JP6144603B2 - Freezing / salt scaling inhibiting method and freezing / salt scaling inhibiting agent - Google Patents
Freezing / salt scaling inhibiting method and freezing / salt scaling inhibiting agent Download PDFInfo
- Publication number
- JP6144603B2 JP6144603B2 JP2013222764A JP2013222764A JP6144603B2 JP 6144603 B2 JP6144603 B2 JP 6144603B2 JP 2013222764 A JP2013222764 A JP 2013222764A JP 2013222764 A JP2013222764 A JP 2013222764A JP 6144603 B2 JP6144603 B2 JP 6144603B2
- Authority
- JP
- Japan
- Prior art keywords
- salt
- freezing
- water
- soluble metal
- magnesium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 150000003839 salts Chemical class 0.000 title claims description 144
- 238000007710 freezing Methods 0.000 title claims description 65
- 230000008014 freezing Effects 0.000 title claims description 54
- 238000000034 method Methods 0.000 title claims description 18
- 230000002401 inhibitory effect Effects 0.000 title claims description 11
- 229910052751 metal Inorganic materials 0.000 claims description 82
- 239000002184 metal Substances 0.000 claims description 82
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 claims description 75
- 239000004568 cement Substances 0.000 claims description 54
- 239000003795 chemical substances by application Substances 0.000 claims description 38
- 229910001629 magnesium chloride Inorganic materials 0.000 claims description 37
- 235000011147 magnesium chloride Nutrition 0.000 claims description 37
- 239000003112 inhibitor Substances 0.000 claims description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 20
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 14
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 11
- 230000006866 deterioration Effects 0.000 claims description 11
- 239000011777 magnesium Substances 0.000 claims description 11
- 229910052749 magnesium Inorganic materials 0.000 claims description 11
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 claims description 10
- 239000007864 aqueous solution Substances 0.000 claims description 10
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Chemical compound [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 claims description 10
- 230000001629 suppression Effects 0.000 claims description 10
- 230000002528 anti-freeze Effects 0.000 claims description 9
- UEGPKNKPLBYCNK-UHFFFAOYSA-L magnesium acetate Chemical compound [Mg+2].CC([O-])=O.CC([O-])=O UEGPKNKPLBYCNK-UHFFFAOYSA-L 0.000 claims description 9
- 239000011654 magnesium acetate Substances 0.000 claims description 9
- 229940069446 magnesium acetate Drugs 0.000 claims description 9
- 235000011285 magnesium acetate Nutrition 0.000 claims description 9
- 239000000843 powder Substances 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims description 8
- 229910000000 metal hydroxide Inorganic materials 0.000 claims description 8
- 150000004692 metal hydroxides Chemical class 0.000 claims description 8
- 229910052742 iron Inorganic materials 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 6
- 159000000007 calcium salts Chemical class 0.000 claims description 5
- 230000032798 delamination Effects 0.000 claims description 5
- 229910052943 magnesium sulfate Inorganic materials 0.000 claims description 5
- 235000019341 magnesium sulphate Nutrition 0.000 claims description 5
- 159000000000 sodium salts Chemical class 0.000 claims description 5
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 claims description 4
- 239000002577 cryoprotective agent Substances 0.000 claims description 3
- 239000003513 alkali Substances 0.000 claims description 2
- 159000000001 potassium salts Chemical class 0.000 claims 1
- 235000002639 sodium chloride Nutrition 0.000 description 142
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 41
- 229960002337 magnesium chloride Drugs 0.000 description 35
- 239000011780 sodium chloride Substances 0.000 description 21
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 16
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 14
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 14
- 239000001110 calcium chloride Substances 0.000 description 14
- 229910001628 calcium chloride Inorganic materials 0.000 description 14
- 235000011148 calcium chloride Nutrition 0.000 description 14
- 238000005507 spraying Methods 0.000 description 13
- 235000011164 potassium chloride Nutrition 0.000 description 8
- 239000001103 potassium chloride Substances 0.000 description 8
- 229940091250 magnesium supplement Drugs 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000010998 test method Methods 0.000 description 6
- XQKKWWCELHKGKB-UHFFFAOYSA-L calcium acetate monohydrate Chemical compound O.[Ca+2].CC([O-])=O.CC([O-])=O XQKKWWCELHKGKB-UHFFFAOYSA-L 0.000 description 5
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 description 5
- 239000004570 mortar (masonry) Substances 0.000 description 5
- 239000007798 antifreeze agent Substances 0.000 description 4
- 235000011092 calcium acetate Nutrition 0.000 description 4
- 239000001639 calcium acetate Substances 0.000 description 4
- 229960005147 calcium acetate Drugs 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 239000004576 sand Substances 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 150000004687 hexahydrates Chemical class 0.000 description 3
- 229960003390 magnesium sulfate Drugs 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 2
- 239000011398 Portland cement Substances 0.000 description 2
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 2
- 150000008064 anhydrides Chemical class 0.000 description 2
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical compound Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 description 2
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 2
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(3+);trinitrate Chemical compound [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 239000001632 sodium acetate Substances 0.000 description 2
- 235000017281 sodium acetate Nutrition 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000010257 thawing Methods 0.000 description 2
- 238000004078 waterproofing Methods 0.000 description 2
- YJLUBHOZZTYQIP-UHFFFAOYSA-N 2-[5-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-1,3,4-oxadiazol-2-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1=NN=C(O1)CC(=O)N1CC2=C(CC1)NN=N2 YJLUBHOZZTYQIP-UHFFFAOYSA-N 0.000 description 1
- APLNAFMUEHKRLM-UHFFFAOYSA-N 2-[5-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-1,3,4-oxadiazol-2-yl]-1-(3,4,6,7-tetrahydroimidazo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1=NN=C(O1)CC(=O)N1CC2=C(CC1)N=CN2 APLNAFMUEHKRLM-UHFFFAOYSA-N 0.000 description 1
- CONKBQPVFMXDOV-QHCPKHFHSA-N 6-[(5S)-5-[[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]methyl]-2-oxo-1,3-oxazolidin-3-yl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C[C@H]1CN(C(O1)=O)C1=CC2=C(NC(O2)=O)C=C1 CONKBQPVFMXDOV-QHCPKHFHSA-N 0.000 description 1
- LLQHSBBZNDXTIV-UHFFFAOYSA-N 6-[5-[[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]methyl]-4,5-dihydro-1,2-oxazol-3-yl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC1CC(=NO1)C1=CC2=C(NC(O2)=O)C=C1 LLQHSBBZNDXTIV-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 229910021577 Iron(II) chloride Inorganic materials 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- NEAPKZHDYMQZCB-UHFFFAOYSA-N N-[2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]ethyl]-2-oxo-3H-1,3-benzoxazole-6-carboxamide Chemical compound C1CN(CCN1CCNC(=O)C2=CC3=C(C=C2)NC(=O)O3)C4=CN=C(N=C4)NC5CC6=CC=CC=C6C5 NEAPKZHDYMQZCB-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- HDYRYUINDGQKMC-UHFFFAOYSA-M acetyloxyaluminum;dihydrate Chemical compound O.O.CC(=O)O[Al] HDYRYUINDGQKMC-UHFFFAOYSA-M 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- 229940009827 aluminum acetate Drugs 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000011400 blast furnace cement Substances 0.000 description 1
- 229940067460 calcium acetate monohydrate Drugs 0.000 description 1
- 229910001567 cementite Inorganic materials 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000010881 fly ash Substances 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 235000014413 iron hydroxide Nutrition 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 description 1
- RUTXIHLAWFEWGM-UHFFFAOYSA-H iron(3+) sulfate Chemical compound [Fe+3].[Fe+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O RUTXIHLAWFEWGM-UHFFFAOYSA-H 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- 229910000360 iron(III) sulfate Inorganic materials 0.000 description 1
- LNOZJRCUHSPCDZ-UHFFFAOYSA-L iron(ii) acetate Chemical compound [Fe+2].CC([O-])=O.CC([O-])=O LNOZJRCUHSPCDZ-UHFFFAOYSA-L 0.000 description 1
- NCNCGGDMXMBVIA-UHFFFAOYSA-L iron(ii) hydroxide Chemical compound [OH-].[OH-].[Fe+2] NCNCGGDMXMBVIA-UHFFFAOYSA-L 0.000 description 1
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 229940050906 magnesium chloride hexahydrate Drugs 0.000 description 1
- DHRRIBDTHFBPNG-UHFFFAOYSA-L magnesium dichloride hexahydrate Chemical compound O.O.O.O.O.O.[Mg+2].[Cl-].[Cl-] DHRRIBDTHFBPNG-UHFFFAOYSA-L 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical group [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 235000012245 magnesium oxide Nutrition 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 235000011056 potassium acetate Nutrition 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000009291 secondary effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Images
Landscapes
- Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
- Road Repair (AREA)
Description
本発明は、凍結・ソルトスケーリング抑制方法及び凍結・ソルトスケーリング抑制剤に関し、特に、凍結防止剤によるセメント硬化体表面の剥離劣化を抑制するための凍結・ソルトスケーリング抑制方法及び凍結・ソルトスケーリング抑制剤に関する。 TECHNICAL FIELD The present invention relates to a freeze / salt scaling suppression method and a freeze / salt scaling inhibitor, and in particular, a freeze / salt scaling suppression method and a freeze / salt scaling inhibitor for suppressing delamination deterioration of a cement hardened body surface by an antifreeze agent. About.
寒冷地域のコンクリートやモルタル(以下、セメント硬化体という)には、凍害と呼ばれる劣化現象がある。この凍害には、セメント硬化体内部の水分凍結により生じる膨張圧による組織破壊と、スケーリングと呼ばれるセメント硬化体表層がうろこ状に剥離する劣化現象がある。スケーリングによる劣化メカニズムには諸説あり、また対策技術も確立されていない。 There is a deterioration phenomenon called frost damage in concrete and mortar (hereinafter referred to as hardened cement) in cold regions. This freezing damage includes a tissue destruction due to expansion pressure caused by freezing of water inside the hardened cement body and a deterioration phenomenon called scaling that peels off the surface layer of the hardened cement body. There are various theories on the degradation mechanism due to scaling, and no countermeasure technology has been established.
冬季の気温低下や降雪は道路路面の凍結や積雪を生じ、人や自動車の往来時の安全を損なうとともに、交通渋滞を招くなど社会的・経済的な影響も大きい。寒冷地域では凍結防止剤(融雪剤ともいう)を道路に散布して、道路の凍結・積雪への対策が行われている。 Falling temperatures and snowfall in winter can cause road roads to freeze and accumulate snow, impairing the safety of people and cars, and causing social congestion and economic impacts. In cold regions, anti-freezing agents (also called snow melting agents) are sprayed on roads to take measures against road freezing and snow accumulation.
一般に、凍結防止剤には、塩化ナトリウム、塩化カルシウム、塩化マグネシウムなどの水溶性塩類が使用される(例えば、特許文献1参照)。これらは水の凝固点を降下させるため、低温時において水の凍結抑制や氷の溶解の作用を有している。 In general, water-soluble salts such as sodium chloride, calcium chloride, and magnesium chloride are used as antifreeze agents (see, for example, Patent Document 1). Since these lower the freezing point of water, they have the action of inhibiting freezing of water and melting of ice at low temperatures.
しかしながら、この散布された凍結防止剤がセメント硬化体のスケーリングを助長することが知られており、これはソルトスケーリングと呼ばれている。ソルトスケーリングに及ぼす塩類の影響は塩化ナトリウムが最も大きく、塩化カリウム、塩化マグネシウムの順とされており、塩化マグネシウムがソルトスケーリングに対して影響が小さいことが知られている(例えば、非特許文献1,2参照)。 However, it is known that this sprayed antifreeze aids the scaling of the cemented body, which is called salt scaling. The influence of salts on salt scaling is greatest for sodium chloride, followed by potassium chloride and magnesium chloride, and it is known that magnesium chloride has a small influence on salt scaling (for example, Non-Patent Document 1). , 2).
塩化マグネシウムは塩化ナトリウムに比べて一般に高価であり、その凍結防止・融雪効果も塩化ナトリウムの半分以下であることが知られている(例えば、非特許文献3参照)。これは、凍結防止効果が水の凝固点降下現象を利用しているため、この現象が溶解した塩のモル濃度に依存していることによる。 Magnesium chloride is generally more expensive than sodium chloride, and its anti-freezing and snow melting effects are known to be less than half that of sodium chloride (see, for example, Non-Patent Document 3). This is because the antifreezing effect uses the freezing point depression phenomenon of water, and this phenomenon depends on the molar concentration of the dissolved salt.
また、塩化マグネシウム(MgCl2)は塩化ナトリウム(NaCl)よりも1分子中の塩素原子数が2倍多いため、同等の凍結防止効果を得るための散布量では、塩化物イオン濃度は4倍以上となり、散布した周辺のセメント硬化体構造物中の鉄筋や鋼構造物の腐食を促すなど副次的な影響が懸念される。このため、ソルトスケーリング対策として、塩化マグネシウムのみを凍結防止剤に使用することは、費用対効果及び副次的な影響において課題があるといえる。 In addition, magnesium chloride (MgCl 2 ) has twice as many chlorine atoms in one molecule as sodium chloride (NaCl), so that the chloride ion concentration is 4 times or more in the application amount to obtain the same antifreezing effect. Therefore, there are concerns about secondary effects such as promoting corrosion of reinforcing bars and steel structures in the surrounding hardened cementitious structures. For this reason, it can be said that the use of only magnesium chloride as an antifreezing agent as a measure for salt scaling is problematic in terms of cost effectiveness and side effects.
道路交通の安全確保には凍結防止剤の使用は不可欠であるが、同時にセメント硬化体構造物の劣化を助長することは補修等の社会的なコストを招くことになる。このため、費用対効果に優れ、ソルトスケーリングによるセメント硬化体表面の剥離劣化を抑制可能な凍結・ソルトスケーリング抑制方法及び凍結・ソルトスケーリング抑制剤が求められていた。 The use of anti-freezing agents is indispensable for ensuring road traffic safety, but at the same time, promoting the deterioration of hardened cementitious structures will incur social costs such as repairs. Therefore, there has been a demand for a freezing / salt scaling inhibiting method and a freezing / salt scaling inhibiting agent that are cost-effective and can suppress delamination deterioration of the cement hardened body surface due to salt scaling.
本発明は、上記問題点に鑑みてなされたものであり、費用対効果に優れ、ソルトスケーリングによるセメント硬化体表面の剥離劣化を抑制可能な凍結・ソルトスケーリング抑制方法及び凍結・ソルトスケーリング抑制剤を提供することを目的とする。 The present invention has been made in view of the above problems, and is provided with a freezing / salt scaling inhibiting method and a freezing / salt scaling inhibiting agent that are cost-effective and capable of suppressing peeling degradation of the cement hardened body surface due to salt scaling. The purpose is to provide.
本発明者らは、以上の目的を達成するために、鋭意検討した結果、アルカリ水溶液と反応して金属の水酸化物となる水溶性金属塩にソルトスケーリング抑制効果があることを見出し、本発明に至った。 As a result of intensive studies to achieve the above object, the present inventors have found that a water-soluble metal salt that reacts with an alkaline aqueous solution to form a metal hydroxide has a salt scaling suppressing effect, and the present invention. It came to.
すなわち、本発明は、セメント硬化体表面の凍結及び塩による剥離劣化を抑制するための凍結・ソルトスケーリング抑制方法であって、ナトリウム塩、カリウム塩及びカルシウム塩からなる群より選択される少なくとも1種類を含みマグネシウムを含まない凍結防止剤と、マグネシウム、鉄及びアルミニウムからなる群より選択される少なくとも1種類からなる金属を含みアルカリ水溶液と反応して前記金属の水酸化物となる水溶性金属塩と、を前記セメント硬化体表面に散布し、前記セメント硬化体表面と該セメント硬化体表面に付着する氷との間に前記金属の水酸化物からなる被膜を形成させることを特徴とする凍結・ソルトスケーリング抑制方法に関する。 That is, the present invention is a freezing / salt scaling suppressing method for suppressing freezing of a cement hardened body surface and peeling deterioration due to salt, and is at least one selected from the group consisting of sodium salt, potassium salt and calcium salt An antifreeze containing no magnesium and a water-soluble metal salt containing at least one metal selected from the group consisting of magnesium, iron and aluminum and reacting with an alkaline aqueous solution to form a hydroxide of the metal Is applied to the surface of the hardened cement body, and a coating made of the metal hydroxide is formed between the surface of the hardened cement body and ice adhering to the surface of the hardened cement body. The present invention relates to a scaling suppression method.
この場合において、前記凍結防止剤及び前記水溶性金属塩の合計量に対する前記水溶性金属塩の散布量が10〜90質量%の範囲内であることが好ましい。 In this case, it is preferable that the application amount of the water-soluble metal salt with respect to the total amount of the antifreezing agent and the water-soluble metal salt is in the range of 10 to 90% by mass.
また、前記水溶性金属塩が、塩化マグネシウム、硫酸マグネシウム、酢酸マグネシウム及び硝酸マグネシウムからなる群より選択される1種類以上であることが好ましい。 The water-soluble metal salt is preferably at least one selected from the group consisting of magnesium chloride, magnesium sulfate, magnesium acetate and magnesium nitrate.
さらに、前記水溶性金属塩と前記凍結防止剤とを予め混合して粉末状で散布すると好適である。 Furthermore, it is preferable that the water-soluble metal salt and the antifreezing agent are mixed in advance and dispersed in powder form.
また、本発明は、セメント硬化体表面の凍結及び塩による剥離劣化を抑制するための凍結・ソルトスケーリング抑制剤であって、ナトリウム塩、カリウム塩及びカルシウム塩からなる群より選択される少なくとも1種類を含みマグネシウムを含まない凍結防止剤と、マグネシウム、鉄及びアルミニウムからなる群より選択される少なくとも1種類からなる金属を含みアルカリ水溶液と反応して前記金属の水酸化物となる水溶性金属塩と、を含有し、粉末状であることを特徴とする凍結・ソルトスケーリング抑制剤に関する。 In addition, the present invention is a freezing / salt scaling inhibitor for suppressing freezing of a hardened cementite surface and deterioration due to salt, and at least one selected from the group consisting of sodium salt, potassium salt and calcium salt An antifreeze containing no magnesium and a water-soluble metal salt containing at least one metal selected from the group consisting of magnesium, iron and aluminum and reacting with an alkaline aqueous solution to form a hydroxide of the metal And a freezing / salt scaling inhibitor characterized by being in powder form.
この場合において、前記凍結防止剤及び前記水溶性金属塩の合計量に対する前記水溶性金属塩の含有量が10〜90質量%の範囲内であることが好ましい。 In this case, the content of the water-soluble metal salt with respect to the total amount of the antifreezing agent and the water-soluble metal salt is preferably in the range of 10 to 90% by mass.
また、前記水溶性金属塩が、塩化マグネシウム、硫酸マグネシウム、酢酸マグネシウム及び硝酸マグネシウムからなる群より選択される1種類以上であることが好ましい。 The water-soluble metal salt is preferably at least one selected from the group consisting of magnesium chloride, magnesium sulfate, magnesium acetate and magnesium nitrate.
本発明によれば、凍結抑制効果及び費用対効果に優れ、かつソルトスケーリングによるセメント硬化体表面の剥離劣化を効率的に抑制することが可能な凍結・ソルトスケーリング抑制方法及び凍結・ソルトスケーリング抑制剤を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the freezing / salt scaling suppression method and freezing / salt scaling inhibitor which are excellent in freezing suppression effect and cost-effectiveness, and can suppress effectively the peeling deterioration of the cement hardening body surface by salt scaling efficiently Can be provided.
本発明の凍結・ソルトスケーリング抑制方法は、凍結防止剤と水溶性金属塩とをセメント硬化体表面に散布し(以下、散布工程)、セメント硬化体表面とこれに付着する氷との間に金属の水酸化物の被膜を形成させる(以下、被膜形成工程)点を特徴とする。以下、各成分及び工程について詳細に説明する。 The method for inhibiting freezing / salt scaling of the present invention is to spray a cryoprotectant and a water-soluble metal salt on the surface of a hardened cement body (hereinafter referred to as a spraying step), and to form a metal between the surface of the hardened cement body and ice adhering thereto. This is characterized in that a hydroxide film is formed (hereinafter referred to as a film forming process). Hereinafter, each component and process will be described in detail.
(1)凍結防止剤
本発明の凍結防止剤(以下、単に「凍結防止剤」という)は、ナトリウム塩、カリウム塩及びカルシウム塩からなる群より選択される少なくとも1種類を含んでおり、セメント硬化体表面に付着する氷の凝固点を降下させて溶解しやすくする役割を有する。凍結防止剤の具体例としては、塩化ナトリウム、塩化カリウム、塩化カルシウム、酢酸ナトリウム、酢酸ナトリウム、酢酸カリウム、酢酸カルシウムからなる群より選択される1種類を挙げることができる。これらのうち、凝固点降下が大きく(凝固点が低く)、かつ比較的安価である塩化ナトリウムや塩化カルシウムが好ましい。また、塩化ナトリウムとしては、比較的安価な岩塩系が好ましい。
(1) Anti-freezing agent The anti-freezing agent of the present invention (hereinafter simply referred to as “anti-freezing agent”) contains at least one selected from the group consisting of sodium salt, potassium salt and calcium salt, and hardens cement. It has the role of making it easier to melt by lowering the freezing point of ice adhering to the body surface. Specific examples of the antifreezing agent include one selected from the group consisting of sodium chloride, potassium chloride, calcium chloride, sodium acetate, sodium acetate, potassium acetate, and calcium acetate. Of these, sodium chloride and calcium chloride, which have a large freezing point depression (low freezing point) and are relatively inexpensive, are preferred. Moreover, as sodium chloride, a relatively inexpensive rock salt system is preferable.
(2)水溶性金属塩
本発明の水溶性金属塩(以下、単に「水溶性金属塩」という)は、マグネシウム、鉄及びアルミニウムからなる群より選択される少なくとも1種類からなる金属を含み、アルカリ水溶液と反応して金属の水酸化物となる塩である。後述するように、水溶性金属塩は、セメント硬化体表面でアルカリ水溶液と反応して金属の酸化物からなる被膜を形成することで、ソルトスケーリングを抑制する役割を有する。マグネシウムを含む水溶性金属塩としては、具体的には、塩化マグネシウム、硫酸マグネシウム、酢酸マグネシウム、硝酸マグネシウムからなる群より選択される1種類以上を挙げることができる。また、鉄を含む水溶性金属塩としては、具体的には、塩化鉄(II)、塩化鉄(III)、硫酸鉄(II)、硫酸鉄(III)、酢酸鉄(II)、硝酸鉄(II)、硝酸鉄(III)からなる群より選択される1種類以上を挙げることができる。また、アルミニウムを含む水溶性金属塩としては、具体的には、塩化アルミニウム・無水物、塩化アルミニウム・6水和物、硫酸アルミニウム・16水和物、酢酸アルミニウムからなる群より選択される1種類以上を挙げることができる。なお、本発明の水溶性金属塩には、無水物だけでなく水和物も含む。
(2) Water-soluble metal salt The water-soluble metal salt of the present invention (hereinafter simply referred to as “water-soluble metal salt”) contains at least one metal selected from the group consisting of magnesium, iron and aluminum, and contains an alkali. A salt that reacts with an aqueous solution to form a metal hydroxide. As will be described later, the water-soluble metal salt has a role of suppressing salt scaling by forming a film made of a metal oxide by reacting with an alkaline aqueous solution on the cement cured body surface. Specific examples of the water-soluble metal salt containing magnesium include one or more selected from the group consisting of magnesium chloride, magnesium sulfate, magnesium acetate, and magnesium nitrate. Specific examples of the water-soluble metal salt containing iron include iron (II) chloride, iron (III) chloride, iron (II) sulfate, iron (III) sulfate, iron (II) acetate, iron nitrate ( II) and one or more selected from the group consisting of iron (III) nitrate. In addition, as the water-soluble metal salt containing aluminum, specifically, one kind selected from the group consisting of aluminum chloride / anhydride, aluminum chloride / hexahydrate, aluminum sulfate / hexahydrate, and aluminum acetate. The above can be mentioned. The water-soluble metal salt of the present invention includes not only anhydrides but also hydrates.
(3)散布工程
散布工程では、上記の凍結防止剤と水溶性金属塩とをセメント硬化体の表面に散布する。凍結防止剤と水溶性金属塩は、水溶液の状態で散布してもよいが、セメント硬化体の表面にとどまって凍結防止効果を持続的に発揮することから粉末の状態で散布することが好ましい。また、凍結防止剤と水溶性金属塩は、別々に散布してもよいが、ソルトスケーリング抑制効果を発揮しやすいことから同時に散布することが好ましい。さらに、後述するように、取扱い性、長期保存性が良好であることから、両者を予め混合して粉末状で散布することが好ましい。
(3) Spraying step In the spraying step, the antifreezing agent and the water-soluble metal salt are sprayed on the surface of the hardened cement body. The antifreezing agent and the water-soluble metal salt may be sprayed in the form of an aqueous solution, but it is preferably sprayed in a powder state because the antifreeze and the water-soluble metal salt remain on the surface of the hardened cement body and exhibit the antifreezing effect continuously. Moreover, although an antifreezing agent and a water-soluble metal salt may be separately sprayed, it is preferable to spray simultaneously because it is easy to exhibit a salt scaling inhibitory effect. Furthermore, as will be described later, since the handleability and long-term storage stability are good, it is preferable to mix both in advance and spray in powder form.
凍結防止剤と水溶性金属塩の合計量に対して、水溶性金属塩の散布量は10〜90質量%の範囲内であることが好ましい。水溶性金属塩の散布量が10質量%を下回ると、凝固点降下が小さく(凝固点が高く)なるほか、後述するセメント硬化体表面の水酸化物による被覆が不十分になりやすい。また、水溶性金属塩の散布量が90質量%を上回ると、コストが高くなりやすくなる。水溶性金属塩の散布量は、より好ましくは20質量%以上、さらに好ましくは30質量%以上である。後述する実施例にも示すように、水溶性金属塩の散布量が8〜9質量%付近まではソルトスケーリング耐久性指数(SDI)で示されるソルトスケーリング抑制効果はそれほど高くないが、これを超えて23〜27質量%付近までにSDIが急激に上昇してほぼ100となり、それ以降はほぼ100で一定に推移する。 It is preferable that the application amount of the water-soluble metal salt is within a range of 10 to 90% by mass with respect to the total amount of the antifreezing agent and the water-soluble metal salt. When the amount of the water-soluble metal salt sprayed is less than 10% by mass, the freezing point depression is small (the freezing point is high), and the cement hardened body surface described later tends to be insufficiently coated with hydroxide. Moreover, when the application amount of the water-soluble metal salt exceeds 90% by mass, the cost tends to increase. The application amount of the water-soluble metal salt is more preferably 20% by mass or more, and further preferably 30% by mass or more. As shown in the examples described later, the salt scaling suppression effect indicated by the salt scaling durability index (SDI) is not so high until the application amount of the water-soluble metal salt is around 8 to 9% by mass, but it exceeds this. Thus, the SDI rapidly rises to about 100 by about 23 to 27% by mass, and is almost 100 after that, and remains constant at about 100.
凍結防止剤と水溶性金属塩の散布方法は、特には制限されず、公知の散布方法を用いることができる。このような散布方法としては、人手による手散布、散布機や散布車による機械的散布のいずれでもよい。また、散布のタイミングとしては、特には制限されず、降雪前や降雪直後の段階、降雪後に時間が経過してセメント硬化体表面が凍結した段階、除雪した後に押し詰められた雪が残る段階など、いずれのタイミングでもよい。また、散布個所は、セメント硬化体表面の全面のほか、特に凍結しやすい一部の個所などが挙げられる。 The spraying method of the antifreezing agent and the water-soluble metal salt is not particularly limited, and a known spraying method can be used. Such a spraying method may be manual spraying by hand, or mechanical spraying by a sprayer or a spreader. In addition, the timing of spraying is not particularly limited, such as the stage before snowfall or immediately after snowfall, the stage when the cement hardened body surface has frozen after the snowfall, the stage where the snow that has been crushed remains after removing snow, etc. Any timing is acceptable. In addition to the entire surface of the hardened cementitious body surface, the spraying locations include some locations that are particularly prone to freezing.
凍結防止剤と水溶性金属塩の散布量は、凍結及びソルトスケールを十分に抑制できる範囲であれば特に制限はないが、例えば、セメント硬化体表面に対して、凍結防止剤と水溶性金属塩の合計量が3〜50g/m2となるように散布することが好ましい。散布量が3g/m2を下回ると、凍結抑制、ソルトスケール抑制が不十分になりやすい。また、散布量が50g/m2を上回ると、施工コストが高くなりやすくなるほか、塩濃度が高くなりすぎてセメント硬化体表面やその内部の鉄筋等の劣化を招きやすくなる。 The application amount of the antifreeze and the water-soluble metal salt is not particularly limited as long as the freezing and salt scale can be sufficiently suppressed. For example, the antifreeze and the water-soluble metal salt are applied to the surface of the hardened cement. It is preferable to spray so that the total amount may become 3-50 g / m < 2 >. When the application amount is less than 3 g / m 2 , freezing suppression and salt scale suppression tend to be insufficient. On the other hand, when the application amount exceeds 50 g / m 2 , the construction cost tends to be high, and the salt concentration becomes too high and the surface of the hardened cement body and its internal reinforcing bars are easily deteriorated.
(4)被膜形成工程
セメント硬化体表面に水溶性金属塩を散布すると、セメント硬化体表面とこれに付着した氷との間に、金属の水酸化物からなる被膜が形成される。本発明の水溶性金属塩は、アルカリ水溶液と反応して金属の水酸化物を形成するが、セメント硬化体表面には氷から融解した水が付着しており、セメント硬化体自体は石灰成分を含んでいてアルカリ性であるため、アルカリ水溶液がセメント硬化体の表面層に浸潤した状態となっている。セメント硬化体表面に散布された水溶性金属塩がこのアルカリ水溶液と反応すると、セメント硬化体の表面に金属の水酸化物からなるゲル状の被膜が形成される。この被膜は、セメント硬化体表面と氷との界面で緩衝層として機能し、セメント硬化体と氷との間の熱膨張係数の差異による応力を緩和することで、応力差により生じる表面層の剥離、すなわちソルトスケーリングを抑制していると推測される。なお、金属の水酸化物は、金属がマグネシウムの場合は水酸化マグネシウム、鉄の場合は水酸化鉄である。
(4) Film-forming step When a water-soluble metal salt is sprayed on the surface of the hardened cement body, a film made of a metal hydroxide is formed between the surface of the hardened cement body and ice attached thereto. The water-soluble metal salt of the present invention reacts with an alkaline aqueous solution to form a metal hydroxide, but the surface of the cement hardened body is adhered with water melted from ice, and the cement hardened body itself has a lime component. Since it is contained and is alkaline, the aqueous alkaline solution is infiltrated into the surface layer of the hardened cement body. When the water-soluble metal salt sprayed on the surface of the hardened cement body reacts with the alkaline aqueous solution, a gel-like film made of a metal hydroxide is formed on the surface of the hardened cement body. This film functions as a buffer layer at the interface between the hardened cement surface and ice, and the surface layer delamination caused by the stress difference is achieved by relieving the stress caused by the difference in thermal expansion coefficient between the hardened cement and ice. That is, it is estimated that salt scaling is suppressed. The metal hydroxide is magnesium hydroxide when the metal is magnesium and iron hydroxide when the metal is iron.
被膜の厚みは、ソルトスケーリングを十分に抑制できれば特に制限はないが、例えば5μm以上が好ましい。被膜の厚みが5μmを下回ると、応力差を十分に緩和することが難しく、ソルトスケーリングを十分に抑制することが困難となる。被膜層の存在やその厚みは、走査型電子顕微鏡(SEM)による観察などの手法で測定することができる。 The thickness of the coating is not particularly limited as long as the salt scaling can be sufficiently suppressed, but is preferably 5 μm or more, for example. When the thickness of the coating is less than 5 μm, it is difficult to sufficiently reduce the stress difference, and it is difficult to sufficiently suppress salt scaling. The presence or thickness of the coating layer can be measured by a technique such as observation with a scanning electron microscope (SEM).
凍結防止剤に含まれる塩によって凍害によるセメント硬化体表面の剥離劣化が促進される(ソルトスケーリング)が、本発明では、水溶性金属塩によりセメント硬化体表面と氷との間に水酸化物の被膜が形成されるため、ソルトスケーリングを抑制することが可能となる。また、このようにソルトスケーリングが抑制されるため、セメント硬化体表面部でのソルトスケーリングによる空隙発生を抑制することができる。したがって、セメント硬化体表面部における空隙率の増加を抑えることも可能となる。さらに、高価な水溶性金属塩だけでなく、比較的安価な凍結防止剤を併用することで、低コストで凍結を抑制することが可能となる。 The salt contained in the antifreezing agent promotes the peeling deterioration of the cement hardened body surface due to frost damage (Salt Scaling). In the present invention, the water-soluble metal salt forms a hydroxide between the cement hardened body surface and ice. Since a film is formed, salt scaling can be suppressed. Moreover, since salt scaling is suppressed in this way, the generation | occurrence | production of the space | gap by salt scaling in a cement hardening body surface part can be suppressed. Therefore, it is also possible to suppress an increase in the porosity in the surface portion of the hardened cement body. Furthermore, freezing can be suppressed at low cost by using not only an expensive water-soluble metal salt but also a relatively inexpensive antifreezing agent.
本発明のセメント硬化体は、セメントを接着成分として硬化させたものを意味する。セメントの種類としては、ポルトランドセメント、高炉セメント、フライアッシュセメント、シリカセメントなどいずれであってもよい。セメント硬化体の具体例としては、上述したコンクリート(セメント+砂+砂利)やモルタル(セメント+砂)のほか、これらに必要に応じてAE剤、防水剤、減水剤、保水材、収縮低減剤、気泡剤、急結剤、分離低減剤、防水剤、着色剤など公知の混和剤を添加したものも含まれる。また、セメント硬化体が適用される構造物としては、一般道路、高速道路、橋梁、線路、駅舎、港湾、空港の滑走路、エプロン、誘導路など、ほぼすべての屋外のセメント構造物を挙げることができる。 The hardened cement body of the present invention means a hardened cement as an adhesive component. The type of cement may be any of Portland cement, blast furnace cement, fly ash cement, silica cement and the like. Specific examples of the hardened cement body include the above-described concrete (cement + sand + gravel) and mortar (cement + sand), and AE agent, waterproofing agent, water reducing agent, water retention material, shrinkage reducing agent as necessary. , Foaming agents, quick setting agents, separation reducing agents, waterproofing agents, coloring agents, and the like are also added. In addition, examples of structures to which hardened cement is applied include almost all outdoor cement structures such as general roads, highways, bridges, railways, railway stations, harbors, airport runways, aprons, taxiways, etc. Can do.
(5)凍結・ソルトスケーリング抑制剤
上述した散布工程では、凍結防止剤と水溶性金属塩とを予め混合した凍結・ソルトスケーリング抑制剤を使用することもできる。以下、本発明の凍結・ソルトスケーリング抑制剤(単に「凍結・ソルトスケーリング抑制剤」という)について説明する。
(5) Freezing / Salt Scaling Inhibitor In the spraying step described above, a freezing / salt scaling inhibitor in which an antifreezing agent and a water-soluble metal salt are mixed in advance can also be used. Hereinafter, the freeze / salt scaling inhibitor (simply referred to as “freeze / salt scaling inhibitor”) of the present invention will be described.
凍結・ソルトスケーリング抑制剤は、上述した凍結防止剤と水溶性金属塩とを含有し、粉末状である点を特徴とする。水溶性金属塩は潮解性があり、空気中の水分などを吸収して湿った状態となりやすい。このような状態では、水溶性金属塩の粉末はべとついて、保管時や散布時に取扱いが困難になる。そこで、本発明では、潮解性のある水溶性金属塩と、潮解性がないかあるいは相対的に低い凍結防止剤とを予め混合しておくことで、水溶性金属塩凍結防止剤に分散させた状態にしている。これにより、空気中に含まれる水分により水溶性金属塩が潮解しても、水溶性金属塩が密集しておらず分散しているため、粉体がべたつきにくく、比較的さらっとした状態が維持される。このため、散布時において取扱い性に優れ、かつ長期保存性も良好となる。なお、凍結防止剤と水溶性金属塩との混合は、リボンミキサー、モルタルミキサーのような汎用機を用いて公知の方法で行うことができる。 The freezing / salt scaling inhibitor contains the above-mentioned antifreezing agent and a water-soluble metal salt, and is characterized by being in a powder form. Water-soluble metal salts are deliquescent and tend to be moistened by absorbing moisture in the air. In such a state, the water-soluble metal salt powder is sticky and difficult to handle during storage or spraying. Therefore, in the present invention, the water-soluble metal salt having deliquescence and the antifreeze agent having no deliquescence or relatively low antifreezing agent are mixed in advance to be dispersed in the water-soluble metal salt antifreeze agent. It is in a state. As a result, even if the water-soluble metal salt is deliquescent due to moisture contained in the air, the water-soluble metal salt is not concentrated and dispersed, so that the powder is not sticky and remains relatively dry. Is done. For this reason, at the time of dispersion | spreading, it is excellent in handleability and long-term storage property also becomes favorable. In addition, mixing with an antifreezing agent and water-soluble metal salt can be performed by a well-known method using general purpose machines, such as a ribbon mixer and a mortar mixer.
凍結防止剤と水溶性金属塩の合計量に対して、水溶性金属塩の含有量は10〜90質量%の範囲内であることが好ましい。水溶性金属塩の含有量が10質量%を下回ると、凝固点降下が小さく(凝固点が高く)なるほか、セメント硬化体表面の水酸化物による被覆が不十分になりやすい。また、水溶性金属塩の含有量が90質量%を上回ると、コストが高くなりやすくなるほか、空気中等の水分によりべたついて取扱い性に劣りやすい。水溶性金属塩の含有量は、より好ましくは20質量%以上、さらに好ましくは30質量%以上である。一般に、水溶性金属塩の含有量が増えるにしたがって、ソルトスケーリング抑制効果が高くなる傾向にある。 The content of the water-soluble metal salt is preferably in the range of 10 to 90% by mass with respect to the total amount of the antifreezing agent and the water-soluble metal salt. When the content of the water-soluble metal salt is less than 10% by mass, the freezing point depression is reduced (the freezing point is high), and the surface of the hardened cement body is likely to be insufficiently covered with hydroxide. In addition, when the content of the water-soluble metal salt exceeds 90% by mass, the cost tends to be high, and the handleability tends to be poor due to stickiness due to moisture in the air. The content of the water-soluble metal salt is more preferably 20% by mass or more, and further preferably 30% by mass or more. Generally, as the content of the water-soluble metal salt increases, the salt scaling suppression effect tends to increase.
凍結・ソルトスケーリング抑制剤は、上述した公知の散布方法でセメント硬化体表面に散布することができる。また、凍結・ソルトスケーリング抑制剤の散布量についても同様に、セメント硬化体表面に対して3〜50g/m2となるように散布することが好ましい。 The freezing / salt scaling inhibitor can be sprayed on the surface of the hardened cement body by the known spraying method described above. Similarly, it is preferable that the amount of the freezing / salt scaling inhibitor be 3 to 50 g / m 2 with respect to the hardened cementitious surface.
以下、本発明を実施例に基づいて具体的に説明するが、これらは本発明の目的を限定するものではない。 EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, these do not limit the objective of this invention.
(1)実施例1(塩化カルシウム+塩化マグネシウム)
凍結防止剤として塩化カルシウム、水溶性金属塩として塩化マグネシウムを用いた例について説明する。
(1) Example 1 (calcium chloride + magnesium chloride)
An example using calcium chloride as the antifreeze and magnesium chloride as the water-soluble metal salt will be described.
(a)凍結・ソルトスケーリング抑制剤の作成
凍結防止剤として塩化カルシウム(関東化学株式会社製 塩化カルシウム)、水溶性金属塩として塩化マグネシウム(和光純薬工業株式会社製 塩化マグネシウム六水和物)を使用した。溶液100mlに対し、塩化カルシウム0.316g、水溶性金属塩として塩化マグネシウム5.940gを用いて1分間混合して、凍結・ソルトスケーリング抑制剤を作成した(実施例1−1)。また、塩化マグネシウムの添加量を変えて、表1に示す実施例1−2〜1−5の凍結・ソルトスケーリング抑制剤を作成した。また、塩化マグネシウムを添加せず塩化カルシウムのみのサンプルも作成した(比較例1)。
(b)試験用供試体(モルタル)の作成
セメント(普通ポルトランドセメント、密度:3.15g/cm3)と細骨材(盛岡市黒川産砕砂、粗粒率:2.89、表乾密度:2.80g/cm3)と水とを、水セメント比が0.5、砂セメント比が2.5となるように混合した。細骨材は、2.5mmふるい下で表乾状態のものを使用した。AE剤は使用せず、4×4×16cmのJISモルタル供試体を作成し、材齢28日まで水中養生を行った後、ダイヤモンドカッターを用いて1辺が8mmとなるように切断し、これを試験片とした。
(A) Preparation of freezing / salt scaling inhibitor Calcium chloride (Kanto Chemical Co., Ltd. calcium chloride) as an antifreezing agent and magnesium chloride (Wako Pure Chemical Industries, Ltd. magnesium chloride hexahydrate) as a water-soluble metal salt used. To 100 ml of the solution, 0.316 g of calcium chloride and 5.940 g of magnesium chloride as a water-soluble metal salt were mixed for 1 minute to prepare a freezing / salt scaling inhibitor (Example 1-1). Moreover, the freezing / salt scaling inhibitor of Examples 1-2 to 1-5 shown in Table 1 was prepared by changing the addition amount of magnesium chloride. Further, a sample containing only calcium chloride without adding magnesium chloride was also prepared (Comparative Example 1).
(B) Preparation of test specimen (mortar) Cement (ordinary Portland cement, density: 3.15 g / cm 3 ) and fine aggregate (crushed sand from Kurokawa, Morioka City, coarse grain ratio: 2.89, surface dry density: 2.80 g / cm 3 ) and water were mixed so that the water cement ratio was 0.5 and the sand cement ratio was 2.5. The fine aggregate used was a surface dry state under a 2.5 mm sieve. A JIS mortar specimen of 4x4x16cm was prepared without using AE agent, and after water curing until the age of 28 days, it was cut with a diamond cutter so that one side was 8mm. Was used as a test piece.
(c)小片凍結融解試験
試験片1組3粒(約4g)を、容量100mlのポリプロピレン容器に入れ、溶液と試料の質量比を10:1として、濃度3%の凍結・ソルトスケーリング抑制剤溶液に浸漬させ、ふたをして凍結溶解試験を行った。容器に入れた供試体を−20℃の冷凍庫内で12時間、15℃の室内で12時間の凍結融解を10回繰り返した。繰り返しサイクルの後、容器を取り出し、ろ紙(5B)にて試料を分離し、純水で洗浄した。分離した試料は40℃にて乾燥し、試料を2.5mmふるいで分級した。ふるい上に残った試料の質量の残存量によりスケーリング抵抗性を定量的に評価した。1回の測定には上記試料を3組使用し、試験前質量より質量残存率は3組のうち中央値を使用した。また、スケーリング耐久性試験(SDI)は、“小山田哲也ら、「スケーリング劣化を考慮した新しい凍結融解試験法の検討」、コンクリート工学年次論文集、2011年、vol.33、pp.935−940”に記載の方法により評価した。各サンプル及びその測定結果を表1に示す。なお、添加量は、凍結防止剤と水溶性金属塩の合計量を100質量%としたときの値である。
(C) Small piece freezing and thawing test A set of 3 pieces (about 4 g) of test pieces is placed in a 100 ml polypropylene container, and the mass ratio of the solution to the sample is 10: 1. The sample was dipped in and covered with a lid to conduct a freeze-thaw test. The specimen placed in the container was freeze-thawed 10 times in a freezer at -20 ° C for 12 hours and in a room at 15 ° C for 10 hours. After repeated cycles, the container was taken out, the sample was separated with filter paper (5B), and washed with pure water. The separated sample was dried at 40 ° C., and the sample was classified with a 2.5 mm sieve. Scaling resistance was quantitatively evaluated based on the remaining amount of the sample remaining on the sieve. Three sets of the above samples were used for one measurement, and the median value of the residual mass ratio among the three sets was used from the mass before the test. Also, the scaling durability test (SDI) is described in “Tetsuya Oyamada et al.,“ Examination of New Freezing and Thawing Test Method Considering Scaling Degradation ”, Concrete Engineering Annual Papers, 2011, vol. 33, pp. 935-940 ". Each sample and its measurement results are shown in Table 1. The addition amount is a value when the total amount of the cryoprotectant and the water-soluble metal salt is 100% by mass. It is.
以上のように、水溶性金属塩の添加量が8.7質量%の実施例1−1では、スケーリング耐久性指数が60.0となり、スケーリングに対する耐久性が高まっていることがわかった。また、水溶性金属塩の添加量が26.9質量%以上の実施例1−2〜1−5では、スケーリング耐久性指数が99.0を超えていることから、この添加量の範囲ではコンクリート表面におけるスケーリングに対する耐久性を大幅に高めることができることがわかった。 As described above, in Example 1-1 in which the amount of the water-soluble metal salt added was 8.7% by mass, the scaling durability index was 60.0, indicating that the durability against scaling was increased. Moreover, in Examples 1-2 to 1-5 in which the addition amount of the water-soluble metal salt is 26.9% by mass or more, the scaling durability index exceeds 99.0. It was found that the durability against scaling at the surface can be greatly increased.
(2)実施例2(酢酸カルシウム+酢酸マグネシウム)
凍結防止剤として酢酸カルシウム、水溶性金属塩として酢酸マグネシウムを用いた例について説明する。
(2) Example 2 (calcium acetate + magnesium acetate)
An example using calcium acetate as an antifreeze and magnesium acetate as a water-soluble metal salt will be described.
実施例1の(a)において、塩化カルシウムに代えて酢酸カルシウム(和光純薬工業株式会社製 酢酸カルシウム一水和物)、塩化マグネシウムに代えて酢酸マグネシウム(和光純薬工業株式会社製 酢酸マグネシウム四水和物)を使用し、塩化マグネシウムの添加量を種々に変更した以外は同様にして、凍結・ソルトスケーリング抑制剤を作成した。実施例1(b)、(c)と同様の共試体・試験方法でSDIを測定した。その結果を表2に示す。 In Example 1 (a), instead of calcium chloride, calcium acetate (calcium acetate monohydrate manufactured by Wako Pure Chemical Industries, Ltd.), magnesium acetate instead of magnesium chloride (magnesium acetate four manufactured by Wako Pure Chemical Industries, Ltd.) A freeze / salt scaling inhibitor was prepared in the same manner except that the amount of magnesium chloride added was variously changed. SDI was measured by the same specimen and test method as in Examples 1 (b) and (c). The results are shown in Table 2.
以上のように、水溶性金属塩の添加量が27.8質量%以上の実施例2−2〜2−5では、スケーリング耐久性指数がほぼ100となっていることから、この添加量の範囲ではコンクリート表面におけるスケーリングに対する耐久性を大幅に高めることができることがわかった。 As described above, in Examples 2-2 to 2-5 in which the addition amount of the water-soluble metal salt is 27.8% by mass or more, the scaling durability index is almost 100. It was found that the durability against scaling on the concrete surface can be greatly increased.
(3)実施例3(塩化ナトリウム+塩化鉄)
実施例1の(a)において、塩化カルシウムに代えて塩化ナトリウム(財団法人塩事業センター製 食塩)、塩化マグネシウムに代えて塩化鉄(関東化学株式会社製 塩化鉄(塩化鉄(II)四水和物)を使用し、塩化ナトリウムと塩化鉄の添加量が質量比で1:1(塩化鉄の添加量:50質量%)とした以外は同様にして、凍結・ソルトスケーリング抑制剤を作成した。実施例1(b)、(c)と同様の共試体・試験方法でSDIを測定した。その結果、SDI値は86であった。
(3) Example 3 (sodium chloride + iron chloride)
In (a) of Example 1, instead of calcium chloride, sodium chloride (salt manufactured by the Salt Business Center), iron chloride (Kanto Chemical Co., Ltd.) iron chloride (iron (II) chloride tetrahydrate) instead of magnesium chloride The freezing / salt scaling inhibitor was prepared in the same manner except that the addition amount of sodium chloride and iron chloride was changed to 1: 1 (addition amount of iron chloride: 50% by mass). SDI was measured by the same specimen and test method as in Examples 1 (b) and (c), and as a result, the SDI value was 86.
(4)実施例4(塩化ナトリウム+塩化アルミニウム)
実施例1の(a)において、塩化カルシウムに代えて実施例3の塩化ナトリウム、塩化マグネシウムに代えて塩化アルミニウム(関東化学株式会社 塩化アルミニウム(III)六水和物)を使用し、塩化ナトリウムと塩化アルミニウムの添加量が質量比で1:1(塩化アルミニウムの添加量:50質量%)とした以外は同様にして、凍結・ソルトスケーリング抑制剤を作成した。実施例1(b)、(c)と同様の共試体・試験方法でSDIを測定した。その結果、SDI値は78であった。
(4) Example 4 (sodium chloride + aluminum chloride)
In Example 1 (a), sodium chloride of Example 3 was used instead of calcium chloride, and aluminum chloride (Kanto Chemical Co., Ltd. aluminum chloride (III) hexahydrate) was used instead of magnesium chloride. A freeze / salt scaling inhibitor was prepared in the same manner except that the addition amount of aluminum chloride was 1: 1 (amount of addition of aluminum chloride: 50% by mass). SDI was measured by the same specimen and test method as in Examples 1 (b) and (c). As a result, the SDI value was 78.
(5)実施例5(塩化ナトリウム+塩化マグネシウム)
実施例1の(a)において、塩化カルシウムに代えて実施例3の塩化ナトリウムを使用し、塩化ナトリウムと塩化マグネシウムの割合(質量比)を種々に変更した以外は同様にして、凍結・ソルトスケーリング抑制剤を作成した。実施例1(b)、(c)と同様の共試体・試験方法でSDIを測定した。その結果を表3に示す。
(5) Example 5 (sodium chloride + magnesium chloride)
In the same manner as in Example 1 (a), except that sodium chloride of Example 3 was used instead of calcium chloride, and the ratio (mass ratio) of sodium chloride and magnesium chloride was variously changed, and freeze / salt scaling was performed in the same manner. An inhibitor was created. SDI was measured by the same specimen and test method as in Examples 1 (b) and (c). The results are shown in Table 3.
以上のように、塩化ナトリウム単独(比較例5)の場合と比較して、塩化ナトリウムと塩化マグネシウムの質量比が90:10(実施例5−1)の場合は、スケーリングに対する耐久性が向上していることがわかった。したがって、塩化ナトリウムと塩化マグネシウムの合計量に対する塩化マグネシウムの比率は、10質量%以上が好ましいことがわかった。また、塩化マグネシウムの比率が高くなるにつれてスケーリング耐久性指数が向上するが、塩化マグネシウムの比率が50質量%以上(実施例5−6,実施例5−7)では、スケーリング耐久試指数はほぼ100%となることがわかった。したがって、塩化マグネシウムの比率は50質量%以上が特に好ましいことがわかった。 As described above, when the mass ratio of sodium chloride and magnesium chloride is 90:10 (Example 5-1) compared to the case of sodium chloride alone (Comparative Example 5), durability against scaling is improved. I found out. Therefore, it was found that the ratio of magnesium chloride to the total amount of sodium chloride and magnesium chloride is preferably 10% by mass or more. Further, the scaling durability index is improved as the ratio of magnesium chloride is increased. However, when the ratio of magnesium chloride is 50% by mass or more (Example 5-6 and Example 5-7), the scaling durability test index is almost 100. %. Therefore, it was found that the magnesium chloride ratio is particularly preferably 50% by mass or more.
(6)実施例6(塩化カリウム+塩化マグネシウム)
実施例1の(a)において、塩化カルシウムに代えて塩化カリウムを使用し、塩化カリウムと塩化マグネシウムの割合(質量比)を種々に変更した以外は同様にして、凍結・ソルトスケーリング抑制剤を作成した。実施例1(b)、(c)と同様の共試体・試験方法でSDIを測定した。その結果を表4に示す。
(6) Example 6 (potassium chloride + magnesium chloride)
A freeze / salt scaling inhibitor was prepared in the same manner as in Example 1 (a) except that potassium chloride was used instead of calcium chloride and the ratio (mass ratio) of potassium chloride and magnesium chloride was variously changed. did. SDI was measured by the same specimen and test method as in Examples 1 (b) and (c). The results are shown in Table 4.
以上のように、塩化カリウム単独(比較例6)の場合と比較して、塩化カリウムと塩化マグネシウムの質量比が90:10(実施例6−1)の場合は、スケーリングに対する耐久性が向上していることがわかった。したがって、塩化カリウムと塩化マグネシウムの合計量に対する塩化マグネシウムの比率は、10質量%以上が好ましいことがわかった。また、塩化マグネシウムの比率が高くなるにつれてスケーリング耐久性指数が向上するが、塩化マグネシウムの比率が50質量%以上(実施例6−6,実施例6−7)では、スケーリング耐久試指数はほぼ100%となることがわかった。したがって、塩化マグネシウムの比率は50質量%以上が特に好ましいことがわかった。 As described above, compared to the case of potassium chloride alone (Comparative Example 6), when the mass ratio of potassium chloride to magnesium chloride is 90:10 (Example 6-1), durability against scaling is improved. I found out. Therefore, it was found that the ratio of magnesium chloride to the total amount of potassium chloride and magnesium chloride is preferably 10% by mass or more. Further, the scaling durability index is improved as the ratio of magnesium chloride is increased. However, when the ratio of magnesium chloride is 50% by mass or more (Example 6-6 and Example 6-7), the scaling durability test index is almost 100%. %. Therefore, it was found that the magnesium chloride ratio is particularly preferably 50% by mass or more.
Claims (7)
ナトリウム塩、カリウム塩及びカルシウム塩からなる群より選択される少なくとも1種類を含みマグネシウムを含まない凍結防止剤と、マグネシウム、鉄及びアルミニウムからなる群より選択される少なくとも1種類からなる金属を含みアルカリ水溶液と反応して前記金属の水酸化物となる水溶性金属塩と、を前記セメント硬化体表面に散布し、
前記セメント硬化体表面と該セメント硬化体表面に付着する氷との間に前記金属の水酸化物からなる被膜を形成させることを特徴とする凍結・ソルトスケーリング抑制方法。 A freezing / salt scaling suppression method for suppressing freezing of a hardened cement surface and delamination deterioration due to salt,
An antifreeze containing at least one selected from the group consisting of sodium salt, potassium salt and calcium salt and containing no magnesium, and an alkali containing at least one metal selected from the group consisting of magnesium, iron and aluminum A water-soluble metal salt that reacts with an aqueous solution to become a hydroxide of the metal, and is spread on the surface of the cement cured body,
A method for inhibiting freezing / salt scaling, comprising forming a film made of the metal hydroxide between the surface of the hardened cement body and ice adhering to the surface of the hardened cement body.
ナトリウム塩、カリウム塩及びカルシウム塩からなる群より選択される少なくとも1種類を含みマグネシウムを含まない凍結防止剤と、
マグネシウム、鉄及びアルミニウムからなる群より選択される少なくとも1種類からなる金属を含みアルカリ水溶液と反応して前記金属の水酸化物となる水溶性金属塩と、を含有し、粉末状であることを特徴とする凍結・ソルトスケーリング抑制剤。 A freezing / salt scaling inhibitor for suppressing freezing of the hardened cement surface and delamination deterioration due to salt,
A cryoprotectant containing at least one selected from the group consisting of sodium salts, potassium salts and calcium salts, and not containing magnesium;
A water-soluble metal salt containing at least one metal selected from the group consisting of magnesium, iron and aluminum and reacting with an alkaline aqueous solution to form a hydroxide of the metal, and is in powder form Freezing / salt scaling inhibitor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013222764A JP6144603B2 (en) | 2013-10-25 | 2013-10-25 | Freezing / salt scaling inhibiting method and freezing / salt scaling inhibiting agent |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013222764A JP6144603B2 (en) | 2013-10-25 | 2013-10-25 | Freezing / salt scaling inhibiting method and freezing / salt scaling inhibiting agent |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015083767A JP2015083767A (en) | 2015-04-30 |
JP6144603B2 true JP6144603B2 (en) | 2017-06-07 |
Family
ID=53047494
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013222764A Active JP6144603B2 (en) | 2013-10-25 | 2013-10-25 | Freezing / salt scaling inhibiting method and freezing / salt scaling inhibiting agent |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6144603B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10029867B2 (en) | 2014-10-27 | 2018-07-24 | Avision Inc. | Feeding device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5920753B1 (en) | 2015-11-05 | 2016-05-18 | 北海道日油株式会社 | Liquid antifreeze |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04202491A (en) * | 1990-11-30 | 1992-07-23 | Sumitomo Metal Ind Ltd | Snow-thawing salt |
CA2104026C (en) * | 1991-02-14 | 1997-09-23 | Bernard Malric | Method to reduce scaling due to freezing and thawing in concrete |
JP3604851B2 (en) * | 1996-12-02 | 2004-12-22 | 太平洋セメント株式会社 | Concrete products for preventing frost damage |
JP4348462B2 (en) * | 2003-11-28 | 2009-10-21 | 株式会社三宝商会 | Method for producing anti-freezing agent |
JP2012206882A (en) * | 2011-03-29 | 2012-10-25 | Sumitomo Osaka Cement Co Ltd | Scaling-reduced concrete product, and method for producing the concrete product |
-
2013
- 2013-10-25 JP JP2013222764A patent/JP6144603B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10029867B2 (en) | 2014-10-27 | 2018-07-24 | Avision Inc. | Feeding device |
Also Published As
Publication number | Publication date |
---|---|
JP2015083767A (en) | 2015-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sutter et al. | The deleterious chemical effects of concentrated deicing solutions on Portland cement concrete | |
Deja | Freezing and de-icing salt resistance of blast furnace slag concretes | |
Farnam et al. | Performance of carbonated calcium silicate based cement pastes and mortars exposed to NaCl and MgCl2 deicing salt | |
US7879254B2 (en) | Snow removal agent and preparation method | |
JP5856442B2 (en) | Cement admixture and cement composition | |
JP6144603B2 (en) | Freezing / salt scaling inhibiting method and freezing / salt scaling inhibiting agent | |
CN107573898B (en) | Antifreezing material with controllable slow-release rate applied to concrete pavement and preparation method thereof | |
JP2009091872A (en) | Composition for road surface pavement and road surface paving method | |
Guo et al. | Preparation of Ca-Al-Fe deicing salt and modified with sodium methyl silicate for reducing the influence of concrete structure | |
WO2006003966A1 (en) | Snow-melting/antifreezing agents | |
JP2001187881A (en) | Non-chloride based deicer composition and its preparation process | |
KR20230105737A (en) | Anti-freeze material composition, manufacturing method thereof and manufacturing method for asphalt concrete using the same | |
KR101050740B1 (en) | Concrete composition for preventing freeze and method for paving road employing the same | |
CA2097846C (en) | The improvement of the frost-de-icing salt-resistance of concrete constructions | |
Xu et al. | Impact of chemical deicers on roadway infrastructure: risks and best management practices | |
US4936915A (en) | Porous inert road grit | |
US5441760A (en) | Impregnable in situ deicing material | |
CA2287367A1 (en) | Deicing and snow-removing composition, method for producing the same, and use thereof | |
US7947194B2 (en) | Antiskid snow-clearing composition | |
KR20170080456A (en) | Granite slabs remelting heat shield coating composition and coating method | |
KR20170138596A (en) | Eco-friendly deicer composition using bottom ash | |
KR101794957B1 (en) | Manufacturing method of eco-friendly deicing agent using bottom ash | |
CN105198353A (en) | Impact-resistant and anti-cracking concrete aggregate | |
JP2004197310A (en) | Block for pavement | |
JP5953247B2 (en) | Composition for mortar or concrete having improved frost damage resistance using blast furnace slag, molded product obtained by molding the composition, repair material and repair method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160721 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170425 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170428 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170511 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6144603 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |