JP6151637B2 - Titanium copper for electronic parts - Google Patents

Titanium copper for electronic parts Download PDF

Info

Publication number
JP6151637B2
JP6151637B2 JP2013272861A JP2013272861A JP6151637B2 JP 6151637 B2 JP6151637 B2 JP 6151637B2 JP 2013272861 A JP2013272861 A JP 2013272861A JP 2013272861 A JP2013272861 A JP 2013272861A JP 6151637 B2 JP6151637 B2 JP 6151637B2
Authority
JP
Japan
Prior art keywords
concentration
mass
average
copper
bending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013272861A
Other languages
Japanese (ja)
Other versions
JP2015127440A (en
Inventor
弘泰 堀江
弘泰 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2013272861A priority Critical patent/JP6151637B2/en
Publication of JP2015127440A publication Critical patent/JP2015127440A/en
Application granted granted Critical
Publication of JP6151637B2 publication Critical patent/JP6151637B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明はコネクタ等の電子部品用部材として好適なチタン銅に関する。   The present invention relates to titanium copper suitable as a member for electronic parts such as a connector.

近年では携帯端末などに代表される電子機器の小型化が益々進み、従ってそれに使用されるコネクタは狭ピッチ化、低背化及び狭幅化の傾向が著しい。小型のコネクタほどピン幅が狭く、小さく折り畳んだ加工形状となるため、使用する部材には、必要なバネ性を得るための高い強度が求められる。この点、チタンを含有する銅合金(以下、「チタン銅」と称する。)は、比較的強度が高く、応力緩和特性にあっては銅合金中最も優れているため、特に強度が要求される信号系端子用部材として、古くから使用されてきた。   In recent years, electronic devices typified by portable terminals and the like have been increasingly miniaturized, and accordingly, connectors used therefor have a tendency of narrow pitch, low profile, and narrow width. The smaller the connector, the narrower the pin width, and the smaller the folded shape, so that the member to be used is required to have high strength to obtain the necessary spring property. In this regard, a titanium-containing copper alloy (hereinafter referred to as “titanium copper”) has a relatively high strength and is most excellent in the copper alloy in terms of stress relaxation characteristics. As a signal system terminal member, it has been used for a long time.

チタン銅は時効硬化型の銅合金である。溶体化処理によって溶質原子であるTiの過飽和固溶体を形成させ、その状態から低温で比較的長時間の熱処理を施すと、スピノーダル分解によって、母相中にTi濃度の周期的変動である変調構造が発達し、強度が向上する。この際、問題となるのは、強度と曲げ加工性が相反する特性である点である。すなわち、強度を向上させると曲げ加工性が損なわれ、逆に、曲げ加工性を重視すると所望の強度が得られないということである。一般に、冷間圧延の圧下率を高くするほど、導入される転位が多くなって転位密度が高くなるため、析出に寄与する核生成サイトが増え、時効処理後の強度を高くすることができるが、圧下率を高くしすぎると曲げ加工性が悪化する。このため、強度及び曲げ加工性の両立を図ることが課題とされてきた。   Titanium copper is an age-hardening type copper alloy. When a supersaturated solid solution of Ti, which is a solute atom, is formed by solution treatment and heat treatment is performed at a low temperature for a relatively long time from that state, a modulation structure that is a periodic variation of Ti concentration in the parent phase is caused by spinodal decomposition. Develop and improve strength. At this time, the problem is that the strength and the bending workability are contradictory. That is, if the strength is improved, the bending workability is impaired, and conversely, if the bending workability is emphasized, a desired strength cannot be obtained. In general, the higher the cold rolling reduction ratio, the more dislocations introduced and the higher the dislocation density, so that the number of nucleation sites contributing to precipitation increases and the strength after aging treatment can be increased. If the rolling reduction is too high, the bending workability deteriorates. For this reason, it has been an object to achieve both strength and bending workability.

そこで、Fe、Co、Ni、Siなどの第三元素を添加する(特許文献1)、母相中に固溶する不純物元素群の濃度を規制し、これらを第二相粒子(Cu−Ti−X系粒子)として所定の分布形態で析出させて変調構造の規則性を高くする(特許文献2)、結晶粒を微細化させるのに有効な微量添加元素と第二相粒子の密度を規定する(特許文献3)、結晶粒を微細化する(特許文献4)、結晶方位を制御する(特許文献5)などの観点から、チタン銅の強度と曲げ加工性の両立を図ろうとする技術が提案されている。   Therefore, a third element such as Fe, Co, Ni, Si or the like is added (Patent Document 1), the concentration of the impurity element group that dissolves in the matrix phase is regulated, and these elements are added to the second phase particles (Cu-Ti- X-type particles) are precipitated in a predetermined distribution form to increase the regularity of the modulation structure (Patent Document 2), and the density of the trace additive elements and second-phase particles effective to refine the crystal grains is specified. From the viewpoints of (Patent Document 3), refining crystal grains (Patent Document 4), controlling crystal orientation (Patent Document 5), etc., a technique for achieving both the strength and bending workability of titanium copper is proposed. Has been.

また、特許文献6にはスピノーダル分解に起因するチタンの変調構造が発達していくにつれ、チタン濃度のゆらぎが大きくなり、これによってチタン銅に粘りを与えて強度及び曲げ加工性が向上することが記載されている。そこで、特許文献6においてはスピノーダル分解に起因する母相中のTi濃度のゆらぎを制御する技術が提案されている。特許文献6においては、最終の溶体化処理の後に熱処理(亜時効処理)を入れ、予めスピノーダル分解を起こし、その後に、従来レベルの冷間圧延、従来レベルの時効処理あるいはそれより低温・短時間の時効処理を行うことでTi濃度のゆらぎを大きくし、チタン銅の高強度化を図ることが記載されている。   Further, in Patent Document 6, as the titanium modulation structure due to spinodal decomposition develops, the fluctuation of the titanium concentration increases, thereby giving the titanium copper stickiness and improving the strength and bending workability. Have been described. Therefore, Patent Document 6 proposes a technique for controlling fluctuations in Ti concentration in the matrix due to spinodal decomposition. In Patent Document 6, a heat treatment (sub-aging treatment) is performed after the final solution treatment, spinodal decomposition is caused in advance, and then cold rolling at a conventional level, aging treatment at a conventional level, or a temperature lower and shorter than that. It is described that the Ti concentration fluctuation is increased by increasing the Ti concentration by performing the aging treatment.

特開2004−231985号公報Japanese Patent Laid-Open No. 2004-231985 特開2004−176163号公報JP 2004-176163 A 特開2005−97638号公報JP-A-2005-97638 特開2006−265611号公報JP 2006-265611 A 特開2012−188680号公報JP 2012-188680 A 特開2012−097306号公報JP 2012-097306 A

このように、従来は強度及び曲げ加工性の両面から特性の改善を図る努力が多くなされてきたが、電子機器の小型化によって搭載されるコネクタ等の電子部品の小型化も更に進展している。このような技術トレンドに追随するためにはチタン銅の強度及び曲げ加工性を更に高い次元で達成することが必要となる。強度及び曲げ加工性のバランス向上にはスピノーダル分解に起因するTi濃度のゆらぎを大きくすることが有効であることが示されているが、未だ改善の余地が残されている。   As described above, in the past, many efforts have been made to improve the characteristics in terms of both strength and bending workability. However, downsizing of electronic parts such as connectors mounted due to downsizing of electronic devices has further progressed. . In order to follow such a technological trend, it is necessary to achieve the strength and bending workability of titanium copper at a higher level. It has been shown that increasing the fluctuation of Ti concentration due to spinodal decomposition is effective for improving the balance between strength and bending workability, but there is still room for improvement.

そこで、本発明はチタン銅において、Ti濃度のゆらぎを従来とは別の観点で制御し、強度及び曲げ加工性の向上を図ることを目的とする。   Accordingly, an object of the present invention is to control the fluctuation of Ti concentration in titanium copper from a viewpoint different from the conventional one and improve the strength and bending workability.

本発明者は、チタン銅の母相中のTi濃度をEDXによりライン分析することで得られるTi濃度の揺らぎ曲線において、隣り合う山部の山頂と谷部の谷底を直線で結んだときの傾きの絶対値、更には隣り合う山部の山頂と谷部の谷底のTi濃度差が、強度及び曲げ加工性に有意に影響を与えていることを見出した。そして、当該傾きを適切に制御することによって、これらの特性のバランスを向上可能であることを見出した。本発明は以上の知見を背景として完成したものであり、以下によって特定される。   The present inventor found that the Ti concentration fluctuation curve obtained by EDX line analysis of the Ti concentration in the matrix of titanium copper is the slope when connecting the peaks of the adjacent peaks and the valleys of the valleys with a straight line. It was found that the absolute value of, and the Ti concentration difference between the top of the adjacent peak and the bottom of the valley significantly affected the strength and bending workability. And it discovered that the balance of these characteristics could be improved by controlling the said inclination appropriately. The present invention has been completed against the background of the above findings, and is specified by the following.

本発明は一側面において、Tiを2.0〜4.0質量%含有し、第三元素としてFe、Co、Mg、Si、Ni、Cr、Zr、Mo、V、Nb、Mn、B、及びPからなる群から選択された1種以上を合計で0〜0.5質量%含有し、残部が銅及び不可避的不純物からなる電子部品用チタン銅であって、圧延方向に平行な断面における<100>方位の結晶粒について母相中のTiをEDXによりライン分析することで得られるTi濃度ゆらぎ曲線において、隣り合う山部の山頂と谷部の谷底を直線で結んだときの傾きの絶対値の平均が0.30〜1.00質量%/nmであり、且つ、圧延方向に平行な断面の組織観察における大きさが3μm以上の第二相粒子の観察視野10000μm2当たりの個数が35個以下であるチタン銅である。 In one aspect of the present invention, Ti is contained in an amount of 2.0 to 4.0% by mass, and the third element is Fe, Co, Mg, Si, Ni, Cr, Zr, Mo, V, Nb, Mn, B, and One or more selected from the group consisting of P is contained in a total of 0 to 0.5% by mass, and the balance is titanium copper for electronic parts made of copper and inevitable impurities, in a cross section parallel to the rolling direction. In the Ti concentration fluctuation curve obtained by line analysis of Ti in the matrix with EDX for crystal grains with 100> orientation, the absolute value of the slope when connecting the peaks of adjacent peaks and valleys with a straight line The number of second phase particles having an average of 0.30 to 1.00% by mass / nm and a size of 3 μm or more in the structure observation of the cross section parallel to the rolling direction per observation field of 10,000 μm 2 is 35 It is titanium copper which is the following.

本発明に係るチタン銅の別の一実施形態においては、前記Ti濃度ゆらぎ曲線において、隣り合う山部の山頂と谷部の谷底のTi濃度差の平均が2.5〜15.0質量%である。   In another embodiment of the titanium copper according to the present invention, in the Ti concentration fluctuation curve, the average of the Ti concentration difference between the peak of the adjacent peak and the bottom of the valley is 2.5 to 15.0% by mass. is there.

本発明に係るチタン銅の別の一実施形態においては、圧延方向に平行な断面の組織観察における平均結晶粒径が2〜30μmである。   In another embodiment of the titanium copper according to the present invention, the average crystal grain size in the observation of the structure of the cross section parallel to the rolling direction is 2 to 30 μm.

本発明に係るチタン銅の更に別の一実施形態においては、圧延方向に平行な方向での0.2%耐力が900MPa以上であり、且つ、板幅(w)/板厚(t)=3.0となる曲げ幅で曲げ半径(R)/板厚(t)=0としてBadway(曲げ軸が圧延方向と同一方向)のW曲げ試験を実施したときに屈曲部にクラックを生じない。   In yet another embodiment of the titanium-copper according to the present invention, the 0.2% yield strength in the direction parallel to the rolling direction is 900 MPa or more, and the plate width (w) / plate thickness (t) = 3. When the W-bending test of Badway (the bending axis is the same direction as the rolling direction) is performed with a bending width of 0.0 and a bending radius (R) / plate thickness (t) = 0, no crack is generated in the bent portion.

本発明は別の一側面において、本発明に係るチタン銅を備えた伸銅品である。   In another aspect, the present invention is a copper rolled product including the titanium copper according to the present invention.

本発明は更に別の一側面において、本発明に係るチタン銅を備えた電子部品である。   In still another aspect, the present invention is an electronic component including the titanium copper according to the present invention.

本発明によれば強度及び曲げ加工性のバランスが向上したチタン銅が得られる。本発明に係るチタン銅を材料とすることで信頼性の高いコネクタ等の電子部品が得られる。   According to the present invention, titanium copper having an improved balance between strength and bending workability can be obtained. By using titanium copper according to the present invention as a material, an electronic component such as a highly reliable connector can be obtained.

図1は、本発明に係るチタン銅の母相中のTiをEDXによりライン分析したときに得られるTi濃度の揺らぎ曲線の一例である。FIG. 1 is an example of a fluctuation curve of Ti concentration obtained when line analysis of Ti in the matrix of titanium copper according to the present invention is performed by EDX. 図2は、図1の部分拡大図である。FIG. 2 is a partially enlarged view of FIG. 図3はチタン銅の母相中のTiのマッピング像の例である。FIG. 3 is an example of a mapping image of Ti in the parent phase of titanium copper.

(1)Ti濃度
本発明に係るチタン銅においては、Ti濃度を2.0〜4.0質量%とする。チタン銅は、溶体化処理によりCuマトリックス中へTiを固溶させ、時効処理により微細な析出物を合金中に分散させることにより、強度及び導電率を上昇させる。
Ti濃度が2.0質量%未満になると、Ti濃度のゆらぎが生じないか又は小さくなると共に析出物の析出が不充分となり所望の強度が得られない。Ti濃度が4.0質量%を超えると、曲げ加工性が劣化し、圧延の際に材料が割れやすくなる。強度及び曲げ加工性のバランスを考慮すると、好ましいTi濃度は2.5〜3.5質量%である。
(1) Ti concentration In titanium copper concerning the present invention, Ti concentration shall be 2.0-4.0 mass%. Titanium copper increases strength and electrical conductivity by dissolving Ti in a Cu matrix by solution treatment and dispersing fine precipitates in the alloy by aging treatment.
When the Ti concentration is less than 2.0% by mass, fluctuations in the Ti concentration do not occur or become small, and precipitation of precipitates becomes insufficient, so that a desired strength cannot be obtained. When the Ti concentration exceeds 4.0% by mass, bending workability deteriorates and the material is easily cracked during rolling. Considering the balance between strength and bending workability, the preferable Ti concentration is 2.5 to 3.5% by mass.

(2)第三元素
本発明に係るチタン銅においては、Fe、Co、Mg、Si、Ni、Cr、Zr、Mo、V、Nb、Mn、B、及びPからなる群から選択される第三元素の1種以上を含有させることにより、強度を更に向上させることができる。但し、第三元素の合計濃度が0.5質量%を超えると、曲げ加工性が劣化し、圧延の際に材料が割れやすくなる。そこで、これら第三元素は合計で0〜0.5質量%含有することができ、強度及び曲げ加工性のバランスを考慮すると、上記元素の1種以上を総量で0.1〜0.4質量%含有させることが好ましい。
(2) Third element In the titanium copper according to the present invention, a third element selected from the group consisting of Fe, Co, Mg, Si, Ni, Cr, Zr, Mo, V, Nb, Mn, B, and P. By including one or more elements, the strength can be further improved. However, if the total concentration of the third elements exceeds 0.5% by mass, the bending workability deteriorates and the material is easily cracked during rolling. Therefore, these third elements can be contained in a total amount of 0 to 0.5% by mass, and considering the balance between strength and bending workability, the total amount of one or more of the above elements is 0.1 to 0.4% by mass. % Content is preferable.

(3)Ti濃度ゆらぎ曲線において、隣り合う山部の山頂と谷部の谷底を直線で結んだときの傾きの絶対値、及び隣り合う山部の山頂と谷部の谷底のTi濃度差
本発明においては、圧延方向に平行な断面における<100>方位の結晶粒について母相中のTiをEDXによりライン分析することで横軸を距離(nm)、縦軸をTi濃度(質量%)とするTi濃度ゆらぎ曲線を描き、隣り合う山部の山頂と谷部の谷底を直線で結んだときの傾きの絶対値の平均を求める。Ti濃度は具体的には圧延方向に平行な断面に対する走査型透過電子顕微鏡(STEM)を用いたエネルギー分散型X線分光法(EDX)により分析する(STEM−EDX分析)。STEM−EDX分析によりチタン銅の<100>方位の結晶粒について母相をライン分析すると、図1に示すようなTi濃度が周期的に変化する揺らぎ曲線が描ける。図1に示す平均線は、ライン分析により測定した各測定箇所でのTi濃度(質量%)の合計値を測定箇所数で割った値(平均値)を表す。
図2に、Ti濃度揺らぎ曲線の拡大図の例が示されている。Ti濃度の揺らぎ曲線において、平均線よりも上に突出した部分を山部とし、下に突出した部分を谷部とすると、各山部は山頂を、各谷部は谷底を有する。図2中の点線は、隣り合う山部の山頂と谷部の谷底を直線で結んだときの傾きを示している。図2の曲線の場合、表1のように各傾きの絶対値、及び隣り合う山部の山頂と谷部の谷底のTi濃度差を求めることができる。
(3) In the Ti concentration fluctuation curve, the absolute value of the slope when the peaks of adjacent peaks and valleys are connected by a straight line, and the Ti concentration difference between the peaks of adjacent peaks and valleys of the valley , The horizontal axis is distance (nm) and the vertical axis is Ti concentration (mass%) by line analysis of Ti in the parent phase by EDX for crystal grains with <100> orientation in the cross section parallel to the rolling direction. A Ti concentration fluctuation curve is drawn, and the average of the absolute values of the slopes when the peaks of adjacent peaks and valleys are connected by a straight line is obtained. Specifically, the Ti concentration is analyzed by energy dispersive X-ray spectroscopy (EDX) using a scanning transmission electron microscope (STEM) with respect to a cross section parallel to the rolling direction (STEM-EDX analysis). When the parent phase is line-analyzed for the crystal grains of <100> orientation of titanium copper by STEM-EDX analysis, a fluctuation curve in which the Ti concentration periodically changes can be drawn as shown in FIG. The average line shown in FIG. 1 represents a value (average value) obtained by dividing the total value of Ti concentration (mass%) at each measurement point measured by line analysis by the number of measurement points.
FIG. 2 shows an example of an enlarged view of the Ti concentration fluctuation curve. In the fluctuation curve of Ti concentration, assuming that a portion protruding above the average line is a peak and a portion protruding below is a valley, each peak has a peak, and each valley has a valley bottom. The dotted line in FIG. 2 shows the inclination when connecting the top of the adjacent mountain and the bottom of the valley with a straight line. In the case of the curve in FIG. 2, as shown in Table 1, the absolute value of each slope and the Ti concentration difference between the peak of the adjacent peak and the valley bottom can be obtained.

ライン分析の測定距離は測定誤差を防止する観点から150nm以上とする。同様の分析を異なる観察視野で5回繰り返し、それらの平均値を測定値とする。ライン分析は、分析する方向によってTi濃度のゆらぎ状態が大きく異なる。それはTiの濃縮部が数十nm間隔で規則的に配列しているためである。そこでライン分析を行う前に、予めTiのマッピングを行い、Tiの濃淡が大きくなる領域を狙いライン分析を行う。図3に示すように、Tiのマッピングから矢印(実線)の方向にライン分析を実施するのが好ましい。また、矢印(点線)の方向でライン分析を行うと、Tiの濃淡が薄くなり好ましくない。   The measurement distance for line analysis is 150 nm or more from the viewpoint of preventing measurement errors. The same analysis is repeated 5 times in different observation fields, and the average value thereof is taken as the measurement value. In line analysis, the fluctuation state of Ti concentration varies greatly depending on the direction of analysis. This is because the Ti concentration parts are regularly arranged at intervals of several tens of nm. Therefore, before performing line analysis, Ti mapping is performed in advance, and line analysis is performed aiming at a region where the density of Ti increases. As shown in FIG. 3, it is preferable to perform line analysis in the direction of the arrow (solid line) from the mapping of Ti. Further, when line analysis is performed in the direction of the arrow (dotted line), the density of Ti becomes light, which is not preferable.

本発明においては、Ti濃度ゆらぎ曲線において隣り合う山部の山頂と谷部の谷底を直線で結んだときの傾きの絶対値の平均が大きいことが特徴の一つである。これによってチタン銅には粘りが与えられて強度及び曲げ加工性が向上すると考えられる。本発明に係るチタン銅の一実施形態においては、当該傾きの絶対値の平均が0.30質量%/nm以上であり、0.40質量%/nm以上であり、より好ましくは0.50質量%/nm以上であり、更により好ましくは0.60質量%/nm以上である。   In the present invention, one of the features is that the average of the absolute values of the slopes when the peaks of the adjacent peaks and the valleys of the valleys are connected by a straight line in the Ti concentration fluctuation curve is large. As a result, it is considered that the titanium copper is given a stickiness and the strength and bending workability are improved. In one embodiment of titanium copper according to the present invention, the average absolute value of the slope is 0.30 mass% / nm or more, 0.40 mass% / nm or more, more preferably 0.50 mass. % / Nm or more, still more preferably 0.60 mass% / nm or more.

但し、当該傾きの絶対値の平均が大きくなりすぎると、粗大な第二相粒子が析出しやすくなって逆に強度や曲げ加工性が低下する傾向にある。そのため、本発明に係るチタン銅の一実施形態においては、当該傾きの絶対値の平均が1.00質量%/nm以下であり、好ましくは0.90質量%/nm以下であり、より好ましくは0.80質量%/nm以下であり、更により好ましくは0.75質量%/nm以下である。   However, if the average of the absolute values of the inclination becomes too large, coarse second-phase particles are likely to precipitate, and conversely, the strength and bending workability tend to decrease. Therefore, in one embodiment of titanium copper according to the present invention, the average absolute value of the inclination is 1.00% by mass / nm or less, preferably 0.90% by mass / nm or less, more preferably It is 0.80 mass% / nm or less, More preferably, it is 0.75 mass% / nm or less.

Ti濃度ゆらぎ曲線における隣り合う山部の山頂と谷部の谷底のTi濃度差の平均は、前記傾きの絶対値の平均と多少の相関を有しており、傾きの絶対値の平均が大きくなるにつれてこのTi濃度差の平均も大きく傾向が見られる。しかしながら、傾きの絶対値の平均のみならずTi濃度差の平均を適切に制御することにより、強度と曲げ加工性の更なるバランス向上が期待できる。強度と曲げ加工性のバランスを考慮すると、当該Ti濃度差の平均は2.5質量%以上であることが好ましく、3.0質量%以上であることがより好ましく、4.0質量%以上であることが更により好ましい。また、当該Ti濃度差の平均は15.0質量%以下であることが好ましく、13.0質量%以下であることがより好ましく、11.0質量%以下であることが更により好ましい。   In the Ti concentration fluctuation curve, the average of the Ti concentration difference between the top of the adjacent peak and the bottom of the valley has a slight correlation with the average of the absolute value of the slope, and the average of the absolute value of the slope becomes large. Along with this, the average of the Ti concentration difference tends to increase. However, by appropriately controlling not only the average of the absolute value of the slope but also the average of the Ti concentration difference, further improvement in the balance between strength and bending workability can be expected. Considering the balance between strength and bending workability, the average Ti concentration difference is preferably 2.5% by mass or more, more preferably 3.0% by mass or more, and 4.0% by mass or more. Even more preferably. Moreover, the average of the Ti concentration difference is preferably 15.0% by mass or less, more preferably 13.0% by mass or less, and still more preferably 11.0% by mass or less.

(4)第二相粒子
本発明に係るチタン銅においては、Ti濃度ゆらぎ曲線における前述した傾きが大きいにもかかわらず、粗大な第二相粒子が少ないという特徴も有する。粗大な第二相粒子は強度や曲げ加工性に悪影響を与えることから、制御することが好ましいところ、当該傾きの好適化による特性向上との効果と相まって、強度及び曲げ加工性が顕著に優れたチタン銅が得られる。本発明において、第二相粒子とは、溶解鋳造の凝固過程に生ずる晶出物及びその後の冷却過程で生ずる析出物、熱間圧延後の冷却過程で生ずる析出物、溶体化処理後の冷却過程で生ずる析出物、及び時効処理過程で生ずる析出物のことを言い、典型的にはCu−Ti系の組成をもつ。第二相粒子の大きさは、電子顕微鏡による観察で圧延方向に平行な断面を組織観察したとき、析出物に包囲されることのできる最大円の直径として定義される。
(4) Second-phase particles The titanium-copper according to the present invention also has a feature that there are few coarse second-phase particles despite the large inclination described above in the Ti concentration fluctuation curve. Since coarse second-phase particles have an adverse effect on strength and bending workability, it is preferable to control, coupled with the effect of improving characteristics by optimizing the inclination, the strength and bending workability are remarkably excellent. Titanium copper is obtained. In the present invention, the second phase particles are a crystallized product generated in the solidification process of melt casting, a precipitate generated in the subsequent cooling process, a precipitate generated in the cooling process after hot rolling, and a cooling process after solution treatment. And a precipitate generated in the aging treatment process, and typically has a Cu-Ti-based composition. The size of the second phase particles is defined as the diameter of the maximum circle that can be surrounded by precipitates when the cross section parallel to the rolling direction is observed with an electron microscope.

本発明に係るチタン銅の一実施形態においては、大きさが3μm以上の第二相粒子の観察視野10000μm2当たりの個数が35個以下である。大きさが3μm以上の第二相粒子の観察視野10000μm2当たりの個数は30個以下であるのが好ましく、25個以下であるのがより好ましく、20個以下であるのが更により好ましく、15個以下であるのが更により好ましく、10個以下であるのが更により好ましい。大きさが3μm以上の第二相粒子の観察視野10000μm2当たりの個数は0であるのが望ましいが、山と谷の傾きの絶対値を規定範囲に収めることが難しくなるので、一般的には1個以上であり、典型的には3個以上である。 In one embodiment of titanium copper according to the present invention, the number of second phase particles having a size of 3 μm or more per observation visual field of 10,000 μm 2 is 35 or less. The number of second phase particles having a size of 3 μm or more per observation visual field of 10,000 μm 2 is preferably 30 or less, more preferably 25 or less, and even more preferably 20 or less, 15 It is even more preferable that the number is 10 or less, and it is even more preferable that the number is 10 or less. The number of second-phase particles having a size of 3 μm or more per observation field of 10,000 μm 2 is preferably 0, but it is difficult to keep the absolute values of the slopes of peaks and valleys within a specified range. One or more, typically three or more.

(5)0.2%耐力及び曲げ加工性
本発明に係るチタン銅は一実施形態において、JIS−Z2241に従う引張試験を行ったときに圧延方向に平行な方向での0.2%耐力が900MPa以上であり、且つ、板幅(w)/板厚(t)=3.0となる曲げ幅で曲げ半径(R)/板厚(t)=0としてBadway(曲げ軸が圧延方向と同一方向)のW曲げ試験をJIS−H3130に従って実施したときに屈曲部にクラックを生じない。
(5) 0.2% yield strength and bending workability In one embodiment, the titanium copper according to the present invention has a 0.2% yield strength in a direction parallel to the rolling direction of 900 MPa when a tensile test according to JIS-Z2241 is performed. It is the above, and it is set as bending width (w) / sheet thickness (t) = 3.0, bending radius (R) / sheet thickness (t) = 0, Badway (bending axis is the same direction as a rolling direction) When the W-bending test of) is carried out according to JIS-H3130, no crack is generated in the bent portion.

本発明に係るチタン銅は好ましい一実施形態において、JIS−Z2241に従う引張試験を行ったときに圧延方向に平行な方向での0.2%耐力が1000MPa以上であり、且つ、板幅(w)/板厚(t)=3.0となる曲げ幅で曲げ半径(R)/板厚(t)=0としてBadway(曲げ軸が圧延方向と同一方向)のW曲げ試験をJIS−H3130に従って実施したときに屈曲部にクラックを生じない。   In a preferred embodiment, the titanium copper according to the present invention has a 0.2% proof stress in a direction parallel to the rolling direction of 1000 MPa or more when subjected to a tensile test according to JIS-Z2241, and a sheet width (w). / Wave bending test with bending width (t) = 3.0 and bending radius (R) / sheet thickness (t) = 0 and Badway (bending axis is in the same direction as the rolling direction) was performed according to JIS-H3130. When this occurs, cracks do not occur in the bent part.

本発明に係るチタン銅はより好ましい一実施形態において、JIS−Z2241に従う引張試験を行ったときに圧延方向に平行な方向での0.2%耐力が1050MPa以上であり、且つ、板幅(w)/板厚(t)=3.0となる曲げ幅で曲げ半径(R)/板厚(t)=0としてBadway(曲げ軸が圧延方向と同一方向)のW曲げ試験をJIS−H3130に従って実施したときに屈曲部にクラックを生じない。   In a more preferred embodiment, the titanium copper according to the present invention has a 0.2% proof stress in a direction parallel to the rolling direction of 1050 MPa or more when subjected to a tensile test according to JIS-Z2241, and a sheet width (w ) / Plate thickness (t) = 3.0, bending radius (R) / plate thickness (t) = 0, and Badway (bending axis is in the same direction as the rolling direction) W bending test according to JIS-H3130 When implemented, no cracks are produced in the bent part.

本発明に係るチタン銅は更により好ましい一実施形態において、JIS−Z2241に従う引張試験を行ったときに圧延方向に平行な方向での0.2%耐力が1100MPa以上であり、且つ、板幅(w)/板厚(t)=3.0となる曲げ幅で曲げ半径(R)/板厚(t)=0としてBadway(曲げ軸が圧延方向と同一方向)のW曲げ試験をJIS−H3130に従って実施したときに屈曲部にクラックを生じない。   In an even more preferred embodiment, the titanium copper according to the present invention has a 0.2% proof stress in a direction parallel to the rolling direction of 1100 MPa or more when subjected to a tensile test according to JIS-Z2241, and a sheet width ( w) / Bet thickness (t) = 3.0 and bending radius (R) / plate thickness (t) = 0, Badway (bending axis is in the same direction as the rolling direction) W bending test is JIS-H3130 When it is carried out according to the above, no cracks are generated in the bent part.

0.2%耐力の上限値は、本発明が目的とする強度の点からは特に規制されないが、手間及び費用がかかる上、高強度を得るためにTi濃度を高めると熱間圧延時に割れる危険性があるため、本発明に係るチタン銅の0.2%耐力は一般には1400MPa以下であり、典型的には1300MPa以下であり、より典型的には1200MPa以下である。   The upper limit of 0.2% proof stress is not particularly restricted in terms of the intended strength of the present invention, but it takes time and effort, and there is a risk of cracking during hot rolling if the Ti concentration is increased to obtain high strength. Therefore, the 0.2% proof stress of the titanium copper according to the present invention is generally 1400 MPa or less, typically 1300 MPa or less, and more typically 1200 MPa or less.

(6)結晶粒径
チタン銅の強度及び曲げ加工性を向上させるためには、結晶粒が小さいほどよい。そこで、好ましい平均結晶粒径は30μm以下、より好ましくは20μm以下、更により好ましくは10μm以下である。下限については特に制限はないが、結晶粒径の判別が困難となるほど微細化しようとすると未再結晶粒が存在する混粒となるために却って曲げ加工性が悪化しやすい。そこで、平均結晶粒径は2μm以上が好ましい。本発明において、平均結晶粒径は光学顕微鏡か電子顕微鏡による観察で圧延方向に平行な断面の組織観察における円相当径で表す。
(6) Crystal grain size In order to improve the strength and bending workability of titanium copper, the smaller the crystal grain, the better. Therefore, the preferable average crystal grain size is 30 μm or less, more preferably 20 μm or less, and still more preferably 10 μm or less. There is no particular limitation on the lower limit, but if it is attempted to make the crystal grain size more difficult, it becomes a mixed grain in which non-recrystallized grains exist, and the bending workability tends to deteriorate. Therefore, the average crystal grain size is preferably 2 μm or more. In the present invention, the average crystal grain size is represented by the equivalent circle diameter in the structure observation of the cross section parallel to the rolling direction by observation with an optical microscope or electron microscope.

(7)チタン銅の板厚
本発明に係るチタン銅の一実施形態においては、板厚を0.5mm以下とすることができ、典型的な実施形態においては厚みを0.03〜0.3mmとすることができ、より典型的な実施形態においては厚みを0.08〜0.2mmとすることができる。
(7) Plate thickness of titanium copper In one embodiment of titanium copper according to the present invention, the plate thickness can be 0.5 mm or less, and in a typical embodiment, the thickness is 0.03 to 0.3 mm. In a more typical embodiment, the thickness can be 0.08 to 0.2 mm.

(8)用途
本発明に係るチタン銅は種々の伸銅品、例えば板、条、管、棒及び線に加工することができる。本発明に係るチタン銅は、限定的ではないが、コネクタ、スイッチ、オートフォーカスカメラモジュール、ジャック、端子(例えばバッテリー端子)、リレー等の電子部品の材料として好適に使用することができる。
(8) Applications Titanium copper according to the present invention can be processed into various copper products, such as plates, strips, tubes, bars and wires. The titanium-copper according to the present invention can be suitably used as a material for electronic parts such as, but not limited to, connectors, switches, autofocus camera modules, jacks, terminals (for example, battery terminals), and relays.

(9)製造方法
本発明に係るチタン銅は、特に最終の溶体化処理及びそれ以降の工程で適切な熱処理及び冷間圧延を実施することにより製造可能である。特に、特許文献6に記載の最終溶体化処理→熱処理(亜時効処理)→冷間圧延→時効処理というチタン銅の製造手順に対して、最終溶体化処理後の熱処理を二段階にすることが有効である。以下に、好適な製造例を工程毎に順次説明する。
(9) Manufacturing Method Titanium copper according to the present invention can be manufactured by carrying out appropriate heat treatment and cold rolling, particularly in the final solution treatment and the subsequent steps. In particular, the heat treatment after the final solution treatment may be made in two stages with respect to the titanium copper manufacturing procedure of final solution treatment described in Patent Document 6 → heat treatment (sub-aging treatment) → cold rolling → aging treatment. It is valid. Below, a suitable manufacture example is demonstrated one by one for every process.

<インゴット製造>
溶解及び鋳造によるインゴットの製造は、基本的に真空中又は不活性ガス雰囲気中で行う。溶解において添加元素の溶け残りがあると、強度の向上に対して有効に作用しない。よって、溶け残りをなくすため、FeやCr等の高融点の第三元素は、添加してから十分に攪拌したうえで、一定時間保持する必要がある。一方、TiはCu中に比較的溶け易いので第三元素の溶解後に添加すればよい。従って、Cuに、Fe、Co、Mg、Si、Ni、Cr、Zr、Mo、V、Nb、Mn、B、及びPからなる群から選択される1種又は2種以上を合計で0〜0.5質量%含有するように添加し、次いでTiを2.0〜4.0質量%含有するように添加してインゴットを製造することが望ましい。
<Ingot manufacturing>
Production of ingots by melting and casting is basically performed in a vacuum or in an inert gas atmosphere. If the additive element remains undissolved during melting, it does not effectively act on strength improvement. Therefore, in order to eliminate undissolved residue, it is necessary to add a high melting point third element such as Fe or Cr, and after stirring sufficiently, hold it for a certain time. On the other hand, since Ti is relatively easily dissolved in Cu, it may be added after the third element is dissolved. Therefore, Cu includes one or more selected from the group consisting of Fe, Co, Mg, Si, Ni, Cr, Zr, Mo, V, Nb, Mn, B, and P in total 0 to 0. It is desirable to add it so that it may contain 0.5 mass%, and then to add Ti so that it may contain 2.0-4.0 mass%, and to manufacture an ingot.

<均質化焼鈍及び熱間圧延>
インゴット製造時に生じた凝固偏析や晶出物は粗大なので均質化焼鈍でできるだけ母相に固溶させて小さくし、可能な限り無くすことが望ましい。これは曲げ割れの防止に効果があるからである。具体的には、インゴット製造工程後には、900〜970℃に加熱して3〜24時間均質化焼鈍を行った後に、熱間圧延を実施するのが好ましい。液体金属脆性を防止するために、熱延前及び熱延中は960℃以下とし、且つ、元厚から全体の圧下率が90%までのパスは900℃以上とするのが好ましい。
<Homogenization annealing and hot rolling>
Since the solidified segregation and crystallized matter produced during the production of the ingot are coarse, it is desirable to make it as small as possible by dissolving it in the parent phase as much as possible by homogenization annealing. This is because it is effective in preventing bending cracks. Specifically, after the ingot manufacturing process, it is preferable to perform hot rolling after heating to 900 to 970 ° C. and performing homogenization annealing for 3 to 24 hours. In order to prevent liquid metal embrittlement, it is preferable that the temperature is 960 ° C. or lower before and during hot rolling, and that the pass from the original thickness to 90% of the total rolling reduction is 900 ° C. or higher.

<第一溶体化処理>
その後、冷延と焼鈍を適宜繰り返してから第一溶体化処理を行うのが好ましい。ここで予め溶体化を行っておく理由は、最終の溶体化処理での負担を軽減させるためである。すなわち、最終の溶体化処理では、第二相粒子を固溶させるための熱処理ではなく、既に溶体化されてあるのだから、その状態を維持しつつ再結晶のみ起こさせればよいので、軽めの熱処理で済む。具体的には、第一溶体化処理は加熱温度を850〜900℃とし、2〜10分間行えばよい。そのときの昇温速度及び冷却速度においても極力速くし、ここでは第二相粒子が析出しないようにするのが好ましい。なお、第一溶体化処理は行わなくても良い。
<First solution treatment>
Thereafter, it is preferable to perform the first solution treatment after appropriately repeating cold rolling and annealing. The reason why the solution treatment is performed in advance is to reduce the burden in the final solution treatment. That is, in the final solution treatment, it is not a heat treatment for dissolving the second phase particles, but is already in solution, so it is only necessary to cause recrystallization while maintaining that state. Just heat treatment. Specifically, the first solution treatment may be performed at a heating temperature of 850 to 900 ° C. for 2 to 10 minutes. In this case, it is preferable to increase the heating rate and the cooling rate as much as possible so that the second phase particles do not precipitate. Note that the first solution treatment may not be performed.

<中間圧延>
最終の溶体化処理前の中間圧延における圧下率を高くするほど、最終の溶体化処理における再結晶粒を均一かつ微細に制御できる。従って、中間圧延の圧下率は好ましくは70〜99%である。圧下率は{((圧延前の厚み−圧延後の厚み)/圧延前の厚み)×100%}で定義される。
<Intermediate rolling>
The higher the rolling reduction in the intermediate rolling before the final solution treatment, the more uniformly and finely control the recrystallized grains in the final solution treatment. Therefore, the rolling reduction of intermediate rolling is preferably 70 to 99%. The rolling reduction is defined by {((thickness before rolling−thickness after rolling) / thickness before rolling) × 100%}.

<最終の溶体化処理>
最終の溶体化処理では、析出物を完全に固溶させることが望ましいが、完全に無くすまで高温に加熱すると、結晶粒が粗大化しやすいので、加熱温度は第二相粒子組成の固溶限付近の温度とする(Tiの添加量が2.0〜4.0質量%の範囲でTiの固溶限が添加量と等しくなる温度は730〜840℃程度であり、例えばTiの添加量が3.0質量%では800℃程度)。そしてこの温度まで急速に加熱し、水冷等によって冷却速度も速くすれば粗大な第二相粒子の発生が抑制される。従って、典型的には、730〜840℃のTiの固溶限が添加量と同じになる温度に対して−20℃〜+50℃の温度に加熱し、より典型的には730〜840℃のTiの固溶限が添加量と同じになる温度に比べて0〜30℃高い温度、好ましくは0〜20℃高い温度に加熱する。
<Final solution treatment>
In the final solution treatment, it is desirable to completely dissolve the precipitate, but if heated to a high temperature until it completely disappears, the crystal grains are likely to coarsen, so the heating temperature is close to the solid solution limit of the second phase particle composition. (The temperature at which the solid solubility limit of Ti becomes equal to the addition amount when the addition amount of Ti is in the range of 2.0 to 4.0% by mass is about 730 to 840 ° C., for example, the addition amount of Ti is 3 About 800 ° C. at 0.0 mass%). And if it heats rapidly to this temperature and a cooling rate is also made quick by water cooling etc., generation | occurrence | production of coarse 2nd phase particle | grains will be suppressed. Therefore, it is typically heated to a temperature of −20 ° C. to + 50 ° C. with respect to the temperature at which the solid solubility limit of Ti at 730 to 840 ° C. is the same as the addition amount, and more typically 730 to 840 ° C. Heating is performed at a temperature 0 to 30 ° C higher, preferably 0 to 20 ° C higher than the temperature at which the solid solubility limit of Ti is the same as the addition amount.

また、最終の溶体化処理での加熱時間は短いほうが結晶粒の粗大化を抑制できる。加熱時間は例えば30秒〜10分とすることができ、典型的には1分〜8分とすることができる。この時点で第二相粒子が発生しても微細かつ均一に分散していれば、強度と曲げ加工性に対してほとんど無害である。しかし粗大なものは最終の時効処理で更に成長する傾向にあるので、この時点での第二相粒子は生成してもなるべく少なく、小さくしなければならない。   Moreover, the coarsening of a crystal grain can be suppressed when the heating time in the final solution treatment is shorter. The heating time can be, for example, 30 seconds to 10 minutes, and typically 1 minute to 8 minutes. Even if the second phase particles are generated at this point, if they are finely and uniformly dispersed, they are almost harmless to strength and bending workability. However, since the coarse particles tend to grow further in the final aging treatment, the second phase particles at this point must be made as small as possible even if they are formed.

<予備時効>
最終の溶体化処理に引き続いて、予備時効処理を行う。従来は最終の溶体化処理の後は冷間圧延を行うことが通例であったが、本発明に係るチタン銅を得る上では最終の溶体化処理の後、冷間圧延を行わずに直ちに予備時効処理を行うことが重要である。予備時効処理は次工程の時効処理よりも低温で行われる熱処理であり、予備時効処理及び後述する時効処理を連続して行うことにより、粗大な析出物の発生を抑制しながらTi濃度ゆらぎ曲線において隣り合う山部の山頂と谷部の谷底を直線で結んだときの傾きの絶対値を飛躍的に大きくすることが可能となる。予備時効処理は表面酸化皮膜の発生を抑制するためにAr、N2、H2等の不活性雰囲気で行うことが好ましい。
<Preliminary aging>
Subsequent to the final solution treatment, a preliminary aging treatment is performed. Conventionally, cold rolling is usually performed after the final solution treatment, but in order to obtain titanium copper according to the present invention, after the final solution treatment, it is immediately preliminarily performed without performing cold rolling. It is important to perform an aging treatment. The pre-aging treatment is a heat treatment performed at a lower temperature than the aging treatment of the next step, and by continuously performing the pre-aging treatment and the aging treatment described later, in the Ti concentration fluctuation curve while suppressing the generation of coarse precipitates. It is possible to dramatically increase the absolute value of the slope when connecting the peaks of adjacent peaks and valleys with straight lines. The pre-aging treatment is preferably performed in an inert atmosphere such as Ar, N 2 , H 2 or the like in order to suppress the generation of the surface oxide film.

予備時効処理における加熱温度が低すぎても高すぎても上記利点を得るのは困難である。本発明者による検討結果によれば、材料温度150〜250℃で10〜20時間加熱することが好ましく、材料温度160〜230℃で10〜18時間加熱することがより好ましく、170〜200℃で12〜16時間加熱することが更により好ましい。   It is difficult to obtain the above advantages even if the heating temperature in the pre-aging treatment is too low or too high. According to the examination results by the present inventors, it is preferable to heat at a material temperature of 150 to 250 ° C. for 10 to 20 hours, more preferably to heat at a material temperature of 160 to 230 ° C. for 10 to 18 hours, and at 170 to 200 ° C. It is even more preferred to heat for 12-16 hours.

<時効処理>
予備時効処理に引き続いて、時効処理を行う。予備時効処理後、いったん室温まで冷却してもよい。製造効率を考えると、予備時効処理の後、冷却せずに時効処理温度まで昇温して、連続して時効処理を実施することが望ましい。何れの方法であっても得られるチタン銅の特性に違いはない。但し、予備時効はその後の時効処理で均一に第二相粒子を析出させることを目的としているため、予備時効処理と時効処理の間には冷間圧延は実施するべきではない。
<Aging treatment>
An aging process is performed following the preliminary aging process. After the preliminary aging treatment, it may be cooled to room temperature once. Considering the production efficiency, it is desirable that after the preliminary aging treatment, the temperature is raised to the aging treatment temperature without cooling and the aging treatment is continuously performed. There is no difference in the characteristics of titanium copper obtained by any method. However, since the preliminary aging is intended to precipitate the second phase particles uniformly in the subsequent aging treatment, cold rolling should not be performed between the preliminary aging treatment and the aging treatment.

予備時効処理によって溶体化処理で固溶させたTiが少し析出していることから、時効処理は慣例の時効処理よりもやや低温で実施するべきであり、材料温度300〜450℃で0.5〜20時間加熱することが好ましく、材料温度350〜440℃で2〜18時間加熱することがより好ましく、材料温度375〜430℃で3〜15時間加熱することが更により好ましい。時効処理は予備時効処理と同様の理由により、Ar、N2、H2等の不活性雰囲気で行うことが好ましい。 Since Ti dissolved in the solution treatment by the pre-aging treatment is slightly precipitated, the aging treatment should be carried out at a slightly lower temperature than the conventional aging treatment, and the material temperature is 0.5 to 0.5 at a material temperature of 300 to 450 ° C. It is preferably heated for -20 hours, more preferably heated at a material temperature of 350-440 ° C. for 2-18 hours, and even more preferably heated at a material temperature of 375-430 ° C. for 3-15 hours. The aging treatment is preferably performed in an inert atmosphere such as Ar, N 2 and H 2 for the same reason as the preliminary aging treatment.

<最終の冷間圧延>
上記時効処理後、最終の冷間圧延を行う。最終の冷間加工によってチタン銅の強度を高めることができるが、本発明が意図するような高強度と曲げ加工性の良好なバランスを得るためには圧下率を10〜50%、好ましくは20〜40%とすることが望ましい。
<Final cold rolling>
After the aging treatment, the final cold rolling is performed. Although the strength of titanium copper can be increased by the final cold working, in order to obtain a good balance between high strength and bending workability as intended by the present invention, the reduction ratio is 10 to 50%, preferably 20 It is desirable to set it to -40%.

<歪取焼鈍>
高温暴露時の耐へたり性を向上する観点からは、最終の冷間圧延後に歪取焼鈍を実施することが望まれる。歪取焼鈍を行うことで転位が再配列するからである。歪取焼鈍の条件は慣用の条件でよいが、過度の歪取焼鈍を行うと粗大粒子が析出して強度が低下するため好ましくない。歪取焼鈍は材料温度200〜600℃で10〜600秒行うことが好ましく、250〜550℃で10〜400秒行うことがより好ましく、300〜500℃で10〜200秒行うことが更により好ましい。
<Strain relief annealing>
From the viewpoint of improving sag resistance at high temperature exposure, it is desirable to perform strain relief annealing after the final cold rolling. This is because dislocations are rearranged by performing strain relief annealing. The conditions for strain relief annealing may be conventional conditions. However, excessive strain relief annealing is not preferable because coarse particles precipitate and the strength decreases. The strain relief annealing is preferably performed at a material temperature of 200 to 600 ° C. for 10 to 600 seconds, more preferably 250 to 550 ° C. for 10 to 400 seconds, and even more preferably 300 to 500 ° C. for 10 to 200 seconds. .

なお、当業者であれば、上記各工程の合間に適宜、表面の酸化スケール除去のための研削、研磨、ショットブラスト酸洗等の工程を行なうことができることは理解できるだろう。   A person skilled in the art will understand that steps such as grinding, polishing, and shot blast pickling for removing oxide scale on the surface can be appropriately performed between the above steps.

以下に本発明の実施例(発明例)を比較例と共に示すが、これらは本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。   EXAMPLES Examples (invention examples) of the present invention are shown below together with comparative examples, which are provided for better understanding of the present invention and its advantages, and are not intended to limit the invention. .

表2(表2−1および2−2)に示す合金成分を含有し残部が銅及び不可避的不純物からなるチタン銅の試験片を種々の製造条件で作製し、それぞれの母相中のTiをEDXによりライン分析したときに得られるTi濃度ゆらぎ曲線において、隣り合う山部の山頂と谷部の谷底を直線で結んだときの傾きの絶対値の平均、及び隣り合う山部の山頂と谷部の谷底のTi濃度差の平均、更には0.2%耐力及び曲げ加工性を調査した。   Titanium copper test pieces containing the alloy components shown in Table 2 (Tables 2-1 and 2-2), the balance being copper and inevitable impurities, were prepared under various manufacturing conditions, and Ti in each matrix was changed to Ti. In the Ti concentration fluctuation curve obtained when line analysis is performed by EDX, the average of the absolute values of the slopes when connecting the peaks of the adjacent peaks and the valleys with straight lines, and the peaks and valleys of the adjacent peaks The average Ti concentration difference at the bottom of the valley and the 0.2% proof stress and bending workability were investigated.

まず、真空溶解炉にて電気銅2.5kgを溶解し、第三元素を表2に示す配合割合でそれぞれ添加した後、同表に示す配合割合のTiを添加した。添加元素の溶け残りがないよう添加後の保持時間にも十分に配慮した後に、これらをAr雰囲気で鋳型に注入して、それぞれ約2kgのインゴットを製造した。   First, 2.5 kg of electrolytic copper was melted in a vacuum melting furnace, the third element was added at a blending ratio shown in Table 2, and then Ti at a blending ratio shown in the same table was added. After sufficient consideration was given to the retention time after the addition so that there was no undissolved residue of the added elements, these were injected into the mold in an Ar atmosphere to produce about 2 kg of ingots.

上記インゴットに対して950℃で3時間加熱する均質化焼鈍の後、900〜950℃で熱間圧延を行い、板厚15mmの熱延板を得た。面削による脱スケール後、冷間圧延して素条の板厚(2mm)とし、素条での第一次溶体化処理を行った。第一次溶体化処理の条件は850℃で10分間加熱とし、その後、水冷した。次いで、表2に記載の最終冷間圧延における圧下率及び製品板厚の条件に応じて圧下率を調整して中間の冷間圧延を行った後、急速加熱が可能な焼鈍炉に挿入して最終の溶体化処理を行い、その後、水冷した。このときの加熱条件は材料温度がTiの固溶限が添加量と同じになる温度(Ti濃度3.0質量%で約800℃、Ti濃度2.0質量%で約730℃、Ti濃度4.0質量%で約840℃)を基準として表2に記載の通りとした。次いで、Ar雰囲気中で表2に記載の条件で予備時効処理及び時効処理を連続して行った。ここでは予備時効処理の後に冷却を行なわなかった。酸洗による脱スケール後、表2に記載の条件で最終冷間圧延を行い、最後に表2に記載の各加熱条件で歪取焼鈍を行って発明例及び比較例の試験片とした。試験片によっては予備時効処理、時効処理又は歪取焼鈍を省略した。   After the homogenization annealing which heats at 950 degreeC with respect to the said ingot for 3 hours, hot rolling was performed at 900-950 degreeC, and the hot rolled sheet with a plate thickness of 15 mm was obtained. After descaling by chamfering, cold rolling was performed to obtain a strip thickness (2 mm), and a primary solution treatment was performed on the strip. The conditions for the primary solution treatment were heating at 850 ° C. for 10 minutes, and then water cooling. Next, after adjusting the rolling reduction according to the conditions of the rolling reduction and product sheet thickness in the final cold rolling described in Table 2 and performing the intermediate cold rolling, it is inserted into an annealing furnace capable of rapid heating. The final solution treatment was performed, followed by water cooling. The heating conditions at this time were such that the material temperature was such that the solid solubility limit of Ti was the same as the addition amount (Ti concentration: 3.0% by mass, about 800 ° C., Ti concentration: 2.0% by mass, about 730 ° C., Ti concentration: 4 (Approx. 840 ° C. at 0.0 mass%). Next, preliminary aging treatment and aging treatment were continuously performed in the Ar atmosphere under the conditions described in Table 2. Here, no cooling was performed after the preliminary aging treatment. After descaling by pickling, final cold rolling was performed under the conditions described in Table 2, and finally, strain relief annealing was performed under each heating condition described in Table 2 to obtain test pieces of invention examples and comparative examples. Depending on the specimen, preliminary aging treatment, aging treatment or strain relief annealing was omitted.

作製した製品試料について、次の評価を行った。
(イ)0.2%耐力
JIS13B号試験片を作製し、この試験片に対してJIS−Z2241に従って引張試験機を用いて圧延方向と平行な方向の0.2%耐力を測定した。
(ロ)曲げ加工性
板幅(w)/板厚(t)=3.0となる曲げ幅でBadway(曲げ軸が圧延方向と同一方向)のW曲げ試験をJIS−H3130に従って実施し、割れが発生しない最小の曲げ半径(MBR)と厚さ(t)の比である最小曲げ半径比(MBR/t)を求めた。このとき、割れの有無は、屈曲部断面を機械研磨で鏡面に仕上げ、光学顕微鏡で観察して屈曲部にクラックが生じていたか否かで判断した。
(ハ)STEM−EDX分析
各試験片について、圧延面を収束イオンビーム(FIB)にて切断することで圧延方向に平行な断面を露出させ、試料厚みを100nm以下程度まで薄く加工した。その後、EBSDにて<100>方位粒を特定し、その結晶粒の母相内について観察した。尚、<100>方位の結晶粒を観察するのは、Ti濃度の濃淡が最も密になるためである。観察は走査型透過電子顕微鏡(日本電子株式会社 型式:JEM−2100F)を用いて、検出器はエネルギー分散型X線分析計(EDX、日本電子社製、型式:JED−2300)を用い、試料傾斜角度0°、加速電圧200kV、電子線のスポット径0.2nmで行なった。そして、母相の測定距離:150nmとし、母相の測定距離150nm当たりの測定箇所数:150箇所、母相の測定箇所の間隔:1nmとすることによりEDXライン分析を行った。第二相粒子の影響による測定誤差を防ぐため、母相の測定位置は、第二相粒子が存在しない任意の位置を選択した。また、ライン分析の方向については、予めTiのマッピングを行い、図3の実線に倣って、Ti濃度の濃淡が大きくなる方向を選択した。
得られたTi濃度のゆらぎ曲線から、先述した方法に従って、隣り合う山部の山頂と谷部の谷底を直線で結んだときの傾きの絶対値の平均(表2中、「山と谷の傾きの絶対値」)、及び隣り合う山部の山頂と谷部の谷底のTi濃度差の平均(表2中、「山と谷の濃度差」)を求めた。
The following evaluation was performed about the produced product sample.
(Ii) 0.2% yield strength A JIS No. 13B test piece was prepared, and 0.2% yield strength in a direction parallel to the rolling direction was measured using a tensile tester according to JIS-Z2241.
(B) Bending workability W-bending test of Badway (bending axis is the same direction as the rolling direction) with a bending width of plate width (w) / plate thickness (t) = 3.0 according to JIS-H3130, cracking The minimum bend radius ratio (MBR / t), which is the ratio of the minimum bend radius (MBR) and thickness (t) at which no occurrence occurs, was determined. At this time, the presence or absence of cracks was judged by whether or not a crack was generated in the bent portion by finishing the cross section of the bent portion to a mirror surface by mechanical polishing and observing with an optical microscope.
(C) STEM-EDX analysis About each test piece, the rolling surface was cut | disconnected by the focused ion beam (FIB), the cross section parallel to a rolling direction was exposed, and the sample thickness was processed thinly to about 100 nm or less. Then, the <100> orientation grain was specified by EBSD, and the inside of the mother phase of the crystal grain was observed. The reason for observing crystal grains with <100> orientation is that the density of Ti concentration is the most dense. The observation is performed using a scanning transmission electron microscope (JEOL Ltd., model: JEM-2100F), and the detector is an energy dispersive X-ray analyzer (EDX, manufactured by JEOL Ltd., model: JED-2300). The measurement was performed at an inclination angle of 0 °, an acceleration voltage of 200 kV, and an electron beam spot diameter of 0.2 nm. Then, the EDX line analysis was performed by setting the measurement distance of the mother phase to 150 nm, the number of measurement points per 150 nm of the measurement distance of the mother phase: 150, and the interval between the measurement points of the mother phase: 1 nm. In order to prevent measurement errors due to the influence of the second phase particles, the measurement position of the parent phase was selected as an arbitrary position where the second phase particles do not exist. As for the direction of line analysis, Ti was mapped in advance, and the direction in which the density of Ti concentration was increased was selected following the solid line in FIG.
From the obtained Ti concentration fluctuation curve, in accordance with the method described above, the average of the absolute values of the slopes when connecting the peaks of the adjacent peaks and the valleys of the valleys with a straight line (in Table 2, “slope of peaks and valleys”). And the average Ti concentration difference between the tops of the adjacent peaks and the bottom of the valleys (“Difference between peaks and valleys” in Table 2).

(ニ)結晶粒径
また、各製品試料の平均結晶粒径の測定は、圧延面をFIBにて切断することで、圧延方向に平行な断面を露出した後、断面を電子顕微鏡(Philips社製 XL30 SFEG)を用いて観察し、単位面積当たりの結晶粒の数をカウントして、結晶粒の平均の円相当径を求めた。具体的には、100μm×100μmの枠を作成し、この枠の中に存在する結晶粒の数をカウントした。なお、枠を横切っている結晶粒については、すべて1/2個としてカウントした。枠の面積10000μm2をその合計で除したものが結晶粒1個当たりの面積の平均値である。その面積を持つ真円の直径が円相当径であるので、これを平均結晶粒径とした。
(ホ)粗大第二相粒子の個数密度
各製品試料の圧延面をFIBにて切断することで、圧延方向に平行な断面を露出した後、断面を電子顕微鏡(Philips社製 XL30 SFEG)を用いて観察し、先述した定義に従って、それぞれ面積10000μm2中に存在する大きさ3μm以上の第二相粒子の数を数えて任意の10箇所の平均を求めた。
(D) Crystal grain size In addition, the average crystal grain size of each product sample was measured by cutting the rolled surface with FIB to expose a cross section parallel to the rolling direction, and then observing the cross section with an electron microscope (manufactured by Philips). XL30 SFEG), the number of crystal grains per unit area was counted, and the average equivalent circle diameter of the crystal grains was determined. Specifically, a frame of 100 μm × 100 μm was created, and the number of crystal grains present in this frame was counted. Note that all the crystal grains crossing the frame were counted as ½. The average value of the area per crystal grain is obtained by dividing the frame area of 10,000 μm 2 by the total. Since the diameter of the perfect circle having the area is the equivalent circle diameter, this was defined as the average crystal grain size.
(E) Number density of coarse second-phase particles After the rolled surface of each product sample is cut with FIB to expose a cross section parallel to the rolling direction, the cross section is used with an electron microscope (Philips XL30 SFEG). According to the definition described above, the number of second phase particles each having a size of 3 μm or more present in an area of 10,000 μm 2 was counted, and the average of any 10 locations was determined.

(考察)
表2(表2−1および2−2)に試験結果を示す。発明例1では最終溶体化処理、予備時効、時効、最終冷間圧延の条件がそれぞれ適切であったことから、山と谷の傾きの絶対値が大きくなった一方で、粗大な第二相粒子は抑制され、0.2%耐力及び曲げ加工性の高い次元での両立が達成されていることが分かる。
発明例2は予備時効の加熱温度を発明例1よりも低くしたことで山と谷の傾きの絶対値が小さくなった。発明例1に比べて0.2%耐力は低下したが、依然として良好な0.2%耐力及び曲げ加工性を確保できた。
発明例3は予備時効の加熱温度を発明例1よりも高くしたことで山と谷の傾きの絶対値が大きくなった。発明例1に比べて0.2%耐力が低下したが、依然として良好な0.2%耐力及び曲げ加工性のバランスを維持できた。
発明例4は時効の加熱温度を発明例1よりも低くしたことで山と谷の傾きの絶対値が小さくなった。発明例1に比べて0.2%耐力は低下したが、依然として良好な0.2%耐力及び曲げ加工性を確保できた。
発明例5は時効の加熱温度を発明例1よりも高くしたことで山と谷の傾きの絶対値が大きくなった。発明例1に比べて0.2%耐力が低下したが、依然として良好な0.2%耐力及び曲げ加工性を確保できた。
発明例6は最終冷間圧延における圧下率を発明例1よりも小さくしたことで山と谷の傾きの絶対値が小さくなり、0.2%耐力が発明例1よりも低下したが依然として良好な0.2%耐力及び曲げ加工性を確保できた。
発明例7は最終冷間圧延における圧下率を発明例1よりも高くしたことで高い曲げ加工性を維持しながらも0.2%耐力が向上した。
発明例8では発明例1に対して歪取焼鈍を省略したが、依然として良好な0.2%耐力及び曲げ加工性を確保できた。
発明例9では発明例1に対して歪取焼鈍における加熱温度を高くしたが、依然として良好な0.2%耐力及び曲げ加工性を確保できた。
発明例10は予備時効、時効及び歪取焼鈍における加熱温度を発明例1よりも高くしたことで山と谷の傾きの絶対値及び山と谷の濃度差が上昇した。山と谷の濃度差が規定範囲を逸脱したことで、発明例1よりは0.2%耐力は劣るが、依然として良好な0.2%耐力及び曲げ加工性を確保できた。
発明例11は発明例1に対して第3元素を省略し、Ti濃度を下限にまで低くした例である。山と谷の傾きの絶対値が小さくなり0.2%耐力に低下が見られたが、依然として良好な0.2%耐力及び曲げ加工性を確保できた。
発明例12は発明例1に対して第3元素を省略し、チタン銅中のTi濃度を上限にまで高くしたことで山と谷の傾きの絶対値が大きくなった。発明例1に比べて0.2%耐力が低下したが、依然として良好な0.2%耐力及び曲げ加工性を確保できた。
発明例13〜18は発明例1に対して異なる第3元素を添加した例であるが、依然として良好な0.2%耐力及び曲げ加工性を確保できた。
比較例1は最終の溶体化処理温度が低すぎたことで未再結晶領域と再結晶領域が混在する混粒化が起き、山と谷の傾きの絶対値が小さくなった。そのため曲げ加工性が悪かった。
比較例2では予備時効処理を行わなかったことから山と谷の傾きの絶対値が小さく、曲げ加工性が悪かった。
比較例3〜4は、特許文献6に記載のチタン銅に相当する。予備時効処理と時効処理を連続で行わなかったことから山と谷の傾きの絶対値が小さくなり、曲げ加工性が悪かった。
比較例5は予備時効処理を行ったものの加熱温度が低すぎたことから山と谷の傾きの絶対値が十分に大きくならず、曲げ加工性が悪かった。
比較例6は予備時効における加熱温度が高すぎたために、過時効となって山と谷の傾きの絶対値が過剰に大きくなり、一部の安定相が粗大粒子として析出したため曲げ加工性が低下した。
比較例7は時効処理を行わなかったことからスピノーダル分解が不十分となって山と谷の傾きの絶対値が小さくなった。そのため、発明例1に対して0.2%耐力及び曲げ加工性が低下した。
比較例8は最終溶体化処理→冷間圧延→時効処理を行ったと評価できるケースである。山と谷の傾きの絶対値が小さくなり、発明例1に対して0.2%耐力及び曲げ加工性が低下した。
比較例9は時効の加熱温度が低すぎたことから山と谷の傾きの絶対値が小さくなり、発明例1に対して0.2%耐力及び曲げ加工性が低下した。
比較例10は時効の加熱温度が高すぎたために、一部の安定相が粗大粒子として析出した。そのため、発明例1に対して0.2%耐力及び曲げ加工性が低下した。
比較例11は歪取焼鈍の加熱温度が高すぎたために、一部の安定相が粗大粒子として析出した。そのため、発明例1に対して0.2%耐力及び曲げ加工性が低下した。
比較例12は最終溶体化処理の後、時効処理のみを行った例であるが、粗大第二相粒子が多数析出した。そのため、発明例1に対して0.2%耐力及び曲げ加工性が低下した。
比較例13は第三元素の添加量が多すぎたことで熱間圧延で割れが発生したため、試験片の製造ができなかった。
比較例14はTi濃度が低すぎたことで山と谷の傾きの絶対値が小さくなり、強度不足となると共に曲げ加工性も劣化した。
比較例15はTi濃度が高すぎたことで熱間圧延で割れが発生したため、試験片の製造ができなかった。
(Discussion)
Table 2 (Tables 2-1 and 2-2) shows the test results. In Invention Example 1, since the conditions of final solution treatment, preliminary aging, aging, and final cold rolling were appropriate, the absolute values of the slopes of peaks and valleys increased, while coarse second-phase particles It can be seen that a balance of 0.2% proof stress and high bending workability is achieved.
Inventive Example 2 made the absolute value of the slope of the peaks and valleys smaller by lowering the heating temperature for preliminary aging than in Inventive Example 1. Although the 0.2% proof stress was lower than that of Invention Example 1, a satisfactory 0.2% proof stress and bending workability could still be secured.
In Invention Example 3, the absolute value of the slopes of the peaks and troughs was increased by increasing the pre-aging heating temperature higher than in Invention Example 1. Although the 0.2% proof stress was lower than that of Invention Example 1, the good balance of 0.2% proof stress and bending workability could still be maintained.
Inventive Example 4 had a lower aging heating temperature than Inventive Example 1, so that the absolute values of the slopes of the peaks and valleys became smaller. Although the 0.2% proof stress was lower than that of Invention Example 1, a satisfactory 0.2% proof stress and bending workability could still be secured.
In invention example 5, the aging heating temperature was made higher than in invention example 1, so that the absolute values of the slopes of the peaks and valleys were increased. Although the 0.2% proof stress was lower than that of Invention Example 1, a satisfactory 0.2% proof stress and bending workability could still be secured.
Inventive Example 6 had a reduction ratio in the final cold rolling smaller than Inventive Example 1, so that the absolute values of the slopes of the peaks and valleys were reduced, and the 0.2% proof stress was lower than Inventive Example 1, but still good. 0.2% proof stress and bending workability could be secured.
Invention Example 7 improved the 0.2% proof stress while maintaining high bending workability by making the rolling reduction in the final cold rolling higher than Invention Example 1.
In invention example 8, although the stress relief annealing was omitted with respect to invention example 1, good 0.2% proof stress and bending workability could still be secured.
In Invention Example 9, the heating temperature in strain relief annealing was higher than that in Invention Example 1, but good 0.2% proof stress and bending workability could still be secured.
In Invention Example 10, the heating temperature in preliminary aging, aging, and strain relief annealing was higher than that in Invention Example 1, so that the absolute value of the slope of the peak and valley and the concentration difference between the peak and valley increased. Although the density difference between the peaks and valleys deviated from the specified range, the 0.2% proof stress was inferior to that of Invention Example 1, but the satisfactory 0.2% proof stress and bending workability could still be secured.
Invention Example 11 is an example in which the third element is omitted from Invention Example 1 and the Ti concentration is lowered to the lower limit. Although the absolute values of the slopes of the peaks and valleys decreased and the 0.2% yield strength decreased, good 0.2% yield strength and bending workability could still be secured.
Inventive Example 12 omits the third element from Inventive Example 1 and increases the Ti concentration in the titanium copper to the upper limit, thereby increasing the absolute values of the slopes of the peaks and valleys. Although the 0.2% proof stress was lower than that of Invention Example 1, a satisfactory 0.2% proof stress and bending workability could still be secured.
Inventive Examples 13 to 18 are examples in which a third element different from that of Inventive Example 1 was added, but good 0.2% proof stress and bending workability could still be secured.
In Comparative Example 1, since the final solution treatment temperature was too low, mixing of unrecrystallized regions and recrystallized regions occurred, and the absolute values of the slopes of peaks and valleys were reduced. Therefore, bending workability was bad.
In Comparative Example 2, since the preliminary aging treatment was not performed, the absolute values of the slopes of the peaks and valleys were small, and the bending workability was poor.
Comparative Examples 3 to 4 correspond to titanium copper described in Patent Document 6. Since the preliminary aging treatment and the aging treatment were not performed continuously, the absolute values of the slopes of the peaks and valleys were reduced, and the bending workability was poor.
In Comparative Example 5, although the pre-aging treatment was performed, the heating temperature was too low, so the absolute values of the slopes of the peaks and valleys were not sufficiently large, and the bending workability was poor.
In Comparative Example 6, since the heating temperature in the preliminary aging was too high, the absolute value of the slopes of the peaks and valleys was excessively large, and some stable phases were precipitated as coarse particles, resulting in a decrease in bending workability. did.
In Comparative Example 7, since no aging treatment was performed, spinodal decomposition was insufficient, and the absolute values of the slopes of the peaks and valleys were reduced. Therefore, 0.2% proof stress and bending workability were reduced with respect to Invention Example 1.
Comparative Example 8 is a case where it can be evaluated that the final solution treatment → cold rolling → aging treatment was performed. The absolute values of the slopes of the peaks and valleys were reduced, and 0.2% proof stress and bending workability were reduced as compared with Invention Example 1.
In Comparative Example 9, since the aging heating temperature was too low, the absolute values of the slopes of the peaks and valleys were reduced, and 0.2% proof stress and bending workability were reduced as compared with Invention Example 1.
In Comparative Example 10, since the aging heating temperature was too high, a part of the stable phase was precipitated as coarse particles. Therefore, 0.2% proof stress and bending workability were reduced with respect to Invention Example 1.
In Comparative Example 11, since the heating temperature for strain relief annealing was too high, some stable phases were precipitated as coarse particles. Therefore, 0.2% proof stress and bending workability were reduced with respect to Invention Example 1.
Comparative Example 12 is an example in which only the aging treatment was performed after the final solution treatment, but a large number of coarse second phase particles were precipitated. Therefore, 0.2% proof stress and bending workability were reduced with respect to Invention Example 1.
In Comparative Example 13, since the amount of the third element added was too large, cracking occurred during hot rolling, and thus the test piece could not be manufactured.
In Comparative Example 14, since the Ti concentration was too low, the absolute values of the slopes of the peaks and valleys were reduced, resulting in insufficient strength and bending workability.
In Comparative Example 15, because the Ti concentration was too high, cracking occurred during hot rolling, and thus the test piece could not be produced.

Claims (4)

Tiを2.0〜4.0質量%含有し、第三元素としてFe、Co、Mg、Si、Ni、Cr、Zr、Mo、V、Nb、Mn、B、及びPからなる群から選択された1種以上を合計で0〜0.5質量%含有し、残部が銅及び不可避的不純物からなる電子部品用チタン銅であって、圧延方向に平行な断面における<100>方位の結晶粒について母相中のTiをSTEM−EDXによりライン分析したときに得られるTi濃度ゆらぎ曲線において、隣り合う山部の山頂と谷部の谷底を直線で結んだときの傾きの絶対値の平均が0.30〜1.00質量%/nm、隣り合う山部の山頂と谷部の谷底のTi濃度差の平均が2.5〜15.0質量%、圧延方向に平行な断面の組織観察における大きさが3μm以上の第二相粒子の観察視野10000μm2当たりの個数が35個以下、且つ、圧延方向に平行な断面の組織観察における平均結晶粒径が2〜30μmであるチタン銅。
ここで、山部とはTi濃度の揺らぎ曲線において平均線よりも上に突出した部分を指し、谷部とはTi濃度の揺らぎ曲線において平均線よりも下に突出した部分を指し、前記ライン分析は、予めTiのマッピングを行うことで得られるTiの高濃度領域を示す略円形領域の配列を通過する方向に、試料傾斜角度を0°、加速電圧を200kV、電子線のスポット径を0.2nm、測定距離を150nm以上の条件で、5カ所の観察視野に対して行う。
It contains 2.0 to 4.0% by mass of Ti, and is selected from the group consisting of Fe, Co, Mg, Si, Ni, Cr, Zr, Mo, V, Nb, Mn, B, and P as the third element. In addition, it is a titanium copper for electronic parts that contains 0 to 0.5% by mass in total with the balance being copper and unavoidable impurities, and the crystal grains of <100> orientation in the cross section parallel to the rolling direction In the Ti concentration fluctuation curve obtained when line analysis of Ti in the matrix phase is performed by STEM- EDX, the average of the absolute values of the slopes when the peaks of adjacent peaks and valleys are connected by a straight line is 0. 30 to 1.00% by mass / nm , the average of the Ti concentration difference between the peak of adjacent peaks and the bottom of the valley is 2.5 to 15.0% by mass, the size in the structure observation of the cross section parallel to the rolling direction Observation field of second phase particles with a particle size of 3 μm or more 10000 μm Titanium copper in which the number per 2 is 35 or less and the average crystal grain size in the structure observation of the cross section parallel to the rolling direction is 2 to 30 μm .
Here, the peak portion refers to a portion protruding above the average line in the Ti concentration fluctuation curve, and the valley portion refers to a portion protruding below the average line in the Ti concentration fluctuation curve. Shows a sample tilt angle of 0 °, an acceleration voltage of 200 kV, and an electron beam spot diameter of 0. 0 in a direction passing through an array of substantially circular regions showing a high concentration region of Ti obtained by mapping Ti in advance. The measurement is performed on five observation fields under the conditions of 2 nm and a measurement distance of 150 nm or more.
圧延方向に平行な方向での0.2%耐力が900MPa以上であり、且つ、板幅(w)/板厚(t)=3.0となる曲げ幅で曲げ半径(R)/板厚(t)=0としてBadway(曲げ軸が圧延方向と同一方向)のW曲げ試験を実施したときに屈曲部にクラックを生じない請求項1に記載のチタン銅。 Bending radius (R) / sheet thickness (with a bending width at which 0.2% proof stress in a direction parallel to the rolling direction is 900 MPa or more and plate width (w) / plate thickness (t) = 3.0 The titanium-copper according to claim 1, wherein no crack is generated in the bent portion when a W-bending test of Badway (the bending axis is the same direction as the rolling direction) is performed with t) = 0. 請求項1又は2に記載のチタン銅を備えた伸銅品。 A rolled copper product comprising the titanium-copper according to claim 1 or 2 . 請求項1又は2に記載のチタン銅を備えた電子部品。 The electronic component provided with the titanium copper of Claim 1 or 2 .
JP2013272861A 2013-12-27 2013-12-27 Titanium copper for electronic parts Active JP6151637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013272861A JP6151637B2 (en) 2013-12-27 2013-12-27 Titanium copper for electronic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013272861A JP6151637B2 (en) 2013-12-27 2013-12-27 Titanium copper for electronic parts

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016037829A Division JP2016138334A (en) 2016-02-29 2016-02-29 Titanium copper for electronic component

Publications (2)

Publication Number Publication Date
JP2015127440A JP2015127440A (en) 2015-07-09
JP6151637B2 true JP6151637B2 (en) 2017-06-21

Family

ID=53837564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013272861A Active JP6151637B2 (en) 2013-12-27 2013-12-27 Titanium copper for electronic parts

Country Status (1)

Country Link
JP (1) JP6151637B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6151636B2 (en) * 2013-12-27 2017-06-21 Jx金属株式会社 Titanium copper for electronic parts
JP6192552B2 (en) * 2014-01-30 2017-09-06 Jx金属株式会社 Titanium copper for electronic parts
JP6165071B2 (en) * 2014-01-30 2017-07-19 Jx金属株式会社 Titanium copper for electronic parts
JP6609589B2 (en) * 2017-03-30 2019-11-20 Jx金属株式会社 High-strength titanium copper strip and foil having a layered structure
JP6609590B2 (en) 2017-03-30 2019-11-20 Jx金属株式会社 High-strength titanium copper strip and foil having a layered structure

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5378286B2 (en) * 2010-03-30 2013-12-25 Jx日鉱日石金属株式会社 Titanium copper and method for producing the same
JP5226056B2 (en) * 2010-10-29 2013-07-03 Jx日鉱日石金属株式会社 Copper alloys, copper products, electronic components and connectors
JP6125409B2 (en) * 2013-11-15 2017-05-10 Jx金属株式会社 Titanium copper for electronic parts
JP6125410B2 (en) * 2013-11-15 2017-05-10 Jx金属株式会社 Titanium copper for electronic parts
JP5718436B1 (en) * 2013-11-18 2015-05-13 Jx日鉱日石金属株式会社 Titanium copper for electronic parts
JP5718443B1 (en) * 2013-12-27 2015-05-13 Jx日鉱日石金属株式会社 Titanium copper for electronic parts
JP6151636B2 (en) * 2013-12-27 2017-06-21 Jx金属株式会社 Titanium copper for electronic parts

Also Published As

Publication number Publication date
JP2015127440A (en) 2015-07-09

Similar Documents

Publication Publication Date Title
JP5718443B1 (en) Titanium copper for electronic parts
JP5718436B1 (en) Titanium copper for electronic parts
JP6125409B2 (en) Titanium copper for electronic parts
JP6151636B2 (en) Titanium copper for electronic parts
JP5226056B2 (en) Copper alloys, copper products, electronic components and connectors
JP6125410B2 (en) Titanium copper for electronic parts
JP6151637B2 (en) Titanium copper for electronic parts
JP6080823B2 (en) Titanium copper for electronic parts
JP2016138334A (en) Titanium copper for electronic component
JP2016130370A (en) Titanium copper for electronic part
JP5378286B2 (en) Titanium copper and method for producing the same
JP5319578B2 (en) Manufacturing method of titanium copper for electronic parts
JP6192552B2 (en) Titanium copper for electronic parts
JP6165071B2 (en) Titanium copper for electronic parts
EP3460081B1 (en) Titanium copper for electronic components
JP6310131B1 (en) Titanium copper for electronic parts
JP2016117951A (en) Titanium copper for electronic component
JP2016117952A (en) Titanium copper for electronic component
JP2016138335A (en) Titanium copper for electronic component
JP2016145424A (en) Titanium copper for electronic component

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20150728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170525

R150 Certificate of patent or registration of utility model

Ref document number: 6151637

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250