and NaOH can be used as the pH adjuster, and that NaOH is more preferable in terms of the recovery rate of the total number of bacteria.

Figure 0006153461
Figure 0006153461

実施例1 発酵乳製品への酵素処理の影響
(1)酵素処理に供する試料の調製
滅菌容器にヤクルトを65mL加え、スターラーで撹拌しながら20%NaOH(終濃度0.24%)を一滴ずつ添加してpHを6.7〜6.9に調整した。調整後の溶液に蒸留水を全体が325mL(5倍量)となるように加えて速やかに撹拌し、30mL容の遠心チューブに分注し遠心処理を施した(7,000×g、10分、4℃)。上記5倍量希釈試料325mLから得られた菌体画分を13ml(検体に対して5倍に濃縮)のPBSに懸濁し、酵素処理に供する試料とした。なお、酵素処理反応は、菌体溶液を氷付けにすることにより停止させた。
Example 1 Effect of enzyme treatment on fermented milk product (1) Preparation of sample to be subjected to enzyme treatment Add 65 mL of Yakult to a sterilized container and add 20% NaOH (final concentration 0.24%) drop by drop while stirring with a stirrer The pH was adjusted to 6.7 to 6.9. Distilled water was added to the adjusted solution so that the total amount was 325 mL (5 times volume), and the mixture was rapidly stirred, and dispensed into a 30 mL centrifuge tube and centrifuged (7,000 × g, 10 minutes). 4 ° C). The bacterial cell fraction obtained from 325 mL of the 5-fold diluted sample was suspended in 13 ml (concentrated 5 times with respect to the specimen) of PBS, and used as a sample for enzyme treatment. The enzyme treatment reaction was stopped by freezing the cell solution.

(2)酵素濃度と反応時間の影響
菌体溶液100μLに対し、終濃度25、50、100、250μg/g(菌体溶液1gあたり0.75〜7.5U(検体1gあたり0.15Uから1.5U))の範囲で表6のとおりプロテアーゼP「アマノ」3DSを添加した。また、コントロールとして酵素を添加しない試料も作成し、酵素を添加した試料と同様に、以下の操作を行った。酵素反応にはサーマルサイクラー用マイクロプレートを使用し、サーマルサイクラー内で37℃、5分間の酵素反応を行った。酵素反応後の溶液を7000×g、10分、4℃で遠心分離した後、上清に回収された蛋白質やアミノ酸量の増加の指標として、遠心上清の280nmにおける吸光度を測定した。また、菌体を含む沈殿画分に回収した上清と等量の蒸留水を加えて再懸濁し、660nmの吸収(濁度)を測定した。酵素処理前後の沈殿物の濁度から、消化率(酵素反応率)を次式により求めた。吸光度と濁度の測定には、ARVOTM×MVMultilabel Readerを使用した。
消化率(%)=(酵素処理前の濁度(T0)−酵素処理後の濁度(T))/T0×100
(2) Influence of enzyme concentration and reaction time For 100 μL of bacterial cell solution, final concentrations of 25, 50, 100, and 250 μg / g (0.75 to 7.5 U per 1 g of bacterial cell solution (from 0.15 U to 1 per 1 g of specimen) Protease P “Amano” 3DS was added as shown in Table 6 within the range of 5 U)). Moreover, the sample which does not add an enzyme as a control was also created and the following operation was performed similarly to the sample which added the enzyme. For the enzymatic reaction, a microplate for a thermal cycler was used, and the enzymatic reaction was performed at 37 ° C. for 5 minutes in the thermal cycler. The solution after the enzyme reaction was centrifuged at 7000 × g for 10 minutes at 4 ° C., and then the absorbance at 280 nm of the centrifuged supernatant was measured as an index of increase in the amount of protein and amino acid collected in the supernatant. Moreover, the supernatant collected in the precipitate fraction containing microbial cells was added with an amount of distilled water and resuspended, and the absorption (turbidity) at 660 nm was measured. The digestibility (enzyme reaction rate) was determined from the following formula from the turbidity of the precipitate before and after the enzyme treatment. ARVO × MV Multilabel Reader was used for measuring absorbance and turbidity.
Digestibility (%) = (Turbidity before enzyme treatment (T0) −Turbidity after enzyme treatment (T)) / T0 × 100

その結果、酵素濃度が25μg/g(検体1gあたり0.15U)以上で280nm吸光度、消化率が上昇し、回収阻害因子である蛋白質と菌体の分離が進み、蛋白質が上清に移行していることが確認された(表6)。   As a result, when the enzyme concentration is 25 μg / g (0.15 U / g of specimen) or more, the absorbance at 280 nm and the digestibility increase, the separation of the protein that is a collection inhibitor and the bacterial cell proceeds, and the protein is transferred to the supernatant. (Table 6).

Figure 0006153461
Figure 0006153461

(3)酵素反応温度、酵素処理による菌の活性への影響
菌体溶液100μLに対し、終濃度が25、50、100μg/gとなるようプロテアーゼP「アマノ」3DSを添加した。また、コントロールとして酵素を添加しない試料も作成し、酵素を添加した試料と同様に、以下の操作を行った。反応温度37℃または40℃で5分間の酵素処理を行った。酵素反応後の溶液を7000×g、10分、4℃で遠心分離した後、前記(2)と同様に、遠心上清の280nmにおける吸光度を測定した。あわせて、酵素処理後の菌体が、特異抗体反応性を保持しているか否かを指標に、菌体の表層構造に基づく活性が維持されているかを確認する目的で、次の方法により、抗体反応性を調べた。
(3) Effects of enzyme reaction temperature and enzyme treatment on bacterial activity To 100 μL of the bacterial cell solution, protease P “Amano” 3DS was added so that the final concentrations were 25, 50, and 100 μg / g. Moreover, the sample which does not add an enzyme as a control was also created and the following operation was performed similarly to the sample which added the enzyme. The enzyme treatment was performed at a reaction temperature of 37 ° C. or 40 ° C. for 5 minutes. The solution after the enzyme reaction was centrifuged at 7000 × g for 10 minutes at 4 ° C., and the absorbance at 280 nm of the centrifuged supernatant was measured in the same manner as in (2) above. In addition, for the purpose of confirming whether or not the activity after the enzyme treatment is maintained based on the surface layer structure of the bacterial cell, using the following method as an index, whether or not the bacterial cell after the enzyme treatment retains the specific antibody reactivity, Antibody reactivity was examined.

ELISA法による抗体反応性の測定
遠心分離後の菌体を含む沈殿画分を、ELISA用buffer (Carbonate Buffer)に懸濁して遠心(7,000 ×g, 4℃, 10分間)洗浄し、Carbonate Bufferで再懸濁した。96穴イミュノプレートの1ウェル辺りの菌数は、2.2E+07cellsであった。一次抗体にはL8抗体(ラクトバチルス カゼイ YIT9029株特異抗体)を、二次抗体にはペルオキシダーゼ結合抗体を、発色反応の基質にはSHIGMA FAST o-phenylenediamine dihydrochoride tablet sets(SHIGMA)を使用した。発色反応後、硫酸によって発色反応を停止させた後、490nmの吸光度を測定し、吸光度が1.0以上でL8抗体陽性とした。L8抗体反応陽性の対照には、MRS培地で培養したYIT9029株の純培養菌体を使用した。
Measurement of antibody reactivity by ELISA method The precipitated fraction containing the cells after centrifugation is suspended in an ELISA buffer (Carbonate Buffer), washed by centrifugation (7,000 × g, 4 ° C., 10 minutes), and Carbonate. Resuspended in Buffer. The number of bacteria per well of the 96-well immunoplate was 2.2E + 07 cells. L8 antibody (Lactobacillus casei YIT9029 strain-specific antibody) was used as the primary antibody, peroxidase-conjugated antibody was used as the secondary antibody, and SHIGMA FAST o-phenylenediamine dihydrochoride tablet sets (SHIGMA) was used as the substrate for the color reaction. After the color development reaction, the color development reaction was stopped with sulfuric acid, and then the absorbance at 490 nm was measured. The absorbance was 1.0 or more, and L8 antibody was positive. As a control positive for L8 antibody reaction, pure cultured cells of YIT9029 strain cultured in MRS medium were used.

その結果、反応温度(37℃、40℃)や酵素濃度(25〜100μg/g)が異なっても、280nmの吸光度上昇率は1.4 〜1.5 と同等であった。また、各酵素処理条件で回収された菌体のL8抗体反応は陽性で、酵素処理を行なってもL8抗体反応性、すなわち菌体の表層構造への影響がないことを確認できた(表7)。また、酵素処理を行った検体中の菌体は、酵素処理していないそれに比べ、高い抗体結合性が認められた。このことからも、酵素処理により菌体の表層に付着した不純物が除去されていることが示唆された。なお、対照であるYIT9029株の純培養菌体の吸光度は3.7で、陽性であった。   As a result, even when the reaction temperature (37 ° C., 40 ° C.) and the enzyme concentration (25-100 μg / g) were different, the absorbance increase rate at 280 nm was equivalent to 1.4-1.5. In addition, the L8 antibody reaction of the microbial cells collected under each enzyme treatment condition was positive, and it was confirmed that the L8 antibody reactivity, that is, no influence on the surface layer structure of the microbial cells was observed even when the enzyme treatment was performed (Table 7). ). In addition, the bacterial cells in the specimens that had been subjected to enzyme treatment showed higher antibody binding than those that had not been treated with enzyme. This also suggests that impurities adhering to the surface layer of the cells were removed by the enzyme treatment. The absorbance of the pure culture of the YIT9029 strain as a control was 3.7, which was positive.

Figure 0006153461
Figure 0006153461

(4)酵素反応の生菌生存率への影響
菌体溶液100μLに対し、終濃度が25μg/g(検体1gあたり0.15U)となるようプロテアーゼP「アマノ」3DSを添加し、サーマルサイクラー用マイクロプレートを使用し、40℃、5分または30分間の酵素反応を行った。また、酵素処理を行わず、40℃で5分または30分間放置した菌体溶液も準備した。これら4種の溶液を7000×g、10分、4℃で遠心分離し、分離後の乳酸菌菌体画分を1/4強度リンゲル液で懸濁し、同様の遠心処理を施した(この操作を3回繰り返した)。同洗浄液で全体で100μLとなるように懸濁して試験試料とし、総菌数(DAPI法)を試験例1と同様に、生菌数(BCP法)を以下のとおり測定した。また、試験例1と同様に、遠心分離により回収した上清中の糖質量及び蛋白質量を測定した。なお、試験例1と同様に、4回目(最終回)の上清を上清1として記載した。
(4) Effect of Enzymatic Reaction on Viable Cell Survival Rate Protease P “Amano” 3DS is added to 100 μL of the bacterial cell solution so that the final concentration is 25 μg / g (0.15 U per 1 g of the sample). Using a microplate, the enzyme reaction was carried out at 40 ° C. for 5 minutes or 30 minutes. Moreover, the microbial cell solution which did not perform an enzyme process and was left to stand for 5 minutes or 30 minutes at 40 degreeC was also prepared. These four solutions were centrifuged at 7000 × g for 10 minutes at 4 ° C., and the lactic acid bacterial cell fraction after the separation was suspended in a ¼ strength Ringer's solution, and subjected to the same centrifugation treatment (this operation was repeated 3 times). Repeated). Suspension was made with the same washing solution to a total of 100 μL to prepare a test sample, and the total number of bacteria (DAPI method) was measured in the same manner as in Test Example 1 as follows. Further, in the same manner as in Test Example 1, the sugar mass and protein mass in the supernatant collected by centrifugation were measured. As in Test Example 1, the fourth (final) supernatant was described as supernatant 1.

BCP培地による生菌数の測定
試験試料をBCP培地(日水製薬(株))に塗布し、生菌数を求めた。ヤクルトの1/100,000希釈液及び遠心分離後の各試料の1/10,000希釈液を、スパイラルプレーターを用いてBCP平板培地に塗抹し、37℃で3日間好気培養後、生じたコロニー数をコロニーカウンター(Color QCount530)で測定した。BCP培地による生菌数(CFU)は全て、1試料に対し、プレート2枚の平均値を求めた。
Measurement of viable cell count using BCP medium A test sample was applied to a BCP medium (Nissui Pharmaceutical Co., Ltd.) to determine the viable cell count. 1 / 100,000 dilution of Yakult and 1 / 10,000 dilution of each sample after centrifugation are smeared on a BCP plate medium using a spiral plater, and after aerobic culture at 37 ° C. for 3 days The number of colonies was measured with a colony counter (Color QCount 530). For the viable cell count (CFU) in the BCP medium, the average value of two plates was obtained for one sample.

酵素処理した場合の生菌数は、いずれも高い数値を示し、酵素処理していない場合に対して約10倍高い結果であった。また、酵素処理をした場合、総菌数に対する生菌数の比率(CFU/DAPI)は、検体自体(ヤクルト)の結果と同等だった。このことから、酵素処理をすることによって、検体中の生菌と死菌の割合を変えることなく菌体を回収できることが判明した(表8)。糖質や蛋白質の除去に関しては、酵素処理した場合の最終上清(上清1)では、糖質は完全に除去されて、蛋白質も酵素処理をしない試料と比較して最終上清に含まれる量が非常に少なくなっており、酵素処理を用いることによって、より少ない洗浄回数で糖質、蛋白質を除去できることが示唆された。以上の結果から、pH調整工程後に分離工程、酵素処理工程を経ることは、乳蛋白質、糖質の除去に有効であることに加え、生菌を効率よく回収することが判明した。   The number of viable bacteria in the case of the enzyme treatment showed a high numerical value, which was about 10 times higher than that in the case of no enzyme treatment. In addition, when the enzyme treatment was performed, the ratio of the viable cell count to the total cell count (CFU / DAPI) was equivalent to the result of the specimen itself (Yakult). From this, it was found that the bacterial cells could be recovered without changing the ratio of viable and dead bacteria in the sample by performing the enzyme treatment (Table 8). Regarding the removal of carbohydrates and proteins, in the final supernatant (supernatant 1) after the enzyme treatment, the sugar is completely removed, and the protein is also contained in the final supernatant compared to the sample not subjected to the enzyme treatment. The amount was very small, and it was suggested that carbohydrates and proteins can be removed with fewer washings by using enzyme treatment. From the above results, it has been found that passing through the separation step and the enzyme treatment step after the pH adjustment step is effective in removing milk proteins and carbohydrates and efficiently recovers live bacteria.

Figure 0006153461
Figure 0006153461

実施例2 発酵乳製品への菌体洗浄液の影響
(1)洗浄液の検討1
OptiSolTM Protein Solubility Screening Kit200 (Dilyx Biotechnologies、LLC) キットを使用して、96穴のマイクロプレートに表9の洗浄液を加え、各洗浄液が蛋白質の除去や対象微生物の生存率に及ぼす影響を調べた。実施例1(1)と同様に、酵素処理に供する菌体溶液を調製し、酵素濃度25μg/g(検体1gあたり0.15U)、40℃、5分間、酵素反応を行い、反応後氷冷した。この酵素処理菌体20μLに対し、各洗浄液80μLを加えて懸濁し(96穴PCRプレート使用)、7000×g、10分、4℃の遠心分離後、上清(約80μL)を回収した。菌体画分に同溶液80μLを加えて懸濁し、同様の遠心分離を施した。2回目の遠心分離で回収した菌体の懸濁には、各洗浄液の代わりに1/4リンゲル液を使用した。各遠心上清中に回収された蛋白質の量は、ブラッドフォード法で測定し合計量を求めた。次に、2回の洗浄後に回収された菌体についてBCP培地によって生菌数を測定し、1/4リンゲル液による回収率を100%としたときの各溶液の相対回収率(%)を求めた。
Example 2 Effect of cell washing liquid on fermented milk products (1) Examination of washing liquid 1
Using the OptiSol Protein Solubility Screening Kit 200 (Dilyx Biotechnologies, LLC) kit, the washing solution shown in Table 9 was added to a 96-well microplate, and the influence of each washing solution on the removal of proteins and the survival rate of the target microorganism was examined. In the same manner as in Example 1 (1), a bacterial cell solution to be subjected to enzyme treatment was prepared, and enzyme reaction was performed at an enzyme concentration of 25 μg / g (0.15 U per 1 g of specimen) at 40 ° C. for 5 minutes. did. To 20 μL of this enzyme-treated bacterial cell, 80 μL of each washing solution was added and suspended (using a 96-well PCR plate), and after centrifugation at 7000 × g for 10 minutes at 4 ° C., the supernatant (about 80 μL) was recovered. To the bacterial cell fraction, 80 μL of the same solution was added and suspended, and the same centrifugation was performed. For suspension of the cells recovered by the second centrifugation, a 1/4 Ringer solution was used instead of each washing solution. The amount of protein recovered in each centrifugal supernatant was measured by the Bradford method to determine the total amount. Next, the number of viable cells was measured with BCP medium for the cells recovered after washing twice, and the relative recovery rate (%) of each solution was calculated when the recovery rate by 1/4 Ringer's solution was 100%. .

結果は表10のとおりであった。生菌数が高いこと及び蛋白質の回収量が高いことを指標として判断したところ、Glycine、Mes、ADA、HEPES、Tris、Imidazole、CHES、CAPS、MOPS-NaCl、Na/K Phosphate‐NaCl、Bis-Tris-Trehalose、MOPS-Trehalose、Imidazole-Trehalose、Na/K Phospahte-Arg/Glu、及びGlycine-Tween 20が洗浄液に適しているものと認められた。また、これらの好ましい洗浄液のpHは3〜10であった。
The results are shown in Table 10. Judging from the fact that the number of viable bacteria and the amount of recovered protein were high, Glycine, Mes, ADA, HEPES, Tris, Imidazole, CHES, CAPS, MOPS-NaCl, Na / K Phosphate-NaCl, Bis- Tris-Treha l ose, was recognized as MOPS-Treha l ose, Imidazole- Treha l ose, Na / K Phospahte-Arg / Glu, and Glycine-Tween 20 is suitable for the cleaning liquid. Moreover, pH of these preferable washing | cleaning liquids was 3-10.

Figure 0006153461
Figure 0006153461

Figure 0006153461
Figure 0006153461

(2)洗浄液の検討2
表11の洗浄液を用い、各洗浄液が蛋白質の除去や対象微生物の生存率に及ぼす影響を調べた。1.5mLチューブを使用し、前記(1)の10倍量で処理を行なった。すなわち、酵素処理菌体200μLに対し各洗浄液を800μL加えて懸濁し、7000×g、10分、4℃で遠心分離後、上清(約800μL)を回収した。菌体画分に同溶液800μLを加えて懸濁後、同様の遠心分離処理を施して上清を回収した。得られた菌体を1/4リンゲル液を用いて懸濁した。その後、(1)と同様に生菌数を測定し、あわせて、実施例1(3)と同様にL8抗体反応性を調べた。また、遠心上清について糖質量及び蛋白質量を試験例1と同様に測定した。表中の生菌数は2回の測定の平均値である。結果的に、蛋白質の回収量の高さ、生菌の生存率の高さ、対象微生物の活性維持の観点からは、Imidazole、CHES、CAPS、Bis-Tris‐Trehalose、MOPS-Trehalose、Imidazole-Trehaloseが最も優れていた。また、これらの好ましい洗浄液のpHは6〜10であった。
(2) Examination of cleaning solution 2
Using the cleaning solutions in Table 11, the effects of each cleaning solution on the removal of proteins and the survival rate of target microorganisms were examined. Using a 1.5 mL tube, the treatment was carried out at 10 times the amount (1). That is, 800 μL of each washing solution was added to 200 μL of the enzyme-treated bacterial cells, suspended, and centrifuged at 7000 × g for 10 minutes at 4 ° C., and the supernatant (about 800 μL) was recovered. After 800 μL of the same solution was added to the cell fraction and suspended, the same centrifugation treatment was applied to recover the supernatant. The obtained microbial cells were suspended using 1/4 Ringer's solution. Thereafter, the viable cell count was measured in the same manner as in (1), and the L8 antibody reactivity was examined in the same manner as in Example 1 (3). Further, the sugar mass and protein mass of the centrifugal supernatant were measured in the same manner as in Test Example 1. The number of viable bacteria in the table is an average value of two measurements. Consequently, protein recovery of height, the survival rate of live bacteria height, from the viewpoint of maintaining the activity of the target microorganisms, Imidazole, CHES, CAPS, Bis -Tris-Trehalose, MOPS-Treha l ose, Imidazole -Treha l ose was the best. Moreover, pH of these preferable washing | cleaning liquids was 6-10.

Figure 0006153461
Figure 0006153461

実施例3 pH調整時及び酵素処理時のpHの影響
市販の発酵乳製品(ヤクルト)65mLを攪拌しながら、20%NaOHを添加しpHを表12、13のとおり調製した(二回に分けて同様の実験を実施)。滅菌水を全体が325mL(5倍量)となるように加え、遠心分離処理を施し(7000×g、15分、4℃)、上清をアスピレーターで取り除いた。得られた菌体画分を、13mLのPBS(pHは菌体回収時と同じ)に希釈し、酵素(プロテアーゼP「アマノ」)を最終濃度25μl/mL(0.15U)となるように加え、40℃、5分間処理をした。酵素処理溶液に52mLのCAPS溶液(pHは菌体回収時と同じ)を添加して懸濁し、7000×g、15分、4℃で遠心処理を行い、上清をアスピレーターで取り除いた(この作業を3回繰り返した)。菌体をPBSに懸濁して試料とし、ブラッドフォード法による蛋白質の測定を行った。また、pHを5.4以上に調整したものについては、DAPIによる総菌数、BCP培地による生菌数、およびフェノール硫酸法による中性糖量の測定を行った。なお、蛋白質の測定では、酵素処理前の分離工程で回収された上清を上清1、酵素処理後3回洗浄の上清の合計を上清2とし、糖質の測定では、酵素処理後の1、2回洗浄の上清を上清3、酵素処理後の3回洗浄時の上清を上清4とした。
Example 3 Effect of pH during pH adjustment and enzyme treatment While stirring 65 mL of a commercially available fermented milk product (Yakult), 20% NaOH was added to adjust the pH as shown in Tables 12 and 13 (divided into two steps). A similar experiment was conducted). Sterile water was added so that the total was 325 mL (5 times volume), centrifugation was performed (7000 × g, 15 minutes, 4 ° C.), and the supernatant was removed with an aspirator. The obtained bacterial cell fraction is diluted in 13 mL of PBS (pH is the same as when the bacterial cells are recovered), and the enzyme (protease P “Amano”) is added to a final concentration of 25 μl / mL (0.15 U). , At 40 ° C. for 5 minutes. To the enzyme-treated solution, 52 mL of a CAPS solution (pH is the same as at the time of bacterial cell collection) was added and suspended, and centrifuged at 7000 × g for 15 minutes at 4 ° C., and the supernatant was removed with an aspirator (this work) Was repeated three times). The cells were suspended in PBS and used as a sample, and the protein was measured by the Bradford method. Moreover, about what adjusted pH to 5.4 or more, the total number of bacteria by DAPI, the number of living bacteria by a BCP culture medium, and the amount of neutral sugars by the phenol-sulfuric acid method were measured. In the protein measurement, the supernatant collected in the separation step before the enzyme treatment is defined as the supernatant 1, and the total of the supernatants washed three times after the enzyme treatment is defined as the supernatant 2. In the carbohydrate measurement, the supernatant after the enzyme treatment is treated. The supernatant after washing 1 and 2 was designated as supernatant 3, and the supernatant after washing 3 times after enzyme treatment was designated as supernatant 4.

その結果、試料のpHを5.4以上とすることにより、多くの蛋白質が分離処理時の上清へ移行し検体から除去できることが確認された。特に、pH5.8〜10.0では蛋白質を90mg/mL以上、pH6.0〜10.0では150mg/mL以上回収することができ、効率的に蛋白質を除去することができた(表12、13)。また、pH5.4〜10.0において、3回の洗浄で上清に含まれる糖質がほぼ0となり十分に糖質が除去できていることが確認された(表14、15)。pH5.4〜8.0の範囲では、回収された総菌数、生菌数ともに1.12E+10を超える高い数値を示した(表16、17)。総合的には、pH調整時及び酵素処理時はpH6.0〜8.0の範囲に検体を調整することが最も優れているものと認められた。   As a result, it was confirmed that by setting the pH of the sample to 5.4 or more, many proteins migrate to the supernatant during separation treatment and can be removed from the specimen. In particular, at pH 5.8 to 10.0, the protein could be recovered at 90 mg / mL or more, and at pH 6.0 to 10.0, 150 mg / mL or more could be recovered, and the protein could be efficiently removed (Table 12, 13). In addition, at pH 5.4 to 10.0, it was confirmed that the saccharide contained in the supernatant became almost 0 after three washings, and the saccharide was sufficiently removed (Tables 14 and 15). In the range of pH 5.4 to 8.0, both the total number of recovered bacteria and the number of viable bacteria showed high numerical values exceeding 1.12E + 10 (Tables 16 and 17). Overall, it was recognized that adjusting the specimen in the pH range of 6.0 to 8.0 during pH adjustment and enzyme treatment was the best.

Figure 0006153461
Figure 0006153461

Figure 0006153461
Figure 0006153461

Figure 0006153461
Figure 0006153461

Figure 0006153461
Figure 0006153461

Figure 0006153461
Figure 0006153461

Figure 0006153461
Figure 0006153461

本発明の微生物の回収方法によれば、検体中の対象微生物である生菌と死菌とを簡易、低コスト、高収率かつ高い精製度をもって、検体中の状態を反映したまま、回収することができる。また、検体に含まれる微生物が生きた微生物である場合には、当該微生物を生きたまま活性を維持した状態で、高収率に回収することができる。従って、当該回収方法を用いて得た試料は、元の検体の品質判定や回収された微生物の活性評価を正確かつ簡易に実施できるものであり、飲食品や医薬品、化粧品などの品質判定や当該微生物の活性評価を行う際に有用である。   According to the method for recovering a microorganism of the present invention, live and dead microorganisms as target microorganisms in a sample are recovered with simple, low cost, high yield and high purity, while reflecting the state in the sample. be able to. In addition, when the microorganism contained in the specimen is a living microorganism, the microorganism can be recovered in a high yield while maintaining the activity while being alive. Therefore, the sample obtained using the recovery method can accurately and easily perform the quality determination of the original specimen and the activity evaluation of the recovered microorganisms. This is useful when evaluating the activity of microorganisms.

Claims (14)

酸性発酵乳を含む検体(pHが5.3以下)からの対象微生物回収方法であって、以下のa)〜c)の工程を含み工程b)は工程a)の後に施し、かつ、工程c)は工程a)の後に施すことを特徴とする微生物の回収方法。
a)検体のpHをpH調整剤を用いて5.4〜10.0に調整する工程、
b)検体を遠心分離する工程、および
c)検体もしくは対象微生物を含む画分に、高分子有機物分解酵素を加え回収阻害因子を分解する工程。
A target microorganism recovery method from the analyte (pH 5.3 or less) containing acidic fermented milk, comprising the following a) to c) of the process, step b) is facilities after step a), and, step c) method for recovering microorganisms characterized by facilities Succoth after step a).
a) adjusting the pH of the specimen to 5.4 to 10.0 using a pH adjuster;
b) a step of centrifuging the specimen, and c) a step of adding a macromolecular organic substance-degrading enzyme to the fraction containing the specimen or the target microorganism to decompose the collection inhibitor.
前記工程a)の後に前記工程b)を行い、次いで前記工程c)を行うことを特徴とする請求項1に記載の方法。   The method of claim 1, wherein step a) is followed by step b) and then step c). 前記pH調整剤は、NaOHまたはリン酸緩衝液であることを特徴とする請求項1又は2記載の方法。   The method according to claim 1 or 2, wherein the pH adjuster is NaOH or a phosphate buffer. 前記pH調整後の検体のpHは、6.0〜8.0であることを特徴とする請求項1〜3のいずれか1項記載の方法。   The method according to any one of claims 1 to 3, wherein the pH of the sample after pH adjustment is 6.0 to 8.0. 前記酸性発酵乳を含む検体が飲食品もしくは化粧品であり、前記回収阻害因子が乳蛋白質を含むものである請求項1〜4のいずれか1項記載の方法。   The method according to any one of claims 1 to 4, wherein the specimen containing the acidic fermented milk is a food or drink or a cosmetic, and the recovery inhibitor contains milk protein. 更に、前記対象微生物に洗浄回収処理を施す洗浄回収工程を含むことを特徴とする請求項1〜5のいずれか1項記載の方法。   The method according to any one of claims 1 to 5, further comprising a washing and collecting step of washing and collecting the target microorganism. 前記洗浄回収処理に使用される洗浄液が、グリシン、2−(N−モリホリノ)エタンスルホン酸(Mes)、N−(2−アセトアミド)イミノ二酢酸(ADA)、N−2−ヒドロキシエチルピペラジン−N′−2−エタンスルホン酸(HEPES)、トリス(ヒドロキシメチル)アミノ−メタン(Tris)、イミダゾール、2−(シクロヘキシルアミノ)プロパンスルホン酸(CHES)、3−(シクロヘキシルアミノ)プロパンスルホン酸(CAPS)、3−モルフォリノプロパンスルホン酸(MOPS)、ナトリウム/カリウム リン酸塩(Na/K Phosphate)、及びビス(2−ヒドロキシエチル)アミノ−トリス(ヒドロキシメチル)−メタン(Bis-Tris)から選ばれる1種又は2種以上を含むことを特徴とする請求項6に記載の方法。   The washing liquid used for the washing and recovery treatment is glycine, 2- (N-morpholino) ethanesulfonic acid (Mes), N- (2-acetamido) iminodiacetic acid (ADA), N-2-hydroxyethylpiperazine-N '-2-ethanesulfonic acid (HEPES), tris (hydroxymethyl) amino-methane (Tris), imidazole, 2- (cyclohexylamino) propanesulfonic acid (CHES), 3- (cyclohexylamino) propanesulfonic acid (CAPS) , 3-morpholinopropanesulfonic acid (MOPS), sodium / potassium phosphate (Na / K Phosphate), and bis (2-hydroxyethyl) amino-tris (hydroxymethyl) -methane (Bis-Tris) 7. The method of claim 6, comprising one or more. 前記洗浄回収処理に使用される洗浄液が、イミダゾール、2−(シクロヘキシルアミノ)プロパンスルホン酸(CHES)、3−(シクロヘキシルアミノ)プロパンスルホン酸(CAPS)、ビス(2−ヒドロキシエチル)アミノ−トリス(ヒドロキシメチル)−メタン(Bis-Tris)、及び3−モルフォリノプロパンスルホン酸(MOPS)から選ばれる1種又は2種以上を含むことを特徴とする請求項6に記載の方法。   The washing liquid used for the washing and recovery treatment is imidazole, 2- (cyclohexylamino) propanesulfonic acid (CHES), 3- (cyclohexylamino) propanesulfonic acid (CAPS), bis (2-hydroxyethyl) amino-tris ( The method according to claim 6, comprising one or more selected from hydroxymethyl) -methane (Bis-Tris) and 3-morpholinopropanesulfonic acid (MOPS). 前記高分子有機物分解酵素が蛋白質分解酵素である請求項1〜8のいずれか1項記載の方法。   The method according to any one of claims 1 to 8, wherein the macromolecular organic matter degrading enzyme is a proteolytic enzyme. 前記蛋白質分解酵素を検体1gあたり0.15U以上で使用することを特徴とする請求項9記載の方法。   The method according to claim 9, wherein the proteolytic enzyme is used at 0.15 U or more per 1 g of the specimen. 前記対象微生物が乳酸菌である請求項1〜10のいずれか1項記載の方法。   The method according to claim 1, wherein the target microorganism is a lactic acid bacterium. 前記対象微生物が生菌を含むものである請求項1〜11のいずれか1項記載の方法。   The method according to any one of claims 1 to 11, wherein the target microorganism contains viable bacteria. 請求項1〜12のいずれか1項記載の方法を用いて前記対象微生物を回収し、回収された対象微生物を用いて前記検体の品質を判定することを特徴とする検体の品質判定方法。   A sample quality determination method comprising: recovering the target microorganism using the method according to any one of claims 1 to 12, and determining the quality of the sample using the recovered target microorganism. 請求項1〜12のいずれか1項記載の方法を用いて前記対象微生物を回収し、回収された対象微生物の活性を評価することを特徴とする対象微生物の活性評価方法。   A method for evaluating the activity of a target microorganism, comprising collecting the target microorganism using the method according to any one of claims 1 to 12 and evaluating the activity of the collected target microorganism.
JP2013260423A 2013-12-17 2013-12-17 Microbial recovery method Active JP6153461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013260423A JP6153461B2 (en) 2013-12-17 2013-12-17 Microbial recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013260423A JP6153461B2 (en) 2013-12-17 2013-12-17 Microbial recovery method

Publications (2)

Publication Number Publication Date
JP2015116140A JP2015116140A (en) 2015-06-25
JP6153461B2 true JP6153461B2 (en) 2017-06-28

Family

ID=53529454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013260423A Active JP6153461B2 (en) 2013-12-17 2013-12-17 Microbial recovery method

Country Status (1)

Country Link
JP (1) JP6153461B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022114198A1 (en) 2020-11-30 2022-06-02 株式会社ヤクルト本社 Method for collecting cells of microorganism in specimen

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7123350B2 (en) * 2018-10-19 2022-08-23 国立研究開発法人物質・材料研究機構 Method for collecting microorganisms and luminescent carbon nanowires for collecting microorganisms

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04228097A (en) * 1990-07-02 1992-08-18 Toyo Ink Mfg Co Ltd Method for separating and concentrating cell from milk sample and kit therefor
JPH0949800A (en) * 1995-08-08 1997-02-18 Showa Shell Sekiyu Kk Composition for detecting reaction and method for using the composition
JPH10101696A (en) * 1996-08-08 1998-04-21 Shinotesuto:Kk Removal of contaminants included in protein expressed in transformant and purified protein therefrom
JP3459636B2 (en) * 2001-01-11 2003-10-20 株式会社ヤクルト本社 Fermented milk food and drink
JP2011193730A (en) * 2010-03-17 2011-10-06 Yakult Honsha Co Ltd Method for obtaining lactic acid bacterium having polysaccharide-peptidoglycan complex

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022114198A1 (en) 2020-11-30 2022-06-02 株式会社ヤクルト本社 Method for collecting cells of microorganism in specimen

Also Published As

Publication number Publication date
JP2015116140A (en) 2015-06-25

Similar Documents

Publication Publication Date Title
Wilkinson Flow cytometry as a potential method of measuring bacterial viability in probiotic products: A review
Doherty et al. Use of viability staining in combination with flow cytometry for rapid viability assessment of Lactobacillus rhamnosus GG in complex protein matrices
Zotta et al. A comparison of fluorescent stains for the assessment of viability and metabolic activity of lactic acid bacteria
Lara-Hidalgo et al. Isolation of yeasts from guajillo pepper (Capsicum annuum L.) fermentation and study of some probiotic characteristics
MX2011004108A (en) Methods for separation, characterization, and/or identification of microorganisms using mass spectrometry.
KR101120270B1 (en) Method and kit for detection of microorganism
JP6153461B2 (en) Microbial recovery method
Walker et al. Rapid enumeration of Bifidobacterium lactis in milk powders using impedance
JP6979269B2 (en) Method for measuring dead cells and / or inactivated viruses of microorganisms
JP7369115B2 (en) How to measure microbial cells
Kim et al. Development of a rapid and reliable TaqMan probe-based real-time PCR assay for the detection and enumeration of the multifaceted yeast Kluyveromyces marxianus in dairy products
JP5492427B2 (en) Microbial detection method
Cox et al. Enhanced haemolysis agar (EHA)—an improved selective and differential medium for isolation ofListeria monocytogenes
Min et al. Viability assessment of Bifidobacterium longum ATCC 15707 on non-dairy foods using quantitative fluorescence microscopy
WO2020085420A1 (en) Cell collection method
US20240002900A1 (en) Method for collecting cells of microorganism in specimen
WO2022249910A1 (en) Method for detecting live lactic acid bacteria with carbohydrate metabolism activity
Nakao et al. Simple and Rapid Method for Separating Lactic Acid Bacteria from Commercially Prepared Yogurt
Aziz et al. Metataxonomic analysis of microbiota from Pakistani dromedary camelids milk and characterization of a newly isolated Lactobacillus fermentum strain with probiotic and bio-yogurt starter traits
US20190144911A1 (en) Screening and culture method
JP5658973B2 (en) Medium for detecting lactic acid bacteria
US20220186279A1 (en) Method for quantifying diaminopimelic acid-containing bacteria
De Check for updates Chapter 1 Measuring Niche-Associated Metabolic Activity in Planktonic and Biofilm Bacteria Supradipta De and Anders P. Hakansson
O'Meara et al. The Use of Flow-based Technologies for Food Analysis
Min et al. Novel Method for Viability Assessment of Bifidobacterium longum ATCC 15707 on Non-dairy Foods during drying

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160623

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170501

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170530

R151 Written notification of patent or utility model registration

Ref document number: 6153461

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151