JP6150225B2 - Method for forming a surface region in which at least one of crystal orientation, crystal structure and composition changes depending on position, friction coefficient optimization method, and control method for at least one of crystal orientation, crystal structure and composition of surface - Google Patents
Method for forming a surface region in which at least one of crystal orientation, crystal structure and composition changes depending on position, friction coefficient optimization method, and control method for at least one of crystal orientation, crystal structure and composition of surface Download PDFInfo
- Publication number
- JP6150225B2 JP6150225B2 JP2013083027A JP2013083027A JP6150225B2 JP 6150225 B2 JP6150225 B2 JP 6150225B2 JP 2013083027 A JP2013083027 A JP 2013083027A JP 2013083027 A JP2013083027 A JP 2013083027A JP 6150225 B2 JP6150225 B2 JP 6150225B2
- Authority
- JP
- Japan
- Prior art keywords
- crystal orientation
- composition
- crystal
- crystal structure
- sliding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000013078 crystal Substances 0.000 title claims description 72
- 239000000203 mixture Substances 0.000 title claims description 32
- 238000000034 method Methods 0.000 title claims description 29
- 238000005457 optimization Methods 0.000 title claims description 4
- 238000005259 measurement Methods 0.000 claims description 7
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 15
- 239000000463 material Substances 0.000 description 14
- 238000000576 coating method Methods 0.000 description 12
- 239000010408 film Substances 0.000 description 12
- 239000011248 coating agent Substances 0.000 description 11
- 239000011787 zinc oxide Substances 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 238000012827 research and development Methods 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 239000013590 bulk material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Description
本発明は材料の摩擦係数を最適化するための材料結晶配向・構造・組成を探索するためなどに使用できる表面結晶配向・構造・組成の制御方法、及びそれを応用した方法に関する。 The present invention relates to a surface crystal orientation / structure / composition control method that can be used to search for a material crystal orientation / structure / composition for optimizing the friction coefficient of the material, and a method using the same.
地球環境・エネルギー問題が深刻化するなか、摩擦力の制御による省エネルギー技術の開発への期待が高まりつつある。例えば、身近な例を挙げると発電機などの装置内部には多数の駆動部が存在し、それらの各所において摩擦によるエネルギーロスが発生する。これらを抑制するには、材料の低摩擦化を行うことが有効な手法の一つとなるであろう。 As global environmental and energy problems become more serious, expectations are growing for the development of energy-saving technologies by controlling frictional forces. For example, to give a familiar example, there are a large number of drive units inside a device such as a generator, and energy loss due to friction occurs in each of these parts. In order to suppress these, reducing the friction of the material will be one of the effective methods.
従来から、既存の構造材料にコーティングを施すことで摩擦力を低減させる技術が存在していた。このコーティングは、その結晶配向・構造・組成の変化により大きく摩擦特性が変化するために、いかにして低摩擦特性を有する結晶配向・構造・組成を短期間で効率よく探索するかが研究・開発の鍵となっていた。 Conventionally, there has been a technique for reducing frictional force by coating an existing structural material. The friction characteristics of this coating change greatly due to changes in its crystal orientation, structure, and composition, so research and development on how to efficiently search for crystal orientation, structure, and composition with low friction characteristics in a short period of time. It was the key.
本願発明者のこれまでの研究により、摩擦特性と材料の結晶配向・構造・組成は密接に関連することがわかっている。例えば、一般的な金属酸化物である酸化亜鉛(ZnO)は、その結晶配向性を最適化すると低摩擦現象が発現する(非特許文献1、2)。しかしながら、その低摩擦特性を有するための最適な結晶配向を知るためには、コーティング条件を変化させることにより結晶配向を様々に変化させた大量のサンプルを作製し、その結晶配向及び摩擦特性評価を行う必要があった。これには多大な研究開発期間を必要としていた。 According to previous studies by the present inventors, it has been found that the friction characteristics and the crystal orientation / structure / composition of the material are closely related. For example, zinc oxide (ZnO), which is a general metal oxide, exhibits a low friction phenomenon when its crystal orientation is optimized (Non-Patent Documents 1 and 2). However, in order to know the optimum crystal orientation for having the low friction characteristics, a large number of samples with various crystal orientations were changed by changing the coating conditions, and the crystal orientation and friction characteristics were evaluated. There was a need to do. This required a lot of research and development.
ところで、一度に極めて多くの化合物をそれぞれ極微量合成し、そのなかから目的のものを選ぶというコンビナトリアルテクノロジーと呼ばれる新規材料探索手法が知られている。例えば、薄膜物性の解析や薄膜の最適組成の探索に当該技術を適用する場合には、1枚の薄膜を形成中に供給する各種の成分の比率を場所毎に変更するなどして場所毎に複数成分間の組成比が連続的に変化する膜を形成する。このようにして形成された膜の多数の位置で所要の測定を行う。これにより、多数の組成比についての特性解析を、1枚の膜の形成とその上での場所を変えての測定の繰り返しという極めて効率の高い手順で解析することができる。しかし、この場合においても、成分組成を変化させる手法は確立されているものの、摩擦特性に大きな影響を与える結晶配向・構造・組成を位置毎に変化させるという、コンビナトリアルテクノロジーに利用可能な手法についての提案はなされていなかった。 By the way, a novel material search technique called combinatorial technology is known in which a very small amount of each compound is synthesized at once and a desired one is selected from them. For example, when applying this technique to analysis of thin film properties or searching for the optimum composition of a thin film, the ratio of various components supplied during the formation of a single thin film is changed from place to place. A film in which the composition ratio between a plurality of components continuously changes is formed. The required measurements are made at a number of locations on the film thus formed. Thereby, the characteristic analysis about many composition ratios can be analyzed in the very highly efficient procedure of formation of one film | membrane, and the repetition of the measurement by changing the place on it. However, even in this case, although a method for changing the component composition has been established, a method that can be used for combinatorial technology that changes the crystal orientation, structure, and composition, which greatly affects the frictional characteristics, for each position. No proposal was made.
本発明は上述した従来技術の問題点を解消し、材料表面の結晶配向・構造・組成を局所的に制御できるようにすることを目的とする。 An object of the present invention is to eliminate the above-mentioned problems of the prior art and to locally control the crystal orientation, structure and composition of the material surface.
本発明の一側面によれば、表面の所望領域上に、前記領域内の位置毎に印加する荷重を変化させながら部材を摺動させる、結晶配向、結晶構造及び組成のうちの少なくとも一つが位置により変化する表面領域を形成する方法が提供される。
ここにおいて、位置により組成を変化させた前記表面を準備し、前記位置により組成を変化させた表面に対して前記摺動を行うことにより、結晶配向及び結晶構造のうちの少なくとも一つを位置により変化させてよい。
また、前記摺動を複数回繰り返してよい。
また、前記表面がZnOからなってよい。
本発明の他の側面によれば、前記何れかの方法により表面上に結晶配向、結晶構造及び組成のうちの少なくとも一つが位置により変化する表面領域を形成し、前記表面領域上の位置毎の摩擦係数を測定して摩擦係数が最小の位置を求め、前記摩擦係数が最小の位置の結晶配向、結晶構造及び組成のうちの少なくとも一つを求める、摩擦係数最適化方法が与えられる。
ここにおいて、前記摩擦係数の測定は前記摺動と同時に行ってよい。
本発明の更に他の側面によれば、表面の所望領域上に荷重を印加しながら部材を摺動させる、表面の結晶配向、結晶構造及び組成のうちの少なくとも一つの制御方法が与えられる。
ここにおいて、前記摺動を複数回繰り返してよい。
According to one aspect of the present invention, at least one of a crystal orientation, a crystal structure, and a composition that slides a member while changing a load applied at each position in the region on a desired region of the surface is positioned. A method of forming a surface region that varies with
Here, by preparing the surface with the composition changed according to the position and performing the sliding on the surface with the composition changed according to the position, at least one of the crystal orientation and the crystal structure depends on the position. You can change it.
The sliding may be repeated a plurality of times.
The surface may be made of ZnO.
According to another aspect of the present invention, a surface region in which at least one of crystal orientation, crystal structure, and composition varies depending on a position is formed on the surface by any one of the above methods, A friction coefficient optimization method is provided in which the coefficient of friction is measured to determine the position where the coefficient of friction is minimum, and at least one of the crystal orientation, crystal structure and composition of the position where the coefficient of friction is minimum is determined.
Here, the measurement of the friction coefficient may be performed simultaneously with the sliding.
According to still another aspect of the present invention, there is provided a control method of at least one of a crystal orientation, a crystal structure and a composition of a surface, wherein a member is slid while applying a load on a desired region of the surface.
Here, the sliding may be repeated a plurality of times.
本発明は、様々なコーティング膜あるいはバルク材料の表面における結晶配向・構造・組成を簡単な手順により位置毎に制御することができる。 In the present invention, the crystal orientation, structure, and composition on the surface of various coating films or bulk materials can be controlled for each position by a simple procedure.
本願発明者は、いかにしてコーティング膜の結晶配向・構造・組成を連続して変化させられるか、またいかにして、各部分の結晶配向・結晶構造・組成を解析し、それらと摩擦係数を対応させるかという点について検討を行った。その過程で、摺動条件(荷重、圧子材料種や摺動回数など)を変化させて摺動した摺動痕を微小領域毎に結晶構造解析したところ、それらの条件の違いにより結晶配向等が変わることを発見した。また、その結晶配向等に対応する場所の摩擦係数も合わせて測定することにより、摩擦係数と結晶配向等との相関を一回の実験のみで明らかにすることができることを突き止めた。本発明はこのような知見に基づいてなされたものであり、以下で実施例に基づき、さらに詳細に説明する。なお、以下の実施例では具体的な実験例としては結晶配向の変化・制御についてのものを取り上げて詳述するが、結晶構造及び組成の変化・制御についても併せて説明する。 The inventor of the present application analyzes how the crystal orientation / structure / composition of the coating film can be continuously changed, and how to analyze the crystal orientation / crystal structure / composition of each part, and determine the friction coefficient thereof. We examined whether to make it correspond. In the process, the sliding structure (load, indenter material type, number of sliding, etc.) was changed and the crystal structure of each sliding trace was analyzed for each micro area. I found a change. It was also found that the correlation between the friction coefficient and the crystal orientation can be clarified by only one experiment by measuring the friction coefficient at the location corresponding to the crystal orientation. The present invention has been made based on such findings, and will be described in more detail below based on examples. In the following examples, specific experimental examples will be described in detail with respect to the change / control of crystal orientation, but the change / control of crystal structure and composition will also be described.
本実施例では結晶配向を制御する対象としてZnOコーティング膜を例に挙げて説明するが、これ以外の多様な物質や形態(膜厚、膜/バルクの相違、その他)にも本発明を適用できることは言うまでもない。 In this embodiment, a ZnO coating film will be described as an example for controlling the crystal orientation, but the present invention can be applied to various other materials and forms (film thickness, film / bulk difference, etc.). Needless to say.
ステンレス鋼基板(440C)上にスパッタ法を用いてZnOコーティングを施したサンプルを準備した。このコーティング膜について荷重を0.1〜3.0Nまで連続して変化させながらステンレス鋼(440C)製のボール圧子(直径3mmφ)により、0.5mm/sの速度で10mmの距離を200回往復摺動した。もちろん、その摺動時には位置ごとの摩擦係数も連続して取得することが可能である。この摺動によりできた摺動痕を図1に示す。この摺動痕を2次元検出器付きのX線結晶構造解析装置(Rigaku製、SmartLab)により、マイクロメートルレベルで結晶構造評価を行った。図1にはまた摺動痕上にその結晶構造解析を行った位置である測定点番号(Measurement point No.)を示す(低荷重側から1で始まる番号)。この写真からわかるように、荷重の小さな側はボール圧子のコーティング膜への食込みや摺動による摩耗が少ないため、摺動痕の帯の幅が狭く、荷重が大きくなるにつれて幅が広くなっている。 A sample in which a ZnO coating was applied on a stainless steel substrate (440C) by sputtering was prepared. This coating film was reciprocated 200 times at a speed of 0.5 mm / s by a ball indenter (diameter 3 mmφ) made of stainless steel (440C) while changing the load continuously from 0.1 to 3.0 N. Slid. Of course, the friction coefficient for each position can be obtained continuously during the sliding. FIG. 1 shows a sliding mark formed by this sliding. The sliding structure was evaluated at the micrometer level using an X-ray crystal structure analyzer with a two-dimensional detector (Rigaku, SmartLab). FIG. 1 also shows the measurement point numbers (measurement point numbers) that are positions where the crystal structure analysis has been performed on the sliding traces (numbers starting with 1 from the low load side). As can be seen from this photo, the side with a small load has little wear due to the indentation or sliding of the ball indenter, so the width of the band of the sliding trace is narrow, and the width becomes wider as the load increases. .
次に、これらの位置毎に取得したX線回折スペクトルを重ね合わせたものを図2に示す。測定点の位置を変えてもZnOの各種結晶面に対応する各ピークの位置は変化しないが、その大きさが増減していることが明らかとなった。例えば図2の左側に、2θ=31.5°を中心とした拡大図を示す。この拡大図から、ここに示された(100)のピークが荷重を増大させるにつれて減少していることがわかる。これは、摺動による摩擦熱により、結晶配向が変化しているものである。 Next, FIG. 2 shows a superposition of the X-ray diffraction spectra acquired at these positions. Even if the position of the measurement point was changed, the position of each peak corresponding to the various crystal planes of ZnO did not change, but it became clear that the size increased or decreased. For example, an enlarged view around 2θ = 31.5 ° is shown on the left side of FIG. From this enlarged view, it can be seen that the (100) peak shown here decreases with increasing load. This is because the crystal orientation is changed by frictional heat due to sliding.
図3にはX線回折スペクトルの中にある代表的な結晶面指数のピーク((100):31.769°、(002):34.421°、(101):36.252°、(102):47.538°、(110):56.602°、(103):62.862°、(200):66.378°(なお、以上に示したピーク位置はデータベースに記載されているデータを転記した))を抜粋し、拡大した。摺動位置の違い(荷重変化)によりピーク強度が徐々に変化している。例えば(100)、(002)面では、徐々にピーク強度が低下している。反対に(101)面は、ピーク強度が増大する傾向が見られた。また、ステンレス鋼圧子では、例えば(100)面は、荷重の増大に伴い、それに比例してピーク強度の減少が起こったが、サファイア圧子で試験を行った場合には、ステンレス圧子よりも大きな荷重を印加しないとピーク強度の減少が起こらないことが分かった。 FIG. 3 shows typical crystal plane index peaks ((100): 31.769 °, (002): 34.421 °, (101): 36.252 °, (102)) in the X-ray diffraction spectrum. ): 47.538 [deg.], (110): 56.602 [deg.], (103): 62.862 [deg.], (200): 66.378 [deg.] (The peak positions shown above are data described in the database) ))) Excerpted and expanded. The peak intensity gradually changes due to the difference in sliding position (change in load). For example, on the (100) and (002) planes, the peak intensity gradually decreases. On the contrary, the (101) plane showed a tendency for the peak intensity to increase. In the case of a stainless steel indenter, for example, the peak strength of the (100) surface decreased in proportion to the increase in load, but when the test was performed with a sapphire indenter, the load was larger than that of the stainless indenter. It was found that the peak intensity did not decrease without applying.
上述した実験から、印加荷重の増減により結晶配向が連続的に変化することが明らかとなった。また、摺動回数や荷重を与える部材(例えばステンレス鋼圧子を使用するか、サファイア圧子を使用するか、など)によっても、この結晶配向変化は影響を受ける。図4は図1に示すような摺動痕上の結晶粒毎に、濃淡やテクスチャの違いによって結晶配向の違いを示す模式図であり、印加荷重の大きさにより特定の配向を有する結晶粒が増減することを示している。 From the above-described experiment, it has been clarified that the crystal orientation continuously changes as the applied load increases or decreases. In addition, the change in crystal orientation is also affected by a member that gives the number of sliding times and a load (for example, whether a stainless steel indenter or a sapphire indenter is used). FIG. 4 is a schematic diagram showing the difference in crystal orientation due to the difference in shading and texture for each crystal grain on the sliding trace as shown in FIG. 1, and crystal grains having a specific orientation depending on the magnitude of applied load. It shows that it increases or decreases.
図5にこの摺動実験により得られた摩擦係数の変化を示す。ZnOコーティング膜の結晶配向変化とこの摩擦係数の変化は、位置的に対応させることができ、その情報から必要とする摩擦係数を有するコーティング膜の結晶配向を特定することが可能となった。これにより、摩擦研究を大幅に加速することが可能となった。さらには、本発明の方法を用いて、摺動条件を制御しながら材料上の所望の位置を摩擦することにより、材料の任意の場所を所望の結晶配向に改質することもできる。 FIG. 5 shows the change in the coefficient of friction obtained by this sliding experiment. The change in the crystal orientation of the ZnO coating film and the change in the friction coefficient can be associated with each other, and the crystal orientation of the coating film having the necessary friction coefficient can be specified from the information. This has made it possible to greatly accelerate friction research. Furthermore, by using the method of the present invention, it is possible to modify a desired position on the material to a desired crystal orientation by rubbing a desired position on the material while controlling sliding conditions.
なお、結晶配向を制御することにより摩擦係数が最小になるという現象は、細かく見ると二通りある。すなわち、特定の単一の結晶配向を取るときに摩擦係数が最小になるという場合と、単一の結晶配向ではなく複数の特定の制御対象表面に現れている各種の結晶の結晶配向が特定の組み合わせを取るとき(つまり、ある特定の何種類かの結晶配向がある特定の比率で現れているとき)に摩擦係数が最小になる場合である。本発明は上記何れの場合にも対応することができる。 Note that there are two phenomena in which the friction coefficient is minimized by controlling the crystal orientation. That is, the friction coefficient is minimized when a specific single crystal orientation is taken, and the crystal orientation of various crystals appearing on a plurality of specific control target surfaces is not a specific crystal orientation. This is the case when the coefficient of friction is minimized when a combination is taken (that is, when a certain number of crystal orientations appear in a certain ratio). The present invention can deal with any of the above cases.
上記実験は結晶配向の制御についてのものであるが、結晶構造の変化や制御についても上で詳述したような条件を変化させながらの摺動により実現することができる。なお、組成については、従来からコンビナトリアルテクノロジー分野等で慣用されている、組成を連続して変化させる方法(例えば、摺動処理を行う前の試料基板を作製する際、基板表面上の位置により供給する複数の原料間の組成比や供給時間比を変化させる等)を適用することもできる。あるいは、例えば上で説明したような摺動による摩擦の熱と圧力で材料の偏析を加速することによる組成の制御や変化も可能である。従って、本発明によれば、結晶の配向、構造及び組成の3つの要素を同時に変化させることで、単一のあるいは少数の試料の上にこれらの多様な組み合わせを実現することができる。もちろん、これら3つの要素全てではなく、必要に応じてそのうちの2つ、あるいは1つだけを変化させた試料を作製し、評価することも当然可能であり、また本発明はそのような形態を排除するものではない。 The above experiment is for controlling the crystal orientation, but the change and control of the crystal structure can also be realized by sliding while changing the conditions as described in detail above. The composition is conventionally used in the combinatorial technology field, etc., and is supplied by the position on the substrate surface when the sample substrate before the sliding treatment is made, for example, by a method of continuously changing the composition. It is also possible to apply a composition ratio or a supply time ratio between a plurality of raw materials. Alternatively, for example, the composition can be controlled or changed by accelerating the segregation of the material by the heat and pressure of friction caused by sliding as described above. Therefore, according to the present invention, various combinations of these can be realized on a single sample or a small number of samples by simultaneously changing the three elements of crystal orientation, structure and composition. Of course, it is of course possible to prepare and evaluate a sample in which not all of these three elements but only two or only one of them are changed as necessary, and the present invention has such a form. It is not excluded.
本発明によれば、僅かな実験により、膜やバルク材料について必要な摩擦係数を発現させるために必要な結晶構造の知見を得ることが可能となるため、本発明は摩擦が関わる研究・開発のための有力なツールとなるであろう。また、本発明は、研究・開発のみならず、摩擦係数などに影響を与える材料表面の結晶配向を位置選択的に制御できる革新的な技術としても期待される。 According to the present invention, it is possible to obtain knowledge of the crystal structure necessary for expressing a necessary friction coefficient for a film or a bulk material by a few experiments. Would be a powerful tool for. Further, the present invention is expected not only as research and development, but also as an innovative technique that can selectively control the crystal orientation of the material surface that affects the friction coefficient and the like.
Claims (7)
前記表面領域上の位置毎の摩擦係数を測定して摩擦係数が最小の位置を求め、 Measure the coefficient of friction for each position on the surface area to determine the position with the smallest coefficient of friction,
前記摩擦係数が最小の位置の結晶配向、結晶構造及び組成のうちの少なくとも一つを求める、 Determining at least one of crystal orientation, crystal structure and composition at a position where the friction coefficient is minimum;
摩擦係数最適化方法。Friction coefficient optimization method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013083027A JP6150225B2 (en) | 2013-04-11 | 2013-04-11 | Method for forming a surface region in which at least one of crystal orientation, crystal structure and composition changes depending on position, friction coefficient optimization method, and control method for at least one of crystal orientation, crystal structure and composition of surface |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013083027A JP6150225B2 (en) | 2013-04-11 | 2013-04-11 | Method for forming a surface region in which at least one of crystal orientation, crystal structure and composition changes depending on position, friction coefficient optimization method, and control method for at least one of crystal orientation, crystal structure and composition of surface |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017028570A Division JP6319926B2 (en) | 2017-02-20 | 2017-02-20 | Method for controlling surface crystal orientation |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014205588A JP2014205588A (en) | 2014-10-30 |
JP6150225B2 true JP6150225B2 (en) | 2017-06-21 |
Family
ID=52119502
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013083027A Active JP6150225B2 (en) | 2013-04-11 | 2013-04-11 | Method for forming a surface region in which at least one of crystal orientation, crystal structure and composition changes depending on position, friction coefficient optimization method, and control method for at least one of crystal orientation, crystal structure and composition of surface |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6150225B2 (en) |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2620518A4 (en) * | 2010-09-21 | 2014-03-05 | Nat Inst For Materials Science | LOW-FRICTION ZnO COATING AND METHOD FOR PRODUCING SAME |
-
2013
- 2013-04-11 JP JP2013083027A patent/JP6150225B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2014205588A (en) | 2014-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Vashista et al. | Correlation between full width at half maximum (FWHM) of XRD peak with residual stress on ground surfaces | |
Warcholinski et al. | Effect of substrate bias voltage on the properties of CrCN and CrN coatings deposited by cathodic arc evaporation | |
Arda et al. | Structural and mechanical properties of transition metals doped ZnMgO nanoparticles | |
Chen et al. | Influence of growth temperature on microstructure and mechanical properties of nanocrystalline zirconium carbide films | |
Larijani et al. | The effect of carbon fraction in Zr (C, N) films on the nano-structural properties and hardness | |
Kulikovsky et al. | Mechanical properties and structure of amorphous and crystalline B4C films | |
Purandare et al. | ZrN coatings deposited by high power impulse magnetron sputtering and cathodic arc techniques | |
JP6319926B2 (en) | Method for controlling surface crystal orientation | |
Liu et al. | Measurement for mechanical behavior and fatigue property of Cu films by nanoscale dynamic load method | |
Ding et al. | Abrasive wear resistance of Ti1− xAlxN hard coatings deposited by a vacuum arc system with lateral rotating cathodes | |
Wang et al. | Surface morphology and tribological properties of DC sputtered nanoscale multilayered TiAlN/CNx coatings | |
Arias et al. | Residual stress gradient of Cr and CrN thin films | |
JP6150225B2 (en) | Method for forming a surface region in which at least one of crystal orientation, crystal structure and composition changes depending on position, friction coefficient optimization method, and control method for at least one of crystal orientation, crystal structure and composition of surface | |
Suresha et al. | Toughening through multilayering in TiN–AlTiN films | |
Ezirmik et al. | Effect of copper addition on the temperature dependent reciprocating wear behaviour of CrN coatings | |
JP7250699B2 (en) | Carbon material having coating layer containing TaC and method for producing the same | |
Xie et al. | Effect of oxygen partial pressure and temperature on NTC characteristics of Mn1. 56Co0. 96Ni0. 48O4 thin films grown on SrTiO3 (1 0 0) by laser MBE | |
Liu et al. | Residual stress analysis of TiN film fabricated by plasma immersion ion implantation and deposition process | |
Nezu et al. | A current perspective of the state-of-the-art in stress analysis | |
Yoshino et al. | Tool wear of a single-crystal diamond tool in nano-groove machining of a quartz glass plate | |
Tsui et al. | Evidence for strain compensation in stabilizing epitaxial growth of highly doped germanium | |
Köçkar et al. | Investigation of soft magnetic properties of Ni/Cu multilayer films: Definitive screening design and response surface methodology | |
Mukhamadeev et al. | Influence of structural changes in the surface of a cutting tool on its wear resistance | |
Öksüzoğlu et al. | Characterization of microstructural and morphological properties in As-deposited Ta/NiFe/IrMn/CoFe/Ta multilayer system | |
Ga et al. | Rapid response humidity sensor based on DC magnetron sputtered Mn1. 2Co1. 5Ni0. 3O4 thin film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160329 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20161212 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161220 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170220 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170502 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170515 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6150225 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |