JP6153108B2 - Volatile decomposition component collection and recovery device, liquid chromatograph, and volatile decomposition component analysis method - Google Patents
Volatile decomposition component collection and recovery device, liquid chromatograph, and volatile decomposition component analysis method Download PDFInfo
- Publication number
- JP6153108B2 JP6153108B2 JP2013057391A JP2013057391A JP6153108B2 JP 6153108 B2 JP6153108 B2 JP 6153108B2 JP 2013057391 A JP2013057391 A JP 2013057391A JP 2013057391 A JP2013057391 A JP 2013057391A JP 6153108 B2 JP6153108 B2 JP 6153108B2
- Authority
- JP
- Japan
- Prior art keywords
- volatile
- volatile decomposition
- induction
- tube
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Sampling And Sample Adjustment (AREA)
Description
本発明は、従来のガスクロマトグラフ(GC)では分析困難であった揮発分解成分も分析可能とする揮発分解成分捕集回収装置と、これを用いた液体クロマトグラフ(LC)および揮発分解成分分析方法に関する。 The present invention relates to a volatile decomposition component collection / recovery device that can also analyze volatile decomposition components that have been difficult to analyze by a conventional gas chromatograph (GC), and a liquid chromatograph (LC) and a volatile decomposition component analysis method using the same. About.
樹脂材料(ポリマー材料)を用いた高性能・高機能材料の開発などには微細な化学構造や成分組成などを明らかにすることが必要である。更には、屋内や車室内等の空気清浄化の要求が高く、微細な塵、埃、細菌、ウイルス等の浮遊物の除去以外に、種々の樹脂材料(ポリマー材料)から放出され得る揮発性有機化合物(Volatile Organic Compounds:VOC)等を高精度で分析する必要が生じている。 In order to develop high-performance and high-performance materials using resin materials (polymer materials), it is necessary to clarify the fine chemical structure and component composition. Furthermore, there is a high demand for air purification indoors and vehicle interiors, and in addition to the removal of suspended matters such as fine dust, dust, bacteria and viruses, volatile organics that can be released from various resin materials (polymer materials) There is a need to analyze compounds (Volatile Organic Compounds: VOC) and the like with high accuracy.
このような分析には、従来、試料対象を加熱等して生じた生成物である揮発分解成分をカラムで分離しつつ、検出器で検出する(熱分解)ガスクロマトグラフ(GC)が用いられてきた。GCは、VOCの分析に限らず、ポリマー材料の優れた解析手法として、各分野で広く利用されている。このようなGCに関する記載が例えば下記の特許文献1にある。 Conventionally, a gas chromatograph (GC) in which a volatile decomposition component, which is a product generated by heating a sample object, is detected by a detector while being separated by a column has been used for such analysis. It was. GC is widely used in various fields as an excellent analysis method for polymer materials, not limited to VOC analysis. For example, Patent Document 1 below describes such a GC.
但し、GCでは、移動相であるキャリアーガスにより運ばれる揮発分解成分でなければ分析できないため、それら以外の成分を分析する際には、移動相に液体を用いる(高速)液体クロマトグラフ(HPLC)が利用される。このようなGCに関する記載が例えば下記の特許文献2にある。 However, in GC, since it can be analyzed only by a volatile decomposition component carried by a carrier gas which is a mobile phase, a liquid is used for the mobile phase (high speed) liquid chromatograph (HPLC) when analyzing other components. Is used. The description regarding such GC exists in the following patent document 2, for example.
もっとも一般的には、HPLCよりもGCによってポリマー材料(樹脂材料)の分析がなされることが多い。ところが、ポリマー材料等を熱分解させてGCで分析する場合、当初、500〜600℃程度に加熱した試料から気相の揮発分解成分が発生していても、この揮発分解成分はカラム等の配管を通過する際に温度が300〜400℃程度まで低下するため、その一部は途中で液化や固化して検出されなくなる。その結果、これまでのGCでは、試料に関する有用な構造情報を有している可能性が高い高沸点、高分子量または高極性等の成分を有効に検出して分析することができていなかった。このような状況では、分子レベルの微細化学構造の解明が必要となる高性能先端ポリマー材料等を有効に分析できない。 Most generally, the polymer material (resin material) is often analyzed by GC rather than HPLC. However, when a polymer material or the like is pyrolyzed and analyzed by GC, even if a vapor phase volatile decomposition component is initially generated from a sample heated to about 500 to 600 ° C., the volatile decomposition component is not connected to piping such as a column. Since the temperature drops to about 300 to 400 ° C. when passing through, a part of the temperature is liquefied or solidified and is not detected. As a result, conventional GCs have not been able to effectively detect and analyze components such as high boiling points, high molecular weights, and high polarities that are likely to have useful structural information about the sample. Under such circumstances, it is not possible to effectively analyze high-performance advanced polymer materials that require the elucidation of the fine chemical structure at the molecular level.
本発明はこのような事情に鑑みて為されたものであり、従来のGCでは分析困難であった高沸点成分等も含めて、試料から生じるほぼ全ての生成物の分析を可能とする液体クロマトグラフ、それに用いる揮発分解成分捕集回収装置およびこれを用いた揮発分解成分分析方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and is a liquid chromatograph that enables analysis of almost all products generated from a sample, including high-boiling components that have been difficult to analyze by conventional GC. It is an object of the present invention to provide a graph, a volatile decomposition component collection / recovery device used therefor, and a volatile decomposition component analysis method using the same.
本発明者はこの課題を解決すべく鋭意研究し、試行錯誤を重ねた結果、試料を加熱して生じた生成物のうち、高揮発性の低沸点成分等(これを適宜「揮発性成分」という。)はそのまま捕集、回収すると共に、低揮発性の高沸点成分等(これを適宜「難揮発性成分」という。)は内壁面に一時的に付着(凝集、凝着または吸着等を含む)させて捕集し、その後にそれを溶媒で溶解させて回収することを着想した。これを実際に試したところ、ポリマー材料(試料)から生じるほぼ全ての生成物を分析することに成功した。この成果を発展させることにより、以降に述べる本発明を完成するに至った。 As a result of extensive research and trial and error, the present inventor has conducted high-volatility low-boiling components, etc. (referred to as “volatile components” as appropriate) among products generated by heating the sample. Is collected and recovered as it is, and low-volatile high-boiling components, etc. (this is referred to as “hard-volatile components” as appropriate) are temporarily attached (aggregated, adhered, adsorbed, etc.) to the inner wall surface. Incorporated) and then collected, and after that it was dissolved in a solvent and recovered. When this was actually tested, it was successful in analyzing almost all the products resulting from the polymer material (sample). By developing this result, the present invention described below has been completed.
《揮発分解成分捕集回収装置》
本発明の揮発分解成分捕集回収装置は、キャリアーガスが流入するガス流路中に試料を保持すると共に該試料から発生した揮発分解成分および該キャリアーガスが流出する下流端部を有する試料ホルダーと、該試料ホルダーに保持された試料を加熱する加熱手段と、該試料ホルダーの下流端部に着脱自在な上開口部と該上開口部から延在する延在部と該延在部の下流側にある下開口部とを有し該揮発分解成分を誘導するかまたは該内壁に付着させる誘導付着管と、第一ポジションと第二ポジションとを切り替え得る切替弁とを備え、該第一ポジションのときに該誘導付着管の延在部を該切替弁に内挿して該誘導付着管の上開口部を該試料ホルダーの下流端部に着設させることができ、該第二ポジションのときに該誘導付着管の上開口部を該試料ホルダーの下流端部から離脱させて該誘導付着管の内壁に付着した該揮発分解成分の少なくとも一部を溶解させる溶媒を供給する供給口へ該誘導付着管の上開口部を連通させることができることを特徴とする。
《Volatile decomposition component collection and recovery device》
A volatile decomposition component collection / recovery device of the present invention includes a sample holder that holds a sample in a gas flow path into which a carrier gas flows and has a downstream end from which the volatile decomposition component generated from the sample and the carrier gas flow out. A heating means for heating the sample held in the sample holder; an upper opening detachably attached to the downstream end of the sample holder; an extension extending from the upper opening; and a downstream side of the extension comprising an induction deposition tube to be attached to or inner wall induces volatiles cracking component and a lower opening, and a first position and a switching valve which can switch between a second position in, said first position the extending portion of the induction attachment tube can be interpolated to the switching valve Ru is clamped by the downstream end portion of said sample holder openings on the said induction attachment tube when, in said second position said sample over the opening of the induction attachment tube when And is disengaged from the downstream end portion of the holder can be in communication over the opening of the induction attachment tube to the supply port for supplying the solvent for dissolving at least a portion of volatiles decomposition component adhering to the inner wall of the induction attachment tube It is characterized by that.
本発明の揮発分解成分捕集回収装置を用いると、試料を加熱した際に生じる揮発性成分や分解成分(両者を併せて「揮発分解成分」という。)のほぼ全てを有効に捕集できる。こうして捕集した揮発分解成分を溶媒(移動相)に溶解させて回収し、それを従来からある液体クロマトグラフ(LC)、特に高速液体クロマトグラフ(HPLC)へ送ることにより、従来のガスクロマトグラフ(GC)で分析されていたような低分子量、低沸点または低極性等の揮発性成分に限らず、高分子量、高沸点または高極性等の難揮発性成分(または分解成分)なども分析可能となる。こうして、種々のポリマー材料等からなる試料について、有用な構造情報をもつ生成物をほぼ漏れなく分析できるようになる。 When the volatile decomposition component collection / recovery device of the present invention is used, almost all of the volatile components and decomposition components (both referred to as “volatile decomposition components”) generated when the sample is heated can be effectively collected. The volatile decomposition components thus collected are dissolved in a solvent (mobile phase) and recovered, and then sent to a conventional liquid chromatograph (LC), particularly a high performance liquid chromatograph (HPLC), so that a conventional gas chromatograph ( It is possible to analyze not only low molecular weight, low boiling point or low polarity volatile components as analyzed in GC) but also high molecular weight, high boiling point or high polarity hardly volatile components (or decomposition components), etc. Become. In this way, it becomes possible to analyze a product having useful structural information with almost no leakage from samples made of various polymer materials.
本発明の揮発分解成分捕集回収装置の作用は次の通りである。先ず、切替弁を第一ポジションにして、試料ホルダーの下流端部に誘導付着管の上開口部が着設された状態にする。この状態で、試料ホルダー内にある試料を加熱手段により加熱すると、低分子量、低沸点または低極性等の揮発性成分のみならず、高分子量、高沸点または高極性等の難揮発性成分も、試料から発生する。これらは、試料ホルダーの下流端部からの誘導付着管の上開口部を経て延在部へ誘導される。 The operation of the volatile decomposition component collection and recovery apparatus of the present invention is as follows. First, the switching valve is set to the first position so that the upper opening of the guide attachment tube is attached to the downstream end of the sample holder. In this state, when the sample in the sample holder is heated by heating means, not only volatile components such as low molecular weight, low boiling point or low polarity but also low volatile components such as high molecular weight, high boiling point or high polarity, Generated from the sample. These are guided to the extension through the upper opening of the guide attachment tube from the downstream end of the sample holder.
ここで、試料から発生した揮発分解成分のうち揮発性成分は、延在部で冷却されても、試料ホルダーの上流側から供給されるキャリアーガスによって誘導付着管の下開口部まで移動する。この下開口部を別途設けた溶媒の滞留槽へ浸漬してバブリング(気液分離)等を行えば、揮発性成分はその溶媒中に溶解される。こうして揮発性成分も溶媒中に捕集、回収される。 Here, even if the volatile component among the volatile decomposition components generated from the sample is cooled by the extending portion, the volatile component moves to the lower opening of the induction attachment tube by the carrier gas supplied from the upstream side of the sample holder. If bubbling (gas-liquid separation) or the like is performed by immersing in a solvent retention tank provided separately with the lower opening, the volatile component is dissolved in the solvent. In this way, volatile components are also collected and recovered in the solvent.
ところが、試料から発生した揮発分解成分のうち難揮発性成分は、誘導付着管の通過中における温度低下により、誘導付着管の内壁に付着等して、誘導付着管の下開口部までは移動しないことが多い。そこで、前述したように揮発性成分を十分に捕集、回収した後に、誘導付着管の上開口部を試料ホルダーの下流端部から離脱させていき、切替弁を第二ポジションにする。そして、別途設けられている溶媒槽等の溶媒供給手段から切替弁の供給口へ溶媒を供給する。すると、上開口部を通じて誘導付着管内へ溶媒が導入され、その内壁に付着等していた難揮発性成分は溶媒に溶解して、誘導付着管の下開口部まで移動する。これを前述したように滞留槽へ導入すれば難揮発性成分も回収されることになる。このようにして、揮発性成分のみならず難揮発性成分も捕集および回収されることになる。 However, of the volatile decomposition components generated from the sample, hardly volatile components adhere to the inner wall of the induction attachment tube due to a temperature drop while passing through the induction attachment tube, and do not move to the lower opening of the induction attachment tube. There are many cases. Therefore, as described above, after sufficiently collecting and collecting the volatile components, the upper opening of the guide attachment tube is separated from the downstream end of the sample holder, and the switching valve is set to the second position. And a solvent is supplied to the supply port of a switching valve from solvent supply means, such as a solvent tank provided separately. Then, the solvent is introduced into the induction attachment tube through the upper opening, and the hardly volatile component adhering to the inner wall is dissolved in the solvent and moves to the lower opening of the induction attachment tube. If this is introduced into the retention tank as described above, the hardly volatile component is also recovered. In this way, not only volatile components but also hardly volatile components are collected and recovered.
こうして得られた回収物(試料の揮発分解成分(熱分解生成物)が溶媒に溶解した溶液)をHPLCで分析すれば、GCでは解析できなかったような試料を特徴づける有用な構造情報も解析できるようになる。 If the collected material (solution in which the volatile decomposition components (thermal decomposition products) of the sample are dissolved in a solvent) is analyzed by HPLC, useful structural information that characterizes the sample that could not be analyzed by GC is also analyzed. become able to.
なお、本発明の揮発分解成分捕集回収装置は、上述した滞留槽および溶媒供給手段を含めて考えてもよい。また、本発明の揮発分解成分捕集回収装置に係る上述した誘導付着管の着脱操作は、オペレータが行っても、制御装置等により自動的になされてもよい。 In addition, you may consider the volatile decomposition component collection collection apparatus of this invention including the residence tank mentioned above and a solvent supply means. Further, the above-described attachment / detachment operation of the guide attachment tube according to the volatile decomposition component collection / recovery device of the present invention may be performed by an operator or automatically by a control device or the like.
《液体クロマトグラフ》
本発明は、上述した揮発分解成分捕集回収装置に留まらず、それを備えた液体クロマトグラフとしても把握できる。この液体クロマトグラフは、上述した揮発分解成分捕集回収装置以外に、捕集および回収した試料の揮発分解成分を溶解する溶媒(または溶液)が入った滞留槽から溶液をくみ出して圧送するポンプまたはループインジェクターなどと、圧送された溶液が通過する際に揮発分解成分を各成分に分離するカラムと、カラムで分離された各成分を検出する検出器などから基本的になる。
《Liquid chromatograph》
The present invention is not limited to the above-described volatile decomposition component collection / recovery device, but can be grasped as a liquid chromatograph equipped with the device. In addition to the volatile decomposition component collection / recovery device described above, this liquid chromatograph is a pump that pumps out the solution by pumping out the solution from a retention tank containing a solvent (or solution) that dissolves the volatile decomposition component of the collected and recovered sample. It basically includes a loop injector, a column that separates volatile decomposition components into components when the pumped solution passes, and a detector that detects each component separated by the column.
《揮発分解成分分析方法》
また本発明は、その液体クロマトグラフを用いた揮発分解成分分析方法としても把握できる。さらには本発明は、液体クロマトグラフ(LC)のみならず、ガスクロマトグラフ(GC)を併用した揮発分解成分分析方法としても把握できる。この場合、本発明は、上述した揮発分解成分捕集回収装置の前記切替弁を前記第一ポジションにして前記誘導付着管の下開口部から導出される揮発性成分をガスクロマトグラフで分析するガス分析工程と、該ガス分析工程後に該切替弁を前記第二ポジションにして該誘導付着管の下開口部から導出される前記溶媒に溶解した難揮発性成分を液体クロマトグラフで分析する液体分析工程と、を備えることを特徴とする揮発分解成分分析方法として把握できる。
<Method for analyzing volatile decomposition components>
The present invention can also be grasped as a volatile decomposition component analysis method using the liquid chromatograph. Furthermore, the present invention can be grasped not only as a liquid chromatograph (LC) but also as a volatile decomposition component analysis method using a gas chromatograph (GC) in combination. In this case, the present invention provides a gas analysis in which a gas chromatograph is used to analyze a volatile component derived from a lower opening of the induction attachment tube with the switching valve of the volatile decomposition component collection and recovery device described above being in the first position. And a liquid analysis step for analyzing the hardly volatile component dissolved in the solvent derived from the lower opening of the induction attachment tube by the liquid chromatograph by setting the switching valve to the second position after the gas analysis step. Can be grasped as a method for analyzing volatile decomposition components.
なお、ここでいう揮発性成分は、揮発分解成分のうちでガスクロマトグラフで分析され得るものであり、難揮発性成分は揮発分解成分のうちで液体クロマトグラフで分析され得るものである。両者は分子量、沸点、極性等の点で異なるが、上述した揮発分解成分捕集回収装置を用いる限り、いずれもほぼ漏れなく分析できるため、両者を明確に区別する必要はない。 The volatile component mentioned here can be analyzed by gas chromatography among the volatile decomposition components, and the hardly volatile component can be analyzed by liquid chromatography among the volatile decomposition components. Although both differ in terms of molecular weight, boiling point, polarity, etc., as long as the above-described volatile decomposition component collection and recovery apparatus is used, since both can be analyzed almost without omission, there is no need to clearly distinguish them.
このように分析工程を分離しも、前述した場合と同様に、試料を加熱した際に生じる生成物をほぼ全て漏れなく分析できる。またGCを併用することにより、試料によっては揮発性成分をより高精度に分析可能となり、解析能力の向上を期待できる。 Even if the analysis step is separated in this way, as in the case described above, almost all products generated when the sample is heated can be analyzed without omission. Further, by using GC together, depending on the sample, it becomes possible to analyze volatile components with higher accuracy, and improvement in analysis capability can be expected.
本明細書で説明する内容は、本発明の揮発分解成分捕集回収装置のみならず、それを用いた液体クロマトグラフや分析方法にも該当し得る。上述した本発明の構成要素に、本明細書中から任意に選択した一つまたは二つ以上の構成要素を付加し得る。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。 The contents described in this specification can be applied not only to the volatile decomposition component collection and recovery apparatus of the present invention but also to a liquid chromatograph and an analysis method using the apparatus. One or two or more components arbitrarily selected from the present specification may be added to the above-described components of the present invention. Which embodiment is the best depends on the target, required performance, and the like.
《揮発分解成分捕集回収装置》
(1)加熱手段
本発明に係る加熱手段は、試料を所望の温度に加熱できるものであれば、その種類や構造を問わない。もっとも、試料ホルダーを包囲する加熱炉を用いると、試料を所望する一定温度で安定して加熱できるため好ましい。
《Volatile decomposition component collection and recovery device》
(1) Heating means The heating means according to the present invention may be of any kind or structure as long as the sample can be heated to a desired temperature. However, it is preferable to use a heating furnace that surrounds the sample holder because the sample can be stably heated at a desired constant temperature.
(2)切替弁
切替弁は、上述した第一ポジションと第二ポジションの切り替えができる限り、その構造や形態は問わない。引火の危険がある溶媒が流れる切替弁は、上記の加熱手段と分離して設けられると好ましい。さらに切替弁は、第二ポジションにおいて、加熱手段側への溶媒の流出を防止する手段を備えるもの(例えば三方弁)であると好ましい。
(2) Switching valve As long as the switching valve can be switched between the first position and the second position, the structure and form of the switching valve are not limited. It is preferable that the switching valve through which a solvent having a risk of ignition flows is provided separately from the heating means. Further, the switching valve is preferably provided with a means for preventing the solvent from flowing out to the heating means side (for example, a three-way valve) in the second position.
(3)冷却手段
試料から生じた揮発分解成分は、誘導付着管内を通過する際に冷却され、その一部は誘導付着管の内壁に付着等する。この誘導付着管の内壁への付着状態を管理または制御するために、その温度を調整できる温度調整手段を設けると好ましい。簡単な構造として、例えば、誘導付着管の少なくとも一部を冷却する冷却手段を加熱手段の下流側に設けるとよい。この冷却手段は、その種類や構造を問わないが、例えば、放冷器(空冷フィン、ラジエーター)、ファン、ウォータージャケット、さらには電子冷却素子(ペルチェ)等を、単独でまたは組み合わせて利用できる。なお、試料ホルダーへ供給するキャリアーガスや試料の温度等を管理するために、加熱手段の上流側にも、別の冷却手段を設けてもよい。
(3) Cooling means The volatile decomposition components generated from the sample are cooled when passing through the induction attachment tube, and a part of them adheres to the inner wall of the induction attachment tube. In order to manage or control the state of adhesion of the induction adhering tube to the inner wall, it is preferable to provide a temperature adjusting means capable of adjusting the temperature. As a simple structure, for example, a cooling means for cooling at least a part of the induction attachment pipe may be provided on the downstream side of the heating means. The cooling means may be of any type or structure, and for example, a cooler (air cooling fin, radiator), a fan, a water jacket, an electronic cooling element (Peltier), or the like can be used alone or in combination. In order to manage the carrier gas supplied to the sample holder, the temperature of the sample, etc., another cooling means may be provided on the upstream side of the heating means.
(4)誘導付着管
誘導付着管は、その上開口部が試料ホルダーの下流端部に着脱自在となっており、揮発性成分を捕集・回収するとき(切替弁が第一ポジションにあるとき)の配置(「第一配置」という。)と難揮発性成分を捕集・抽出・回収するとき(切替弁が第二ポジションにあるとき)の配置(「第二配置」という。)をとり得る。
(4) Induction attachment tube The induction attachment tube has an upper opening that is detachable from the downstream end of the sample holder, and collects and collects volatile components (when the switching valve is in the first position). ) Arrangement (referred to as “first arrangement”) and arrangement (referred to as “second arrangement”) when collecting, extracting and collecting hardly volatile components (when the switching valve is in the second position). obtain.
この際、不純物や汚染物等が誘導付着管内へ混入しないように、試料ホルダーの下流端部と切替弁の上流端部の間に、誘導付着管を内挿してシールドするシールド管を介装すると好ましい。このシールド管を設けることにより、誘導付着管は外界から遮断された空間内に保持され、誘導付着管内への不純物等の混入を回避しつつ、前述した異なる配置間を移動できる。 At this time, in order to prevent impurities and contaminants from entering the induction attachment tube, a shield tube is inserted between the downstream end of the sample holder and the upstream end of the switching valve to shield the induction attachment tube. preferable. By providing this shield tube, the induction attachment tube is held in a space cut off from the outside, and can be moved between the different arrangements described above while avoiding the entry of impurities and the like into the induction attachment tube.
また、誘導付着管の上開口部が試料ホルダーの下流端部に着設されているときに、外界から不純物等が混入しないようにその着設部周辺をシールすることが好ましい。このシールとして、樹脂製またはゴム製などのパッキン等を用いると、そのパッキンから生じた揮発性成分が誘導付着管内に混入するおそれがある。そこで、シールにはガスシールを用いると好適である。 In addition, when the upper opening of the induction attachment tube is attached to the downstream end portion of the sample holder, it is preferable to seal the periphery of the attachment portion so that impurities and the like are not mixed from the outside. If a seal made of resin or rubber is used as the seal, volatile components generated from the seal may be mixed into the induction attachment tube. Therefore, it is preferable to use a gas seal as the seal.
ガスシールは、着設部周辺へシールガスを流入(圧送、噴流等させる場合を含む)させることにより行える。用いるシールガスは、キャリアーガスと同成分であると、分析上好ましい。また、着設部周辺へ導入したシールガスは、単に着設部のみをシールするのみならず、誘導付着管とそれに外挿されたシールド管との筒状隙間へも流入し得る。これにより、誘導付着管は前述の第一配置から第二配置へ移動する際もガスシールされた状態となって好ましい。 The gas seal can be performed by causing a seal gas to flow into the periphery of the installation portion (including cases where the gas is fed, jetted, or the like). The seal gas used is preferably the same component as the carrier gas for analysis. Further, the seal gas introduced to the periphery of the installation portion can not only seal only the installation portion but also flow into a cylindrical gap between the induction attachment tube and the shield tube externally attached thereto. Thereby, when the induction | attachment attachment pipe | tube moves to the 2nd arrangement | positioning from the above-mentioned 1st arrangement | positioning, it will be in the state sealed by gas, and it is preferable.
《構成》
本発明に係る一実施例である熱分解高速液体クロマトグラフ(Py−HPLC)1の概要図を図1に示した。熱分解高速液体クロマトグラフ1(単に「クロマトグラフ1」という。)は、揮発分解成分捕集回収装置2と高速液体クロマトグラフ(HPLC)3とからなる。なお、高速液体クロマトグラフ3は、ポンプ31、ループインジェクター32、分離カラム33および検出器34を備える公知の装置であり、その詳細な説明は省略する。
"Constitution"
A schematic diagram of a pyrolysis high-performance liquid chromatograph (Py-HPLC) 1 which is an embodiment according to the present invention is shown in FIG. The pyrolysis high-performance liquid chromatograph 1 (simply referred to as “chromatograph 1”) includes a volatile decomposition component collection / recovery device 2 and a high-performance liquid chromatograph (HPLC) 3. The high performance liquid chromatograph 3 is a known device including a pump 31, a loop injector 32, a separation column 33, and a detector 34, and detailed description thereof is omitted.
揮発分解成分捕集回収装置2は、蓋付き筒状の投入口11と、投入口11の下流側へ連なる管状の試料ホルダー13と、試料ホルダー13を包囲する加熱炉14(加熱手段)と、試料ホルダー13の上流側に設けられた空冷放熱器15(冷却手段)と、加熱炉14および空冷放熱器15を囲繞する筐体12と、この筐体12の下方外側に設けられた空冷放熱器16(冷却手段)と、試料ホルダー13の下流端部13aから空冷放熱器16を貫通して下方へ延在する誘導付着管17と、誘導付着管17を内挿してその上方外周面を覆うシールド管18と、シールド管18の下端部に配設された三方弁19(切替弁)と、三方弁19の供給ポート191(供給口)に溶媒m1を供給する溶媒槽21と、誘導付着管17の下開口部17bが浸漬する溶媒m2の入った滞留槽22とからなる。 The volatile decomposition component collection / recovery device 2 includes a cylindrical inlet 11 with a lid, a tubular sample holder 13 connected to the downstream side of the inlet 11, a heating furnace 14 (heating means) surrounding the sample holder 13, and An air cooling radiator 15 (cooling means) provided on the upstream side of the sample holder 13, a casing 12 surrounding the heating furnace 14 and the air cooling radiator 15, and an air cooling radiator provided on the lower outside of the casing 12. 16 (cooling means), an induction attachment pipe 17 extending downward from the downstream end 13a of the sample holder 13 through the air-cooling radiator 16, and a shield covering the upper outer peripheral surface by interpolating the induction attachment pipe 17 A pipe 18, a three-way valve 19 (switching valve) disposed at the lower end of the shield pipe 18, a solvent tank 21 for supplying a solvent m 1 to a supply port 191 (supply port) of the three-way valve 19, and an induction attachment pipe 17 The lower opening 17b is immersed Consisting of entering the residence tank 22 for the medium m2.
試料Sは、籠状などの試料カップ131に入れた状態で、蓋111を空けた投入口11から導入管112を通って投入される。試料ホルダー13は、その試料カップ131を収納して一定位置に保持できる段付き管状構造となっている。 The sample S is introduced through the introduction tube 112 through the introduction port 11 with the lid 111 opened in a state where the sample S is placed in a sample cup 131 such as a bowl. The sample holder 13 has a stepped tubular structure that can accommodate the sample cup 131 and hold it in a fixed position.
加熱炉14は、電源Eから電力を受けて発熱する小型電気炉である。加熱炉14への供給電力は、試料Sの加熱温度に応じてコントローラー(図略)で制御される。この加熱炉14の周囲は高耐熱性の断熱材141で覆われている。 The heating furnace 14 is a small electric furnace that receives power from the power source E and generates heat. The power supplied to the heating furnace 14 is controlled by a controller (not shown) according to the heating temperature of the sample S. The periphery of the heating furnace 14 is covered with a high heat resistance heat insulating material 141.
筐体12は、上下二段構造となっており、その上段内には空冷放熱器15が配設されており、その下段内には前述した断熱材141が収納されている。その上段部分は大気解放されており、適宜ファンF1から空冷放熱器15へ送風されて、導入管112付近の過熱が抑制される。 The housing 12 has an upper and lower two-stage structure, and an air-cooled heat radiator 15 is disposed in the upper stage, and the above-described heat insulating material 141 is accommodated in the lower stage. The upper part is open to the atmosphere, and air is appropriately blown from the fan F1 to the air-cooling radiator 15 to suppress overheating in the vicinity of the introduction pipe 112.
筐体12の下方側に配設された空冷放熱器16は、前述した空冷放熱器15とほぼ同構造であり、適宜ファンF2からの送風により冷却される。これによりシールド管18を介して誘導付着管17が冷却される。 The air-cooled heat radiator 16 disposed on the lower side of the housing 12 has substantially the same structure as the air-cooled heat radiator 15 described above, and is appropriately cooled by blowing air from the fan F2. As a result, the induction attachment tube 17 is cooled via the shield tube 18.
シールド管18は、空冷放熱器16を貫通して設けられており、その上端部が試料ホルダー13の下流端部13aの外周側に接合されており、その下端部が三方弁19の上流ポート192に接合されている。 The shield tube 18 is provided so as to penetrate the air-cooled heat radiator 16, the upper end portion thereof is joined to the outer peripheral side of the downstream end portion 13 a of the sample holder 13, and the lower end portion thereof is the upstream port 192 of the three-way valve 19. It is joined to.
誘導付着管17は、シールド管18に内挿されており、シールド管18よりも長い。誘導付着管17の上開口部17aは、試料ホルダー13の下流端部13aに固定されておらず、着脱自在となっており、シールド管18内を移動可能である。 The induction attachment tube 17 is inserted in the shield tube 18 and is longer than the shield tube 18. The upper opening portion 17 a of the induction attachment tube 17 is not fixed to the downstream end portion 13 a of the sample holder 13, is detachable, and can move within the shield tube 18.
三方弁19は、供給ポート191、上流ポート192および下流ポート193を有するボディ194と、この内に収納された断面T字型の3ポートを有するバルブ195と、バルブ195を回転させるレバー196とからなる。 The three-way valve 19 includes a body 194 having a supply port 191, an upstream port 192, and a downstream port 193, a valve 195 having a T-shaped three-port housed therein, and a lever 196 that rotates the valve 195. Become.
溶媒槽21は、テトラヒドロフラン(THF)、エタノール等の(有機)溶媒m1を貯留している。溶媒槽21内の溶媒m1は、ポンプまたはシリンジ(図略)によって、三方弁19の供給ポート191へ圧送される(溶媒供給手段)。 The solvent tank 21 stores (organic) solvent m1 such as tetrahydrofuran (THF) or ethanol. The solvent m1 in the solvent tank 21 is pumped to the supply port 191 of the three-way valve 19 by a pump or a syringe (not shown) (solvent supply means).
必要により滞留槽22にも、溶媒槽21内の溶媒m1と同種又は異なった溶媒m2が貯留されており、この溶媒中に誘導付着管17の下開口部17bが浸漬された状態となっている。なお、滞留槽22は、誘導付着管17の下開口部17bから排出されるキャリアーガスG1を外界へ放出する逆止弁付きの排気口221を備える。なお、キャリアーガスG1は、導入管112の上流側に設けたガスポート113から導入される。 If necessary, the retention tank 22 also stores the same or different solvent m2 as the solvent m1 in the solvent tank 21, and the lower opening 17b of the induction attachment tube 17 is immersed in this solvent. . The retention tank 22 includes an exhaust port 221 with a check valve that discharges the carrier gas G1 discharged from the lower opening 17b of the induction attachment pipe 17 to the outside. The carrier gas G1 is introduced from a gas port 113 provided on the upstream side of the introduction pipe 112.
ちなみに、試料ホルダー13の下流端部13aには、図2に示すように、ガスポート133からシールガスG2が導入されている。このシールガスG2により、試料ホルダー13の下流端部13aと誘導付着管17の上開口部17aとの隙間および誘導付着管17とシールド管18の隙間がガスシールされる。なお、キャリアーガスG1およびシールガスG2には、ヘリウムガスまたは窒素ガス等が用いられる。 Incidentally, as shown in FIG. 2, the seal gas G <b> 2 is introduced into the downstream end 13 a of the sample holder 13 from the gas port 133. With this seal gas G2, the gap between the downstream end portion 13a of the sample holder 13 and the upper opening 17a of the guide attachment tube 17 and the gap between the guide attachment tube 17 and the shield tube 18 are gas-sealed. For the carrier gas G1 and the seal gas G2, helium gas or nitrogen gas is used.
また、導入管112、試料カップ131、試料ホルダー13、誘導付着管17、シールド管18、三方弁19等からなるキャリアーガスG1や試料Sの揮発分解成分の通路は、いずれもステンレス製などを用いて揮発分解成分以外の成分が捕集・回収されないようになっている。 The carrier gas G1 including the introduction pipe 112, the sample cup 131, the sample holder 13, the induction attachment pipe 17, the shield pipe 18, the three-way valve 19 and the like, and the passage for the volatile decomposition component of the sample S are all made of stainless steel. This prevents components other than volatile decomposition components from being collected and collected.
《作用》
(1)第一捕集回収ステップ(揮発性成分の捕集・回収)
先ず、三方弁19のレバー196を切り替えてバルブ195を図3(筐体12等は省略して要部を図示してある。)に示す状態(第一ポジション)とする。そしてバルブ195の貫通路へ誘導付着管17の中間部(延在部)を挿通させ、誘導付着管17の上開口部17aを試料ホルダー13の下流端部13aに着設させる(第一配置)。
<Action>
(1) First collection and recovery step (collection and recovery of volatile components)
First, the lever 196 of the three-way valve 19 is switched to bring the valve 195 into the state (first position) shown in FIG. 3 (the casing 12 and the like are omitted and the main part is shown). Then, the intermediate portion (extending portion) of the guide attachment tube 17 is inserted into the through-passage of the valve 195, and the upper opening portion 17a of the guide attachment tube 17 is attached to the downstream end portion 13a of the sample holder 13 (first arrangement). .
ポリマー材料等の試料Sを納めた試料カップ131を投入口11から入れて試料ホルダー13内に保持する。そしてキャリアーガスG1およびシールガスG2を流して各通路や隙間をパージした後、キャリアーガスG1およびシールガスG2を流しつつ、加熱炉14を稼動させて試料ホルダー13内の試料Sを所望の温度まで加熱する。誘導付着管17の下開口部17bは、試料の加熱開始後から滞留槽22の溶媒m2内へ浸漬する。 A sample cup 131 containing a sample S such as a polymer material is inserted from the insertion port 11 and held in the sample holder 13. Then, after flowing the carrier gas G1 and the seal gas G2 to purge each passage and gap, the heating furnace 14 is operated while flowing the carrier gas G1 and the seal gas G2, and the sample S in the sample holder 13 is brought to a desired temperature. Heat. The lower opening 17b of the induction attachment tube 17 is immersed in the solvent m2 of the residence tank 22 after the heating of the sample is started.
こうして試料Sから生じた揮発分解成分中の揮発性成分(低分子量、低沸点、低極性等の成分)V1が、誘導付着管17の下開口部17bから排出される。滞留槽22には溶媒m2に溶解することにより、揮発性成分が捕集および回収される。なお、揮発性成分を分析しない場合などでは、溶媒m2を設けなかったり、逆にそれをGC分析などに適切な溶媒へ変更したり、それを固形状の吸着剤に変更することも可能である。 In this way, volatile components (components such as low molecular weight, low boiling point, and low polarity) V1 in the volatile decomposition components generated from the sample S are discharged from the lower opening 17b of the induction attachment tube 17. A volatile component is collected and collected in the residence tank 22 by dissolving in the solvent m2. In the case where the volatile component is not analyzed, the solvent m2 may not be provided, or it may be changed to a suitable solvent for GC analysis or the like, or it may be changed to a solid adsorbent. .
(2)第二捕集回収ステップ(難揮発性成分の捕集・回収)
次に、シールド管18内で、誘導付着管17の上開口部17aを試料ホルダー13の下流端部13aから離脱させると共に三方弁19の下流ポート193まで下げる。そして三方弁19のレバー196を切り替えてバルブ195を図4に示す状態(第二ポジション)とする。これにより供給ポート191と誘導付着管17の上開口部17aとが連通状態となる(第二配置)。この状態で溶媒槽21から三方弁19の供給ポート191へ溶媒m1を流入させると、誘導付着管17内へ溶媒m1が導入される。これにより、上述した第一捕集回収ステップで発生した揮発分解成分のうち、空冷放熱器16により冷却され誘導付着管17の内壁に付着等した未回収の難揮発性成分(高分子量、高沸点、高極性等の成分)V2が溶媒m1に溶解する。この溶媒m1(または溶液)が誘導付着管17の下開口部17bから滞留槽22の溶媒m2へ流入すると、難揮発性成分V2も揮発性成分V1と同様に、滞留槽22内の溶媒m2へ回収されることとなる。なお、適宜、溶媒m1の誘導付着管17への導入を繰り返し行うことにより、難揮発性成分V2の回収効率を向上させることができる。また、溶媒量を減らす目的などのために、揮発性成分を溶解した溶媒m2を誘導付着管17を通じて溶媒槽21へ逆流させた後、前述した操作を繰り返し行うことも可能である。
(2) Second collection / recovery step (collection / recovery of non-volatile components)
Next, in the shield tube 18, the upper opening portion 17 a of the induction attachment tube 17 is separated from the downstream end portion 13 a of the sample holder 13 and lowered to the downstream port 193 of the three-way valve 19. Then, the lever 196 of the three-way valve 19 is switched to bring the valve 195 into the state shown in FIG. 4 (second position). As a result, the supply port 191 and the upper opening 17a of the guide attachment tube 17 are in communication (second arrangement). In this state, when the solvent m1 is caused to flow from the solvent tank 21 to the supply port 191 of the three-way valve 19, the solvent m1 is introduced into the induction attachment tube 17. Thereby, among the volatile decomposition components generated in the first collection and recovery step described above, unrecovered hardly volatile components (high molecular weight, high boiling point) that are cooled by the air-cooling radiator 16 and adhered to the inner wall of the induction attachment tube 17 or the like. , Components such as high polarity) V2 is dissolved in the solvent m1. When this solvent m1 (or solution) flows into the solvent m2 in the retention tank 22 from the lower opening 17b of the induction attachment tube 17, the hardly volatile component V2 is transferred to the solvent m2 in the retention tank 22 in the same manner as the volatile component V1. It will be collected. In addition, the collection efficiency of the hardly volatile component V2 can be improved by repeatedly introducing the solvent m1 into the induction attachment tube 17 as appropriate. Further, for the purpose of reducing the amount of solvent, etc., after the solvent m2 in which the volatile component is dissolved is caused to flow back to the solvent tank 21 through the induction attachment tube 17, the above-described operation can be repeated.
(3)分析
こうして得られた滞留槽22の溶媒m2を、高速液体クロマトグラフ3で分析することにより、試料Sを加熱することにより生じた種々の生成物をほぼ漏れなく解析でき、試料Sに関する有用な構造情報を総合的に得ることができる。
(3) Analysis By analyzing the solvent m2 of the retention tank 22 obtained in this manner with the high performance liquid chromatograph 3, various products generated by heating the sample S can be analyzed almost without leakage. Useful structural information can be obtained comprehensively.
《分析例》
本実施例のクロマトグラフ1を用いて分析した一例を示す。ポリブチレンテレフタレート(PBT)からなる試料Sを加熱炉14で500℃に加熱した。この際、窒素からなるキャリアーガスG1とシールガスG2を、それぞれ70mL/minと10mL/minの割合で流した。なお、誘導付着管17の下流部には、石英ウールを詰めて、試料Sの分解生成物が誘導付着管17内で接触する面積を増加させた。
《Analysis example》
An example analyzed using the chromatograph 1 of a present Example is shown. Sample S made of polybutylene terephthalate (PBT) was heated to 500 ° C. in heating furnace 14. At this time, a carrier gas G1 and a seal gas G2 made of nitrogen were flowed at a rate of 70 mL / min and 10 mL / min, respectively. In addition, the downstream part of the induction attachment tube 17 was filled with quartz wool to increase the area where the decomposition product of the sample S contacts in the induction attachment tube 17.
こうして、前述した第一捕集回収ステップと第二捕集回収ステップを行い、高速液体クロマトグラフ3による分析を行った。この結果、従来のガスクロマトグラフでは検出できなかった成分を検出することができた。しかも、MALDI−MS(Matrix Assisted Laser Desorption/Ionization-Mass Spectrometry)分析で確認されたPBTの分解物の全てを本実施例のクロマトグラフ1により検出することもできた。こうして本実施例のクロマトグラフ1を用いれば、試料Sの揮発分解成分をほぼ漏れなく分析できることが確認された。 Thus, the first collection and recovery step and the second collection and recovery step described above were performed, and the analysis by the high performance liquid chromatograph 3 was performed. As a result, components that could not be detected by conventional gas chromatographs could be detected. Moreover, all of the PBT decomposition products confirmed by MALDI-MS (Matrix Assisted Laser Desorption / Ionization-Mass Spectrometry) analysis could also be detected by the chromatograph 1 of this example. Thus, it was confirmed that the volatile decomposition component of the sample S can be analyzed almost without leakage by using the chromatograph 1 of the present example.
13 試料ホルダー
14 加熱炉(加熱手段)
16 空冷放熱器(冷却手段)
17 誘導付着管
18 シールド管
19 三方弁(切替弁)
13 Sample holder 14 Heating furnace (heating means)
16 Air-cooled radiator (cooling means)
17 Induction attachment pipe 18 Shield pipe 19 Three-way valve (switching valve)
Claims (8)
該試料ホルダーに保持された試料を加熱する加熱手段と、
該試料ホルダーの下流端部に着脱自在な上開口部と該上開口部から延在する延在部と該延在部の下流側にある下開口部とを有し該揮発分解成分を誘導するかまたは該内壁に付着させる誘導付着管と、
第一ポジションと第二ポジションとを切り替え得る切替弁とを備え、
該第一ポジションのときに該誘導付着管の延在部を該切替弁に内挿して該誘導付着管の上開口部を該試料ホルダーの下流端部に着設させることができ、
該第二ポジションのときに該誘導付着管の上開口部を該試料ホルダーの下流端部から離脱させて該誘導付着管の内壁に付着した該揮発分解成分の少なくとも一部を溶解させる溶媒を供給する供給口へ該誘導付着管の上開口部を連通させることができることを特徴とする揮発分解成分捕集回収装置。 A sample holder that holds a sample in a gas flow path into which a carrier gas flows, and has a volatile decomposition component generated from the sample and a downstream end from which the carrier gas flows out;
Heating means for heating the sample held in the sample holder;
A detachable upper opening at the downstream end of the sample holder, an extending part extending from the upper opening, and a lower opening on the downstream side of the extending part, guide the volatile decomposition component. Or an induction attachment tube attached to the inner wall;
And a switching valve capable of switching between a first position and a second position,
Can Ru is clamped by the upper opening of the induction attachment pipe extending portion of the induction attachment pipe by interpolation to the switching valve when said first position to the downstream end portion of said sample holder,
Supplying a solvent over the opening of the induction attachment tube is detached from the downstream end portion of said sample holder dissolving at least a portion of volatiles decomposition component adhering to the inner wall of the induction attachment tube when said second position An apparatus for collecting and collecting volatile decomposition components, wherein the upper opening of the guide attachment tube can be communicated with a supply port.
該ガス分析工程後に該切替弁を前記第二ポジションにして該誘導付着管の下開口部から導出される前記溶媒に溶解した難揮発性成分を液体クロマトグラフで分析する液体分析工程と、
を備えることを特徴とする揮発分解成分分析方法。 The volatile component derived from the lower opening of the induction attachment tube is analyzed by a gas chromatograph with the switching valve of the volatile decomposition component collection and recovery device according to any one of claims 1 to 6 in the first position. Gas analysis process;
A liquid analysis step of analyzing, by a liquid chromatograph, a hardly volatile component dissolved in the solvent derived from the lower opening of the induction attachment tube with the switching valve set to the second position after the gas analysis step;
A volatile decomposition component analysis method comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013057391A JP6153108B2 (en) | 2013-03-19 | 2013-03-19 | Volatile decomposition component collection and recovery device, liquid chromatograph, and volatile decomposition component analysis method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013057391A JP6153108B2 (en) | 2013-03-19 | 2013-03-19 | Volatile decomposition component collection and recovery device, liquid chromatograph, and volatile decomposition component analysis method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014182037A JP2014182037A (en) | 2014-09-29 |
JP6153108B2 true JP6153108B2 (en) | 2017-06-28 |
Family
ID=51700883
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013057391A Active JP6153108B2 (en) | 2013-03-19 | 2013-03-19 | Volatile decomposition component collection and recovery device, liquid chromatograph, and volatile decomposition component analysis method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6153108B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6419127B2 (en) * | 2016-10-18 | 2018-11-07 | フロンティア・ラボ株式会社 | Heat treatment equipment |
JP6364464B2 (en) * | 2016-10-18 | 2018-07-25 | フロンティア・ラボ株式会社 | Heat treatment equipment |
WO2019112276A1 (en) * | 2017-12-04 | 2019-06-13 | 주식회사 엘지화학 | Automated apparatus for sample pyrolysis |
KR102180627B1 (en) * | 2017-12-04 | 2020-11-18 | 주식회사 엘지화학 | An apparatus for automated pyrolysis of a sample |
CN114264539B (en) * | 2020-09-16 | 2024-06-28 | 中国烟草总公司郑州烟草研究院 | Solvent-assisted thermal analysis apparatus |
CN113466387A (en) * | 2021-05-26 | 2021-10-01 | 中国电子技术标准化研究院 | Py-HPLC detection system and detection method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5965245A (en) * | 1982-10-05 | 1984-04-13 | Shoji Hara | Apparatus for evaporative concentration or drying-up and re-dissolving of minute amount of specimen solution |
KR100265284B1 (en) * | 1997-05-28 | 2000-09-15 | 윤종용 | Measuring method and apparatus for watersoluble contaminants in the air in clean room |
JP3724131B2 (en) * | 1997-08-05 | 2005-12-07 | 株式会社島津製作所 | Gas chromatograph |
JP2010249577A (en) * | 2009-04-13 | 2010-11-04 | Renesas Electronics Corp | Gas analyzer |
-
2013
- 2013-03-19 JP JP2013057391A patent/JP6153108B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2014182037A (en) | 2014-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6153108B2 (en) | Volatile decomposition component collection and recovery device, liquid chromatograph, and volatile decomposition component analysis method | |
US10434436B2 (en) | Gas-blowing vaporizing and drying device | |
US20180284082A1 (en) | High-speed gas sample analysis device using gas chromatography, and method thereof | |
JP5148933B2 (en) | Sample concentration method and apparatus | |
US20150068280A1 (en) | Device and method for extracting compounds contained in a liquid sample with a view to analysing them | |
JP2001501303A (en) | Analysis engine for gas chromatograph | |
EP2724140A1 (en) | Reduced pressure liquid sampling | |
JP5807795B2 (en) | Gas chromatograph heating apparatus and gas chromatograph heating method | |
JP5038204B2 (en) | Gas chromatograph | |
JP2000187027A (en) | Method and device for analyzing trace amount of organic compound | |
US8925369B2 (en) | Device and method for preparing samples for gas chromatography | |
CN104713966A (en) | Thermal desorption and sampling device for methyl mercury | |
JP5184171B2 (en) | Sample gas collector and gas chromatograph | |
SE505324C2 (en) | Preparation of 11C-methyl iodide | |
JP5853942B2 (en) | Gas chromatograph | |
CN113272644B (en) | Gas separation system | |
CN104190108B (en) | Drying device is extracted in a kind of SPE | |
JP5184170B2 (en) | Gas chromatograph apparatus and gas component detection method | |
JP2007212325A (en) | Heat desorption equipment | |
WO2018154512A1 (en) | Argon recycling system for an inductively coupled plasma mass spectrometer | |
EP3557245A1 (en) | Sample introducing device | |
US20150285830A1 (en) | Sample pretreatment apparatus and sample pretreatment method | |
JP5903358B2 (en) | Polyolefin composition distribution analysis method | |
Doherty III et al. | A handheld FTIR spectrometer with swappable modules for chemical vapor identification and surface swab analysis | |
JP5362242B2 (en) | Gas chromatograph apparatus and gas component desorption method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160317 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20160317 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170126 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170221 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170403 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170516 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170522 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6153108 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |