JP6140786B2 - Power transmission equipment - Google Patents

Power transmission equipment Download PDF

Info

Publication number
JP6140786B2
JP6140786B2 JP2015215883A JP2015215883A JP6140786B2 JP 6140786 B2 JP6140786 B2 JP 6140786B2 JP 2015215883 A JP2015215883 A JP 2015215883A JP 2015215883 A JP2015215883 A JP 2015215883A JP 6140786 B2 JP6140786 B2 JP 6140786B2
Authority
JP
Japan
Prior art keywords
coil
power
power transmission
coils
coil portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015215883A
Other languages
Japanese (ja)
Other versions
JP2016041007A (en
JP2016041007A5 (en
Inventor
加藤 雅一
雅一 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba TEC Corp
Original Assignee
Toshiba TEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba TEC Corp filed Critical Toshiba TEC Corp
Priority to JP2015215883A priority Critical patent/JP6140786B2/en
Publication of JP2016041007A publication Critical patent/JP2016041007A/en
Publication of JP2016041007A5 publication Critical patent/JP2016041007A5/ja
Application granted granted Critical
Publication of JP6140786B2 publication Critical patent/JP6140786B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coils Of Transformers For General Uses (AREA)

Description

本発明の実施形態は、送電装置から受電装置に非接触で電力を伝送する電力伝送装置に関する。   Embodiments described herein relate generally to a power transmission device that transmits power from a power transmission device to a power reception device in a contactless manner.

近年、非接触にて電力を伝送する装置が普及している。電力伝送装置は、電力を送電する送電装置と、送電電力を受け取る受電装置とを含む。電力伝送装置は、電磁誘導方式、磁界共鳴方式または電界結合方式等を利用して、電力を非接触で送電装置から受電装置に伝送する。受電装置は自機を駆動する駆動回路や、受電装置に搭載した2次電池の充電回路等の負荷回路を備えている。   In recent years, devices that transmit power in a non-contact manner have become widespread. The power transmission device includes a power transmission device that transmits power and a power reception device that receives the transmitted power. The power transmission device transmits power from the power transmission device to the power reception device in a non-contact manner using an electromagnetic induction method, a magnetic field resonance method, an electric field coupling method, or the like. The power receiving device includes a drive circuit for driving the device itself and a load circuit such as a charging circuit for a secondary battery mounted on the power receiving device.

携帯端末やノートパソコン等の電子機器に非接触で電力(数十ワット程度までの電力)を伝送する場合に、電磁誘導方式や電界結合方式を利用すると、一般的には、送電装置と受電装置とを伝送可能領域内にてほぼ密着させる必要がある。一方、磁界共鳴方式を利用すると、送電装置と受電装置とを密着させる必要がなく、例えば送電装置から数cm程度、受電装置を離しても電力の伝送を行うことができる。したがって、受電装置を置く位置に自由度があり、使い勝手に優れるという点で磁界共鳴方式が注目されている。   When transmitting electric power (up to several tens of watts) to an electronic device such as a portable terminal or a notebook computer, generally using a magnetic induction method or an electric field coupling method, a power transmission device and a power reception device Must be in close contact with each other within the transmittable region. On the other hand, when the magnetic field resonance method is used, it is not necessary to bring the power transmission device and the power reception device into close contact with each other, and power can be transmitted even if the power reception device is separated from the power transmission device by, for example, about several centimeters. Therefore, the magnetic field resonance method has attracted attention in that it has a degree of freedom in the position where the power receiving device is placed and is excellent in usability.

磁界共鳴方式は、送電装置に設けられたコイルとコンデンサから成る共振素子(共鳴素子ともいう)と、受電装置に設けられたコイルとコンデンサから成る共振素子とが結合することで、電力を伝送することができる。電磁誘導方式においても、送電側のコイルと受電側のコイルの結合だけではなく、送電側と受電側の双方に共振用のコンデンサを設け、送電側及び受電側の素子を共振結合させることで、電力を伝送する距離を伸ばそうとする試みもなされてきており、磁界共鳴方式と電磁誘導方式との区別がなくなってきている。   In the magnetic field resonance method, a resonance element (also referred to as a resonance element) including a coil and a capacitor provided in a power transmission apparatus and a resonance element including a coil and a capacitor provided in a power reception apparatus are coupled to transmit power. be able to. Even in the electromagnetic induction system, not only the coupling of the coil on the power transmission side and the coil on the power reception side, but also a capacitor for resonance on both the power transmission side and the power reception side, and resonance coupling the elements on the power transmission side and the power reception side, Attempts have been made to extend the distance for transmitting electric power, and the distinction between the magnetic field resonance method and the electromagnetic induction method has disappeared.

また電力伝送効率に影響を与えるパラメータとして、送電装置及び受電装置の共振素子間の結合係数kがある。送電装置と受電装置の共振素子間の距離が変動すると、通常は結合係数kも変動する。例えば、共振素子間の距離が離れると、結合係数kは小さくなる。回路のインピーダンスが固定であれば、結合係数kの変化に伴って電力伝送効率は変化する。   Further, as a parameter that affects the power transmission efficiency, there is a coupling coefficient k between the resonant elements of the power transmission device and the power reception device. When the distance between the resonant elements of the power transmitting device and the power receiving device varies, the coupling coefficient k usually also varies. For example, the coupling coefficient k decreases as the distance between the resonant elements increases. If the impedance of the circuit is fixed, the power transmission efficiency changes as the coupling coefficient k changes.

送電装置と受電装置の共振素子間の距離の変動に伴って結合係数kが変化しても、電力伝送効率を高く維持する方法として、インピーダンスを可変できるインピーダンス調整手段を設け、結合係数kの変化に応じて、送電装置や受電装置のインピーダンスを変化させる技術が知られている。   As a method for maintaining high power transmission efficiency even when the coupling coefficient k changes with a change in the distance between the resonant elements of the power transmitting device and the power receiving device, an impedance adjusting means capable of varying the impedance is provided, and the coupling coefficient k is changed. A technique for changing the impedance of a power transmission device or a power reception device according to the above is known.

しかしながら、当該技術では、結合係数kが変動した場合に自動的にインピーダンス制御を行うための回路が新たに必要であり、制御も複雑になるという問題点があった。   However, this technique has a problem that a circuit for automatically performing impedance control when the coupling coefficient k fluctuates is newly required, and the control becomes complicated.

特開2011−50140号公報JP 2011-50140 A

発明が解決しようとする課題は、送電装置の送電コイルと受電装置の受電コイル間の距離が変動しても結合係数kの変動を抑えた非接触式の電力伝送装置を提供することにある。   The problem to be solved by the invention is to provide a non-contact type power transmission device that suppresses fluctuations in the coupling coefficient k even if the distance between the power transmission coil of the power transmission device and the power reception coil of the power reception device varies.

実施形態に係る電力伝送装置は、送電装置から受電装置へ非接触で電力伝送を行う電力伝送装置であって、前記送電装置は、隣接する第1の面と第2の面を有する第1の本体と、前記第1の本体内の前記第1の面に配置した第1のコイル部と、前記第2の面に配置した第2のコイル部を有し、前記第1のコイル部と前記第2のコイル部の相対角度が90度以下になるようにした送電コイルと、前記送電コイルを含む共振素子に交流電力を供給する交流電源と、を備え、前記受電装置は、前記第1、第2の面にそれぞれ対向する第3、第4の面を有する第2の本体と、1つのコイルを前記第3の面と前記第4の面とが交差する交点で折り曲げまたは湾曲させて、前記第3の面及び前記第4の面に跨って前記第2の本体内に配置した受電コイルと、前記受電コイルを含む共振素子に誘起する交流電力を整流する整流回路と、を備え、前記送電コイルを流れる電流によって発生する磁界により、前記受電コイルの前記第3の面にあるコイルと前記第4の面にあるコイルに発生する電流が打ち消し合うことなく一方向に流れるように、前記送電コイルの前記第1のコイル部と前記第2のコイル部に流れる電流の方向を設定して成る。
A power transmission device according to an embodiment is a power transmission device that performs power transmission from a power transmission device to a power reception device in a contactless manner, and the power transmission device includes a first surface and a second surface that are adjacent to each other. a body, a first coil portion disposed in said first plane in said first body, a second coil portion which is placed on the second surface, said first coil section A power transmission coil configured such that a relative angle of the second coil portion is 90 degrees or less; and an AC power source that supplies AC power to a resonance element including the power transmission coil. A second main body having third and fourth surfaces facing the second surface, and one coil bent or curved at an intersection where the third surface and the fourth surface intersect. A receiving coil disposed in the second body across the third surface and the fourth surface; A rectifier circuit that rectifies AC power induced in a resonance element including the power receiving coil, and a coil on the third surface of the power receiving coil and the fourth by a magnetic field generated by a current flowing through the power transmitting coil. The direction of the current flowing in the first coil portion and the second coil portion of the power transmission coil is set so that the currents generated in the coils on the surface of the coil flow in one direction without canceling each other.

第1の実施形態に係る電力伝送装置の構成を示すブロック図と斜視図。The block diagram and perspective view which show the structure of the electric power transmission apparatus which concerns on 1st Embodiment. 第1の実施形態における送電コイルと受電コイルの構成を概略的に示す斜視図。The perspective view which shows roughly the structure of the power transmission coil in 1st Embodiment, and a receiving coil. 第1の実施形態おける送電コイルと受電コイルの位置関係を示す断面図。Sectional drawing which shows the positional relationship of the power transmission coil and power receiving coil in 1st Embodiment. 第1の実施形態における送電コイルと受電コイルの位置が変化したときの動作を示す説明図。Explanatory drawing which shows operation | movement when the position of the power transmission coil and power receiving coil in 1st Embodiment changes. 図4における送電コイルと受電コイル間の距離と、対向面積の関係を示す説明図。Explanatory drawing which shows the relationship between the distance between the power transmission coil in FIG. 4, and a receiving coil, and an opposing area. 第1の実施形態における送電コイルと受電コイルの位置が変化したときの他の動作を示す説明図。Explanatory drawing which shows other operation | movement when the position of the power transmission coil and power receiving coil in 1st Embodiment changes. 図6における送電コイルと受電コイル間の距離と、対向面積の関係を示す説明図。Explanatory drawing which shows the relationship between the distance between the power transmission coil in FIG. 6, and a receiving coil, and an opposing area. 一般的な電力伝送装置の構成を示すブロック図とコイルの構成図。The block diagram which shows the structure of a general electric power transmission apparatus, and the block diagram of a coil. 第1の実施形態に係る電力伝送装置での結合係数kの測定系を示す図。The figure which shows the measurement system of the coupling coefficient k in the electric power transmission apparatus which concerns on 1st Embodiment. 第1の実施形態と一般例における送・受コイル間の距離と結合係数kの関係を示す特性図。The characteristic view which shows the relationship between the distance between the transmission / reception coils in 1st Embodiment and a general example, and the coupling coefficient k. 第1の実施形態と一般例における送・受コイル間の距離と受電電力の関係を示す特性図。The characteristic view which shows the distance between the transmission / reception coil in 1st Embodiment and a general example, and the relationship of received electric power. 第1の実施形態における送電コイルの変形例を示す斜視図。The perspective view which shows the modification of the power transmission coil in 1st Embodiment. 第1の実施形態における受電コイルの変形例を示す斜視図。The perspective view which shows the modification of the receiving coil in 1st Embodiment. 第1の実施形態の変形例での送電コイルと受電コイルの位置関係を示す断面図。Sectional drawing which shows the positional relationship of the power transmission coil and power receiving coil in the modification of 1st Embodiment. 第1の実施形態における送電コイルと受電コイルの磁界と電流の向きを示す説明図。Explanatory drawing which shows the direction of the magnetic field and electric current of a power transmission coil and a receiving coil in 1st Embodiment. 送電コイルと受電コイルの磁界と電流の向きを示す他の説明図。Other explanatory drawing which shows the direction of the magnetic field and electric current of a power transmission coil and a receiving coil. 第1の実施形態の変形例における受電コイルの磁界と電流の向きを示す説明図。Explanatory drawing which shows the direction of the magnetic field and electric current of a receiving coil in the modification of 1st Embodiment. 第1の実施形態の変形例における送電コイルと受電コイルの配置を示す断面図。Sectional drawing which shows arrangement | positioning of the power transmission coil and power receiving coil in the modification of 1st Embodiment. 第1の実施形態における送電コイルと受電コイルの位置関係の他の例を示す断面図。Sectional drawing which shows the other example of the positional relationship of the power transmission coil and power receiving coil in 1st Embodiment. 第2の実施形態に係る電力伝送装置における送電装置を示す斜視図。The perspective view which shows the power transmission apparatus in the electric power transmission apparatus which concerns on 2nd Embodiment. 第2の実施形態における送電装置と受電装置を示す構成図。The block diagram which shows the power transmission apparatus and power receiving apparatus in 2nd Embodiment. 第2の実施形態における送電装置と受電装置の他の例を示す構成図。The block diagram which shows the other example of the power transmission apparatus and power receiving apparatus in 2nd Embodiment. 第2の実施形態の変形例における送電装置と受電装置を示す斜視図。The perspective view which shows the power transmission apparatus and power receiving apparatus in the modification of 2nd Embodiment.

以下、発明を実施するための実施形態について、図面を参照して説明する。尚、各図において同一箇所については同一の符号を付す。   Embodiments for carrying out the invention will be described below with reference to the drawings. In addition, in each figure, the same code | symbol is attached | subjected about the same location.

(第1の実施形態)
図1(a)は、一実施形態に係る電力伝送装置の構成を示すブロック図である。図1(b)は、送電装置と受電装置を概略的に示す斜視図である。図1(a)に示すように、電力伝送装置は、電力を送電する送電装置10と、送電された電力を受電する受電装置20とを備える。送電装置10と受電装置20とは、磁界共鳴方式または電磁誘導方式等の電磁結合を利用した方式により電力を伝送する。以下、磁界共鳴方式または電磁誘導方式により電力を伝送する場合について説明する。
(First embodiment)
FIG. 1A is a block diagram illustrating a configuration of a power transmission device according to an embodiment. FIG. 1B is a perspective view schematically showing the power transmission device and the power reception device. As shown to Fig.1 (a), an electric power transmission apparatus is provided with the power transmission apparatus 10 which transmits electric power, and the power receiving apparatus 20 which receives the transmitted electric power. The power transmitting device 10 and the power receiving device 20 transmit power by a method using electromagnetic coupling such as a magnetic field resonance method or an electromagnetic induction method. Hereinafter, the case where electric power is transmitted by the magnetic field resonance method or the electromagnetic induction method will be described.

送電装置10は、電力を発生する交流電源11と、共振用コンデンサ12と送電コイル13及び14で構成される共振素子15とを備える。交流電源11は、送電用の共振素子15の自己共振周波数と同一、或いはほぼ同一の周波数の交流電力を発生し、共振素子15に供給する。交流電源11は、目的とする周波数の交流電力を発生させるための発振回路と、発振回路の出力を増幅する電力増幅回路を含む。もしくは、交流電源11は、スイッチング電源の構成とし、発振回路の出力でスイッチング素子をオン/オフする構成とすることもできる。   The power transmission device 10 includes an AC power supply 11 that generates electric power, and a resonance element 15 including a resonance capacitor 12 and power transmission coils 13 and 14. The AC power supply 11 generates AC power having the same or substantially the same frequency as the self-resonance frequency of the power transmission resonance element 15 and supplies the AC power to the resonance element 15. The AC power supply 11 includes an oscillation circuit for generating AC power having a target frequency and a power amplification circuit for amplifying the output of the oscillation circuit. Alternatively, the AC power supply 11 may be configured as a switching power supply, and the switching element may be turned on / off by the output of the oscillation circuit.

尚、交流電源11には、送電装置10の外部に設けたACアダプタ等から直流の電力が供給されるようになっている。或いは、外部からAC100Vを送電装置10に供給し、送電装置10内にACアダプタまたはAC/DC変換部を設けて、直流電力を交流電源11に供給するようにしてもよい。   The AC power supply 11 is supplied with DC power from an AC adapter or the like provided outside the power transmission device 10. Alternatively, AC 100 V may be supplied from the outside to the power transmission device 10, and an AC adapter or an AC / DC conversion unit may be provided in the power transmission device 10 to supply DC power to the AC power supply 11.

受電装置20は、共振用コンデンサ21と受電コイル22から構成される共振素子23と、交流を直流に変換する整流回路24と、負荷回路25とを備える。受電用の共振素子23の自己共振周波数は、送電用の共振素子15の自己共振周波数と同一、或いはほぼ同一であり、互いに電磁結合することで、送電側から受電側に効率よく電力を伝送する。   The power reception device 20 includes a resonance element 23 including a resonance capacitor 21 and a power reception coil 22, a rectifier circuit 24 that converts alternating current into direct current, and a load circuit 25. The self-resonant frequency of the power receiving resonant element 23 is the same as or substantially the same as the power resonant element 15 and is electromagnetically coupled to each other, thereby efficiently transmitting power from the power transmitting side to the power receiving side. .

負荷回路25は、携帯端末やポータブル端末、ポータブルプリンタ等の電子機器の回路であり、受電装置20で受電した電力は、電子機器の動作や、電子機器が内蔵するバッテリーの充電等に利用される。一般的に、負荷回路25は直流電力で動作するため、負荷回路25に直流電力を供給するために、受電用の共振素子23に誘起した交流電力を整流して直流電力に変換する整流回路24を設けている。   The load circuit 25 is a circuit of an electronic device such as a portable terminal, a portable terminal, or a portable printer. The power received by the power receiving device 20 is used for the operation of the electronic device, charging of a battery built in the electronic device, or the like. . Generally, since the load circuit 25 operates with DC power, the rectifier circuit 24 rectifies AC power induced in the power receiving resonance element 23 and converts it into DC power in order to supply DC power to the load circuit 25. Is provided.

尚、共振用コンデンサ12、21は必ずしも電子部品で構成する必要はなく、コイルの形状やコイルのインダクタンス値によっては、コイルの線間容量等で代用することもできる。   Note that the resonance capacitors 12 and 21 are not necessarily configured by electronic components, and may be substituted by a line-to-line capacitance of the coil depending on the shape of the coil and the inductance value of the coil.

また、共振用コンデンサ12はコイル13、14と直列に配置し、共振用コンデンサ21はコイル22と直列に配置してそれぞれ直列共振回路を構成しているが、それぞれの共振用コンデンサは、コイルと並列に配置するようにして並列共振回路の構成としても良い。   The resonance capacitor 12 is arranged in series with the coils 13 and 14, and the resonance capacitor 21 is arranged in series with the coil 22 to form a series resonance circuit. A parallel resonant circuit may be configured in parallel.

図1(a)の電力伝送装置では、図1(b)に示すように、送電装置10の送電コイル13、14に受電コイル22を重ねることで受電装置20に電力を伝送することになる。即ち、送電コイル13、14に電流を流すことにより、送電コイル13、14に磁界が発生する。一方、受電コイル22には電磁結合の作用により、受電コイル22に電流が流れ、その電流を整流することで電力を得ることができる。   In the power transmission device in FIG. 1A, power is transmitted to the power receiving device 20 by superimposing the power receiving coil 22 on the power transmission coils 13 and 14 of the power transmission device 10 as shown in FIG. That is, when a current is passed through the power transmission coils 13 and 14, a magnetic field is generated in the power transmission coils 13 and 14. On the other hand, a current flows through the power receiving coil 22 due to electromagnetic coupling, and electric power can be obtained by rectifying the current.

図1(b)において、送電装置10は、受電装置20を載置するL字型の本体である筐体16を有し、筐体16内のL字型の壁面に送電コイル13と14をほぼ直交するように配置している。また受電装置20は、方形状の本体である筐体26を有し、送電装置10上に置くことができる。受電装置20の筐体26内の、送電コイル13、14と対向する面に、ほぼ90度に折り曲げた受電コイル22を配置している。   In FIG. 1B, the power transmission device 10 includes a housing 16 that is an L-shaped main body on which the power receiving device 20 is placed, and power transmission coils 13 and 14 are provided on an L-shaped wall surface inside the housing 16. It arrange | positions so that it may orthogonally cross substantially. The power receiving device 20 has a casing 26 that is a rectangular main body, and can be placed on the power transmitting device 10. On the surface facing the power transmission coils 13 and 14 in the casing 26 of the power reception device 20, the power reception coil 22 bent at approximately 90 degrees is disposed.

図2は、送電コイル13、14と受電コイル22の構成を概略的に示す斜視図である。図2(a)は、送電コイル13、14を示し、図2(b)は、受電コイル22を示す。図2(a)に示すように、送電コイル13及び送電コイル14は、送電装置10のL字型の2つの面17、18(第1、第2の面)に対応させて本体(筐体16)内に配置し、直列に接続する。送電コイル13及び14から引き出した線の端部A、A’は、図1(a)の送電装置10内の端子A−A’に相当する。尚、端部AとA’は、入れ替わっても構わない。また、送電コイル13及び14は、2つの面17、18に単一の銅線、または複数本で構成するリッツ線などを巻いたものである。或いは、リジッドまたはフレキシブルな印刷基板に形成したプリントコイルなどであっても良い。   FIG. 2 is a perspective view schematically showing the configuration of the power transmission coils 13 and 14 and the power reception coil 22. 2A shows the power transmission coils 13 and 14, and FIG. 2B shows the power reception coil 22. As shown in FIG. 2A, the power transmission coil 13 and the power transmission coil 14 correspond to the L-shaped two surfaces 17 and 18 (first and second surfaces) of the power transmission device 10. 16) and connect in series. The ends A and A ′ of the lines drawn from the power transmission coils 13 and 14 correspond to the terminal A-A ′ in the power transmission device 10 in FIG. Note that the ends A and A 'may be interchanged. The power transmission coils 13 and 14 are formed by winding a single copper wire or a plurality of litz wires on the two surfaces 17 and 18. Alternatively, it may be a printed coil formed on a rigid or flexible printed board.

受電コイル22は、図2(b)に示すように、1つのコイルをほぼ90度に湾曲、または折り曲げた形状であり、受電装置20の2つの面27、28(第3、第4の面)に対応させて本体(筐体26)内に配置する。受電コイル22から引き出した線の端部B、B’は、図1(a)に示した受電装置20内のB−B’に相当する。尚、端部BとB’は、入れ替わっても構わない。また、受電コイル22は、単一の銅線、または複数本で構成するリッツ線などを巻いたものの他、フレキシブルな印刷基板に形成したプリントコイルなどであっても良い。   As shown in FIG. 2B, the power receiving coil 22 has a shape in which one coil is bent or bent at approximately 90 degrees, and the two surfaces 27 and 28 (third and fourth surfaces) of the power receiving device 20. ) In the main body (housing 26). The ends B and B ′ of the wires drawn out from the power receiving coil 22 correspond to B-B ′ in the power receiving device 20 shown in FIG. Note that the ends B and B 'may be interchanged. Further, the power receiving coil 22 may be a single copper wire or a wire wound with a plurality of litz wires, or a printed coil formed on a flexible printed board.

送電装置10から受電装置20に非接触で電力伝送を行う場合には、図2(a)に示す送電コイル13、14と、図2(b)に示す受電コイル22が対向して重なるように、送電装置10の筐体16の上に、受電装置20を載置する。送電装置10は、隣接する第1の面17と第2の面18で受電装置20を支える。   When power is transmitted from the power transmission device 10 to the power reception device 20 in a non-contact manner, the power transmission coils 13 and 14 shown in FIG. 2A and the power reception coil 22 shown in FIG. The power receiving device 20 is placed on the casing 16 of the power transmitting device 10. The power transmission device 10 supports the power reception device 20 with the adjacent first surface 17 and second surface 18.

図3は、送電装置10の上に、受電装置20を載置したときの、送電コイル13、14と受電コイル22との位置関係を示す断面図である。図3において、送電コイル13、14は、送電装置10の2つの隣接する面17、18に配置し、受電コイル22は、受電装置20の2つの面27、28に配置する。送電装置10の面17と面18とが交わる交点を図2(a)、図3の点Pで示す。   FIG. 3 is a cross-sectional view illustrating the positional relationship between the power transmission coils 13 and 14 and the power reception coil 22 when the power reception device 20 is placed on the power transmission device 10. In FIG. 3, the power transmission coils 13 and 14 are disposed on the two adjacent surfaces 17 and 18 of the power transmission device 10, and the power reception coil 22 is disposed on the two surfaces 27 and 28 of the power reception device 20. An intersection where the surface 17 and the surface 18 of the power transmission device 10 intersect is indicated by a point P in FIG.

図3から分かるように、送電装置10は厚みを持った、例えば樹脂製の筐体16を有している。面17や面18の厚みは、受電装置20を支えるために十分な強度を持つ必要がある。受電装置20の重さにもよるが、重さが500g〜1kg程度のポータブル機器のような受電装置20を載せる場合、面17は一般的な樹脂であれば2〜3mm程度の厚さは必要である。通常は、安全性や耐久性等を考慮して、送電コイル13、14は、筐体16の面17、18の内側にそれぞれ配置する。   As can be seen from FIG. 3, the power transmission device 10 has a thick housing 16 made of resin, for example. The thickness of the surface 17 and the surface 18 needs to have sufficient strength to support the power receiving device 20. Although depending on the weight of the power receiving device 20, when the power receiving device 20 such as a portable device having a weight of about 500 g to 1 kg is placed, the surface 17 needs to have a thickness of about 2 to 3 mm if it is a general resin. It is. Normally, the power transmission coils 13 and 14 are disposed inside the surfaces 17 and 18 of the housing 16 in consideration of safety, durability, and the like.

受電装置20は、筐体26を有し、受電コイル22は送電コイル13、14に対向する筐体26の面27、28に沿って配置する。図3に示す例では、受電コイル22は面27、28に沿って筐体26内に設置しているが、筐体26内に限らず、筐体26の外側に受電コイル22を設け、受電コイル22を例えば保護フィルムで覆う等の絶縁処理を施してもよい。   The power receiving device 20 includes a housing 26, and the power receiving coil 22 is disposed along the surfaces 27 and 28 of the housing 26 facing the power transmitting coils 13 and 14. In the example shown in FIG. 3, the power receiving coil 22 is installed in the housing 26 along the surfaces 27 and 28. However, the power receiving coil 22 is not limited to the housing 26 but provided outside the housing 26 to receive power. Insulating treatment such as covering the coil 22 with a protective film may be performed.

受電コイル22は、図2(b)に示すように、1つのコイルを湾曲、または折り曲げたものであるが、折り曲げ部分29は、面27と面28とが交わる角度、即ち直角に曲げても良いし、図3に示すように適当な円弧を付けて曲げるか、湾曲させても良い。   As shown in FIG. 2B, the power receiving coil 22 is obtained by bending or bending one coil, but the bent portion 29 may be bent at an angle at which the surface 27 and the surface 28 intersect, that is, at a right angle. Alternatively, it may be bent or curved with an appropriate arc as shown in FIG.

図3で示すように、送電コイル13及び14は、面17と面18の交点Pから、それぞれ面17、面18に沿って適当な距離L1、L2だけ離して配置し、送電コイル13と14とが互いに接触もしくは密着しないように配置する。また図3に示すように、送電コイル13、14と受電コイル22とが最も近接する位置において、送電コイル13の点Pから面17に沿って最も離れた部分Qは、受電コイル22の面27に沿って点Pから最も離れた部分Rよりも距離L3だけ離れた位置にある。   As shown in FIG. 3, the power transmission coils 13 and 14 are arranged apart from the intersection P between the surfaces 17 and 18 by appropriate distances L1 and L2 along the surfaces 17 and 18, respectively. And so that they are not in contact with or in close contact with each other. As shown in FIG. 3, at a position where the power transmission coils 13, 14 and the power reception coil 22 are closest, a portion Q farthest from the point P of the power transmission coil 13 along the surface 17 is a surface 27 of the power reception coil 22. And at a position separated by a distance L3 from the portion R farthest from the point P.

同様に、送電コイル14の点Pから面18に沿って最も離れた部分Sは、受電コイル22の面28に沿って点Pから最も離れた部分Tよりも距離L4だけ離れた位置にある。したがって、送電コイル13及び14と受電コイル22とが最も近接する状態においては、送電コイル13及び14の方が受電コイル22よりも点Pから離れた位置にある。   Similarly, the portion S farthest along the surface 18 from the point P of the power transmission coil 14 is located at a position separated by the distance L4 from the portion T farthest from the point P along the surface 28 of the power receiving coil 22. Therefore, when the power transmission coils 13 and 14 and the power reception coil 22 are closest, the power transmission coils 13 and 14 are located farther from the point P than the power reception coil 22.

尚、距離L1、L2及びL3、L4についての最適な距離は、使用する送電コイル13、14及び受電コイル22の大きさ等によって変わるが、点Pから適当な距離L1、L2だけ離れた位置に送電コイル13、14を設置し、また、距離L3、L4を確保する必要がある。   The optimum distances for the distances L1, L2, L3, and L4 vary depending on the sizes of the power transmission coils 13 and 14 and the power reception coil 22 to be used. However, the distances from the point P by appropriate distances L1 and L2 are different. It is necessary to install the power transmission coils 13 and 14 and to secure the distances L3 and L4.

次に、実施形態に係る電力伝送装置の動作について説明する。図3に示した送電コイル13、14と受電コイル22との位置関係は、通常の使用、即ち充電台である送電装置10に、充電される側のポータブル機器である受電装置20を最も近接するように置いたときの様子を示している。例えば、ポータブル機器を持ち運びや保護のためのソフトケースやキャリングケース等のケース類に入れたまま充電台に置くと、ケース類の厚み分だけ送電コイル13、14と受電コイル22との距離が離れることになる。   Next, the operation of the power transmission device according to the embodiment will be described. The positional relationship between the power transmission coils 13 and 14 and the power reception coil 22 shown in FIG. 3 is the closest to the power reception device 20 that is a portable device to be charged to the power transmission device 10 that is a normal use, that is, a charging stand. It shows the state when placed in the manner. For example, if a portable device is placed on a charging stand while being carried in a case such as a soft case or carrying case for carrying or protecting, the distance between the power transmission coils 13 and 14 and the power reception coil 22 is increased by the thickness of the case. It will be.

従来であれば、送電コイルと受電コイルとの距離が変わると、結合係数kが変化し、回路定数を変化させなければ、受電装置20が受電できる電力量や電力伝送効率も変化していた。従来では、大抵は、ある距離において受電できる電力値が最大となり、距離が離れたり近づくと受電できる電力量は低下する。   Conventionally, when the distance between the power transmission coil and the power reception coil changes, the coupling coefficient k changes. If the circuit constant is not changed, the amount of power that can be received by the power reception device 20 and the power transmission efficiency also change. Conventionally, the power value that can be received at a certain distance is usually maximum, and the amount of power that can be received decreases as the distance increases or decreases.

本実施形態では、コイル間の距離が変化しても結合係数kがほとんど変化しないので、受電できる電力量や電力伝送効率もほとんど変化しない。以下、その理由について述べる。   In this embodiment, since the coupling coefficient k hardly changes even if the distance between the coils changes, the amount of power that can be received and the power transmission efficiency hardly change. The reason will be described below.

図4は、送電コイル13、14と受電コイル22との距離が変化した場合に、結合係数kに与える影響について説明する図である。図4では、送電コイル13、14と受電コイル22の位置関係のみを示しており、送電装置10及び受電装置20の筐体等は省略している。   FIG. 4 is a diagram for explaining the influence on the coupling coefficient k when the distance between the power transmission coils 13 and 14 and the power reception coil 22 changes. In FIG. 4, only the positional relationship between the power transmission coils 13 and 14 and the power reception coil 22 is shown, and the casing and the like of the power transmission device 10 and the power reception device 20 are omitted.

先に述べたように、受電装置20を直接、送電装置10の上に置いた場合や、受電装置20をケース類に入れて送電装置10に置いた場合等で、受電コイル22の位置が矢印Yの方向に変化する。例えば送電コイル13、14に対して受電コイル22の位置がP1、P2、P3のように変化して相対距離が変わった場合について説明する。   As described above, when the power receiving device 20 is placed directly on the power transmitting device 10, or when the power receiving device 20 is placed in a case and placed on the power transmitting device 10, the position of the power receiving coil 22 is an arrow. It changes in the Y direction. For example, a case where the relative distance is changed by changing the position of the power receiving coil 22 with respect to the power transmitting coils 13 and 14 as P1, P2, and P3 will be described.

図4において、先ず、受電コイル22と送電コイル13とが対向する部分から考えてみる。位置P1の場合には、送電コイル13と受電コイル22との距離(垂直方向)はH1で、位置P1〜P3の中では最も近距離となる。送電コイル13に対向する受電コイル22の面積は、送電コイル13に対向する受電コイル22の長さをJ1とし、受電コイル22の幅をm(図2(b)参照)とすると、J1×mとなる。   In FIG. 4, first, let us consider a portion where the power receiving coil 22 and the power transmitting coil 13 face each other. In the case of the position P1, the distance (vertical direction) between the power transmission coil 13 and the power reception coil 22 is H1, which is the shortest distance among the positions P1 to P3. The area of the power receiving coil 22 facing the power transmitting coil 13 is J1 × m, where J1 is the length of the power receiving coil 22 facing the power transmitting coil 13 and m is the width of the power receiving coil 22 (see FIG. 2B). It becomes.

同様に、位置P2、P3の場合には、送電コイル13と受電コイル22との距離(垂直方向)はそれぞれH2、H3となり、送電コイル13に対向する受電コイル22の面積はそれぞれJ2×m、J3×mとなる。ここで、図2に示すように、受電コイル22の幅mが、送電コイル13の幅n1よりも短いものとすると、(1)式の関係が得られる。   Similarly, in the case of the positions P2 and P3, the distances (vertical direction) between the power transmission coil 13 and the power reception coil 22 are H2 and H3, respectively, and the area of the power reception coil 22 facing the power transmission coil 13 is J2 × m, J3 × m. Here, as shown in FIG. 2, when the width m of the power receiving coil 22 is shorter than the width n1 of the power transmitting coil 13, the relationship of the expression (1) is obtained.

H1<H2<H3、J1<J2<J3、J1×m<J2×m<J3×m…(1)
次に受電コイル22と送電コイル14とが対向する部分について考えてみる。受電コイル22が位置P1にある場合には、送電コイル14と受電コイル22との距離(水平方向)はW1で、位置P1〜P3の中では最も近距離となる。送電コイル14に対向する受電コイル22の面積は、送電コイル14に対向する受電コイル22の長さをK1とすると、K1×mとなる。同様に、位置P2、P3の場合には、送電コイル14に対向する受電コイル22の長さはK2、K3、送電コイル14と受電コイル22との距離(水平方向)はそれぞれW2、W3となり、送電コイル14に対向する受電コイル22の面積はそれぞれK2×m、K3×mとなる。ここで、図2に示すように、受電コイル22の幅mが、送電コイル14の幅n2よりも小さいものとすると、(2)式の関係が得られる。
H1 <H2 <H3, J1 <J2 <J3, J1 * m <J2 * m <J3 * m (1)
Next, consider the part where the power receiving coil 22 and the power transmitting coil 14 face each other. When the power receiving coil 22 is at the position P1, the distance (horizontal direction) between the power transmitting coil 14 and the power receiving coil 22 is W1, which is the shortest distance among the positions P1 to P3. The area of the power reception coil 22 facing the power transmission coil 14 is K1 × m, where K1 is the length of the power reception coil 22 facing the power transmission coil 14. Similarly, in the case of the positions P2 and P3, the length of the power receiving coil 22 facing the power transmission coil 14 is K2 and K3, and the distance (horizontal direction) between the power transmission coil 14 and the power receiving coil 22 is W2 and W3, respectively. The areas of the power receiving coil 22 facing the power transmitting coil 14 are K2 × m and K3 × m, respectively. Here, as shown in FIG. 2, when the width m of the power receiving coil 22 is smaller than the width n2 of the power transmitting coil 14, the relationship of the expression (2) is obtained.

W1<W2<W3、K1<K2<K3、K1×m<K2×m<K3×m…(2)
以上の関係を一覧にまとめると、図5(a)のようになる。図5(a)において、距離Hは送電コイル13と受電コイル22との距離、対向面積(13−22)は、送電コイル13に対向する受電コイル22の面積、距離Wは送電コイル14と受電コイル22との距離、対向面積(14−22)は、送電コイル14に対向する受電コイル22の面積を示す。
W1 <W2 <W3, K1 <K2 <K3, K1 × m <K2 × m <K3 × m (2)
The above relationships are summarized in a list as shown in FIG. In FIG. 5A, the distance H is the distance between the power transmission coil 13 and the power receiving coil 22, the facing area (13-22) is the area of the power receiving coil 22 facing the power transmitting coil 13, and the distance W is the power receiving coil 14 and power receiving. The distance to the coil 22 and the facing area (14-22) indicate the area of the power receiving coil 22 that faces the power transmitting coil 14.

一般に、コイル間の距離が近いほど、また、対向するコイルの面積が大きいほど、結合係数kは大きくなる傾向にある。そこで、定性的ではあるが、受電コイル22の位置がP2の場合の距離、対向面積を基準(○)とし、結合係数kが大きくなる要素は(◎)、小さくなる要素は(△)として表現すると、図5(a)は、(1)式及び(2)式の関係から図5(b)のように書き換えることができる。   Generally, the coupling coefficient k tends to increase as the distance between the coils is shorter and the area of the opposing coils is larger. Therefore, although qualitatively, the distance and the facing area when the position of the power receiving coil 22 is P2 are set as a reference (◯), the element that increases the coupling coefficient k is expressed as (◎), and the element that decreases is expressed as (△). Then, FIG. 5A can be rewritten as shown in FIG. 5B from the relationship between the expressions (1) and (2).

図5(b)に示すように、受電コイル22の位置がP1にある場合のように、距離H及びWが小さくなると結合係数kが大きくなるが、その反面、対向面積(13−22)及び(14−22)の和が小さくなることにより結合係数kが小さくなるため、結果として相殺されて結合係数kは受電コイル22の位置が変わっても殆ど変わらない。また受電コイル22の位置がP3にある場合のように、距離H及びWが大きくなると結合係数kが小さくなるが、その反面、対向面積(13−22)及び(14−22)の和が大きくなることにより結合係数kが大きくなるため、結果として相殺されて、結合係数kは受電コイル22の位置が変わっても殆ど変わらない。つまり、送電コイル13、14と受電コイル22間の距離が変化すると、送電コイル13、14と受電コイル22の対向面積は相補的に変化する。   As shown in FIG. 5B, the coupling coefficient k increases as the distances H and W decrease as in the case where the position of the power receiving coil 22 is P1, but on the other hand, the opposing area (13-22) and Since the coupling coefficient k becomes smaller as the sum of (14-22) becomes smaller, the coupling coefficient k is canceled as a result, and the coupling coefficient k hardly changes even if the position of the power receiving coil 22 changes. Further, as the distance H and W increase as in the case where the position of the power receiving coil 22 is P3, the coupling coefficient k decreases, but on the other hand, the sum of the opposing areas (13-22) and (14-22) increases. As a result, the coupling coefficient k becomes large and is canceled as a result. The coupling coefficient k hardly changes even if the position of the power receiving coil 22 is changed. That is, when the distance between the power transmission coils 13 and 14 and the power reception coil 22 changes, the facing area between the power transmission coils 13 and 14 and the power reception coil 22 changes complementarily.

したがって、図4に示すように、受電コイル22の位置が送電コイル13、14に対してP1〜P3のように位置を変えても、結合係数kがほとんど変化しない電力伝送装置を提供することができる。   Therefore, as shown in FIG. 4, it is possible to provide a power transmission device in which the coupling coefficient k hardly changes even if the position of the power receiving coil 22 is changed from P1 to P3 with respect to the power transmitting coils 13 and 14. it can.

次に、図6に示すように、受電コイル22を送電コイル13に沿って水平方向に動かした場合の結合係数kの変化について説明する。受電コイル22と送電コイル13間の距離H1(垂直方向)は一定とする。   Next, as shown in FIG. 6, a change in the coupling coefficient k when the power receiving coil 22 is moved in the horizontal direction along the power transmitting coil 13 will be described. The distance H1 (vertical direction) between the power receiving coil 22 and the power transmitting coil 13 is constant.

図7(a)は、受電コイル22が送電コイル13及び14に最も近づく位置P1から、送電コイル13に沿って動き、位置P4、P5になった場合の、送電コイル13と受電コイル22との距離H、送電コイル13に対向する受電コイル22の対向面積(13−22)、送電コイル14と受電コイル22との距離W、送電コイル14に対向する受電コイル22の対向面積(14−22)をそれぞれ示す。尚、受電コイルの位置P1は、図4に示す位置P1と同じである。   FIG. 7A illustrates the relationship between the power transmission coil 13 and the power reception coil 22 when the power reception coil 22 moves from the position P1 closest to the power transmission coils 13 and 14 along the power transmission coil 13 to positions P4 and P5. Distance H, facing area (13-22) of the power receiving coil 22 facing the power transmitting coil 13, distance W between the power transmitting coil 14 and the power receiving coil 22, and facing area (14-22) of the power receiving coil 22 facing the power transmitting coil 14. Respectively. The power receiving coil position P1 is the same as the position P1 shown in FIG.

受電コイル22は、送電コイル13に沿って点Pから離れる方向に動かすため、距離HはH1で一定であり、また対向面積(14−22)もK1×mで一定である。したがって、変化するパラメータは対向面積(13−22)と距離Wとなり、(3)式が得られる。   Since the power receiving coil 22 moves in the direction away from the point P along the power transmitting coil 13, the distance H is constant at H1, and the facing area (14-22) is also constant at K1 × m. Therefore, the changing parameters are the facing area (13-22) and the distance W, and the expression (3) is obtained.

J1<J4<J5、W1<W4<W5、J1×m<J4×m<J5×m…(3)
受電コイル22の位置がP4の場合の距離H、Wと、対向面積(13−22、14−22)を基準(○)とし、結合係数kが大きくなる要素は(◎)、小さくなる要素は(△)として表現すると、図7(a)は、(3)式の関係から、図7(b)のように書き換えることができる。
J1 <J4 <J5, W1 <W4 <W5, J1 × m <J4 × m <J5 × m (3)
When the position of the power receiving coil 22 is P4, the distances H and W and the facing areas (13-22, 14-22) are set as a reference (◯), the element that increases the coupling coefficient k is (◎), and the element that decreases Expressed as (Δ), FIG. 7 (a) can be rewritten as shown in FIG. 7 (b) from the relationship of the expression (3).

図7(b)に示すように、受電コイル22の位置がP1にある場合のように、対向面積(13−22)が小さくなると結合係数kが小さくなるが、その反面、距離Wが小さくなることで結合係数kが大きくなるため、結果として相殺されて結合係数kは受電コイル22の位置が変わっても殆ど変わらない。また受電コイル22の位置がP5にある場合のように、対向面積(13−22)が大きくなると結合係数kが大きくなるが、その反面、距離Wが大きくなることにより結合係数kが小さくなるため、結果として相殺されて、結合係数kは受電コイル22の位置が変わっても殆ど変わらない。     As shown in FIG. 7B, the coupling coefficient k decreases as the facing area (13-22) decreases as in the case where the position of the power receiving coil 22 is P1, but on the other hand, the distance W decreases. As a result, the coupling coefficient k is increased, and as a result, the coupling coefficient k is canceled and the coupling coefficient k hardly changes even if the position of the power receiving coil 22 is changed. Further, the coupling coefficient k increases as the facing area (13-22) increases as in the case where the position of the power receiving coil 22 is P5. On the other hand, the coupling coefficient k decreases because the distance W increases. As a result, the coupling coefficient k is hardly changed even if the position of the power receiving coil 22 is changed.

したがって、図6に示すように、受電コイル22が送電コイル13、14に対して、P1、P4、P5のように位置を変えても、結合係数kがほとんど変化しない電力伝送装置を提供することができる。   Therefore, as shown in FIG. 6, it is possible to provide a power transmission device in which the coupling coefficient k hardly changes even when the power receiving coil 22 changes its position relative to the power transmitting coils 13 and 14 like P1, P4, and P5. Can do.

同様の考え方で、受電コイル22を垂直方向に移動させた場合には、距離Hが小さくなると結合係数kが大きくなるが、その反面、対向面積(14−22)が小さくなるため、結果として相殺されて結合係数kは受電コイル22の位置が変わっても殆ど変わらない。また距離Hが大きくなると結合係数kが小さくなるが、その反面、対向面積(14−22)が大きくなることにより結合係数kが大きくなるため、結果として相殺されて、結合係数kは受電コイル22の位置が変わっても殆ど変わらない。   In the same way, when the power receiving coil 22 is moved in the vertical direction, the coupling coefficient k increases as the distance H decreases, but on the other hand, the opposing area (14-22) decreases, resulting in cancellation. Thus, the coupling coefficient k hardly changes even if the position of the power receiving coil 22 is changed. In addition, the coupling coefficient k decreases as the distance H increases, but on the other hand, the coupling coefficient k increases as the facing area (14-22) increases, and as a result, the coupling coefficient k is canceled out. Almost no change even if the position of.

上述したように、第1の実施形態によれば、受電コイル22の位置が、送電コイル13、14に対して水平及び垂直方向に移動しても、水平方向または垂直方向のみに移動しても、結合係数kがほとんど変化しない電力伝送装置を提供することができる。   As described above, according to the first embodiment, even if the position of the power receiving coil 22 moves in the horizontal and vertical directions with respect to the power transmitting coils 13 and 14, it moves only in the horizontal direction or the vertical direction. A power transmission device in which the coupling coefficient k hardly changes can be provided.

次に、従来の場合の結合係数kと、本実施形態における電力伝送装置との結合係数kを、実際に測定して比較した結果を、図8〜図11を用いて説明する。   Next, the results of actual measurement and comparison of the coupling coefficient k in the conventional case and the coupling coefficient k between the power transmission device in the present embodiment will be described with reference to FIGS.

図8(a)は、非接触で電力伝送を行う一般的な電力伝送装置の構成を示している。送電装置30は交流電源31、共振用コンデンサ32、送電コイル33等から成る。また受電装置40は、受電コイル41、共振用コンデンサ42、整流回路43、負荷回路44等から成る。図8(b)は、送電コイル33と受電コイル41の一例を示し、例えば平板状の送電コイル33と受電コイル41を対向して配置している。   FIG. 8A shows a configuration of a general power transmission device that performs power transmission without contact. The power transmission device 30 includes an AC power supply 31, a resonance capacitor 32, a power transmission coil 33, and the like. The power receiving device 40 includes a power receiving coil 41, a resonance capacitor 42, a rectifier circuit 43, a load circuit 44, and the like. FIG. 8B shows an example of the power transmission coil 33 and the power reception coil 41. For example, the flat power transmission coil 33 and the power reception coil 41 are arranged to face each other.

結合係数kは、自己インダクタンスLopen と漏れインダクタンスLsc を実測し、式(4)により求めることができる。

Figure 0006140786
The coupling coefficient k can be obtained from Equation (4) by actually measuring the self-inductance Lopen and the leakage inductance Lsc.
Figure 0006140786

図9は、電力伝送装置での結合係数kの測定系を示す図である。図9に示すように、一方のコイル51をLCRメータ等の測定器50に接続し、他方のコイル52の両端53、54が開放の場合の、自己インダクタンスLopenと、両端53、54を短絡したときの漏れインダクタンスLscとをそれぞれ測定器50で測定し、式(4)により結合係数kを求める。   FIG. 9 is a diagram illustrating a measurement system for the coupling coefficient k in the power transmission device. As shown in FIG. 9, one coil 51 is connected to a measuring instrument 50 such as an LCR meter, and both ends 53 and 54 of the other coil 52 are short-circuited, and the self-inductance Lopen and both ends 53 and 54 are short-circuited. And the leakage inductance Lsc are measured by the measuring device 50, and the coupling coefficient k is obtained by the equation (4).

図8(b)に示す、平板状の送電コイル33と受電コイル41との間隔、即ち送受コイル間の距離を変化させたときの結合係数kの測定結果を図10の点線Bに示す。ここで、使用した送電コイル33及び受電コイル41のサイズは、渦巻き状のコイルパターンの外形寸法が直径約100mmで、100kHzで測定した場合のインダクタンス値は約2.5μHである。   A measurement result of the coupling coefficient k when the distance between the flat power transmission coil 33 and the power reception coil 41 shown in FIG. 8B, that is, the distance between the transmission and reception coils is changed, is shown by a dotted line B in FIG. Here, the size of the power transmission coil 33 and the power reception coil 41 used is such that the outer dimension of the spiral coil pattern is about 100 mm in diameter, and the inductance value when measured at 100 kHz is about 2.5 μH.

送受コイル間距離が10mmのときの結合係数kは0.42で、送受コイル間距離が長くなるにしたがって結合係数kは減少し、送受コイル間の距離が30mmのときには結合係数kは0.21まで低下する。送受コイル間距離が10mm〜30mmの範囲において、結合係数kは、0.315±33%の範囲で変化する。送受コイル間の距離が20mm程度(コイルの直径の20%の距離に相当)の変化で、結合係数kが±33%の範囲で変化するのは、コイルの直径(100mm)と送受コイル間距離(20mm)との比率(20%)からみて、ごく一般的と考えられる。   When the distance between the transmitting and receiving coils is 10 mm, the coupling coefficient k is 0.42. The coupling coefficient k decreases as the distance between the transmitting and receiving coils increases, and when the distance between the transmitting and receiving coils is 30 mm, the coupling coefficient k is 0.21. To fall. When the distance between the transmitting and receiving coils is in the range of 10 mm to 30 mm, the coupling coefficient k changes in the range of 0.315 ± 33%. When the distance between the transmitting and receiving coils is about 20 mm (corresponding to a distance of 20% of the coil diameter), the coupling coefficient k changes in the range of ± 33% because the coil diameter (100 mm) and the distance between the transmitting and receiving coils From the ratio (20%) with (20 mm), it is considered very general.

一方、第1の実施形態における電力伝送装置の送電コイル13、14と受電コイル22を使用した場合の結合係数kの変化を測定した結果を、図10の実線Aに示す。送電コイル13、14は、図2(a)に示すような形状で、例えば銅線でコイルを形成し、いずれも渦巻き状のコイルパターンの外形寸法が約120mm×70mmで、コイルの幅n1=n2=120mmである。100kHzで測定した場合のインダクタンス値はそれぞれ約1.25μHで、送電コイル13と送電コイル14とを直列に接続し、合計約2.5μHとなっている。   On the other hand, the result of measuring the change in the coupling coefficient k when using the power transmission coils 13 and 14 and the power receiving coil 22 of the power transmission device in the first embodiment is shown by a solid line A in FIG. The power transmission coils 13 and 14 have a shape as shown in FIG. 2A, for example, a coil is formed of a copper wire, and the spiral coil pattern has an outer dimension of about 120 mm × 70 mm, and the coil width n1 = n2 = 120 mm. The inductance value when measured at 100 kHz is about 1.25 μH, and the power transmission coil 13 and the power transmission coil 14 are connected in series, and the total is about 2.5 μH.

受電コイル22は、図2(b)に示すような形状で、1つの平面にしたときの渦巻き状のコイルパターンの外形寸法が約100mm×100mmで、これを1つの面が約50mm×100mmとなるように略直角に折り曲げる。折り曲げ部29については、適当なR(円弧)を持たせている。受電コイル22も、例えば銅線等で形成する。尚、図2(b)の受電コイル22の幅mは100mmである。送電コイル13、14を配置したときの断面図は、図3に示すようになっているが、面17と面18とが交わる点Pからの距離L1、L2は、いずれも20mm程度としている。尚、送電コイル13と送電コイル14の長さL13、L14は、それぞれ70mmである。   The receiving coil 22 has a shape as shown in FIG. 2B, and the outer dimension of the spiral coil pattern when it is formed into one plane is about 100 mm × 100 mm, and one surface is about 50 mm × 100 mm. Bend at approximately a right angle so that The bent portion 29 has an appropriate R (arc). The power receiving coil 22 is also formed of, for example, a copper wire. In addition, the width m of the receiving coil 22 of FIG.2 (b) is 100 mm. The cross-sectional view when the power transmission coils 13 and 14 are arranged is as shown in FIG. 3, but the distances L1 and L2 from the point P where the surface 17 and the surface 18 intersect are both about 20 mm. In addition, length L13, L14 of the power transmission coil 13 and the power transmission coil 14 is 70 mm, respectively.

簡単化のために、受電コイル22を動かす方向は、図4に示すY方向のみとし、受電コイル22と送電コイル13との距離Hは、受電コイル22と送電コイル14との距離Wにそれぞれ等しいものとする。したがって、送受コイル間の距離が10mmの場合は、距離Hと、距離Wはともに10mm、送受コイル間の距離が30mmの場合は、距離Hと、距離Wはともに30mm、などとなる。   For simplification, only the Y direction shown in FIG. 4 is used to move the power receiving coil 22, and the distance H between the power receiving coil 22 and the power transmitting coil 13 is equal to the distance W between the power receiving coil 22 and the power transmitting coil 14. Shall. Therefore, when the distance between the transmitting and receiving coils is 10 mm, the distance H and the distance W are both 10 mm, and when the distance between the transmitting and receiving coils is 30 mm, the distance H and the distance W are both 30 mm.

図10の実線Aに示す結果のように、本実施形態の構成では、送受コイル間距離が10mm〜30mmの範囲で変化しても、結合係数kは0.13〜0.16の範囲でしか変化せず、0.145±10%となっている。したがって、従来の特性Bよりも、結合係数kの変化率は約1/3になっており、結合係数kの変化率が大幅に減少していることがわかる。   As shown by the solid line A in FIG. 10, in the configuration of the present embodiment, the coupling coefficient k is only in the range of 0.13 to 0.16 even if the distance between the transmitting and receiving coils varies in the range of 10 to 30 mm. It does not change and is 0.145 ± 10%. Therefore, the change rate of the coupling coefficient k is about 1/3 that of the conventional characteristic B, and it can be seen that the change rate of the coupling coefficient k is greatly reduced.

次に、図10に示したように、コイル間の距離の変化によって結合係数kが変化した場合に、受電装置20または40で受電できる電力がどのように変化するかを、図11を用いて説明する。   Next, as shown in FIG. 10, when the coupling coefficient k changes due to the change in the distance between the coils, how the power that can be received by the power receiving device 20 or 40 changes will be described with reference to FIG. explain.

受電できる電力とは、受電装置20、40が送電装置10、30から非接触で電力を受電し、整流回路24、43で交流を直流に整流した後の電力を指す。負荷回路25、44の代わりに電子負荷等の測定装置を用いて、受電電力を測定する。また測定では、外部から送電装置10、30内の交流電源11、31に供給する電圧は一定の電圧、例えば直流24Vを印加する。   The power that can be received refers to the power after the power receiving devices 20 and 40 receive power from the power transmitting devices 10 and 30 in a non-contact manner and the rectification circuits 24 and 43 rectify alternating current into direct current. The received power is measured using a measuring device such as an electronic load instead of the load circuits 25 and 44. In the measurement, a constant voltage, for example, DC 24 V, is applied to the AC power supplies 11 and 31 in the power transmission devices 10 and 30 from the outside.

図11の点線Bは、従来の構成(図8)の場合の測定結果であり、コイル間の距離が20mmのときに受電電力が26Wで最大となるが、コイル間の距離が20mmよりも近づく、或いは20mmよりも遠ざかると急激に受電電力は低下し、コイル間距離が10mm及び30mmでは5W程度の受電電力しか得られない結果となった。図示していないが、電力伝送効率もコイル間距離が20mmのときに最大となり、コイル間距離が20mmからずれると電力伝送効率は大きく低下する傾向にある。   The dotted line B in FIG. 11 is a measurement result in the case of the conventional configuration (FIG. 8), and when the distance between the coils is 20 mm, the received power is maximum at 26 W, but the distance between the coils is closer than 20 mm. Alternatively, when the distance is longer than 20 mm, the received power is drastically reduced. When the distance between the coils is 10 mm and 30 mm, only about 5 W of received power is obtained. Although not shown, the power transmission efficiency is maximized when the distance between the coils is 20 mm, and the power transmission efficiency tends to greatly decrease when the distance between the coils deviates from 20 mm.

言い換えると、コイル間距離が20mmから±10mmずれた位置において、受電電力はコイル間の距離が20mmのときの約20%に低下する。また、例えば負荷回路44を動作させるために20Wの電力が必要な場合には、コイル間距離は20mm±2.5mm程度の非常に狭い範囲に抑える必要がある。   In other words, at a position where the distance between the coils is shifted by ± 10 mm from 20 mm, the received power is reduced to about 20% when the distance between the coils is 20 mm. For example, when 20 W of electric power is required to operate the load circuit 44, the distance between the coils needs to be limited to a very narrow range of about 20 mm ± 2.5 mm.

一方、図11の実線Aは、本実施形態の電力伝送装置の構成における測定結果であり、コイル間の距離が10mm〜30mmにおいて、20W〜27W程度の受電電力が得られている。言い換えると、コイル間距離が、20mm±10mmの範囲で変化しても、受電電力はコイル間距離が20mmのときの104%〜77%の範囲でしか変化しない。従来の特性Bと比較すると、コイル間の距離の変化に対する受電電力の変化が、非常に緩やかな特性が得られている。図示していないが、電力伝送効率に関してもコイル間距離が20mm±10mmの範囲でほとんど変化しない値が得られている。   On the other hand, a solid line A in FIG. 11 is a measurement result in the configuration of the power transmission device of the present embodiment, and received power of about 20 W to 27 W is obtained when the distance between the coils is 10 mm to 30 mm. In other words, even if the inter-coil distance changes within a range of 20 mm ± 10 mm, the received power changes only within the range of 104% to 77% when the inter-coil distance is 20 mm. Compared to the conventional characteristic B, a characteristic in which the change in the received power with respect to the change in the distance between the coils is very gradual is obtained. Although not shown in the figure, a value that hardly changes in the range of the distance between the coils of 20 mm ± 10 mm is obtained with respect to the power transmission efficiency.

図11の特性Aが得られる理由は、図10の特性Aに示したように、コイル間距離が変化しても結合係数kがほとんど変化しない特性によるもので、コイル間の距離が長くなるに従って受電電力が多少低下する傾向はみられるが、低下の割合は僅かであり、コイル間距離が10mm〜30mmにおいて20W以上の受電電力が得られる。したがって、例えば負荷回路25の動作に20Wの電力が必要な場合には、コイル間距離が10mm〜30mmの範囲で使うことが可能となり、±2.5mmの範囲でしか使えなかった従来例よりも大幅に改善できる。   The reason why the characteristic A in FIG. 11 is obtained is because the coupling coefficient k hardly changes even if the distance between the coils changes as shown in the characteristic A in FIG. Although there is a tendency for the received power to decrease somewhat, the rate of decrease is small, and a received power of 20 W or more can be obtained when the distance between the coils is 10 mm to 30 mm. Therefore, for example, when 20 W of electric power is required for the operation of the load circuit 25, the distance between the coils can be used in the range of 10 mm to 30 mm, which is more than the conventional example that can be used only in the range of ± 2.5 mm. Can greatly improve.

また従来、結合係数kの変化に応じて回路定数を変化させるような制御回路なしでは想定できなかったような、コイル間距離の変化に対して非常に安定した受電電力特性が得られる。同時に、電力伝送効率を高い値で維持することも可能になる。   Conventionally, it is possible to obtain received power characteristics that are very stable with respect to changes in the distance between the coils, which cannot be assumed without a control circuit that changes the circuit constant according to the change in the coupling coefficient k. At the same time, the power transmission efficiency can be maintained at a high value.

尚、上述した実施形態では、送電コイル13及び送電コイル14を直列に接続する例を示した。図1に示した共振素子15の共振に必要なインダクタンス値をLとすると、コイルを直列に接続することで、送電コイル13及び送電コイル14のインダクタンス値は、L/2ずつで済む。ただし、L/2ずつに限定する必要はなく、送電コイル13と送電コイル14のインダクタンス値の和がLになっていればよい。   In addition, in embodiment mentioned above, the example which connects the power transmission coil 13 and the power transmission coil 14 in series was shown. Assuming that the inductance value necessary for resonance of the resonance element 15 shown in FIG. 1 is L, the inductance values of the power transmission coil 13 and the power transmission coil 14 may be L / 2 each by connecting the coils in series. However, it is not necessary to limit to L / 2 each, and the sum of the inductance values of the power transmission coil 13 and the power transmission coil 14 may be L.

図12は、送電コイル13と送電コイル14を並列に接続した例を示す。送電コイル13と送電コイル14を並列に接続しても、直列接続の場合と同様に、コイル間距離が変化しても結合係数kが変化しにくい特性が得られる。但し、図1の端子Aからみたインダクタンス値が、直列接続の場合と同様のインダクタンス値Lとなるためには、送電コイル13と送電コイル14のインダクタンス値は、直列接続の場合の4倍(送電コイル13と送電コイル14でそれぞれ2L)とする必要がある。したがって、送電コイル13と送電コイル14を直列に接続する方がコイルの巻き数を少なく済ませられるという利点がある。   FIG. 12 shows an example in which the power transmission coil 13 and the power transmission coil 14 are connected in parallel. Even if the power transmission coil 13 and the power transmission coil 14 are connected in parallel, the characteristic that the coupling coefficient k hardly changes even if the distance between the coils is changed is obtained as in the case of the series connection. However, in order for the inductance value viewed from the terminal A in FIG. 1 to be the same inductance value L as in the case of series connection, the inductance value of the power transmission coil 13 and the power transmission coil 14 is four times that in the case of series connection (power transmission The coil 13 and the power transmission coil 14 need to be 2L). Therefore, there is an advantage that the number of turns of the coil can be reduced by connecting the power transmission coil 13 and the power transmission coil 14 in series.

一方、受電コイル22においても、図2(b)に示したような、1つのコイルを折り曲げた形状以外に、2つのコイルを直列または並列に接続し、例えば図13(a)、(b)に示すような構成とすることもできる。   On the other hand, in the power receiving coil 22 as well, two coils are connected in series or in parallel in addition to the shape in which one coil is bent as shown in FIG. 2B, for example, FIGS. 13A and 13B. A configuration as shown in FIG.

図13(a)は、受電コイル22として、2つのコイル221、222を直列に接続した例である。図13(b)は、受電コイル22として、2つのコイル223、224を並列に接続した例である。図13(a)、(b)のいずれも、図1に示した共振用コンデンサ21と受電コイル221、222(または223、224)から構成される共振素子23の自己共振周波数は、送電用の共振素子15の自己共振周波数とほぼ同じになるように、各コイルのインダクタンス値や共振用コンデンサ21の値を調整する。   FIG. 13A shows an example in which two coils 221 and 222 are connected in series as the power receiving coil 22. FIG. 13B shows an example in which two coils 223 and 224 are connected in parallel as the power receiving coil 22. 13 (a) and 13 (b), the self-resonant frequency of the resonant element 23 composed of the resonant capacitor 21 and the power receiving coils 221, 222 (or 223, 224) shown in FIG. The inductance value of each coil and the value of the resonance capacitor 21 are adjusted so as to be substantially the same as the self-resonance frequency of the resonance element 15.

図14は、受電コイル22を2つのコイルで構成し、直列または並列に接続したときの、送電コイル13、14との位置関係を示す図である。図14の位置関係は、基本的に図3と同様であり、受電コイル221、222(又は223、224)が送電コイル13、14に最も近接する場合において、送電コイル13に対向する受電コイル221(又は223)は、距離L5、L6だけずれるように、点P側にずらして配置する。   FIG. 14 is a diagram illustrating a positional relationship with the power transmission coils 13 and 14 when the power reception coil 22 is configured by two coils and connected in series or in parallel. The positional relationship in FIG. 14 is basically the same as that in FIG. 3, and the power receiving coil 221 that faces the power transmitting coil 13 when the power receiving coils 221, 222 (or 223, 224) are closest to the power transmitting coils 13, 14. (Or 223) is shifted to the point P side so as to be shifted by the distances L5 and L6.

また、送電コイル14に対向する受電コイル222(又は224)は、距離L7、L8だけずれるように、点P側にずらして配置する。図14のように送電コイル及び受電コイルを配置することで、コイル間距離が変化しても結合係数kが変化しにくい特性が得られる。   Further, the power receiving coil 222 (or 224) facing the power transmitting coil 14 is shifted to the point P side so as to be shifted by the distances L7 and L8. By arranging the power transmission coil and the power reception coil as shown in FIG. 14, it is possible to obtain a characteristic that the coupling coefficient k hardly changes even when the distance between the coils changes.

次に、電力伝送装置の送電コイル13、14及び受電コイル22の巻き方または接続方法の制約について説明する。   Next, restrictions on how to wind or connect the power transmission coils 13 and 14 and the power reception coil 22 of the power transmission device will be described.

図15は、送電コイル13、14及び受電コイル22に発生する磁界と電流の向きを表したものである。送電コイル13と14は、直列に接続しており、送電コイル13の内周端を送電コイル14の外周端に接続している。尚、送電コイル13、14には交流の電流が供給されるため、時間とともに電流の向きは変わっていくが、ここではある瞬間における動作について説明する。   FIG. 15 shows the direction of the magnetic field and current generated in the power transmission coils 13 and 14 and the power reception coil 22. The power transmission coils 13 and 14 are connected in series, and the inner peripheral end of the power transmission coil 13 is connected to the outer peripheral end of the power transmission coil 14. In addition, since an alternating current is supplied to the power transmission coils 13 and 14, the direction of the current changes with time. Here, the operation at a certain moment will be described.

送電コイル13、14には、ある時点では、交流電源11から、矢印IA1〜IA5の向きに電流が供給される。送電コイル13を流れるIA1、IA2の向きの電流により、送電コイル13には矢印B1で示す向きの磁界が発生し、送電コイル14を流れるIA3、IA4の向きの電流により送電コイル14には矢印B2で示す向きの磁界が発生する。   At a certain point in time, current is supplied from the AC power supply 11 to the power transmission coils 13 and 14 in the directions of arrows IA1 to IA5. The current in the direction of IA1 and IA2 flowing through the power transmission coil 13 generates a magnetic field in the direction indicated by the arrow B1 in the power transmission coil 13, and the current in the direction of IA3 and IA4 flowing through the power transmission coil 14 in the direction of the arrow B2 A magnetic field in the direction indicated by is generated.

図3に示したように、送電コイル13、14に受電コイル22を重ねて電力伝送することになるが、このとき受電コイル22には、電磁結合の作用により送電コイル13、14で発生した磁界B1及びB2とは逆向きのB3、B4で示す磁界が発生し、受電コイル22には矢印Ia1〜Ia5の向きに電流が流れる。尚、電流Ia1〜Ia5の向きは、端部B、B’から見て一方向となっており、互いに打ち消す方向にはなっていない。   As shown in FIG. 3, the power receiving coil 22 is superimposed on the power transmission coils 13 and 14 to transmit power. At this time, the power receiving coil 22 has a magnetic field generated in the power transmission coils 13 and 14 by the action of electromagnetic coupling. Magnetic fields indicated by B3 and B4 opposite to B1 and B2 are generated, and a current flows through the power receiving coil 22 in the directions of arrows Ia1 to Ia5. The directions of the currents Ia1 to Ia5 are one direction as viewed from the end portions B and B ', and are not in a direction to cancel each other.

このように、受電コイル22に発生する電流の向きが一方向になるように、送電コイル13、14のコイルの巻く方向、又は電流の流れる向きを考慮して設置することで、受電コイル22を介して電力を取り出すことができる。換言すると、ある時点においては、送電コイル13、14に流れる電流によって発生する磁界が、どちらも送電コイル13及び14から受電コイル22側の向き、即ちB1及びB2で示す磁界の向きになるように、送電コイル13、14の巻く向きや接続方法を決定する。   Thus, the power receiving coil 22 is installed by taking into consideration the direction in which the coils of the power transmission coils 13 and 14 are wound or the direction in which the current flows so that the direction of the current generated in the power receiving coil 22 is one direction. Power can be taken out via In other words, at a certain point in time, the magnetic fields generated by the currents flowing through the power transmission coils 13 and 14 are both in the direction from the power transmission coils 13 and 14 toward the power reception coil 22, that is, in the direction of the magnetic field indicated by B 1 and B 2. The winding direction and connection method of the power transmission coils 13 and 14 are determined.

尚、送電コイル13、14に流れる電流は交流であるので、別の時点において電流は逆向きになり、送電コイル13、14に流れる電流によって送電コイル13及び14から発生する磁界は、図15に示す磁界B1、B2の向きとは逆向きになる。但し、磁界B1、B2の向きが、どちらか一方のみ逆向きになるということはない。   In addition, since the electric current which flows into the power transmission coils 13 and 14 is an alternating current, an electric current becomes reverse direction at another time, The magnetic field which generate | occur | produces from the power transmission coils 13 and 14 by the current which flows into the power transmission coils 13 and 14 is shown in FIG. The directions of the magnetic fields B1 and B2 shown are opposite. However, only one of the magnetic fields B1 and B2 is not reversed.

図16は、受電コイル22から電力を取り出せない一例を示す。図16において、送電コイル13と14は直列に接続しているが、送電コイル13の内周端を送電コイル14の内周端に接続したものである。図16では、送電コイル14に流れる電流の向きが、図15に示す例と逆向きになっている。即ち、送電コイル13に流れる電流の向きIB1〜IB3は、図15に示した電流の向きIA1、IA5と同じ向きであるが、送電コイル14に流れる電流の向きIB4〜IB6は、図15に示した送電コイル14に流れる電流の向きIA3、IA4とは逆向きになっている。   FIG. 16 shows an example in which power cannot be extracted from the power receiving coil 22. In FIG. 16, the power transmission coils 13 and 14 are connected in series, but the inner peripheral end of the power transmission coil 13 is connected to the inner peripheral end of the power transmission coil 14. In FIG. 16, the direction of the current flowing through the power transmission coil 14 is opposite to the example shown in FIG. That is, the current directions IB1 to IB3 flowing in the power transmission coil 13 are the same as the current directions IA1 and IA5 shown in FIG. 15, but the current directions IB4 to IB6 flowing in the power transmission coil 14 are shown in FIG. The direction of current flowing in the power transmission coil 14 is opposite to IA3 and IA4.

したがって、IB1〜IB3の向きの電流によって送電コイル13に発生する磁界B1は図15と同じ向きであるが、IB4〜IB6の向きの電流によって送電コイル14に発生する磁界B5は、図15に示す例(磁界B2)と逆向きになる。   Therefore, the magnetic field B1 generated in the power transmission coil 13 by the current in the direction of IB1 to IB3 is the same as that in FIG. 15, but the magnetic field B5 generated in the power transmission coil 14 by the current in the direction of IB4 to IB6 is shown in FIG. The direction is opposite to that of the example (magnetic field B2).

送電コイル13、14に受電コイル22を重ねて電力伝送しようとする場合、受電コイル22には、電磁結合の作用で送電コイル13及び14により発生した磁界を打ち消すように、受電コイル22から送電コイル13に向かう磁界B3が発生し、Ib1〜Ib3の向きの電流が流れようとする。同時に、送電コイル14から受電コイル22に向かう磁界B6が発生し、Ic1〜Ic3の向きの電流が流れようとする。しかし、受電コイル22に発生する電流の向きIb1〜Ib3と電流の向きIc1〜Ic3は、逆向きであるため、打ち消しあってしまい、端部B、B’から電流を取り出すことができない。   When the power receiving coil 22 is superposed on the power transmitting coils 13 and 14 to transmit power, the power receiving coil 22 is connected to the power transmitting coil 22 so as to cancel the magnetic field generated by the power transmitting coils 13 and 14 by the action of electromagnetic coupling. 13 is generated, and a current in the direction of Ib1 to Ib3 tends to flow. At the same time, a magnetic field B6 from the power transmission coil 14 toward the power reception coil 22 is generated, and a current in the direction of Ic1 to Ic3 tends to flow. However, since the current directions Ib1 to Ib3 and the current directions Ic1 to Ic3 generated in the power receiving coil 22 are opposite to each other, they cancel each other, and the current cannot be extracted from the end portions B and B '.

したがって、単一のコイルで受電コイル22を構成する場合においては、送電コイル13及び14から発生する磁界の向きは、ある時点においては送電コイル13及び14から受電コイル22が置かれる側の向き、即ち磁界B1、B2の向きになり、また別の時点においては、磁界B1、B2とは逆の向きになるように、送電コイル13、14に電流を流す必要がある。また送電コイル13、14の巻き方、もしくは送電コイル13と14の接続の仕方を決める必要がある。   Therefore, when the power receiving coil 22 is configured by a single coil, the direction of the magnetic field generated from the power transmitting coils 13 and 14 is, at a certain point in time, the direction on the side where the power receiving coil 22 is placed, In other words, it is necessary to pass a current through the power transmission coils 13 and 14 so that the directions of the magnetic fields B1 and B2 are different and, at another point in time, the directions are opposite to the magnetic fields B1 and B2. Further, it is necessary to decide how to wind the power transmission coils 13 and 14 or how to connect the power transmission coils 13 and 14.

また受電コイル22が図13に示したように、2つのコイル221、222(又は223、224)を接続して成る場合には、受電コイル221、222(又は223、224)の向きや接続方法を変えることで、受電コイル22から電力が取り出せるようにする必要がある。   Further, when the power receiving coil 22 is formed by connecting two coils 221, 222 (or 223, 224) as shown in FIG. 13, the direction and connection method of the power receiving coils 221, 222 (or 223, 224) It is necessary to make it possible to extract electric power from the power receiving coil 22 by changing.

図17は、受電コイル22として2つのコイル221、222を用いた場合を例示しており、受電コイル221、222を直列に接続し、コイル221の内周端をコイル222の内周端に接続している。また送電コイル13、14には、図16に示したような、磁界B1、B5が発生するものとすると、電磁結合によって磁界B3、B6が発生し、Id1〜Id7の向きの電流が流れる。このとき、受電コイル221、222に発生する電流の向きは一方向となり、打ち消しあう方向にはならないため、受電した電力を端部B、B’から取り出すことができる。   FIG. 17 illustrates the case where two coils 221 and 222 are used as the power receiving coil 22. The power receiving coils 221 and 222 are connected in series, and the inner peripheral end of the coil 221 is connected to the inner peripheral end of the coil 222. doing. In addition, assuming that magnetic fields B1 and B5 as shown in FIG. 16 are generated in the power transmission coils 13 and 14, magnetic fields B3 and B6 are generated by electromagnetic coupling, and currents in the directions Id1 to Id7 flow. At this time, the direction of the current generated in the power receiving coils 221 and 222 is one direction and does not cancel each other, so that the received power can be taken out from the end portions B and B '.

受電コイル221、222のコイルの巻き方向や、接続の仕方はいくつかあるが、結局は、送電コイル13、14によって発生する磁界によって、受電コイルに生ずる電流の向きが、打ち消しあう方向にならないようにすることが重要である。   There are several coil winding directions and connection methods for the power receiving coils 221 and 222. Eventually, the direction of the current generated in the power receiving coils is not made to cancel out by the magnetic field generated by the power transmitting coils 13 and 14. It is important to make it.

尚、送電コイル13及び送電コイル14は、図3で説明したように、面17、18よりも筐体16の内側に配置する例を述べたが、図18に示すような配置にすることもできる。   In addition, although the power transmission coil 13 and the power transmission coil 14 described the example arrange | positioned inside the housing | casing 16 rather than the surfaces 17 and 18 as demonstrated in FIG. 3, arrangement | positioning as shown in FIG. it can.

図18は、送電コイル13及び送電コイル14を面17、18に対して傾斜させて筐体16内に配置した例である。つまり、送電コイル13と送電コイル13に対向する受電コイル22との間隔は一定である必要はなく、例えば、面17と面18との交点Pに近い部分での送電コイル13と受電コイル22との間隔をH6とし、交点Pから遠い部分での送電コイル13と受電コイル22との間隔をHH7としたとき、H6>H7としている。換言すると、交点Pに近づくほど、送電コイル13と受電コイル22との間隔が離れるように、送電コイル13を配置する。   FIG. 18 is an example in which the power transmission coil 13 and the power transmission coil 14 are arranged in the housing 16 so as to be inclined with respect to the surfaces 17 and 18. That is, the interval between the power transmission coil 13 and the power reception coil 22 facing the power transmission coil 13 does not need to be constant. For example, the power transmission coil 13 and the power reception coil 22 at a portion near the intersection P between the surface 17 and the surface 18. H6> H7, where H6 is H6, and HH7 is the distance between the power transmission coil 13 and the power reception coil 22 in the portion far from the intersection P. In other words, the power transmission coil 13 is arranged so that the distance between the power transmission coil 13 and the power reception coil 22 increases as the intersection P is approached.

同様に、送電コイル14についても、送電コイル14に対向する受電コイル22との間隔は一定である必要はなく、例えば、交点Pに近い部分での送電コイル14と受電コイル22との間隔をW6とし、交点Pから遠い部分での送電コイル14と受電コイル22との間隔をW7としたとき、W6>W7としている。換言すると、交点Pに近づくほど、送電コイル14と受電コイル22との間隔が離れるように、送電コイル14を配置する。   Similarly, the distance between the power transmission coil 14 and the power reception coil 22 does not need to be constant with respect to the power transmission coil 14. For example, the distance between the power transmission coil 14 and the power reception coil 22 near the intersection P is W6. When the distance between the power transmission coil 14 and the power reception coil 22 at a portion far from the intersection P is W7, W6> W7. In other words, the power transmission coil 14 is arranged so that the distance between the power transmission coil 14 and the power reception coil 22 increases as the intersection P is approached.

また、送電コイル13、14の交点Pから遠い側の端部Q、Sは、受電コイル22の端部R、Tよりも外側、即ち点Pから離れた位置にあるように、送電コイル13、14を配置する。送電コイル13と送電コイル14との相対角度θ0は、90度よりも小さい値となっている。   Further, the end portions Q and S on the side farther from the intersection P of the power transmission coils 13 and 14 are outside the end portions R and T of the power receiving coil 22, that is, at a position away from the point P. 14 is arranged. The relative angle θ0 between the power transmission coil 13 and the power transmission coil 14 is a value smaller than 90 degrees.

図18のように、送電コイル13及び14を配置することにより、送電コイル13、14と受電コイル22との距離が変動しても、結合係数kが変化しにくい電力伝送装置を提供することができる。   As shown in FIG. 18, by disposing the power transmission coils 13 and 14, it is possible to provide a power transmission device in which the coupling coefficient k hardly changes even when the distance between the power transmission coils 13 and 14 and the power reception coil 22 varies. it can.

尚、図18では、送電コイル13及び送電コイル14の両方を、受電コイル22に対して斜めになるように設置する例を示したが、送電コイル13と14の一方を斜めに配置し、他方を受電コイル22と略平行となるように設置してもよい。   In addition, in FIG. 18, although the example which installed both the power transmission coil 13 and the power transmission coil 14 so that it might become diagonal with respect to the receiving coil 22 was shown, one of the power transmission coils 13 and 14 is arrange | positioned diagonally, and the other May be installed so as to be substantially parallel to the power receiving coil 22.

(第2の実施形態)
第2の実施形態は、送電装置10の筐体の形状を変えたものである。送電装置10上に、受電装置20を置く場合、受電装置20が適正な位置に置かれれば、適正な結合係数kが得られ、正常に電力伝送が行える(図3参照)。
(Second Embodiment)
In the second embodiment, the shape of the casing of the power transmission device 10 is changed. When the power receiving device 20 is placed on the power transmitting device 10, if the power receiving device 20 is placed at an appropriate position, an appropriate coupling coefficient k can be obtained and normal power transmission can be performed (see FIG. 3).

しかしながら、送電装置10に対して受電装置20の位置が大きくずれる場合がある。例えば図19に示すように、受電装置20がX方向に大きくずれて置かれ、受電コイル22の面17に沿った端部Rが、送電コイル13の端部Qに対して交点Pと逆方向に離れた場合には、送電コイル13と受電コイル22とが対向する面積が小さくなり、また送電コイル14と受電コイル22との距離が大きく離れてしまう。このため結合係数kは、適正値(図10の例で約0.15)よりも20%以上小さくなり、結果として電力伝送可能な電力が小さくなる。   However, the position of the power receiving device 20 may be greatly shifted with respect to the power transmitting device 10. For example, as shown in FIG. 19, the power receiving device 20 is placed greatly deviated in the X direction, and the end R along the surface 17 of the power receiving coil 22 is opposite to the intersection P with respect to the end Q of the power transmitting coil 13. When the distance between the power transmission coil 13 and the power reception coil 22 is reduced, the area where the power transmission coil 13 and the power reception coil 22 face each other is reduced, and the distance between the power transmission coil 14 and the power reception coil 22 is greatly increased. For this reason, the coupling coefficient k is 20% or more smaller than the appropriate value (about 0.15 in the example of FIG. 10), and as a result, the power that can be transmitted is reduced.

第2の実施形態では、受電装置20の置き方のずれによって正常に電力伝送が行えなくなることを避けるために、送電装置10の構成を図20に示すような形状にしている。   In the second embodiment, the configuration of the power transmission device 10 is configured as illustrated in FIG. 20 in order to avoid that power transmission cannot be normally performed due to a shift in the placement of the power reception device 20.

図20は、第2の実施形態における送電装置10を示す斜視図である。即ち、送電装置10は、筐体16の面17Aと面18Aのなす角度が略直角であり、面17Aを水平面に対して傾け、面18Aを垂直面から傾けている。面17Aと面18Aと接する部分(交点Pの部分)は低い位置にあり、それぞれの面17A、18Aに沿って送電コイル13及び14を配置している。   FIG. 20 is a perspective view illustrating the power transmission device 10 according to the second embodiment. That is, in the power transmission device 10, the angle formed by the surface 17A and the surface 18A of the housing 16 is substantially a right angle, the surface 17A is inclined with respect to the horizontal plane, and the surface 18A is inclined with respect to the vertical surface. The portion (the intersection P portion) that contacts the surface 17A and the surface 18A is at a low position, and the power transmission coils 13 and 14 are disposed along the respective surfaces 17A and 18A.

送電装置10にポータブル機器等の受電装置20を載せると、面17Aが水平面に対して傾斜しているため、受電装置20は自重により面17Aに沿って面18Aの方向に滑り、面18Aに接した状態になる。   When the power receiving device 20 such as a portable device is placed on the power transmitting device 10, the surface 17A is inclined with respect to the horizontal plane. Therefore, the power receiving device 20 slides in the direction of the surface 18A along the surface 17A by its own weight, and contacts the surface 18A. It will be in the state.

図21は、図20の送電装置10に受電装置20を載せたときの断面図である。 受電装置20は、受電コイル22、整流回路24、負荷回路25等を備え、受電装置20の底面と側面が、送電装置10の面17Aと面18Aにそれぞれ接する。   FIG. 21 is a cross-sectional view when the power receiving device 20 is mounted on the power transmitting device 10 of FIG. The power receiving device 20 includes a power receiving coil 22, a rectifier circuit 24, a load circuit 25, and the like, and the bottom surface and the side surface of the power receiving device 20 are in contact with the surface 17A and the surface 18A of the power transmitting device 10, respectively.

送電装置10の面17Aの水平面に対する角度θ1は、受電装置20を送電装置10に載せたときに、自然に面17Aに沿って滑り落ちる程度の角度がよく、送電装置10や受電装置20の材質にもよるが、20度〜30度以上の角度が良い。面18Aの水平面に対する角度θ2は、90度−θ1であり、60度〜70度以下の角度となる。一例として、角度θ1及びθ2がともに45度の場合や、θ1が30度でθ2が60度、θ1が60度でθ2が30度等の例が挙げられるが、他の角度の組み合わせでも構わない。尚、面17Aと面18Aとの角度は直角に限らず、受電装置20の形状に合わせた角度としても良い。   The angle θ <b> 1 of the surface 17 </ b> A of the power transmission device 10 with respect to the horizontal plane is good enough to naturally slide down along the surface 17 </ b> A when the power reception device 20 is placed on the power transmission device 10. However, an angle of 20 degrees to 30 degrees or more is good. An angle θ2 of the surface 18A with respect to the horizontal plane is 90 degrees−θ1, and is an angle of 60 degrees to 70 degrees or less. As an example, there are examples in which both angles θ1 and θ2 are 45 degrees, or θ1 is 30 degrees, θ2 is 60 degrees, θ1 is 60 degrees, and θ2 is 30 degrees, but other angle combinations may be used. . The angle between the surface 17A and the surface 18A is not limited to a right angle, and may be an angle that matches the shape of the power receiving device 20.

また、ポータブル機器等の受電装置20は、持ち運びや保護等のために、ソフトケースやキャリングケース等のケース類に入れて使うことがしばしばある。第2の実施形態では、ケース類に受電装置20を入れた状態でも、送電コイル13、14と受電コイル22との位置関係を適切に保つことが可能となる。   Further, the power receiving device 20 such as a portable device is often used in a case such as a soft case or a carrying case for carrying or protection. In the second embodiment, it is possible to appropriately maintain the positional relationship between the power transmission coils 13 and 14 and the power reception coil 22 even when the power reception device 20 is placed in cases.

図22は、受電装置20をソフトケース60に入れて送電装置10に載置した状態を示す断面図である。送電装置10の面17Aが傾斜していることから、ソフトケース60に入れられた受電装置20は、面17Aに沿って滑り落ち、面18Aにソフトケース60が接した状態で置かれる。   FIG. 22 is a cross-sectional view illustrating a state where the power receiving device 20 is placed in the soft case 60 and placed on the power transmitting device 10. Since the surface 17A of the power transmission device 10 is inclined, the power receiving device 20 put in the soft case 60 slides down along the surface 17A and is placed with the soft case 60 in contact with the surface 18A.

送電コイル13、14と受電コイル22との位置関係は、結合係数kが適正な値になるような位置関係、即ち送電コイル13、14と受電コイル22とが離れ過ぎず、また送電コイル13、14と対向する受電コイル22の面積も十分確保された状態となっている。したがって、送電装置10から受電装置20に対して、良好な効率で電力を伝送することができる。   The positional relationship between the power transmission coils 13 and 14 and the power reception coil 22 is such that the coupling coefficient k is an appropriate value, that is, the power transmission coils 13 and 14 and the power reception coil 22 are not separated from each other. The area of the power receiving coil 22 that faces the power supply 14 is also sufficiently secured. Therefore, electric power can be transmitted from the power transmission device 10 to the power reception device 20 with good efficiency.

図23は、第2の実施形態の変形例を示す斜視図である。即ち、送電装置10は、筐体16の面17Aを水平面に対して傾け、面18Aを垂直面から傾けている点は図20と同じである。さらに受電装置20の幅方向(矢印Z方向)の位置を規制するため筐体16にガイド面19A、19Bを設けている。   FIG. 23 is a perspective view showing a modification of the second embodiment. That is, the power transmission device 10 is the same as FIG. 20 in that the surface 17A of the housing 16 is inclined with respect to the horizontal plane, and the surface 18A is inclined from the vertical plane. Further, guide surfaces 19 </ b> A and 19 </ b> B are provided on the housing 16 in order to regulate the position of the power receiving device 20 in the width direction (arrow Z direction).

図23では、送電装置10にポータブル機器等の受電装置20を載せると、面17Aが水平面に対して傾斜しているため、受電装置20は自重により面17Aに沿って面18Aの方向に滑り、面18Aに接した状態になる。また受電装置20の両サイドはガイド面19A、19Bによってガイドされ、位置決めされる。したがって、送電コイル13、14と受電コイル22は、結合係数kが適正な値になるような位置関係に正確に保たれる。   In FIG. 23, when the power receiving device 20 such as a portable device is placed on the power transmitting device 10, the surface 17A is inclined with respect to the horizontal plane, so the power receiving device 20 slides in the direction of the surface 18A along the surface 17A due to its own weight, It will be in the state which contact | connected the surface 18A. Further, both sides of the power receiving device 20 are guided and positioned by the guide surfaces 19A and 19B. Therefore, the power transmission coils 13 and 14 and the power reception coil 22 are accurately maintained in a positional relationship such that the coupling coefficient k is an appropriate value.

以上述べた少なくとも一つの実施形態によれば、送電装置10と受電装置20の共振素子間の距離が変動しても結合係数kがほとんど変動しない非接触電力伝送装置を提供することができる。   According to at least one embodiment described above, it is possible to provide a non-contact power transmission apparatus in which the coupling coefficient k hardly varies even when the distance between the resonant elements of the power transmitting apparatus 10 and the power receiving apparatus 20 varies.

本発明のいくつかの実施形態を述べたが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the invention described in the claims and equivalents thereof as well as included in the scope and gist of the invention.

10…送電装置
11…交流電源
12…共振用コンデンサ
13、14…送電コイル
15、23…共振素子
16、26…筐体(本体)
17、17A…送電コイル13の配置面
18、18A…送電コイル14の配置面
19A、19B…ガイド面
20…受電装置
21…共振用コンデンサ
22、221、222、223、224…受電コイル
24…整流回路
25…負荷回路
60…ケース
DESCRIPTION OF SYMBOLS 10 ... Power transmission apparatus 11 ... AC power supply 12 ... Resonance capacitor | condenser 13, 14 ... Power transmission coil 15, 23 ... Resonance element 16, 26 ... Case (main body)
17, 17A ... Arrangement surface 18, 18A of power transmission coil 13, Arrangement surface 19A, 19B of power transmission coil 14, guide surface 20 ... Power receiving device 21 ... Resonance capacitors 22, 221, 222, 223, 224 ... Power reception coil 24 ... Rectification Circuit 25 ... Load circuit 60 ... Case

Claims (4)

送電装置から受電装置へ非接触で電力伝送を行う電力伝送装置であって、
前記送電装置は、隣接する第1の面と第2の面を有する第1の本体と、前記第1の本体内の前記第1の面に配置した第1のコイル部と、前記第2の面に配置した第2のコイル部を有し、前記第1のコイル部と前記第2のコイル部の相対角度が90度以下になるようにした送電コイルと、前記送電コイルを含む共振素子に交流電力を供給する交流電源と、を備え、
前記受電装置は、前記第1、第2の面にそれぞれ対向する第3、第4の面を有する第2の本体と、1つのコイルを前記第3の面と前記第4の面とが交差する交点で折り曲げまたは湾曲させて、前記第3の面及び前記第4の面に跨って前記第2の本体内に配置した受電コイルと、前記受電コイルを含む共振素子に誘起する交流電力を整流する整流回路と、を備え、
前記送電コイルを流れる電流によって発生する磁界により、前記受電コイルの前記第3の面にあるコイルと前記第4の面にあるコイルに発生する電流が打ち消し合うことなく一方向に流れるように、前記送電コイルの前記第1のコイル部と前記第2のコイル部に流れる電流の方向を設定した電力伝送装置。
A power transmission device that performs non-contact power transmission from a power transmission device to a power reception device,
The power transmission device includes: a first main body having a first surface and a second surface adjacent to each other; a first coil portion disposed on the first surface in the first main body; a second coil portion which is placed on a surface, said first transmitting coil to the relative angle of the second coil portion and the coil portion was set to 90 degrees or less, the resonant elements including the power transmission coil An AC power source for supplying AC power to
The power receiving device includes a second main body having third and fourth surfaces facing the first and second surfaces, respectively, and one coil crossing the third surface and the fourth surface. The receiving coil disposed in the second body across the third surface and the fourth surface by bending or curving at the intersecting point, and the AC power induced in the resonance element including the receiving coil is rectified A rectifier circuit that
The magnetic field generated by the current flowing through the power transmission coil causes the current generated in the coil on the third surface and the coil on the fourth surface of the power receiving coil to flow in one direction without canceling each other. A power transmission device in which a direction of a current flowing in the first coil portion and the second coil portion of a power transmission coil is set.
前記送電コイル前記第1のコイル部と前記第2のコイル部は外周から内周に向かって同じ巻き方向に形成し、前記第1のコイル部の内周端と前記第2のコイル部の外周端を接続し、前記第1のコイル部の外周端と前記第2のコイル部の内周端間に交流電流を供給し、
前記受電コイルは、前記第3の面及び前記第4の面に跨って配置した前記1つのコイルの両端から受電電力を取り出す請求項1記載の電力伝送装置。
Wherein said first coil portion and the second coil portion of the power transmission coil is formed in the same winding direction from the outer periphery toward the inner periphery, an inner peripheral end of the first coil portion of the second coil portion Connecting an outer peripheral end, supplying an alternating current between the outer peripheral end of the first coil portion and the inner peripheral end of the second coil portion;
2. The power transmission device according to claim 1, wherein the power receiving coil extracts received power from both ends of the one coil arranged across the third surface and the fourth surface.
送電装置から受電装置へ非接触で電力伝送を行う電力伝送装置であって、
前記送電装置は、隣接する第1の面と第2の面を有する第1の本体と、前記第1の本体内の前記第1の面と前記第2の面にそれぞれ配置した送電コイルと、前記送電コイルを含む共振素子に交流電力を供給する交流電源と、を備え、
前記受電装置は、前記第1、第2の面にそれぞれ対向する第3、第4の面を有する第2の本体と、1つのコイルを前記第3の面と前記第4の面とが交差する交点で折り曲げまたは湾曲させて、前記第3の面及び前記第4の面に跨って前記第2の本体内に配置した受電コイルと、前記受電コイルを含む共振素子に誘起する交流電力を整流する整流回路と、を備え、
前記送電コイルを流れる電流によって発生する磁界により、前記受電コイルの前記第3の面にあるコイルと前記第4の面にあるコイルに発生する電流が打ち消し合うことなく一方向に流れるように、前記送電コイルの前記第1の面と前記第2の面に配置したコイルに流れる電流の方向を設定し、
前記送電装置は、前記第1の面と前記第2の面がほぼ直角をなし、前記第1の面と前記第2の面とが交わる交点に向かって次第に低くなるように、前記受電装置を載置する面を水平面に対して予め設定した角度で傾斜させた電力伝送装置。
A power transmission device that performs non-contact power transmission from a power transmission device to a power reception device,
The power transmission device includes a first main body having a first surface and a second surface adjacent to each other, a power transmission coil disposed on each of the first surface and the second surface in the first main body, An AC power supply for supplying AC power to the resonant element including the power transmission coil,
The power receiving device includes a second main body having third and fourth surfaces facing the first and second surfaces, respectively, and one coil crossing the third surface and the fourth surface. The receiving coil disposed in the second body across the third surface and the fourth surface by bending or curving at the intersecting point, and the AC power induced in the resonance element including the receiving coil is rectified A rectifier circuit that
The magnetic field generated by the current flowing through the power transmission coil causes the current generated in the coil on the third surface and the coil on the fourth surface of the power receiving coil to flow in one direction without canceling each other. Setting the direction of the current flowing through the coils disposed on the first surface and the second surface of the power transmission coil;
In the power transmission device, the power receiving device is arranged so that the first surface and the second surface are substantially perpendicular to each other and gradually become lower toward an intersection where the first surface and the second surface intersect. A power transmission device in which a surface to be placed is inclined at a preset angle with respect to a horizontal plane .
前記送電コイルは、前記第1の面に配置した第1のコイル部と、前記第2の面に配置した第2のコイル部から成り、前記第1のコイル部と前記第2のコイル部は外周から内周に向かって同じ巻き方向に形成し、前記第1のコイル部の内周端と前記第2のコイル部の外周端を接続し、前記第1のコイル部の外周端と前記第2のコイル部の内周端間に交流電流を供給し、
前記受電コイルは、前記第3の面及び前記第4の面に跨って配置した前記1つのコイルの両端から受電電力を取り出す請求項記載の電力伝送装置。
The power transmission coil includes a first coil portion disposed on the first surface and a second coil portion disposed on the second surface, and the first coil portion and the second coil portion are Formed in the same winding direction from the outer periphery to the inner periphery, connecting the inner peripheral end of the first coil portion and the outer peripheral end of the second coil portion, and the outer peripheral end of the first coil portion and the first An alternating current is supplied between the inner peripheral ends of the two coil portions,
4. The power transmission device according to claim 3 , wherein the power receiving coil extracts received power from both ends of the one coil disposed across the third surface and the fourth surface . 5.
JP2015215883A 2015-11-02 2015-11-02 Power transmission equipment Active JP6140786B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015215883A JP6140786B2 (en) 2015-11-02 2015-11-02 Power transmission equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015215883A JP6140786B2 (en) 2015-11-02 2015-11-02 Power transmission equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013000467A Division JP5836287B2 (en) 2013-01-07 2013-01-07 Power transmission equipment

Publications (3)

Publication Number Publication Date
JP2016041007A JP2016041007A (en) 2016-03-24
JP2016041007A5 JP2016041007A5 (en) 2016-05-12
JP6140786B2 true JP6140786B2 (en) 2017-05-31

Family

ID=55541161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015215883A Active JP6140786B2 (en) 2015-11-02 2015-11-02 Power transmission equipment

Country Status (1)

Country Link
JP (1) JP6140786B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7247869B2 (en) * 2019-11-29 2023-03-29 豊田合成株式会社 Wireless power supply holder

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07245888A (en) * 1994-03-04 1995-09-19 Nippon Telegr & Teleph Corp <Ntt> Power generator
JP4036813B2 (en) * 2003-09-30 2008-01-23 シャープ株式会社 Non-contact power supply system
JP2005278318A (en) * 2004-03-25 2005-10-06 Seiko Epson Corp Charger, control method of charger, control program, and recording medium
JP2007208201A (en) * 2006-02-06 2007-08-16 Nippon Soken Inc Noncontact power supply apparatus
US9530555B2 (en) * 2011-03-29 2016-12-27 Triune Systems, LLC Wireless power transmittal
JP5152298B2 (en) * 2010-06-24 2013-02-27 株式会社村田製作所 Power transmission device, power reception device, and wireless power transmission system
JP2012044827A (en) * 2010-08-23 2012-03-01 Midori Anzen Co Ltd Non-contact charger

Also Published As

Publication number Publication date
JP2016041007A (en) 2016-03-24

Similar Documents

Publication Publication Date Title
JP5836287B2 (en) Power transmission equipment
JP5889250B2 (en) Power transmission device, power transmission device and power reception device for power transmission device
US9842688B2 (en) Resonator balancing in wireless power transfer systems
JP5920363B2 (en) Power receiving apparatus, power transmission system, and power transmission method
KR101461549B1 (en) Non-Contact Charging Module and Non-Contact Charging Apparatus
TWI506914B (en) Contactless power supplying system and contactless extension plug
JP5476917B2 (en) Wireless power feeding device, wireless power receiving device, and wireless power transmission system
JP2015534422A (en) Non-contact power transmission system
JP5405694B1 (en) Power transmission device, electronic device and wireless power transmission system
US20120049645A1 (en) Electronic component, power feeding apparatus, power receiving apparatus, and wireless power feeding system
US11043845B2 (en) Power feeding device and wireless power transmission device
TW201434063A (en) Variable pitch spiral coil
US20150015080A1 (en) Power transmission apparatus and coil device
KR101198881B1 (en) Contact-less Charging Module and Reception-side and Transmission-side Contact-less Charging Devices Using the Same
JP6378006B2 (en) Power transmission device and power transmission device
JP6140786B2 (en) Power transmission equipment
JP2016004990A (en) Resonator
JP6587720B2 (en) Power transmission device and power transmission device
JP2019022268A (en) Power transmitter
WO2020195587A1 (en) Power transfer device
US20150333531A1 (en) Power feeding device
KR101163944B1 (en) Resonant coil wireless power transmission apparatus using the same
JP2014045552A (en) Wireless power-transmission system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161003

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170309

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170501

R150 Certificate of patent or registration of utility model

Ref document number: 6140786

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150