JP6136729B2 - Method, apparatus, program and storage medium for estimating amount of dustfall - Google Patents

Method, apparatus, program and storage medium for estimating amount of dustfall Download PDF

Info

Publication number
JP6136729B2
JP6136729B2 JP2013162646A JP2013162646A JP6136729B2 JP 6136729 B2 JP6136729 B2 JP 6136729B2 JP 2013162646 A JP2013162646 A JP 2013162646A JP 2013162646 A JP2013162646 A JP 2013162646A JP 6136729 B2 JP6136729 B2 JP 6136729B2
Authority
JP
Japan
Prior art keywords
dust
amount
wind speed
wind
wind direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013162646A
Other languages
Japanese (ja)
Other versions
JP2015031636A (en
Inventor
中川 淳一
淳一 中川
聡史 小杉
聡史 小杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2013162646A priority Critical patent/JP6136729B2/en
Publication of JP2015031636A publication Critical patent/JP2015031636A/en
Application granted granted Critical
Publication of JP6136729B2 publication Critical patent/JP6136729B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、大気中の煤塵の移流・拡散挙動の計算結果に基づいた降下煤塵量の推定方法、装置、プログラム及び記憶媒体に関し、特に降雨による洗浄効果の影響を考慮することができる降下煤塵量の推定方法、装置及びコンピュータプログラムに関する。   The present invention relates to a method, apparatus, program, and storage medium for estimating the amount of dust fall based on the calculation results of the advection / diffusion behavior of the dust in the atmosphere, and in particular, the amount of dust fall that can take into account the effect of the cleaning effect due to rainfall. The present invention relates to an estimation method, apparatus, and computer program.

工場の煙突等の発塵源から放出される煤塵粒子の風による飛散挙動を計算し、降下煤塵量を推定することは、降下煤塵が地域住民へ及ぼす影響を評価する際に極めて重要となる。なお、本願において「煤塵」という用語は「粉塵」と同じ意味で用いられる。
従来は、降下煤塵量は、発塵源と降下点の1次元距離に依存すると仮定して、発塵源と降下点間の距離、煤塵の発生速度、煤塵の粒度分布と煤塵の密度、有効発塵高さ、風向、風速の頻度分布を入力し、(1)式の計算結果に風向・風速の頻度分布を乗じて、降下煤塵量を推定する方法が提案されている(例えば非特許文献1を参照)。Qは発塵強度、Heは有効発塵高さ、wは粒子径で決定される終末沈降速度、xは発塵源と降下点の風下距離、uは風速、Γはガンマ関数、C(x)は降下煤塵量を表す。
It is extremely important to evaluate the impact of dustfall on local residents by calculating the scattering behavior of dust particles emitted from dust sources such as factory chimneys by wind and estimating the amount of dustfall. In the present application, the term “dust” is used in the same meaning as “dust”.
Conventionally, assuming that the amount of dust fall depends on the one-dimensional distance between the dust source and the drop point, the distance between the dust source and the drop point, the dust generation rate, the dust particle size distribution and the dust density, and the effective A method has been proposed in which the dust distribution height, wind direction, and wind speed frequency distribution are input and the calculation result of equation (1) is multiplied by the wind direction / wind speed frequency distribution to estimate the amount of dustfall. 1). Q is the dust generation intensity, He is the effective dust generation height, w is the terminal sedimentation velocity determined by the particle diameter, x is the leeward distance between the dust generation source and the descent point, u is the wind speed, Γ is the gamma function, C (x ) Represents the amount of dustfall.

Figure 0006136729
Figure 0006136729

一方、飛散物質が搬送気体の密度と同一とみなして良い場合には、3次元のガウシアンプルームモデルが提案されており、(2)式により、任意の空間位置(x,y,z)における飛散物質濃度を計算することができる(例えば非特許文献2を参照)。xは発塵源から風下方向の座標軸上(x軸)上の任意の点、yはx軸と水平平面上で垂直に交わる座標軸(y軸)上の任意の点、zはx軸とy軸で形成される水平平面に対し鉛直方向の座標軸(z軸)上の任意の点、c(x,y,z)は任意の座標点(x,y,z)における煤塵濃度、uは風速、Qは発塵強度、σy、σzは各々y軸、z軸方向の有視煙の広がり、Heは有効発塵高さ、y0は発塵源の存在するy軸上の座標点を表す。また、発塵源の存在するx軸上の座標点は0としている。 On the other hand, when the scattering material can be regarded as the same as the density of the carrier gas, a three-dimensional Gaussian amp room model has been proposed, and the scattering at an arbitrary spatial position (x, y, z) is given by equation (2). The substance concentration can be calculated (see, for example, Non-Patent Document 2). x is an arbitrary point on the coordinate axis (x axis) in the leeward direction from the dust generation source, y is an arbitrary point on the coordinate axis (y axis) perpendicular to the x axis on the horizontal plane, and z is the x axis and y. An arbitrary point on the coordinate axis (z axis) in the vertical direction with respect to the horizontal plane formed by the axes, c (x, y, z) is the dust concentration at the arbitrary coordinate point (x, y, z), and u is the wind speed , Q is the dust generation intensity, σ y , σ z are the spread of visible smoke in the y-axis and z-axis directions, He is the effective dust generation height, and y 0 is the coordinate point on the y-axis where the dust generation source exists. Represents. In addition, the coordinate point on the x-axis where the dust generation source exists is set to zero.

Figure 0006136729
Figure 0006136729

しかしながら、非特許文献2に開示されている推定方法では、飛散物質が搬送気体の密度と同一であるという仮定が必要であり、煤塵粒子の場合は、この仮定を満足しないことから、煤塵粒子の挙動を精度良く推定することができない。   However, in the estimation method disclosed in Non-Patent Document 2, it is necessary to assume that the scattered substance has the same density as the carrier gas. In the case of dust particles, this assumption is not satisfied. The behavior cannot be estimated accurately.

また、本発明者により、(3)式により、煤塵の重力による沈降と地表における沈着効果が無視できない場合の煤塵の移流・拡散挙動を計算する方法が提案されている(特許文献1を参照)。xは発塵源から風下方向の座標軸上(x軸)上の任意の点、yはx軸と水平平面上で垂直に交わる座標軸(y軸)上の任意の点、zはx軸とy軸で形成される水平平面に対し鉛直方向の座標軸(z軸)上の任意の点、c(x,y,z)は任意の座標点(x,y,z)における煤塵濃度、uは風速、Qは発塵強度、Ky、Kzは各々y軸、z軸方向の乱流拡散係数、wは粒子の終末沈降速度、Heは有効発塵高さ、y0は発塵源の存在するy軸上の座標点、βは粒子の地表での沈着率を表す。また、発塵源の存在するx軸上の座標点は0としている。 Further, the present inventor has proposed a method for calculating the advection / diffusion behavior of soot dust when the sedimentation due to the dust gravity and the deposition effect on the ground surface cannot be ignored by the formula (3) (see Patent Document 1). . x is an arbitrary point on the coordinate axis (x axis) in the leeward direction from the dust generation source, y is an arbitrary point on the coordinate axis (y axis) perpendicular to the x axis on the horizontal plane, and z is the x axis and y. An arbitrary point on the coordinate axis (z axis) in the vertical direction with respect to the horizontal plane formed by the axes, c (x, y, z) is the dust concentration at the arbitrary coordinate point (x, y, z), and u is the wind speed , Q is the dust generation intensity, K y and K z are the turbulent diffusion coefficients in the y-axis and z-axis directions, w is the final sedimentation velocity of the particles, He is the effective dust generation height, and y0 is the presence of the dust generation source. A coordinate point on the y-axis, β, represents the deposition rate of particles on the ground surface. In addition, the coordinate point on the x-axis where the dust generation source exists is set to zero.

Figure 0006136729
Figure 0006136729

また、化学物質や微粒子の拡散のモニタリングシステムや予測システムの技術が開示されている(特許文献2、特許文献3を参照)。しかしながら、これらの技術は、大気拡散シミュレーション計算、即ち偏微分方程式の煩雑な数値計算を行っているため、特許文献1に開示されている、解析的に明示される式による予測に比較して計算時間が必要となり、著しい計算コストが必要とされる。   Further, techniques for monitoring and predicting the diffusion of chemical substances and fine particles have been disclosed (see Patent Document 2 and Patent Document 3). However, since these techniques perform atmospheric diffusion simulation calculation, that is, complicated numerical calculation of partial differential equations, calculation is performed in comparison with prediction based on an analytically disclosed formula disclosed in Patent Document 1. Time is required and significant computational costs are required.

更に、降下煤塵量に対する降水量の影響を記述する技術が非特許文献5に開示されているが、降雨時における降下煤塵量を予測する技術は開示されていない。   Furthermore, a technique for describing the effect of precipitation on the amount of dustfall is disclosed in Non-Patent Document 5, but a technique for predicting the amount of dustfall at the time of rainfall is not disclosed.

国際公開第2010/001925号International Publication No. 2010/001925 特開2001−42052号公報Japanese Patent Laid-Open No. 2001-42052 特開2008−89418号公報JP 2008-89418 A

C.H.Bosanquet et al., Proc Inst Mech Engrs, Vol.162, p355 (1950)C.H.Bosanquet et al., Proc Inst Mech Engrs, Vol.162, p355 (1950) 風の気象学 竹内清秀 東京大学出版Wind Meteorology Kiyohide Takeuchi The University of Tokyo Press 化学工学便覧 改訂四版Chemical Engineering Handbook 4th revised edition Briggs G. A. Plume rise, U.S. AEC (1969)Briggs G. A. Plume rise, U.S. AEC (1969) 佐野、太田、市川、坪井、愛知工業大学研究報告 第20号B 101〜107頁 昭和60年Sano, Ota, Ichikawa, Tsuboi, Aichi Institute of Technology Research Report No. 20 B 101-107 1985

しかしながら、非特許文献1に開示されている推定方法では、降下煤塵量が、発塵源と降下点間の風下方向の1次元距離に依存すると仮定している。そのため、発塵源と降下点の距離が同じで、発塵強度、煤塵の粒度分布と煤塵の密度、有効発塵高さが等しい発塵源が、ひとつの降下点に対し複数配置されている場合は、発塵源1と発塵源2の寄与が同じと推定するが、実際は、煤塵粒子は3次元方向に乱流拡散するため、降下点からの距離が近い発塵源2の寄与が、発塵源1より大きくなるという事実を記述できないという問題があった。
また、(1)式はBosanquetが1950年に発表した実験式であるため、数式の精度は、実験式を導出したときの実験の環境に依存し、一般性に欠けるという問題があった。
However, in the estimation method disclosed in Non-Patent Document 1, it is assumed that the amount of dustfall depends on the one-dimensional distance in the leeward direction between the dust generation source and the descending point. Therefore, a plurality of dust sources with the same distance between the dust source and the descent point, the same dust generation strength, dust particle size distribution and soot density, and effective dust height are arranged for one descent point. In this case, it is presumed that the contributions of the dust source 1 and the dust source 2 are the same, but in reality, the dust particles 2 turbulently diffuse in the three-dimensional direction, so the contribution of the dust source 2 that is close to the descending point There is a problem that the fact that it becomes larger than the dust generation source 1 cannot be described.
In addition, since the equation (1) is an experimental equation announced by Bosanquet in 1950, the accuracy of the mathematical formula depends on the environment of the experiment when the experimental equation is derived, and there is a problem that it lacks generality.

また、特許文献1に開示されている推定方法では、雨天時と晴天時に、同一の風向・風速条件でも特定計測箇所における降下煤塵量計測値に差異が生じるという観察事実を説明できなかった。
即ち、迅速に煤塵降下予測を行う技術で、精度を落とすことなく降雨の影響を取り入れる技術の開示は無かった。例えば非特許文献5にあるように、降水量の降下煤塵量に対する影響を洗浄係数という量で表現する技術は開示されている。しかしながら、例えば特許文献1に開示された式に洗浄係数を単純に導入しようとしても、降雨で洗浄された煤塵を降下煤塵量に繋げる処理が自明でなく、単なる数理計算による演算では、解が発散したり、振動したり、不安定となる場合があり、解が得られたとしても、非常に長時間を要してしまい、実用に適しないことが分かった。
In addition, the estimation method disclosed in Patent Document 1 cannot explain the observation fact that a difference occurs in the amount of dust fall measurement at a specific measurement location under the same wind direction and wind speed conditions in rainy weather and clear weather.
In other words, there was no disclosure of a technique for quickly predicting dust precipitation and incorporating the effect of rainfall without reducing accuracy. For example, as disclosed in Non-Patent Document 5, a technique for expressing the influence of precipitation on the amount of falling dust by a quantity called a cleaning coefficient is disclosed. However, for example, even if an attempt is made to simply introduce a washing coefficient into the equation disclosed in Patent Document 1, the process of linking dust washed by rainfall to the amount of dust falling is not obvious, and the solution is divergent in calculations based on simple mathematical calculations. However, even if a solution is obtained, it takes a very long time and is not suitable for practical use.

本発明は上記のような点に鑑みてなされたものであり、発塵源から降下点への風による3次元方向の移流・拡散による飛散挙動を、降雨による洗浄効果の影響を考慮して、煤塵の物質収支に基づいて理論的に求め、降下煤塵量を推定できるようにすることを目的とする。   The present invention has been made in view of the above points, and the scattering behavior due to advection / diffusion in the three-dimensional direction by the wind from the dust generation source to the descending point is considered in consideration of the effect of the cleaning effect due to rain, The purpose is to be able to estimate the amount of falling dust theoretically based on the dust mass balance.

本発明の降下煤塵量の推定方法は、降雨量、風向及び風速の所定期間における時系列計測値に基づいて、降雨量の範囲をk個の分割範囲に分割し、前記k個の分割範囲毎に、風向及び風速の範囲を各々m、n個の分割範囲に分割し、前記風速の分割範囲毎に風速代表値を設定し、各々の前記分割範囲に含まれる前記時系列計測値の前記所定期間での頻度を求めることによってm×n行列の風向・風速頻度分布を各々l個作成し、前記風速代表値及び前記風向・風速頻度分布を風向・風速情報とする風向・風速情報入力工程と、発塵源の情報である発塵情報を入力する発塵情報入力工程と、降雨により大気中の煤塵が洗い流される程度を計算するのに用いられる洗浄係数を求める洗浄係数計算工程と、前記風向・風速情報と、前記発塵情報と、前記洗浄係数と、前記煤塵の地表での反射率とを用いて、任意の座標点における煤塵濃度を計算する煤塵濃度計算工程と、前記煤塵濃度に基づいて、任意の降下地点における降下煤塵量を計算する降下煤塵量計算工程とを有し、前記煤塵濃度計算工程では、降雨により大気中の煤塵が洗い流されて地表に降下する降下煤塵量を計算し、前記降下煤塵量の計算値に加算することを特徴とする。
本発明の降下煤塵量の推定装置は、降雨量、風向及び風速の所定期間における時系列計測値に基づいて、降雨量の範囲をk個の分割範囲に分割し、前記k個の分割範囲毎に、風向及び風速の範囲を各々m、n個の分割範囲に分割し、前記風速の分割範囲毎に風速代表値を設定し、各々の前記分割範囲に含まれる前記時系列計測値の前記所定期間での頻度を求めることによってm×n行列の風向・風速頻度分布を各々l個作成し、前記風速代表値及び前記風向・風速頻度分布を風向・風速情報とする風向・風速情報入力手段と、発塵源の情報である発塵情報を入力する発塵情報入力手段と、降雨により大気中の煤塵が洗い流される程度を計算するのに用いられる洗浄係数を求める洗浄係数計算手段と、前記風向・風速情報と、前記発塵情報と、前記洗浄係数と、前記煤塵の地表での反射率とを用いて、任意の座標点における煤塵濃度を計算する煤塵濃度計算手段と、前記煤塵濃度に基づいて、任意の降下地点における降下煤塵量を計算する降下煤塵量計算手段とを備え、前記煤塵濃度計算手段では、降雨により大気中の煤塵が洗い流されて地表に降下する降下煤塵量を計算し、前記降下煤塵量の計算値に加算することを特徴とする。
本発明のプログラムは、降雨量、風向及び風速の所定期間における時系列計測値に基づいて、降雨量の範囲をk個の分割範囲に分割し、前記k個の分割範囲毎に、風向及び風速の範囲を各々m、n個の分割範囲に分割し、前記風速の分割範囲毎に風速代表値を設定し、各々の前記分割範囲に含まれる前記時系列計測値の前記所定期間での頻度を求めることによってm×n行列の風向・風速頻度分布を各々l個作成し、前記風速代表値及び前記風向・風速頻度分布を風向・風速情報とする風向・風速情報入力工程と、発塵源の情報である発塵情報を入力する発塵情報入力工程と、降雨により大気中の煤塵が洗い流される程度を計算するのに用いられる洗浄係数を求める洗浄係数計算工程と、前記風向・風速情報と、前記発塵情報と、前記洗浄係数と、前記煤塵の地表での反射率とを用いて、任意の座標点における煤塵濃度を計算する煤塵濃度計算工程と、前記煤塵濃度に基づいて、任意の降下地点における降下煤塵量を計算する降下煤塵量計算工程とをコンピュータに実行させ、前記煤塵濃度計算工程では、降雨により大気中の煤塵が洗い流されて地表に降下する降下煤塵量を計算し、前記降下煤塵量の計算値に加算することを特徴とする。
本発明のコンピュータ読み取り可能な記憶媒体は、本発明のプログラムを記録したことを特徴とする。
The method for estimating the amount of dustfall of the present invention divides the rainfall range into k divided ranges based on the time-series measured values of the rainfall amount, wind direction, and wind speed for a predetermined period, and for each of the k divided ranges. In addition, the range of the wind direction and the wind speed is divided into m and n divided ranges, a wind speed representative value is set for each divided range of the wind speed, and the predetermined time series measurement values included in each of the divided ranges are set. A wind direction / wind speed information input step in which l wind direction / wind speed frequency distributions of m × n matrix are respectively created by obtaining frequency in a period, and the wind direction representative value and the wind direction / wind speed frequency distribution are used as wind direction / wind speed information; A dust generation information input step for inputting dust generation information which is information of a dust generation source, a cleaning coefficient calculation step for calculating a cleaning coefficient used to calculate the degree to which atmospheric dust is washed away by rainfall, and the wind direction・ Wind speed information, dust generation information, The dust concentration calculation step of calculating the dust concentration at an arbitrary coordinate point using the cleaning coefficient and the reflectance of the dust on the ground surface, and the amount of dust falling at an arbitrary descent point based on the dust concentration And a dust concentration calculation step for calculating, and in the dust concentration calculation step, the amount of dust falling in the atmosphere as the dust in the atmosphere is washed away by the rain is calculated and added to the calculated value of the amount of dust falling It is characterized by that.
The apparatus for estimating the amount of dustfall according to the present invention divides a range of rainfall into k divided ranges based on time-series measured values in a predetermined period of rainfall, wind direction, and wind speed, and each k divided ranges are divided. In addition, the range of the wind direction and the wind speed is divided into m and n divided ranges, a wind speed representative value is set for each divided range of the wind speed, and the predetermined time series measurement values included in each of the divided ranges are set. Wind direction / wind speed information input means for generating l each of m × n matrix wind direction / wind speed frequency distributions by obtaining the frequency in a period, and using the wind speed representative value and the wind direction / wind speed frequency distribution as wind direction / wind speed information; A dust generation information input means for inputting dust generation information that is information of a dust generation source, a cleaning coefficient calculation means for calculating a cleaning coefficient used to calculate the degree to which atmospheric dust is washed away by rainfall, and the wind direction・ Wind speed information, dust generation information, The dust concentration calculation means for calculating the dust concentration at an arbitrary coordinate point using the cleaning coefficient and the reflectance of the dust on the ground surface, and the amount of dust fall at an arbitrary descent point based on the dust concentration. And a dust concentration calculation means for calculating, and in the dust concentration calculation means, the amount of dust falling in the atmosphere is washed away by the rain and the amount of dust falling to the ground surface is calculated and added to the calculated value of the amount of dust fall It is characterized by.
The program of the present invention divides the range of rainfall into k divided ranges based on the time-series measured values of rainfall, wind direction and wind speed for a predetermined period, and wind direction and wind speed for each of the k divided ranges. Are divided into m and n divided ranges, a wind speed representative value is set for each of the divided ranges of the wind speed, and the frequency of the time-series measured values included in each of the divided ranges is determined for the predetermined period. The wind direction / wind speed frequency distribution of the m × n matrix is created by calculating each of the wind direction / wind speed frequency distributions, and the wind direction / wind speed information input step using the wind direction representative value and the wind direction / wind speed frequency distribution as the wind direction / wind speed information, A dust generation information input step for inputting dust generation information that is information, a cleaning coefficient calculation step for calculating a cleaning coefficient used to calculate the degree to which dust in the atmosphere is washed away by rain, and the wind direction and speed information, The dust generation information and the cleaning unit And a dust concentration calculation step for calculating the dust concentration at an arbitrary coordinate point using the reflectance of the dust on the ground surface, and a descent for calculating the amount of dust falling at an arbitrary descent point based on the dust concentration The computer executes the dust amount calculation step, and in the dust concentration calculation step, the amount of dust falling in the air is washed away by the rain and falls to the ground surface, and is added to the calculated value of the amount of dust falling. It is characterized by.
A computer-readable storage medium according to the present invention records the program according to the present invention.

本発明によれば、従来の推定式と比較して、実現象の原理原則に忠実かつ正確に煤塵挙動の推定を行うことができる。即ち、発塵源から降下点への風による3次元方向の移流・拡散による飛散挙動を、降雨による洗浄効果の影響を考慮して、煤塵の物質収支に基づいて理論的に求め、降下煤塵量を推定することができる。これにより、発塵源から発生した煤塵が、降下煤塵量として市街地にどれだけ影響を及ぼすかの定量的な評価ができるとともに、集塵機等の発塵抑制対策設備の最適な規模を見積もる際の設備設計指標になる。   According to the present invention, it is possible to estimate the dust behavior faithfully and accurately according to the principle of the actual phenomenon as compared with the conventional estimation formula. In other words, the scattering behavior due to advection / diffusion in the three-dimensional direction by the wind from the dust source to the descent point is theoretically determined based on the material balance of the dust, taking into consideration the effect of the cleaning effect due to the rain, and the amount of dust fall Can be estimated. This makes it possible to quantitatively evaluate how much dust generated from the dust generation source affects the city area as the amount of falling dust, and equipment for estimating the optimum scale of dust control equipment such as dust collectors. Become a design index.

本実施形態に係る煤塵濃度及び降下煤塵量の計算処理を示すフローチャートである。It is a flowchart which shows the calculation process of the dust density | concentration and falling dust amount which concern on this embodiment. 本実施形態に係る煤塵濃度及び降下煤塵量の計算処理を示すフローチャートである。It is a flowchart which shows the calculation process of the dust density | concentration and falling dust amount which concern on this embodiment. 発塵源からの煤塵飛散挙動を説明するための図である。It is a figure for demonstrating the dust scattering behavior from a dust generation source. Pasquill-Giffordによる煙の広がりを決定するための特性図である。It is a characteristic view for determining the spread of smoke by Pasquill-Gifford. 雨滴密度と雨滴直径の関係を示す特性図である。It is a characteristic view which shows the relationship between raindrop density and raindrop diameter. 雨滴降下速度と雨滴直径の関係を示す特性図である。It is a characteristic view which shows the relationship between raindrop fall speed and raindrop diameter. 実施例で計算した雨滴粒径毎の洗浄係数と雨滴直径の関係を示す特性図である。It is a characteristic view which shows the relationship between the washing | cleaning coefficient for every raindrop particle size calculated in the Example, and a raindrop diameter. 実施例で計算した降下煤塵量と洗浄係数の関係を示す特性図である。It is a characteristic view which shows the relationship between the amount of dust falling calculated in the Example, and a cleaning coefficient. 降下煤塵量の推定装置として機能するコンピュータシステムのハードウェア構成例を示す図である。It is a figure which shows the hardware structural example of the computer system which functions as an estimation apparatus of the amount of falling dust. 実施例で計算した降下煤塵量分布の一例を示す図である。It is a figure which shows an example of the dust fall amount distribution calculated in the Example.

以下、添付図面を参照して、本発明の好適な実施形態について説明する。
本実施形態では、図2に示すように、発塵源の一例として、工場の煙突からの煤塵粒子の飛散を考える。煤塵粒子は、有効発塵高さHeから風下方向に設定したx軸を中心軸として飛散する。発塵源はx=0の位置に存在するとして、鉛直方向をz軸に、x軸と交差する水平面の軸をy軸とする。発塵源から風によって飛散する煤塵粒子の濃度(以下、「煤塵濃度」と称する)をc(x,y,z)とする。煤塵濃度c(x,y,z)について、物質収支をとると、(4)式で記述できる。
Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.
In the present embodiment, as shown in FIG. 2, as an example of a dust generation source, scattering of dust particles from a factory chimney is considered. The dust particles are scattered with the x axis set in the leeward direction from the effective dust generation height He as the central axis. Assuming that the dust generation source exists at a position of x = 0, the vertical direction is taken as the z axis, and the axis of the horizontal plane intersecting the x axis is taken as the y axis. Let c (x, y, z) be the concentration of dust particles scattered by the wind from the dust generation source (hereinafter referred to as “dust concentration”). The dust concentration c (x, y, z) can be described by equation (4) when the mass balance is taken.

Figure 0006136729
Figure 0006136729

(4)式において、uは風速を表し、上述したようにx軸は風向の中心に設定し、風はx軸方向のみに吹くと仮定する。
(4)式の左辺第1項は煤塵粒子が風の移流によって飛散する量を示す。また、(4)式の右辺第1項は煤塵粒子が乱流拡散によってy軸方向に飛散する量を示し、(4)式の右辺第2項は煤塵粒子が乱流拡散によってz軸方向に飛散する量を示し、(4)式の右辺第3項は煤塵粒子が重力によって沈降する量を示す。ここで、煤塵粒子が乱流拡散でx軸方向に飛散する量は、風の移流によりx軸方向に飛散する量と比較して小さいため、無視できると仮定した。Ky、Kzは各々y軸方向とz軸方向の乱流拡散係数を表す。また、(4)式の右辺第4項は降雨による洗浄効果を表す量を示し、洗浄係数pを乗じた煤塵濃度cの1次式で大気中の煤塵が洗浄されることを示す。
In equation (4), u represents wind speed, and as described above, the x axis is set at the center of the wind direction, and it is assumed that the wind blows only in the x axis direction.
The first term on the left side of the equation (4) indicates the amount of dust particles scattered by wind advection. The first term on the right side of equation (4) indicates the amount of dust particles scattered in the y-axis direction by turbulent diffusion, and the second term on the right side of equation (4) is in the z-axis direction due to turbulent diffusion. The amount of scattering is shown, and the third term on the right side of equation (4) indicates the amount of dust particles that settle by gravity. Here, it was assumed that the amount of dust particles scattered in the x-axis direction by turbulent diffusion is smaller than the amount of dust scattered in the x-axis direction due to wind advection and can be ignored. K y and K z represent turbulent diffusion coefficients in the y-axis direction and the z-axis direction, respectively. The fourth term on the right side of the equation (4) indicates an amount representing the cleaning effect due to rain, and indicates that dust in the atmosphere is cleaned by a primary expression of the dust concentration c multiplied by the cleaning coefficient p.

(5)式は、発塵源における煤塵粒子の境界条件の設定に関する式である。Q・δ(y-y0,z−He)は、x=0、y=y0、z=Heの位置から発塵強度(煤塵の発生速度ともいう)Qの煤塵粒子が発生していることを表す。δはデルタ関数である。ここで、デルタ関数とは、(2)式の条件を満たす実超関数である。また、発塵強度Qは、ローボリュームサンプラー等の手段により求めることができる。 Expression (5) is an expression related to setting of boundary conditions of dust particles in the dust generation source. Q · δ (y−y 0 , z−He) is generated from the position of x = 0, y = y 0 , z = He, and dust particles with a dust generation strength (also referred to as dust generation speed) Q are generated. Represents that. δ is a delta function. Here, the delta function is a real superfunction that satisfies the condition of equation (2). Further, the dust generation strength Q can be obtained by means such as a low volume sampler.

(6)式は、地表における煤塵粒子の境界条件の設定に関する式である。βは煤塵粒子の地表での反射率を表し、β=0で完全沈着、β=1で完全反射を意味する。反射率βは煤塵粒子の大きさに依存する係数であり、通常、地表面に到達し沈着する煤塵粒子を対象にすることが殆どであり、β=0で近似しても問題ない。正確にβの値を設定したい場合は、発塵強度、有効発塵高さ及び煤塵の粒径分布が既知の煙突等の発塵源からの降下煤塵量を、デポジットゲージ等の手段で計測し、各粒子径毎に、降下煤塵の実測値を降下煤塵の計算値が満足するように、適切な値を設定する。   Expression (6) is an expression related to setting of boundary conditions of dust particles on the ground surface. β represents the reflectance of dust particles on the ground surface, and β = 0 means complete deposition, and β = 1 means complete reflection. The reflectance β is a coefficient depending on the size of the dust particles, and usually the dust particles that reach and deposit on the ground surface are mostly targeted, and there is no problem even if β = 0 is approximated. If you want to set the value of β accurately, measure the amount of dust falling from a dust source such as a chimney with known dust generation intensity, effective dust generation height, and dust particle size distribution using a means such as a deposit gauge. For each particle diameter, an appropriate value is set so that the calculated value of the falling dust satisfies the measured value of the falling dust.

Figure 0006136729
Figure 0006136729

(4)式を、(5)式と(6)式の境界条件の下に解析的に解くと、(7)式が導出される。   When the equation (4) is solved analytically under the boundary condition between the equations (5) and (6), the equation (7) is derived.

Figure 0006136729
Figure 0006136729

降下点における降下煤塵量C(x,y)は、地表z=0における任意の平面座標点(x,y)での煤塵濃度c(x,y,z=0)の(3)式で算出した計算値に、煤塵粒子の終末沈降速度(終末落下速度ともいう)wを乗じた(8)式により計算できる。   The amount of dust fall C (x, y) at the descending point is calculated by the formula (3) of the dust concentration c (x, y, z = 0) at an arbitrary plane coordinate point (x, y) at the surface z = 0. The calculated value is multiplied by the terminal sedimentation velocity (also referred to as the terminal falling velocity) w of the dust particles.

Figure 0006136729
Figure 0006136729

空気中で煤塵が重力落下するとき、煤塵の重力と浮力がバランスする結果、時間がたつと速度が一定になる。これを終末沈降速度といい、(9)式により計算できる。ρsは煤塵粒子の密度、ρaは大気の密度、dkは粒径頻度kに相当する煤塵粒子の直径、μは大気の粘性係数を表す。 When soot dust falls in the air, the speed of the dust becomes constant over time as a result of the balance between soot gravity and buoyancy. This is called terminal sedimentation velocity, and can be calculated by equation (9). ρ s is the density of the dust particles, ρ a is the density of the atmosphere, d k is the diameter of the dust particles corresponding to the particle size frequency k, and μ is the viscosity coefficient of the atmosphere.

Figure 0006136729
Figure 0006136729

一方、Cγは、地表の任意の地点(x,y,z=z1(降下煤塵量の捕捉高さ)において捕集される雨滴が吸着し降下した煤塵量を表し、(10)式により計算できる。 On the other hand, Cγ represents the amount of dust that has fallen due to adsorption of raindrops collected at any point (x, y, z = z 1 (falling dust trapping height)) on the surface of the earth. it can.

Figure 0006136729
Figure 0006136729

(10)式に(7)式を代入し、(10)式の右辺の積分を計算すると、(11)式が導出される。erfcは誤差関数である。   Substituting equation (7) into equation (10) and calculating the integral on the right side of equation (10) yields equation (11). erfc is an error function.

Figure 0006136729
Figure 0006136729

以下、(7)式と(8)式を使用して、降下煤塵量を計算する手順の一例について、図1A、図1Bのフローチャートを参照しながら説明する。
まず、ステップS1の降雨情報の入力ステップについて説明する。一定期間の降雨量の計測値に基づいて、降雨なしをレベル1として、降雨量の増加に伴い、レベル2、・・・、レベルkに分類するとともに、降雨レベル毎に風向データ及び風速データを収集する。このように、降雨レベル毎に風速データ及び風向データを入力するという方式を採用することによって、解の収束が速くなることが分かった。
例えばデータの入力を、まず風速についてレベルに分け、風速のレベル毎に降雨データ及び風向データを収集した場合や、まず風向についてレベルに分けて同様に、風向のレベル毎に降雨データ及び風速データを収集した場合、解が発散してしまったり、振動してしまったりして収束解が得られない場合がある。また、解が得られたとしても、降雨レベル毎に風向データ及び風速データを収集するのに比較して、数倍〜数十倍の時間がかかってしまい、実用的に用いることはできない。これは、洗浄係数が降雨量の関数として単純に与えられる訳でなく、降雨量から洗浄係数を決定するためには、さまざまな手続きを経ることが必要になるためである。
Hereinafter, an example of a procedure for calculating the amount of dust fall using the equations (7) and (8) will be described with reference to the flowcharts of FIGS. 1A and 1B.
First, the step of inputting rainfall information in step S1 will be described. Based on the measured value of rainfall for a certain period, no rain is classified as level 1, and as rainfall increases, it is classified into level 2, ..., level k, and wind direction data and wind speed data for each rainfall level. collect. Thus, it was found that the convergence of the solution is accelerated by adopting the method of inputting the wind speed data and the wind direction data for each rainfall level.
For example, data input is first divided into levels for wind speed, and when rainfall data and wind direction data are collected for each wind speed level, or first, the wind data is divided into levels for wind direction, and similarly, rainfall data and wind speed data are collected for each wind direction level. When collected, the solution may diverge or vibrate and a convergent solution may not be obtained. Even if a solution is obtained, it takes several to several tens of times longer than collecting wind direction data and wind speed data for each rainfall level, and cannot be used practically. This is because the cleaning coefficient is not simply given as a function of rainfall, and it is necessary to go through various procedures in order to determine the cleaning coefficient from rainfall.

次に、ステップS2の風向・風速情報の入力ステップについて説明する。降雨情報入力ステップで分類した降雨レベル毎に風向及び風速の頻度分布を算出する。一定期間の風向、風速の計測値に基づいて、風向についてm個、風速についてn個のカテゴリーに分類し、n行m列の行列の各要素bijの総和が100%になるようにする。
通常、風向データの分類は、1方位以上の何方位でも計算でき、入手できる方位データの数において設定すればよい。好ましくは気象庁のアメダスデータに対応させ、16方位を採用し、m=16とする。
また、風速データの分類は、風速の実測値を直接使用し計算できるが、好ましくは設定期間の最小風速及び最大風速の区間を、微風、弱風、通常風、強風や、微風、弱風、通常風、強風、超強風等の分類に4又は5分割し、n=4又はn=5とすればよい。nが6以上でも計算できるが、場合によっては計算が煩雑になる。分割した風速の範囲のそれぞれにおいて、代表値を選定する。代表値の選定に当たっては、分割区間の風速の発生頻度の最も大きい値を採用してもよいし、分割区間の風速の平均値を採用してもよい。
なお、風向計及び風速計は、周囲にある建物等の障害物の影響を受けない位置に設置することが好ましい。気象庁が近傍にある場合は、アメダス等の気象庁観測データを使用してもよい。
また、風向及び風速を計測する期間の設定は、降下煤塵量の計算期間と同一に設定する。そして、設定した期間において、風速、風向の頻度分布の統計量を決定できるように、風速、風向のサンプリング周期を決定する。例えばm=16、n=4の場合において、1ヶ月間の期間を設定する場合は、1時間周期の風速、風向データを採取すれば十分である。
Next, the step of inputting wind direction / wind speed information in step S2 will be described. The frequency distribution of wind direction and wind speed is calculated for each rain level classified in the rain information input step. Based on the measured values of the wind direction and the wind speed for a certain period, the wind direction is classified into m categories and the wind speed is classified into n categories so that the sum of each element b ij of the matrix of n rows and m columns is 100%.
Usually, the classification of wind direction data can be calculated in any number of directions of one or more directions, and may be set in the number of available direction data. Preferably, it corresponds to AMeDAS data of the Japan Meteorological Agency, adopts 16 directions, and m = 16.
The wind speed data classification can be calculated by directly using the actual measurement value of the wind speed, but preferably, the minimum wind speed and the maximum wind speed in the set period are defined as light wind, light wind, normal wind, strong wind, light wind, light wind, What is necessary is just to divide | segment into 4 or 5 into classification | category, such as a normal wind, a strong wind, and a super strong wind, and set it as n = 4 or n = 5. The calculation can be performed even when n is 6 or more, but in some cases, the calculation becomes complicated. A representative value is selected for each of the divided wind speed ranges. In selecting the representative value, a value with the highest occurrence frequency of the wind speed in the divided section may be adopted, or an average value of the wind speed in the divided section may be adopted.
In addition, it is preferable to install an anemometer and an anemometer in the position which is not influenced by obstructions, such as a building around. If the Japan Meteorological Agency is in the vicinity, the Meteorological Agency observation data such as AMeDAS may be used.
The period for measuring the wind direction and the wind speed is set to be the same as the period for calculating the amount of dustfall. And the sampling period of a wind speed and a wind direction is determined so that the statistic of a frequency distribution of a wind speed and a wind direction can be determined in the set period. For example, in the case of m = 16 and n = 4, when setting a period of one month, it is sufficient to collect wind speed and wind direction data of one hour period.

以上のように、降雨量、風向及び風速の所定期間における時系列計測値に基づいて、降雨量の範囲をk個の分割範囲に分割し、前記k個の分割範囲毎に、風向及び風速の範囲を各々m、n個の分割範囲に分割し、前記風速の分割範囲毎に風速代表値を設定し、各々の前記分割範囲に含まれる前記時系列計測値の前記所定期間での頻度を求めることによってm×n行列の風向・風速頻度分布を各々l個作成し、前記風速代表値及び前記風向・風速頻度分布を風向・風速情報とする。   As described above, based on the time-series measured values of rainfall, wind direction, and wind speed for a predetermined period, the range of rainfall is divided into k divided ranges, and the wind direction and wind speed are divided for each of the k divided ranges. The range is divided into m and n divided ranges, wind speed representative values are set for each of the wind speed divided ranges, and the frequency of the time-series measurement values included in each of the divided ranges is obtained in the predetermined period. As a result, one m × n matrix wind direction / wind speed frequency distribution is created, and the wind speed representative value and the wind direction / wind speed frequency distribution are used as wind direction / wind speed information.

次に、ステップS3の発塵情報の入力ステップについて説明する。発塵源の情報、具体的には、発塵源x−y座標(x=0,y=y0)、煙突高さH、発塵強度Q、煤塵粒子径d、煤塵粒子密度ρ、排ガス風量W、排ガス風速Vを入力する。 Next, the step of inputting dust generation information in step S3 will be described. Information of dust generation source, specifically, dust source x-y coordinates (x = 0, y = y 0 ), chimney height H, dust generation strength Q, dust particle diameter d, dust particle density ρ, exhaust gas Input air volume W and exhaust gas wind speed V.

次に、ステップS4の降下地点情報の入力ステップについて説明する。降下地点の情報、具体的には、降下煤塵量を推定したい降下地点の座標(x,y)を入力する。   Next, the step of inputting descent point information in step S4 will be described. Information on the descent point, specifically, the coordinates (x, y) of the descent point for which the amount of dustfall is to be estimated is input.

ここまで説明した風向・風速情報の入力ステップ、発塵情報の入力ステップ、降下地点情報の入力ステップは、入力の順番は問わず、入れ替わっても構わない。   The input direction of wind direction / wind speed information, the input step of dust generation information, and the input step of descent point information described so far may be switched regardless of the input order.

次に、煤塵濃度計算ステップに入る。煤塵濃度計算ステップでは、上記各ステップで入力した情報を用いて、降下点における煤塵濃度を計算する。
ステップS5において、風向及び風速の各頻度分布bijにおける風速uiを計算に使用する風速uと定義する。風速uは、後述する(13)式による有効発塵高さHeの計算と、(7)式による降下点における煤塵濃度計算に使用される。
Next, the dust concentration calculation step is entered. In the dust concentration calculation step, the dust concentration at the descending point is calculated using the information input in the above steps.
In step S5, the wind speed u i at each frequency distribution b ij of wind direction and wind speed is defined as the wind speed u used for the calculation. The wind speed u is used for calculating the effective dust generation height He according to the later-described equation (13) and calculating the dust concentration at the descending point according to the equation (7).

ステップS6において、洗浄係数pを計算する。洗浄係数を計算するための数式として、(12)式を使えばよい(例えば非特許文献5を参照)。ここで、Dは雨滴直径、Nは雨滴濃度、vは雨滴落下速度、εは衝突効率である。
p=π(D/2)2εvN・・・(12)
In step S6, the cleaning coefficient p is calculated. As a mathematical formula for calculating the cleaning coefficient, the formula (12) may be used (for example, see Non-Patent Document 5). Here, D is the raindrop diameter, N is the raindrop concentration, v is the raindrop fall speed, and ε is the collision efficiency.
p = π (D / 2) 2 εvN (12)

有効発塵高さHeは、煤塵が工場煙突等、周囲の空気より高温で排出される場合は、ステップS7において、ステップS3で入力した煙突高さH、煙突高さ排ガス風量W、排ガス風速Vに基づいて、有効発塵高さHeを例えば(13)式により計算する。Qe_gasは排ガス流量、T1は大気温度、△Tは排ガスとT1との差、gは重力加速度、dθ/dzは大気の温度勾配(通常0.03にて計算)、wは粒子の終末沈降速度、uは風速を表す。 When the dust is discharged at a higher temperature than the surrounding air, such as a factory chimney, the effective dust generation height He is the chimney height H, the chimney height exhaust gas volume W, and the exhaust gas wind speed V input in step S3 in step S7. Based on the above, the effective dust generation height He is calculated by, for example, equation (13). Q e _gas is the exhaust gas flow rate, T 1 is the atmospheric temperature, ΔT is the difference between the exhaust gas and T 1 , g is the gravitational acceleration, dθ / dz is the atmospheric temperature gradient (usually calculated at 0.03), w is The final settling velocity of the particles, u represents the wind speed.

Figure 0006136729
Figure 0006136729

一方、煤塵が風により飛散する場合は、カメラ等の手段で発塵状況を記録し、煤塵の最大濃度を呈する高さを色の濃さから識別判定し、決定した発塵高さを、有効発塵高さHeとして設定する。
煤塵粒子径は、ローボリュームサンプラーで採取した煤塵粒子サンプルを、粒子径分布測定装置に投入し、粒度分布を計測する。計測した粒度分布に基づいて、最大頻度径等の定義を使い、平均粒径を決定する。また、粒子径の計測範囲を分割し、分割した各々の範囲における平均粒径を、煤塵粒子径としてもよい。この場合は、分割した粒子径の範囲に存在する煤塵粒子の重量比を予め求めておき、重量の総和が100%になるように、各平均粒子径毎に頻度分布を計算し、各平均粒子径毎の降下煤塵量に、前記の各平均粒子径毎に計算した頻度分布を乗じて、降下煤塵量の総量を求める。粒子径分布測定装置は、沈降法、光透過式等の方法がある(例えば非特許文献4を参照)。
On the other hand, if soot dust is scattered by the wind, record the dust generation status with a camera or other means, identify and determine the maximum density of soot dust from the color density, and use the determined dust generation height Set as the dust generation height He.
The dust particle size is measured by putting a dust particle sample collected with a low volume sampler into a particle size distribution measuring device and measuring the particle size distribution. Based on the measured particle size distribution, the average particle size is determined using the definition such as the maximum frequency diameter. Further, the measurement range of the particle diameter may be divided, and the average particle diameter in each divided range may be the dust particle diameter. In this case, the weight ratio of the dust particles existing in the range of the divided particle diameter is obtained in advance, and the frequency distribution is calculated for each average particle diameter so that the total weight becomes 100%. The total amount of dust fall is obtained by multiplying the dust fall amount for each diameter by the frequency distribution calculated for each average particle diameter. As the particle size distribution measuring apparatus, there are a precipitation method, a light transmission method, and the like (for example, see Non-Patent Document 4).

ステップS8において、ステップS3で入力した煤塵粒子径d、煤塵粒子密度ρに基づいて、終末沈降速度wを(9)式により計算する。   In step S8, the terminal settling velocity w is calculated by equation (9) based on the dust particle diameter d and the dust particle density ρ input in step S3.

ステップS9において、乱流拡散係数Ky、Kzを決定する。乱流拡散係数Ky及びKzは、図3に示すPasquill-Giffordが米国の草原でトレーサー実験を行い観測した煙の広がりσy、σzの実験値に基づいて、(14)式に基づき換算した値を設定する(例えば非特許文献4を参照)。 In step S9, turbulent diffusion coefficients K y and K z are determined. The turbulent diffusion coefficients K y and K z are based on Eq. (14) based on the experimental values of smoke spread σ y and σ z observed by Pasquill-Gifford in the US grassland as shown in FIG. The converted value is set (for example, refer nonpatent literature 4).

Figure 0006136729
Figure 0006136729

ここで、図3の記号A、B、C、D、E、Fは大気安定度を表し、Aが非常に不安定、Bが不安定、Cがやや不安定、Dが中立、Eが安定、Fが非常に安定な状態に相当する。大気安定度は、乱流拡散係数Ky、Kzの大きさに関係し、図3から大気安定度が安定になるにつれ、乱流拡散係数Ky、Kzは小さくなる。 Here, symbols A, B, C, D, E, and F in FIG. 3 represent the atmospheric stability, A is very unstable, B is unstable, C is slightly unstable, D is neutral, and E is stable. , F corresponds to a very stable state. Atmospheric stability is turbulent diffusion coefficient K y, related to the magnitude of K z, as the atmospheric stability of 3 is stabilized, the turbulent diffusion coefficient K y, K z decreases.

ステップS10において、反射率βを入力する。   In step S10, the reflectance β is input.

ステップS11において、(7)式によりz=0における降下点の座標位置(x,y)における煤塵濃度c(x,y,z=0)を計算する。   In step S11, the dust concentration c (x, y, z = 0) at the coordinate position (x, y) of the descending point at z = 0 is calculated by the equation (7).

ステップS12において、ステップS11で計算した煤塵濃度c(x,y,z=0)とステップS8で計算した煤塵粒子の終末沈降速度wとに基づいて、(8)式により降下煤塵量を計算し、△C(x,y)と定義する。   In step S12, based on the dust concentration c (x, y, z = 0) calculated in step S11 and the final settling velocity w of the dust particles calculated in step S8, the amount of dust fall is calculated by equation (8). , ΔC (x, y).

ステップS13においては、降下煤塵量C(x,y)に、ステップ12で計算した各風向・風速の頻度分布bijに相当する降下煤塵量の計算値△C(x,y)を加算し、(15)式で降下煤塵量を更新する。
C(x,y)=C(x,y)+bij・△C(x,y) ・・・(15)
ここで、右辺のC(x,y)は右辺第2項を加算するまえの降下煤塵量であり、左辺のC(x,y)は右辺第2項を加算した後の降下煤塵量を示す。即ち、ある風向き、風速、降雨レベルの時の煤塵濃度c(x、y)を求め、その風向き、風速、降雨レベルにおける頻度bijを重みとしてかけ、種々の風向き、風速、降雨レベルについて和をとることによって降下煤塵量C(x,y))を求める。
In step S13, the dustfall amount C (x, y) in adds the calculated value of the dustfall amount corresponding to the frequency distribution b ij of each was calculated wind direction and velocity △ C (x, y) in the step 12, The amount of dustfall is updated using equation (15).
C (x, y) = C (x, y) + b ij · ΔC (x, y) (15)
Here, C (x, y) on the right side is the amount of dust fall before adding the second term on the right side, and C (x, y) on the left side is the amount of dust fall after adding the second term on the right side. . That is, the dust concentration c (x, y) at a certain wind direction, wind speed, and rainfall level is obtained, and the frequency bij in the wind direction, wind speed, and rain level is weighted, and the sum is obtained for various wind directions, wind speeds, and rain levels. To determine the amount of dust fall C (x, y)).

ステップS14では、l<k、i<n、j<mの条件を満たしていれば、ステップS15のループを実行し、ステップS5〜S13の計算を繰り返すことで、降下煤塵量C(x,y)を求めることができる。ステップS15のループは、まず、lの値を1つずつ更新し、l=kに到達するまで、ステップS5からステップS13の計算を繰り返す。l=kになれば、jの値を同様に1つずつ更新し、j=mに到達するまで、ステップS5からステップS13の計算を繰り返す。j=mになれば、iの値を同様に1つずつ更新し、i=nに到達するまでステップS5〜S13の計算を繰り返す。ステップS15において、l=k、i=n及びj=mに到達すれば、本計算を終了する。   In step S14, if the conditions of l <k, i <n, and j <m are satisfied, the loop of step S15 is executed, and the calculation of steps S5 to S13 is repeated, so that the dust fall amount C (x, y ). The loop of step S15 first updates the value of l one by one, and repeats the calculations from step S5 to step S13 until l = k is reached. If l = k, the value of j is similarly updated one by one, and the calculations from step S5 to step S13 are repeated until j = m is reached. If j = m, the value of i is similarly updated one by one, and the calculations in steps S5 to S13 are repeated until i = n is reached. If it is determined in step S15 that l = k, i = n, and j = m, this calculation ends.

上述の手法は、煤塵が風により飛散する際の、煤塵の挙動を、物理現象の原理原則に沿うように記述したものであり、工場から排気される煤塵、自動車の排気ガス中に含まれる煤塵、花粉症の原因となる花粉、黄砂、及び砂漠の砂等の飛散現象に適用できる。
特に降雨による大気中煤塵の洗浄降下量を、煤塵の重力による沈降と地表における沈着効果が無視できない場合の煤塵の移流・拡散挙動の計算に組み込み、降下煤塵量を精度良くすることができる。
The method described above describes the behavior of soot when it is scattered by the wind in accordance with the principles of physical phenomena. Soot contained in exhaust gas from automobiles and automobile exhaust It can be applied to scattering phenomena such as pollen, yellow sand, and desert sand causing hay fever.
In particular, the amount of dust fall in the atmosphere due to rainfall can be incorporated into the calculation of the advection / diffusion behavior of dust when the precipitation due to gravity and the deposition effect on the ground surface cannot be ignored, so that the amount of dust fall can be improved.

本発明を適用した手法(以下、本法という)による煤塵濃度の計算手順と結果を以下に示す。
気象庁データに基づいて、降雨レベルを2段階、即ち「降雨レベル1:降雨無」と「降雨レベル2:降雨有」の2段階に分割し、表1及び表2に示す風向・風速頻度分布表を作成した。
The calculation procedure and results of the dust concentration by the method to which the present invention is applied (hereinafter referred to as the present method) are shown below.
Based on the data of the Japan Meteorological Agency, the rain level is divided into two stages, ie, “Rain level 1: No rain” and “Rain level 2: Rain present”. It was created.

Figure 0006136729
Figure 0006136729

Figure 0006136729
Figure 0006136729

発塵源の(x,y)座標を(700、700)に設定した。単位はmである。また、(13)式で有効発塵高さHeを計算するための発塵源に関する情報として、排ガス流量Qe_gasは14300Nm3/分、大気温度T1は20℃、排ガスとT1との差△Tは227℃、gは重力加速度、大気の温度勾配(dθ/dz)は0.03に設定した。また、発塵強度Qは40kg/Hrに設定した。
(9)式により粒子の終末沈降速度wを計算するための情報として、煤塵粒子径dkは110μm、煤塵粒子の密度ρsは3770kg/m3を設定した。
降下地点の情報として、座標(x、y)を(0,0)に設定した。
The (x, y) coordinates of the dust generation source were set to (700, 700). The unit is m. Further, as information on the dust generation source for calculating the effective dust generation height He by the equation (13), the exhaust gas flow rate Q e _ gas is 14300 Nm 3 / min, the atmospheric temperature T 1 is 20 ° C., the exhaust gas and T 1 The difference ΔT was 227 ° C., g was gravitational acceleration, and the atmospheric temperature gradient (dθ / dz) was set to 0.03. The dust generation strength Q was set to 40 kg / Hr.
As information for calculating the terminal sedimentation velocity w by the equation (9), the dust particle diameter d k was set to 110 μm, and the density ρ s of the dust particles was set to 3770 kg / m 3 .
The coordinates (x, y) were set to (0, 0) as the descent point information.

次に、(12)式に基づく洗浄係数pの計算方法について述べる。
雨滴濃度Nは、図4に示す雨滴密度分布nと雨滴直径Dの関係を示す特性図から、(16)式で計算する。図4は、降雨量4.7mm/Hrのときのグラフである。
Next, a method for calculating the cleaning coefficient p based on the equation (12) will be described.
The raindrop density N is calculated from the characteristic diagram showing the relationship between the raindrop density distribution n and the raindrop diameter D shown in FIG. FIG. 4 is a graph when the rainfall amount is 4.7 mm / Hr.

Figure 0006136729
Figure 0006136729

雨滴降下速度vは、図5に示す雨滴降下速度と雨滴直径の関係を示す特性図から、雨滴直径Dに応じて決定する。衝突効率εは0.9と設定した。図5は、降雨量4.7mm/Hrのときのグラフである。   The raindrop descending speed v is determined according to the raindrop diameter D from the characteristic diagram showing the relationship between the raindrop descending speed and the raindrop diameter shown in FIG. The collision efficiency ε was set to 0.9. FIG. 5 is a graph when the rainfall amount is 4.7 mm / Hr.

前記手順をもとに、雨滴直径毎に衝突係数p^(D)(p^の表記は、^がpの上に付されているものとする)が、図6に示すように計算される。衝突係数pは、雨滴直径毎の衝突係数p^(D)を雨滴直径全体で積分した(17)式で計算され、その値は0.0016[1/sec]となる。   Based on the above procedure, the impact coefficient p ^ (D) is calculated for each raindrop diameter (the notation of p ^ assumes that ^ is attached on p) as shown in FIG. . The collision coefficient p is calculated by the equation (17) obtained by integrating the collision coefficient p ^ (D) for each raindrop diameter over the entire raindrop diameter, and its value is 0.0016 [1 / sec].

Figure 0006136729
Figure 0006136729

前記手順をもとに、反射率β=0として計算した降下煤塵量を図7に示す。洗浄係数pの値が0.0016のときの降下煤塵量は0.25ton/km2・月であり、また、降雨量が増減したきの降下煤塵量の影響を、洗浄係数pを0(降雨無)、0.0008(弱雨)、0.0024(強雨)に設定し、前記手順に基づいて計算した。図7から、降下煤塵量は洗浄係数の値が増加するにつれ、言い換えると降雨量のレベルが大きくなるにつれ増大し、あるところで飽和状態に漸近するという傾向を示しており、当該地点の観察結果に一致する。 FIG. 7 shows the amount of dustfall that is calculated based on the above procedure with the reflectance β = 0. The amount of dust fall when the value of the cleaning coefficient p is 0.0016 is 0.25 ton / km 2 · month, and the influence of the amount of dust falling when the rainfall increases or decreases is set to 0 (rainfall None), 0.0008 (light rain), and 0.0024 (heavy rain), and calculation was performed based on the above procedure. FIG. 7 shows that the amount of dustfall increases as the cleaning coefficient increases, in other words, increases as the level of rainfall increases, and gradually approaches a saturated state at some point. Match.

図8には、本発明を適用した降下煤塵量の推定装置として機能するコンピュータシステムのハードウェア構成例を示す。降下煤塵量の推定装置100は、CPU20と、入力装置21と、表示装置22と、記録装置23とを含み、各部はバスを介して接続される。
入力装置21に、降下煤塵量の推定に必要な降雨量情報、風向・風速情報、発塵情報、降下地点情報、反射率β、洗浄係数pが入力される。CPU20では、入力装置21に入力された情報に基づいて、有効発塵高さHe、煤塵粒子の終末沈降速度w、乱流拡散係数Ky、Kzを決定し、降下地点における降下煤塵量が計算される。
表示装置22では、複数の降下地点においてCPU20で計算した降下煤塵量の計算値に基づいて、例えば図9に示すような降下煤塵量のコンター図を表示する。
記録装置23では、入力装置21に入力された全情報及びCPU20で計算した降下地点における降下煤塵量が記録される。記録装置23はROM、RAM、HD等により構成されており、降下煤塵量の推定装置100としての動作を制御するコンピュータプログラムが格納される。
CPU20がコンピュータプログラムを実行することによって降下煤塵量の推定装置100の機能及び処理を実現する。また、記録装置23にデータベースが格納される。
なお、本発明を適用した降下煤塵量の推定装置は、複数の機器から構成されるシステムに適用しても、一つの機器からなる装置に適用してもよい。
また、本発明の目的は、前述した機能を実現するコンピュータプログラムをシステム或いは装置に供給し、そのシステム或いは装置のコンピュータ(CPU若しくはMPU)が実行することによっても達成され、この場合、コンピュータプログラム自体が本発明を構成することになる。
以上、本発明を種々の実施形態と共に説明したが、本発明はこれらの実施形態にのみ限定されるものではなく、本発明の範囲内で変更等が可能である。
FIG. 8 shows a hardware configuration example of a computer system that functions as a dust fall amount estimation device to which the present invention is applied. The dust fall amount estimation device 100 includes a CPU 20, an input device 21, a display device 22, and a recording device 23, and each unit is connected via a bus.
The input device 21 receives rainfall amount information, wind direction / velocity information, dust generation information, descent point information, reflectivity β, and cleaning coefficient p necessary for estimating the amount of dustfall. The CPU 20 determines the effective dust generation height He, the final settling velocity w of the dust particles, the turbulent diffusion coefficients K y and K z based on the information input to the input device 21, and the amount of dust fall at the descending point is determined. Calculated.
The display device 22 displays, for example, a contour map of the amount of dustfall as shown in FIG. 9 based on the calculated value of the dustfall amount calculated by the CPU 20 at a plurality of descending points.
In the recording device 23, all the information input to the input device 21 and the amount of dust falling at the descending point calculated by the CPU 20 are recorded. The recording device 23 includes a ROM, a RAM, an HD, and the like, and stores a computer program that controls the operation of the dust fall amount estimation device 100.
When the CPU 20 executes the computer program, the functions and processing of the dust fall amount estimation device 100 are realized. A database is stored in the recording device 23.
Note that the dust fall amount estimation apparatus to which the present invention is applied may be applied to a system constituted by a plurality of devices or an apparatus constituted by a single device.
The object of the present invention can also be achieved by supplying a computer program for realizing the above-described functions to a system or apparatus and executing the computer (CPU or MPU) of the system or apparatus. In this case, the computer program itself Constitutes the present invention.
As mentioned above, although this invention was demonstrated with various embodiment, this invention is not limited only to these embodiment, A change etc. are possible within the scope of the present invention.

100:降下煤塵量の推定装置、20:CPU、21:入力装置、22:表示装置、23:記録装置 100: Estimation device for the amount of dust fall, 20: CPU, 21: Input device, 22: Display device, 23: Recording device

Claims (8)

降雨量、風向及び風速の所定期間における時系列計測値に基づいて、降雨量の範囲をk個の分割範囲に分割し、前記k個の分割範囲毎に、風向及び風速の範囲を各々m、n個の分割範囲に分割し、前記風速の分割範囲毎に風速代表値を設定し、各々の前記分割範囲に含まれる前記時系列計測値の前記所定期間での頻度を求めることによってm×n行列の風向・風速頻度分布を各々l個作成し、前記風速代表値及び前記風向・風速頻度分布を風向・風速情報とする風向・風速情報入力工程と、
発塵源の情報である発塵情報を入力する発塵情報入力工程と、
降雨により大気中の煤塵が洗い流される程度を計算するのに用いられる洗浄係数を求める洗浄係数計算工程と、
前記風向・風速情報と、前記発塵情報と、前記洗浄係数と、前記煤塵の地表での反射率とを用いて、任意の座標点における煤塵濃度を計算する煤塵濃度計算工程と、
前記煤塵濃度に基づいて、任意の降下地点における降下煤塵量を計算する降下煤塵量計算工程とを有し、
前記煤塵濃度計算工程では、降雨により大気中の煤塵が洗い流されて地表に降下する降下煤塵量を計算し、前記降下煤塵量の計算値に加算することを特徴とする降下煤塵量の推定方法。
Based on the time-series measurement values of rainfall, wind direction, and wind speed over a predetermined period, the range of rainfall is divided into k divided ranges, and for each of the k divided ranges, the range of wind direction and wind speed is m, m × n by dividing into n division ranges, setting a wind speed representative value for each division range of the wind speed, and determining the frequency of the time-series measurement values included in each of the division ranges in the predetermined period. A wind direction / wind speed frequency distribution is prepared by creating l each of the wind direction / wind speed frequency distribution of the matrix and using the wind speed representative value and the wind direction / wind speed frequency distribution as the wind direction / wind speed information,
A dust generation information input process for inputting dust generation information which is information of a dust generation source;
A cleaning coefficient calculation step for determining a cleaning coefficient used to calculate the degree to which atmospheric dust is washed away by rainfall;
A dust concentration calculation step of calculating a dust concentration at an arbitrary coordinate point using the wind direction / wind speed information, the dust generation information, the cleaning coefficient, and the reflectance of the dust on the ground surface,
A dust falling amount calculation step for calculating a dust falling amount at an arbitrary descent point based on the dust concentration,
In the dust concentration calculation step, the amount of dust falling in the atmosphere is washed away by rain and the amount of dust falling to the ground surface is calculated and added to the calculated value of the amount of dust falling.
前記発塵情報入力工程では、前記発塵源の3次元空間上での座標と、発塵強度と、煤塵粒子径と、煤塵粒子密度と、発塵高さとが入力されることを特徴とする請求項1に記載の降下煤塵量の推定方法。   In the dust generation information input step, coordinates in a three-dimensional space of the dust generation source, dust generation intensity, dust particle diameter, dust particle density, and dust generation height are input. The method for estimating the amount of dustfall according to claim 1. 前記煤塵濃度計算工程は、発塵強度Q、風速u、y軸、z軸方向の乱流拡散係数Ky、Kz、粒子の終末沈降速度w、洗浄係数p、有効発塵高さHeを用いて、前記発塵源のx座標を0、前記発塵源のy座標をy0として、3次元座標上の点(x,y,z)における煤塵濃度c(x,y,z)を(101)式により計算することを特徴とする請求項2に記載の降下煤塵量の推定方法。
Figure 0006136729
In the dust concentration calculation step, the dust generation intensity Q, the wind speed u, the y axis, the turbulent diffusion coefficients K y and K z in the z axis direction, the final sedimentation velocity w of the particles, the cleaning coefficient p, and the effective dust generation height He are calculated. And the soot concentration c (x, y, z) at the point (x, y, z) on the three-dimensional coordinate is set with the x coordinate of the dust source being 0 and the y coordinate of the dust source being y 0. The method for estimating the amount of dust fallen according to claim 2, wherein calculation is performed according to equation (101).
Figure 0006136729
前記降下煤塵量計算工程は、3次元座標上の点(x,y,z)における煤塵濃度c(x,y,z)、降下煤塵量C、大気中の煤塵が降雨で洗い流され降下した効果煤塵量Cγ、降下煤塵量の捕捉高さz1、洗浄係数p、粒子の終末沈降速度wを用いて、(102)式及び(103)式により降下煤塵量を計算することを特徴とする請求項2又は3に記載の降下煤塵量の推定方法。
Figure 0006136729
The amount of dust fall calculation step is the effect of dust concentration c (x, y, z), dust fall amount C, dust in the atmosphere being washed away by rain and falling at the point (x, y, z) on the three-dimensional coordinates. The amount of dust fall is calculated by the equations (102) and (103) using the dust amount Cγ, the trapped height z 1 of the dust fall amount, the cleaning coefficient p, and the final sedimentation velocity w of the particles. Item 4. The method for estimating the amount of dust fall according to Item 2 or 3.
Figure 0006136729
前記降下煤塵量計算工程は、3次元座標上の点(x,y,z)における煤塵濃度c(x,y,z)、降下煤塵量C、大気中の煤塵が降雨で洗い流され降下した効果煤塵量Cγ、降下煤塵量の捕捉高さz1、風速u、y軸、z軸方向の乱流拡散係数Ky、Kz、粒子の終末沈降速度w、洗浄係数p、誤差関数erfc、有効発塵高さHeを用いて、(104)式及び(105)式により降下煤塵量を計算することを特徴とする請求項4に記載の降下煤塵量の推定方法。
Figure 0006136729
The amount of dust fall calculation step is the effect of dust concentration c (x, y, z), dust fall amount C, dust in the atmosphere being washed away by rain and falling at the point (x, y, z) on the three-dimensional coordinates. Dust amount Cγ, trapped height of falling dust amount z 1 , wind velocity u, y axis, z-axis turbulent diffusion coefficient K y , K z , particle terminal settling velocity w, cleaning coefficient p, error function erfc, effective 5. The method for estimating the amount of dustfall according to claim 4, wherein the amount of dustfall is calculated by the formulas (104) and (105) using the dust generation height He.
Figure 0006136729
降雨量、風向及び風速の所定期間における時系列計測値に基づいて、降雨量の範囲をk個の分割範囲に分割し、前記k個の分割範囲毎に、風向及び風速の範囲を各々m、n個の分割範囲に分割し、前記風速の分割範囲毎に風速代表値を設定し、各々の前記分割範囲に含まれる前記時系列計測値の前記所定期間での頻度を求めることによってm×n行列の風向・風速頻度分布を各々l個作成し、前記風速代表値及び前記風向・風速頻度分布を風向・風速情報とする風向・風速情報入力手段と、
発塵源の情報である発塵情報を入力する発塵情報入力手段と、
降雨により大気中の煤塵が洗い流される程度を計算するのに用いられる洗浄係数を求める洗浄係数計算手段と、
前記風向・風速情報と、前記発塵情報と、前記洗浄係数と、前記煤塵の地表での反射率とを用いて、任意の座標点における煤塵濃度を計算する煤塵濃度計算手段と、
前記煤塵濃度に基づいて、任意の降下地点における降下煤塵量を計算する降下煤塵量計算手段とを備え、
前記煤塵濃度計算手段では、降雨により大気中の煤塵が洗い流されて地表に降下する降下煤塵量を計算し、前記降下煤塵量の計算値に加算することを特徴とする降下煤塵量の推定装置。
Based on the time-series measurement values of rainfall, wind direction, and wind speed over a predetermined period, the range of rainfall is divided into k divided ranges, and for each of the k divided ranges, the range of wind direction and wind speed is m, m × n by dividing into n division ranges, setting a wind speed representative value for each division range of the wind speed, and determining the frequency of the time-series measurement values included in each of the division ranges in the predetermined period. A wind direction / wind speed frequency distribution of the matrix, each of which creates l wind direction / wind speed frequency distribution, and uses the wind speed representative value and the wind direction / wind speed frequency distribution as wind direction / wind speed information;
A dust generation information input means for inputting dust generation information which is information of a dust generation source;
A cleaning coefficient calculation means for determining a cleaning coefficient used to calculate the degree to which atmospheric dust is washed away by rainfall;
A dust concentration calculating means for calculating a dust concentration at an arbitrary coordinate point using the wind direction / wind speed information, the dust generation information, the cleaning coefficient, and the reflectance of the dust on the ground surface;
A falling dust amount calculating means for calculating a falling dust amount at an arbitrary descent point based on the dust concentration,
The dust concentration calculation means is configured to calculate the amount of falling dust that falls to the ground surface after washing away dust in the atmosphere due to rain, and adds it to the calculated value of the amount of falling dust.
降雨量、風向及び風速の所定期間における時系列計測値に基づいて、降雨量の範囲をk個の分割範囲に分割し、前記k個の分割範囲毎に、風向及び風速の範囲を各々m、n個の分割範囲に分割し、前記風速の分割範囲毎に風速代表値を設定し、各々の前記分割範囲に含まれる前記時系列計測値の前記所定期間での頻度を求めることによってm×n行列の風向・風速頻度分布を各々l個作成し、前記風速代表値及び前記風向・風速頻度分布を風向・風速情報とする風向・風速情報入力工程と、
発塵源の情報である発塵情報を入力する発塵情報入力工程と、
降雨により大気中の煤塵が洗い流される程度を計算するのに用いられる洗浄係数を求める洗浄係数計算工程と、
前記風向・風速情報と、前記発塵情報と、前記洗浄係数と、前記煤塵の地表での反射率とを用いて、任意の座標点における煤塵濃度を計算する煤塵濃度計算工程と、
前記煤塵濃度に基づいて、任意の降下地点における降下煤塵量を計算する降下煤塵量計算工程とをコンピュータに実行させ、
前記煤塵濃度計算工程では、降雨により大気中の煤塵が洗い流されて地表に降下する降下煤塵量を計算し、前記降下煤塵量の計算値に加算することを特徴とするプログラム。
Based on the time-series measurement values of rainfall, wind direction, and wind speed over a predetermined period, the range of rainfall is divided into k divided ranges, and for each of the k divided ranges, the range of wind direction and wind speed is m, m × n by dividing into n division ranges, setting a wind speed representative value for each division range of the wind speed, and determining the frequency of the time-series measurement values included in each of the division ranges in the predetermined period. A wind direction / wind speed frequency distribution is prepared by creating l each of the wind direction / wind speed frequency distribution of the matrix and using the wind speed representative value and the wind direction / wind speed frequency distribution as the wind direction / wind speed information,
A dust generation information input process for inputting dust generation information which is information of a dust generation source;
A cleaning coefficient calculation step for determining a cleaning coefficient used to calculate the degree to which atmospheric dust is washed away by rainfall;
A dust concentration calculation step of calculating a dust concentration at an arbitrary coordinate point using the wind direction / wind speed information, the dust generation information, the cleaning coefficient, and the reflectance of the dust on the ground surface,
Based on the dust concentration, let the computer execute a dust fall calculation step to calculate the dust fall amount at any descent point,
In the dust concentration calculation step, a dust amount in the atmosphere is washed away by rain and the amount of dust falling to the ground surface is calculated and added to the calculated value of the amount of dust falling.
請求項7に記載のプログラムを記録したことを特徴とするコンピュータ読み取り可能な記憶媒体。   A computer-readable storage medium having recorded thereon the program according to claim 7.
JP2013162646A 2013-08-05 2013-08-05 Method, apparatus, program and storage medium for estimating amount of dustfall Active JP6136729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013162646A JP6136729B2 (en) 2013-08-05 2013-08-05 Method, apparatus, program and storage medium for estimating amount of dustfall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013162646A JP6136729B2 (en) 2013-08-05 2013-08-05 Method, apparatus, program and storage medium for estimating amount of dustfall

Publications (2)

Publication Number Publication Date
JP2015031636A JP2015031636A (en) 2015-02-16
JP6136729B2 true JP6136729B2 (en) 2017-05-31

Family

ID=52517061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013162646A Active JP6136729B2 (en) 2013-08-05 2013-08-05 Method, apparatus, program and storage medium for estimating amount of dustfall

Country Status (1)

Country Link
JP (1) JP6136729B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107193056A (en) * 2017-05-09 2017-09-22 西南石油大学 Air pollutants monitoring and pre-alarming method and cloud platform
JP2019178982A (en) * 2018-03-30 2019-10-17 日本製鉄株式会社 Dust fall-amount estimation method
CN115438293B (en) * 2022-09-09 2023-06-06 青海省人工影响天气办公室 Ground smoke furnace artificial precipitation operation condition identification method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4774836A (en) * 1987-03-27 1988-10-04 Carnegie-Mellon University Detector for dry deposition of atmospheric contaminants
JPH0264437A (en) * 1988-08-31 1990-03-05 Kansai Electric Power Co Inc:The Measuring method of amount of scattered powder dust from powder particle substance storing place, apparatus therefor and monitoring apparatus of scattering of dust utilizing the same
JP2001042052A (en) * 1999-07-30 2001-02-16 Weather Information System Co Ltd Regional environment monitoring system for chemical substance such as dioxins, particulate falling object and the like
JP3709330B2 (en) * 2000-06-19 2005-10-26 株式会社日立製作所 Radioactive material diffusion prediction system
JP3881926B2 (en) * 2002-04-16 2007-02-14 三菱重工業株式会社 Diffusion status prediction method
CN102077076B (en) * 2008-07-01 2013-06-19 新日铁住金株式会社 Method for estimating amount of dustfall, device for estimating amount of dustfall, and program for estimating amount of dustfall
JP5717608B2 (en) * 2011-11-01 2015-05-13 三菱重工業株式会社 Diffusion state prediction database creation system and diffusion state prediction system

Also Published As

Publication number Publication date
JP2015031636A (en) 2015-02-16

Similar Documents

Publication Publication Date Title
JP5026593B2 (en) Descent amount estimation method, fallen dust amount estimation device, and fallen dust amount estimation program
Nemes et al. Snowflakes in the atmospheric surface layer: observation of particle–turbulence dynamics
Dupont et al. Eulerian modelling of pollen dispersal over heterogeneous vegetation canopies
Naaim et al. Dense avalanche friction coefficients: influence of physical properties of snow
Träumner et al. Turbulent structures and coherence in the atmospheric surface layer
Harms et al. Validating LES-based flow and dispersion models
Meneguz et al. Statistical properties of particle segregation in homogeneous isotropic turbulence
JP2007304080A (en) Device, method and program for predicting gas condition, and diffusion state prediction system
Zaïdi et al. Numerical simulations of the microscale heterogeneities of turbulence observed on a complex site
JP6136729B2 (en) Method, apparatus, program and storage medium for estimating amount of dustfall
Gleicher et al. Interpreting three-dimensional spore concentration measurements and escape fraction in a crop canopy using a coupled Eulerian–Lagrangian stochastic model
Quérel et al. The importance of new collection efficiency values including the effect of rear capture for the below-cloud scavenging of aerosol particles
Clifton et al. Improvement and validation of a snow saltation model using wind tunnel measurements
CN112461799A (en) Method and device for acquiring visibility of highway foggy
Kubilay Numerical simulations and field experiments of wetting of building facades due to wind-driven rain in urban areas
Huang et al. Particle deposition to forests: An alternative to K-theory
Venkatraman et al. Effect of different source terms and inflow direction in atmospheric boundary modeling over the complex terrain site of Perdigão
Prat et al. Exploring the use of a column model for the characterization of microphysical processes in warm rain: Results from a homogeneous rainshaft model
JP5131400B1 (en) Search method of unsteady dust source position of falling dust
Oh et al. Paths From Aerosol Particles to Activation and Cloud Droplets in Shallow Cumulus Clouds: The Roles of Entrainment and Supersaturation Fluctuations
Stovern et al. Development of a dust deposition forecasting model for mine tailings impoundments using in situ observations and particle transport simulations
Noll et al. Changes in large particle size distribution due to dry deposition processes
JP5505463B2 (en) Search method for unsteady dust generation source of falling dust
Morrison et al. An assessment of turbulence profiles in rural and urban environments using local measurements and numerical weather prediction results
CN117272866B (en) Variable grid simulation method and equipment for mass concentration of particle size segmented sand dust

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170417

R151 Written notification of patent or utility model registration

Ref document number: 6136729

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350