JP6145752B2 - Nuclear power generation system without sodium leakage - Google Patents
Nuclear power generation system without sodium leakage Download PDFInfo
- Publication number
- JP6145752B2 JP6145752B2 JP2015119765A JP2015119765A JP6145752B2 JP 6145752 B2 JP6145752 B2 JP 6145752B2 JP 2015119765 A JP2015119765 A JP 2015119765A JP 2015119765 A JP2015119765 A JP 2015119765A JP 6145752 B2 JP6145752 B2 JP 6145752B2
- Authority
- JP
- Japan
- Prior art keywords
- sodium
- power generation
- nuclear power
- corrosion
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000011734 sodium Substances 0.000 title claims description 52
- 229910052708 sodium Inorganic materials 0.000 title claims description 46
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 title claims description 45
- 238000010248 power generation Methods 0.000 title claims description 11
- 238000001816 cooling Methods 0.000 claims description 38
- 239000007788 liquid Substances 0.000 claims description 19
- 229910052751 metal Inorganic materials 0.000 claims description 15
- 239000002184 metal Substances 0.000 claims description 15
- 238000005260 corrosion Methods 0.000 claims description 13
- 230000007797 corrosion Effects 0.000 claims description 12
- 239000002826 coolant Substances 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 7
- 238000010992 reflux Methods 0.000 claims description 7
- 239000000956 alloy Substances 0.000 claims description 6
- 229910045601 alloy Inorganic materials 0.000 claims description 6
- 238000010494 dissociation reaction Methods 0.000 claims description 5
- 229910000831 Steel Inorganic materials 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 229910052797 bismuth Inorganic materials 0.000 claims description 3
- 239000000919 ceramic Substances 0.000 claims description 3
- 230000005593 dissociations Effects 0.000 claims description 3
- 230000000694 effects Effects 0.000 claims description 3
- 239000010959 steel Substances 0.000 claims description 3
- 229910052787 antimony Inorganic materials 0.000 claims description 2
- 229910052793 cadmium Inorganic materials 0.000 claims description 2
- 238000004210 cathodic protection Methods 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 229910052733 gallium Inorganic materials 0.000 claims description 2
- 229910052738 indium Inorganic materials 0.000 claims description 2
- 229910052745 lead Inorganic materials 0.000 claims description 2
- 229910052749 magnesium Inorganic materials 0.000 claims description 2
- 150000004767 nitrides Chemical class 0.000 claims description 2
- 229910052711 selenium Inorganic materials 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 229910052714 tellurium Inorganic materials 0.000 claims description 2
- 229910052718 tin Inorganic materials 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 208000028659 discharge Diseases 0.000 claims 4
- 239000003870 refractory metal Substances 0.000 claims 1
- 150000003388 sodium compounds Chemical class 0.000 claims 1
- 239000000126 substance Substances 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 238000000034 method Methods 0.000 description 8
- 239000004115 Sodium Silicate Substances 0.000 description 5
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 5
- 229910052911 sodium silicate Inorganic materials 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- 239000012768 molten material Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 208000018459 dissociative disease Diseases 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000003758 nuclear fuel Substances 0.000 description 2
- 101100165177 Caenorhabditis elegans bath-15 gene Proteins 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000005536 corrosion prevention Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N sodium oxide Chemical compound [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Preventing Corrosion Or Incrustation Of Metals (AREA)
- Secondary Cells (AREA)
Description
本発明は原子力発電用原子炉の付帯構造にかかわり、特に冷却材として液体ナトリウムを用いる高速増殖炉型原子力発電所の構造改善を提案するものである。 The present invention relates to an incidental structure of a nuclear power reactor, and particularly proposes an improvement in the structure of a fast breeder nuclear power plant using liquid sodium as a coolant.
高速増殖炉が実用化に至らないのは、冷却材であるナトリウム漏れが原因とされている。
高速増殖炉型原子力発電の構造については、下記の特許文献に詳しいが、図3に示す模式図では、Aは原子炉、Bは熱交換器、Cは1次冷却系ナトリウム液循環ポンプ、Dは高温ナトリウム液吐出管、Eは蒸気発生器、F,Hはナトリウム液還流管、Gはポンプ、Iは蒸気配管、Jは格納容器である。The reason why the fast breeder reactor has not been put to practical use is due to sodium leakage as a coolant.
The structure of the fast breeder reactor nuclear power generation is detailed in the following patent document. In the schematic diagram shown in FIG. 3, A is a nuclear reactor, B is a heat exchanger, C is a primary cooling system sodium liquid circulation pump, D Is a high temperature sodium liquid discharge pipe, E is a steam generator, F and H are sodium liquid reflux pipes, G is a pump, I is a steam pipe, and J is a containment vessel.
日本の「もんじゅ」のナトリウム漏れは、2次冷却系の図3のX部で起こった。
これには構造体の破壊力学的要因のほかに、ナトリウムの配管材腐食についても検討され、ナトリウム中の酸素濃度を20ppm以下にすると、配管材の腐食が減少すると報告されている。The sodium leak of “Monju” in Japan occurred in part X of the secondary cooling system in FIG.
In addition to the fracture mechanics factors of the structure, the corrosion of piping materials of sodium is also examined, and it is reported that the corrosion of piping materials decreases when the oxygen concentration in sodium is 20 ppm or less.
その他ナトリウムが活性元素であるため、比較的非活性で、腐食発生の少ない鉛―ビスマス系の提案もある。 In addition, since sodium is an active element, there is also a proposal of a lead-bismuth system that is relatively inactive and generates little corrosion.
ナトリウム冷却系については、広く研究されてきたが未だ漏洩事故を確実に解消できるとは言い難い。本発明はナトリウム液漏れをなくすため、さらに原子力発電システムの安全性を高めるための技術を提供する事を目的としている。 The sodium cooling system has been extensively studied, but it is still difficult to say that the leakage accident can be solved reliably. An object of the present invention is to provide a technique for eliminating sodium liquid leakage and further improving the safety of a nuclear power generation system.
本発明者らは、高速増殖炉2次冷却系ナトリウム液漏れ事故では、酸素との反応および生成する酸化ナトリウム(Na2O)と他の酸化物との下記に示す高温解離反応、および高温ナトリウム液配管と冷却後の低温ナトリウム液配管部での熱電対の形成に基ずく熱起電力に注目した。そして漏洩部での放電現象が大きな原因になっていると結論ずけた。ここでナトリウム液は電導体であり、熱交換器出口と蒸気発生器入口間の配管および蒸気発生器出口から熱交換器に戻る配管系は熱電対を形成している。そのために図3のX部には短絡電流が集中するとみる。したがってこの近傍では放電腐食の発生が推論できる。その解決法としては、高温側配管の高電位と低温配管側の低電位を電気的に中和させることが望ましい。なお熱電対の熱接点部は熱交換器内配管の出口、すなわち吐出管取付部から蒸気発生器への入り口部までの配管とみられ、高温ナトリウムが流れる範囲で、この間は温度低下が起こらないように保温すべき個所であるからである。又冷接点側は蒸気発生器からの配管の出口、すなわち還流管の取り付け部から熱交換器への入り口部までと見るのが妥当である。この間ではナトリウムの温度も低く、電位も安定して低い。したがって、アースあるいは逆位相電圧を付加する個所は高電位側、低電位側とも各々上記の間にある。In the fast breeder reactor secondary cooling system sodium liquid leak accident, the present inventors have reacted with oxygen and the high-temperature dissociation reaction shown below between the generated sodium oxide (Na 2 O) and other oxides, and high-temperature sodium. We focused on the thermoelectromotive force based on the thermocouple formation in the liquid piping and the cooled low temperature sodium liquid piping. It was concluded that the discharge phenomenon at the leaking part was a major cause. Here, the sodium liquid is an electric conductor, and the piping between the heat exchanger outlet and the steam generator inlet and the piping system returning from the steam generator outlet to the heat exchanger form a thermocouple. For this reason, it is assumed that the short-circuit current is concentrated in the portion X in FIG. Therefore, the occurrence of discharge corrosion can be inferred in the vicinity. As a solution, it is desirable to electrically neutralize the high potential of the high temperature side pipe and the low potential of the low temperature pipe side. The thermocouple's hot junction is considered to be the outlet of the pipe in the heat exchanger, that is, the pipe from the discharge pipe mounting part to the inlet to the steam generator. This is because it is a place that should be kept warm. It is reasonable to view the cold junction side from the outlet of the pipe from the steam generator, that is, from the attachment part of the reflux pipe to the entrance to the heat exchanger. During this time, the temperature of sodium is low and the potential is stable and low. Therefore, the portion to which the ground or reverse phase voltage is applied is between the above on both the high potential side and the low potential side.
図1は本発明が適用される機構を模式的に示したもので、1は2次冷却用熱交換器、2は1次冷却系Naを循環させるポンプ、3は2次冷却系のNaを循環させる配管、4は蒸気発生器と復水器、5は循環用電磁ポンプ、6は高温吐出管側の2か所のアース配線、7はNa還流管側のアース電流計とアース配線、8は逆位相電圧を付加する直流電源と制御機器、9は必要により取り付ける絶縁用セラミックス碍子管、10は格納容器である。 FIG. 1 schematically shows a mechanism to which the present invention is applied. 1 is a heat exchanger for secondary cooling, 2 is a pump for circulating the primary cooling system Na, 3 is Na for the secondary cooling system Piping to circulate, 4 is a steam generator and condenser, 5 is an electromagnetic pump for circulation, 6 is ground wiring at two locations on the high temperature discharge pipe side, 7 is an earth ammeter and ground wiring on the Na reflux pipe side, 8 Is a DC power supply and control device for applying a reverse phase voltage, 9 is an insulating ceramic insulator tube to be attached if necessary, and 10 is a containment vessel.
ここで課題の解決法として、第一に熱接点側高電位点になる熱交換器出口部近傍をアースする。図1の6部である。図は蒸気発生器側にもつけた場合である。蒸気発生器入口部近傍もアースすればより効果的と見られるためである。6と7間の破線で示した配線もアース効果を上げるために用いてもよい。7は低温側配管の冷接点近傍をアースするもので、これにより、両者の電位差は解消できる。Here, as a solution to the problem, first, the vicinity of the heat exchanger outlet which becomes the high potential point on the hot junction side is grounded. It is 6 parts of FIG. The figure shows the case where it is also attached to the steam generator side. This is because it is considered more effective if the vicinity of the steam generator inlet is grounded. The wiring shown by the broken line between 6 and 7 may also be used to increase the grounding effect. 7 is for grounding the vicinity of the cold junction of the low-temperature side pipe, whereby the potential difference between the two can be eliminated.
しかしアース電流の程度、アース抵抗のために、これだけでは十分でない場合もありうる。又アース電流を流し続けることによる熱交換器内配管、内部構造その他機器への影響が懸念される。そのため高温側配管と低温側配管との間に逆位相電圧を付加して、中和する方法がある。図1で8の電源を使用する方法である。すなわち図1のスイッチを接続側に切り替えた場合である。電池記号で示した直流電源の正極を低温側配管に接続する。負極は可変抵抗器で示した制御機器、監視電流計を通ってアースされる。これにより高温側の配管から流れてくる電流は中和される。そして制御機器を通り低温配管へ流れる電流を許容範囲内に少なくなるように制御管理すれば、電位差による悪影響を除去できる。この方法の長所は、配管系に流れる電流を少なくできる点にある。したがってこれらを選択使用するのがよいと考える。運転温度が低く2次配管系の温度が低い場合には、アースだけで十分であるが、高温運転時には、上記熱起電力、解離電圧も高くなるためである。又付加する電流波形は脈流でもよい。
なおこの現象は1次冷却系でも起こり得ることであるから本発明適用の必要がないとは言えないが、1次冷却系では還流ナトリウムの温度が高いので、電位差は小さいと考える。ただ運転温度制御管理には十分な注意が必要である。However, this alone may not be sufficient due to the degree of earth current and earth resistance. In addition, there is a concern about the influence on the piping in the heat exchanger, the internal structure and other equipment due to the continuous flow of the ground current. Therefore, there is a method of neutralizing by adding an antiphase voltage between the high temperature side pipe and the low temperature side pipe. This is a method using the
Although this phenomenon can occur even in the primary cooling system, it cannot be said that it is not necessary to apply the present invention. However, since the temperature of the reflux sodium is high in the primary cooling system, the potential difference is considered small. However, sufficient care is required for operating temperature control management.
以上が請求項1であるが、Na2O生成による解離電圧の発生の点でも好結果をもたらすと考えられる。すなわちナトリウム中の酸素濃度が高く20ppmを越えてくると、次の反応が起こりやすくなると考えられるからである。ここで配管材料はSUS304ステンレス鋼で、鋼管内面にはCr2O3で代表される酸化皮膜がある。したがって、
の解離反応が起こりうると考えねばならない。すなわち高温側ではナトリウムは正の電荷を持ちうるし、高温であるほど大きいのである。Above is the claim 1, in terms of occurrence of dissociation voltage by Na 2 O generated believed to provide good results. That is, when the oxygen concentration in sodium is high and exceeds 20 ppm, it is considered that the following reaction is likely to occur. Here, the piping material is SUS304 stainless steel, and an oxide film represented by Cr 2 O 3 is provided on the inner surface of the steel pipe. Therefore,
It must be considered that a dissociation reaction can occur. That is, on the high temperature side, sodium can have a positive charge, and the higher the temperature, the larger.
これは当然熱起電力に加算される。そのため電気的に格納容器出口で短絡状態にある現状の構造では、放電現象が起こりえよう。(図1の9部分) This is naturally added to the thermoelectromotive force. Therefore, in the current structure that is electrically shorted at the outlet of the containment vessel, a discharge phenomenon may occur. (9 parts in Fig. 1)
又図1の9のように、碍子類を介して短絡電流を制御する等の配慮も有効であろう。 Also, consideration such as controlling the short-circuit current via insulators as shown in FIG.
更には、熱交換器の構造上の改良も有効である。
図2の例では、原子炉炉心より循環する1次冷却系ナトリウム液を隔離するために、下部容器11に導き、次にその上の中間容器にある1次冷却系液以外の溶融材料浴14に熱交換させ、次いでこの材料浴から上部容器の水に熱交換して、水蒸気を発生させるものであって、ナトリウム系の1次冷却液と循環水系統が隔離されるような中間熱交換蒸気発生器を構成した原子力発電システムである。Furthermore, the structural improvement of the heat exchanger is also effective.
In the example of FIG. 2, in order to isolate the primary cooling system sodium liquid circulating from the reactor core, it is led to the
図2の実施例では、1次冷却材がナトリウムで、11は原子炉から来る1次冷却系ナトリウム液浴、12は原子炉炉心より来る1次冷却用配管、13はナトリウム液を循環させるポンプおよび配管であって、浴室中心部に放出されるナトリウム液は、矢印のように、上部の2次冷却用溶融金属浴又は溶融塩浴等の渦巻き状フィン14部にそって回転し、周側の出口より13のポンプに至る。この間に14部の溶融金属浴又は溶融塩浴等に熱交換が行われる。そして蒸気発生器15の水蒸気タンク側では中心部に噴出された水が上部の渦巻き状フィン部を回って外周部に至り、この間に水蒸気化され、容器15内に高圧水蒸気を充満させる。 In the embodiment of FIG. 2, the primary coolant is sodium, 11 is a primary cooling system sodium liquid bath coming from the reactor, 12 is a primary cooling pipe coming from the reactor core, and 13 is a pump for circulating sodium liquid. The sodium liquid discharged into the center of the bathroom rotates along the
16はタービン向け配管であり、17は蒸気タービンと復水器および還水用ポンプである。18は復水用配管であり、19は溶融材料浴の脱気、圧力調整用弁である。また20は後述の電気防食用付加電極、21は溶融金属または溶融塩浴の循環用ポンプであって、この方式により、1次ナトリウム液から水蒸気に一気に熱交換を行わせることができる。
かつナトリウム液浴室と水蒸気室は隣接せず、ナトリウム液の漏洩によるナトリウム燃焼反応と水による水素ガス発生も、浴11の外部に設ける珪酸ソーダ系封孔バリアーである珪酸ソーダ充填用二重殻容器22および3層配管12、13と相まって防止できる。 In addition, the sodium bath and the water vapor chamber are not adjacent to each other, and the sodium combustion reaction due to the leakage of the sodium solution and the generation of hydrogen gas by the water are the sodium silicate-based double-shell container that is a sodium silicate-based sealing barrier provided outside the
又フィン部を外殻容器に固定すれば、耐震性も良好で、プール型のように1次冷却系との間の隔壁も必要ない、又半地下式にできるので安全である。 Also, if the fin part is fixed to the outer shell container, the earthquake resistance is good, and a partition wall between the primary cooling system is not required as in the pool type, and it is safe because it can be semi-underground.
又高温運転時万一1次ナトリウム漏れが起こっても直ちに復流水を止め、蒸気発生室15をN2等の不活性ガス冷却換気に切り替える事も出来る。Also immediately stop the recovery flowing water even should happen primary sodium leakage at high temperature operation, the
すなわち構造的には、2次冷却系においてナトリウム液冷却材を使用しない事と、2次冷却容器室をコンパクトにする事により,先の放電腐食を防止するものである。 That is, structurally, the discharge corrosion is prevented by not using a sodium liquid coolant in the secondary cooling system and by making the secondary cooling vessel chamber compact.
請求項2は溶融金属浴の成分構成、電気的処理等にかんする。図2の重畳型熱交換器構造その他の中間熱交換器構造において、1次冷却系より熱を収受する材料浴が、アルカリ金属以外の溶融金属の場合に、材料浴基本成分を、Bi、Pb、Sn、Cdの2種以上を含む共晶成分系とし、その他にIn、Ga、Al、Mg、Zn、Sb、Se、Te、Ge、Tl、Ag、Cuの少なくとも1種を含む易溶性合金とするものである。 The second aspect relates to the composition of the molten metal bath, electrical treatment, and the like. In the superimposed heat exchanger structure and other intermediate heat exchanger structures in FIG. 2, when the material bath that receives heat from the primary cooling system is a molten metal other than an alkali metal, the basic components of the material bath are Bi, Pb. , Sn, Cd, a eutectic component system containing two or more, and in addition, a readily soluble alloy containing at least one of In, Ga, Al, Mg, Zn, Sb, Se, Te, Ge, Tl, Ag, Cu It is what.
又冷却機器の構造体は鋼鉄製又はNi基合金製である場合に、溶融金属による構造体の腐食を防止するために、必要により、構造体内面を酸化物化成処理し、Cr,Al等の熱的に安定かつ緻密な酸化皮膜を形成させるか、又は炭化物、窒化物等の耐熱、耐食性皮膜を形成させるか、あるいはMo、W、Nb、Ta、V、Ti、Zr、Cr、Hf等の単体金属、またはこれら合金の高融点金属よりなる皮膜を、めっき法、表面拡散浸透法等の方法により形成させる。そしてさらに裸使用、防食皮膜形成の何れの場合にも、供用時には熱交換用冷却容器を負極とし、溶融金属浴を正極とする通電防食を行うことにより、易溶性溶融金属による冷却容器内の腐食を防止する事を特徴とするものである。In addition, when the structure of the cooling device is made of steel or Ni-base alloy, the inner surface of the structure is subjected to an oxide conversion treatment if necessary to prevent corrosion of the structure by molten metal, such as Cr, Al, etc. Either a thermally stable and dense oxide film is formed, or a heat-resistant and corrosion-resistant film such as carbide or nitride is formed, or Mo, W, Nb, Ta, V, Ti, Zr, Cr, Hf, etc. A film made of a single metal or a high melting point metal of these alloys is formed by a method such as a plating method or a surface diffusion penetration method. And further Naked used, in either case the anticorrosive film formation, a cooling vessel for heat exchange with the negative electrode at the time in service, by performing energization corrosion of a positive electrode for a molten metal bath, the corrosion of the cooling vessel by easily soluble molten metal It is characterized by preventing .
ここでいう通電防食とは、発明者の先願である特願2015−98600号の方法である。また本先願は上記各種防食皮膜の形成にも活用出来るものでもある。 The energization corrosion prevention here is a method of Japanese Patent Application No. 2015-98600, which is a prior application of the inventor. The prior application can also be used to form the various anticorrosion films.
図2の適用例では正極は20の位置に取り付け、負極は容器外壁に取り付けているが、電流配分を考えて、複数個つけてもよい。 In the application example of FIG. 2, the positive electrode is attached to the
ナトリウム冷却系を持つ原子力発電構造における冷却系ナトリウムの漏洩を防ぐことが可能となり、実用化に貢献する。又安全な原子力発電システムの実用化ができる。 It is possible to prevent leakage of cooling system sodium in a nuclear power generation structure having a sodium cooling system, which contributes to practical use. Also, a safe nuclear power generation system can be put into practical use.
1 2次冷却用熱交換器
2 1次冷却系Naを循環させるポンプ
3 2次冷却系Naを循環させる配管
4 蒸気発生器、復水器
5、G 循環用電磁ポンプ
6 高温吐出管のアース配線、2個所の場合
7 還流管のアース配線と電流計
8 逆位相電圧を付加する直流電源および制御機器
9 絶縁用セラミックス碍子管
10、J 格納容器
11 原子炉炉心からの1次冷却系ナトリウム液浴
12 原子炉炉心からのナトリウム用配管、珪酸ソーダ充填2重管
13 原子炉炉心へのナトリウム還流用ポンプ、珪酸ソーダ充填2重管
14 溶融金属又は溶融塩浴又はその混合浴
15、E 蒸気発生器
16 水蒸気配管
17 タービン、復水器および還流用ポンプ
18 復水配管
19 脱気、圧力調整弁
20 中間熱交換器溶融材料浴の電気防食電極取り付け部、+極は浴中取り付け 炭素系電極、−極は浴壁取り付け、電極は複数個設置可能
21 2次冷却浴循環用ポンプ
22 珪酸ソーダ充填用2重殻容器
23 耐熱耐荷型基礎
A 原子炉
B 熱交換器
C 1次冷却系ナトリウム循環用ポンプ
D 2次冷却系高温ナトリウム吐出管
F,H 低温ナトリウム還流管
I 蒸気配管DESCRIPTION OF SYMBOLS 1 Heat exchanger for secondary cooling 2 Pump which circulates primary cooling system Na 3 Piping which circulates secondary cooling system Na Steam generator,
Claims (2)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015119765A JP6145752B2 (en) | 2015-05-27 | 2015-05-27 | Nuclear power generation system without sodium leakage |
PCT/JP2015/079103 WO2016170705A1 (en) | 2015-04-21 | 2015-10-07 | Nuclear power generation system free from sodium leakage |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015119765A JP6145752B2 (en) | 2015-05-27 | 2015-05-27 | Nuclear power generation system without sodium leakage |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016153223A Division JP6421343B2 (en) | 2016-07-19 | 2016-07-19 | Covering material for preventing leakage of alkali metal containers |
JP2016153222A Division JP6358444B2 (en) | 2016-07-19 | 2016-07-19 | Non-reactive coolants for nuclear power vessels and methods of application |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016224019A JP2016224019A (en) | 2016-12-28 |
JP6145752B2 true JP6145752B2 (en) | 2017-06-14 |
Family
ID=57748028
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015119765A Expired - Fee Related JP6145752B2 (en) | 2015-04-21 | 2015-05-27 | Nuclear power generation system without sodium leakage |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6145752B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024196818A1 (en) * | 2023-03-17 | 2024-09-26 | Nuscale Power, Llc | Nuclear reactor-based systems, methods, and devices for energy production and carbon dioxide (co2) capture |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52137596A (en) * | 1976-05-12 | 1977-11-17 | Hitachi Ltd | Liquid metal loop |
JP3838909B2 (en) * | 2001-12-21 | 2006-10-25 | 三井造船株式会社 | Method for preventing corrosion of structural materials for liquid metal coolant |
CN102348834A (en) * | 2009-03-10 | 2012-02-08 | 株式会社东芝 | Method and system for controlling water quality in power generation plant |
JP5898595B2 (en) * | 2012-09-07 | 2016-04-06 | 日立Geニュークリア・エナジー株式会社 | Corrosion potential sensor |
-
2015
- 2015-05-27 JP JP2015119765A patent/JP6145752B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2016224019A (en) | 2016-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Malang et al. | Comparison of lithium and the eutectic lead-lithium alloy, two candidate liquid metal breeder materials for self-cooled blankets | |
US11145424B2 (en) | Direct heat exchanger for molten chloride fast reactor | |
CN103928064B (en) | Thermally-operated conversion system | |
Cheng | Intergranular stress-assisted corrosion cracking of austenitic alloys in water-cooled nuclear reactors | |
EP3975315A1 (en) | Heat exchanger for cooling vehicle battery | |
JPH0318793A (en) | Method of improving heat transfer effect and passive type cooling device | |
WO2017199059A2 (en) | Corrosion reduction in a molten salt reactor | |
JP6145752B2 (en) | Nuclear power generation system without sodium leakage | |
WO2016170705A1 (en) | Nuclear power generation system free from sodium leakage | |
EP1686608A1 (en) | X-ray apparatus | |
JP2005049135A (en) | Liquid metal-cooled nuclear power plant | |
Giancarli et al. | Overview of EU activities on DEMO liquid metal breeder blankets | |
Sokolov | Overview of the Russian DEMO plant study | |
Tyapkov et al. | Achieving more reliable operation of turbine generators at nuclear power plants by improving the water chemistry of the generator stator cooling system | |
JPH0660918A (en) | Power generating device | |
WO2015089662A1 (en) | Nuclear reactor safety system | |
Kirillov et al. | RF TBMs for ITER tests | |
RU2543573C1 (en) | Intracircuit passivation method of steel surfaces of fast neutron nuclear reactor | |
CN111739664B (en) | Experimental device for researching fused salt-heat pipe coupling system and operation method thereof | |
Carpignano et al. | Safety issues related to the intermediate heat storage for the EU DEMO | |
CN214223153U (en) | Industrial boiler capable of preventing explosion of boiler tube | |
Khollari et al. | Nickel‐based alloy corrosion in CANDU steam generators: E–pH diagrams of the Ni–NH3–H2O and Ni–CH3COO−–H2O ternary systems | |
none | Materials in Power Plant: A Residential Course on Materials for Electrical Generating Plant | |
Lee et al. | Design and Material Selection for Leak-Before Break Nature of Double Walled Once Through Steam Generators in Lead-Bismuth Cooled Fast Reactors | |
Esposito et al. | Laboratory investigation of corrosion occurring under heat transfer conditions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150717 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151117 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151214 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160607 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160719 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170110 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170214 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170404 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170419 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6145752 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |