JP6135233B2 - Battery packaging materials - Google Patents

Battery packaging materials Download PDF

Info

Publication number
JP6135233B2
JP6135233B2 JP2013062995A JP2013062995A JP6135233B2 JP 6135233 B2 JP6135233 B2 JP 6135233B2 JP 2013062995 A JP2013062995 A JP 2013062995A JP 2013062995 A JP2013062995 A JP 2013062995A JP 6135233 B2 JP6135233 B2 JP 6135233B2
Authority
JP
Japan
Prior art keywords
layer
battery
packaging material
chemical
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013062995A
Other languages
Japanese (ja)
Other versions
JP2014186984A (en
Inventor
洋平 橋本
洋平 橋本
山下 力也
力也 山下
堀 弥一郎
弥一郎 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2013062995A priority Critical patent/JP6135233B2/en
Priority to KR1020157021968A priority patent/KR102230063B1/en
Priority to CN201480017387.XA priority patent/CN105144422B/en
Priority to EP14775806.4A priority patent/EP2980881B1/en
Priority to US14/778,904 priority patent/US10483503B2/en
Priority to PCT/JP2014/057606 priority patent/WO2014156904A1/en
Publication of JP2014186984A publication Critical patent/JP2014186984A/en
Application granted granted Critical
Publication of JP6135233B2 publication Critical patent/JP6135233B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、短時間で硬化でき、電解液等に対する耐性を付与できる耐薬品性コーティング層が、基材層表面に設けられているフィルム状の電池用包装材料に関する。
に関する。
The present invention relates to a film-shaped battery packaging material in which a chemical-resistant coating layer that can be cured in a short time and can impart resistance to an electrolytic solution or the like is provided on the surface of a substrate layer.
About.

従来、様々なタイプの電池が開発されているが、あらゆる電池において、電極や電解質等の電池素子を封止するために包装材料が不可欠な部材になっている。従来、電池用包装として金属製の包装材料が多用されていたが、近年、電気自動車、ハイブリッド電気自動車、パソコン、カメラ、携帯電話等の高性能化に伴い、電池には、多様な形状が要求されると共に、薄型化や軽量化が求められている。しかしながら、従来多用されていた金属製の電池用包装材料では、形状の多様化に追従することが困難であり、しかも軽量化にも限界があるという欠点がある。   Conventionally, various types of batteries have been developed. In any battery, a packaging material is an indispensable member for sealing battery elements such as electrodes and electrolytes. Conventionally, metal packaging materials have been widely used as battery packaging, but in recent years, with the increasing performance of electric vehicles, hybrid electric vehicles, personal computers, cameras, mobile phones, etc., batteries are required to have various shapes. At the same time, there is a demand for reduction in thickness and weight. However, metal battery packaging materials that have been widely used in the past have the disadvantages that it is difficult to follow the diversification of shapes and that there is a limit to weight reduction.

そこで、近年、多様な形状に加工が容易で、薄型化や軽量化を実現し得る電池用包装材料として、基材層/接着層/バリア層/シーラント層が順次積層されたフィルム状の積層体が提案されている(例えば、特許文献1参照)。このようなフィルム状の電池用包装材料では、シーラント層同士を対向させて周縁部をヒートシールにて熱溶着させることにより電池素子を封止できるように形成されている。   Therefore, in recent years, a film-like laminate in which a base material layer / adhesive layer / barrier layer / sealant layer are sequentially laminated as a battery packaging material that can be easily processed into various shapes and can be reduced in thickness and weight. Has been proposed (see, for example, Patent Document 1). Such a film-shaped battery packaging material is formed so that the battery element can be sealed by causing the sealant layers to face each other and heat-sealing the peripheral portion by heat sealing.

一方、電池の製造現場では、電解液、酸、アルカリ、有機溶剤等の薬品が使用されるため、フィルム状の電池用包装材料には、これらの薬品が付着しても劣化、変性、損傷等が生じないように耐薬品性を備えていることが求められている。従来、フィルム状の電池用包装材料の基材層の表面(接着層とは反対側の面)に、熱硬化性樹脂を用いてコーティング層を設けることにより、耐薬品性を備えさせ得ることが知られている。しかしながら、従来、熱硬化性樹脂によるコーティング層の形成には、2液硬化型樹脂が用いており、その硬化には高温条件でのエージングを数日〜数週間行う必要があるため、リードタイムの長期化を招き、高温条件に長期間晒されることによる製品不良が生じることも問題となっている。他方、このような高温条件でのエージングに起因する製品不良を抑制するには、2液硬化型樹脂の硬化温度を高めてクイックキュア(短時間での硬化)させることが有効になるが、従来の技術では、2液硬化型樹脂をクイックキュアさせると、熱硬化性樹脂の硬化が十分に進行せず、その結果、コーティング層に十分な耐薬品性を備えることができなくなるという欠点がある。   On the other hand, since chemicals such as electrolytes, acids, alkalis, and organic solvents are used at the battery manufacturing site, even if these chemicals adhere to the film-like battery packaging material, deterioration, modification, damage, etc. It is required to have chemical resistance so as not to occur. Conventionally, by providing a coating layer using a thermosetting resin on the surface (surface opposite to the adhesive layer) of the base material layer of the film-like battery packaging material, chemical resistance can be provided. Are known. However, conventionally, a two-component curable resin is used for forming a coating layer with a thermosetting resin, and the curing requires aging under high temperature conditions for several days to several weeks. There is also a problem that a product failure is caused by prolonged exposure to high temperature conditions for a long time. On the other hand, in order to suppress product defects caused by aging under such high temperature conditions, it is effective to increase the curing temperature of the two-part curable resin and perform quick cure (curing in a short time). However, when the two-component curable resin is quickly cured, the thermosetting resin does not sufficiently cure, and as a result, the coating layer cannot have sufficient chemical resistance.

このような従来技術を背景として、短時間で硬化でき、しかも優れた耐薬品性を備えるコーティング層を、フィルム状電池用包装材料の基材層上に形成する技術の開発が切望されている。   Against the background of such a conventional technique, development of a technique for forming a coating layer that can be cured in a short time and has excellent chemical resistance on a base material layer of a packaging material for a film battery is eagerly desired.

特開2001−202927号公報JP 2001-202927 A

本発明は、短時間で硬化でき、しかも優れた耐薬品性を備えるコーティング層が、基材層表面に設けられているフィルム状の電池用包装材料を提供することを目的とする。   An object of the present invention is to provide a film-shaped battery packaging material in which a coating layer that can be cured in a short time and has excellent chemical resistance is provided on the surface of a base material layer.

本発明者等は、前記課題を解決すべく鋭意検討を行ったところ、少なくとも、耐薬品性コーティング層、基材層、接着層、バリア層、及びシーラント層をこの順に有する積層体からなる電池用包装材料において、当該耐薬品性コーティング層として、熱硬化性樹脂と、硬化促進剤とを含有する樹脂組成物を使用することによって、短時間で硬化可能で、しかも電解液等に対する耐性を付与できる耐薬品性コーティング層を形成できることを見出した。本発明は、かかる知見に基づいて更に検討を重ねることにより完成したものである。   As a result of diligent studies to solve the above-mentioned problems, the present inventors have at least a battery comprising a laminate having a chemical-resistant coating layer, a base material layer, an adhesive layer, a barrier layer, and a sealant layer in this order. In the packaging material, by using a resin composition containing a thermosetting resin and a curing accelerator as the chemical-resistant coating layer, it can be cured in a short period of time and can be given resistance to an electrolytic solution or the like. It has been found that a chemical resistant coating layer can be formed. The present invention has been completed by further studies based on such knowledge.

即ち、本発明は、下記に掲げる態様の発明を提供する。
項1. 少なくとも、耐薬品性コーティング層、基材層、接着層、バリア層、及びシーラント層をこの順に有する積層体からなり、
前記耐薬品性コーティング層が、熱硬化性樹脂と、硬化促進剤とを含有する樹脂組成物の硬化物であることを特徴とする、電池用包装材料。
項2. 前記熱硬化性樹脂が、多環芳香族骨格及び/又は複素環骨格を有する熱硬化性樹脂である、項1に記載の電池用包装材料。
項3. 前記硬化促進剤が、アミジン化合物、カルボジイミド化合物、ケチミン化合物、ヒドラジン化合物、スルホニウム塩、ベンゾチアゾリウム塩、及び第3級アミン化合物よりなる群から選択される少なくとも1種である、項1又は2に記載の電池用包装材料。
項4. 前記バリア層が金属箔である、項1〜3のいずれかに記載の電池用包装材料。
項5. 耐薬品性コーティング層、基材層、接着層、バリア層、及びシーラント層をこの順に有する積層体からなる電池用包装材料の製造方法であって、
接着層を介して基材層とバリア層を積層させて、基材層、接着層、バリア層が順に積層された積層体を形成する第1工程、及び
前記第1工程で得られた積層体のバリア層上に、シーラント層を積層させる第2工程を含み、
前記第1工程の前、前記第1工程後且つ第2工程前、又は前記第2工程の後に、前記基材層において前記接着層を積層させる面とは反対側の面に、熱硬化性樹脂と、硬化促進剤とを含有する樹脂組成物を塗布し、加熱して硬化させることにより、耐薬品性コーティング層を形成することを特徴とする、電池用包装材料の製造方法。
項6. 少なくとも正極、負極、及び電解質を備えた電池素子が、項1〜5のいずれかに記載の電池用包装材料内に収容されている、電池。
That is, this invention provides the invention of the aspect hung up below.
Item 1. It consists of a laminate having at least a chemical resistant coating layer, a base material layer, an adhesive layer, a barrier layer, and a sealant layer in this order,
The battery packaging material, wherein the chemical-resistant coating layer is a cured product of a resin composition containing a thermosetting resin and a curing accelerator.
Item 2. Item 2. The battery packaging material according to Item 1, wherein the thermosetting resin is a thermosetting resin having a polycyclic aromatic skeleton and / or a heterocyclic skeleton.
Item 3. Item 1 or 2 wherein the curing accelerator is at least one selected from the group consisting of an amidine compound, a carbodiimide compound, a ketimine compound, a hydrazine compound, a sulfonium salt, a benzothiazolium salt, and a tertiary amine compound. A packaging material for a battery as described in 1.
Item 4. Item 4. The battery packaging material according to any one of Items 1 to 3, wherein the barrier layer is a metal foil.
Item 5. A method for producing a battery packaging material comprising a laminate having a chemical-resistant coating layer, a base material layer, an adhesive layer, a barrier layer, and a sealant layer in this order,
A first step of laminating a base material layer and a barrier layer through an adhesive layer to form a laminate in which the base material layer, the adhesive layer, and the barrier layer are sequentially laminated, and the laminate obtained in the first step A second step of laminating a sealant layer on the barrier layer of
Before the first step, after the first step and before the second step, or after the second step, a thermosetting resin is provided on the surface of the base material layer opposite to the surface on which the adhesive layer is laminated. And a resin composition containing a curing accelerator, and a chemical-resistant coating layer is formed by heating and curing the resin composition, and a method for producing a battery packaging material.
Item 6. The battery in which the battery element provided with at least the positive electrode, the negative electrode, and the electrolyte is accommodated in the battery packaging material according to any one of Items 1 to 5.

本発明の電池用包装材料は、シーラント層とは反対側の再表面に、熱硬化性樹脂と、硬化促進剤とを含有する樹脂組成物によって強固な硬化膜からなる耐薬品性コーティング層が設けられており、電解液、酸、アルカリ、有機溶剤等の薬品に対して優れた耐性を備えている。また、本発明の電池用包装材料における耐薬品性コーティング層は、高温条件でのエージングを要することなく、短時間で硬化できるので、リードタイムを短縮化でき、更には高温条件に長期間晒されることによる製品不良の発生を防止することができる。   The battery packaging material of the present invention is provided with a chemical-resistant coating layer composed of a hardened film by a resin composition containing a thermosetting resin and a curing accelerator on the resurface opposite to the sealant layer. It has excellent resistance to chemicals such as electrolytes, acids, alkalis and organic solvents. In addition, the chemical-resistant coating layer in the battery packaging material of the present invention can be cured in a short time without requiring aging under high temperature conditions, so that the lead time can be shortened and further exposed to high temperature conditions for a long time. It is possible to prevent the occurrence of defective products.

本発明の電池用包装材料の断面構造の一例を示す図である。It is a figure which shows an example of the cross-section of the packaging material for batteries of this invention.

本発明の電池用包装材料は、少なくとも、耐薬品性コーティング層、基材層、接着層、バリア層、及びシーラント層をこの順に有する積層体からなり、当該耐薬品性コーティング層が、熱硬化性樹脂と、硬化促進剤とを含有する樹脂組成物の硬化物であることを特徴とする。以下、本発明の電池用包装材料について詳述する。   The battery packaging material of the present invention comprises a laminate having at least a chemical-resistant coating layer, a base material layer, an adhesive layer, a barrier layer, and a sealant layer in this order, and the chemical-resistant coating layer is thermosetting. It is a cured product of a resin composition containing a resin and a curing accelerator. Hereinafter, the battery packaging material of the present invention will be described in detail.

1.電池用包装材料の積層構造
電池用包装材料は、図1に示すように、少なくとも、耐薬品性コーティング層1、基材層2、接着層3、バリア層4、及びシーラント層5をこの順に有する積層体からなる積層構造を有する。即ち、本発明の電池用包装材料は、耐薬品性コーティング層1が最外層になり、シーラント層5が最内層になる。電池の組み立て時に、電池素子の周縁に位置するシーラント層5同士を接面させて熱溶着することにより電池素子が密封され、電池素子が封止される。
1. As shown in FIG. 1, the battery packaging material has at least a chemical-resistant coating layer 1, a base material layer 2, an adhesive layer 3, a barrier layer 4, and a sealant layer 5 in this order, as shown in FIG. It has a laminated structure consisting of a laminated body. That is, in the battery packaging material of the present invention, the chemical resistant coating layer 1 is the outermost layer and the sealant layer 5 is the innermost layer. When the battery is assembled, the battery element is hermetically sealed by thermally sealing the sealant layers 5 positioned at the periphery of the battery element to contact each other, thereby sealing the battery element.

また、本発明の電池用包装材料には、バリア層4とびシーラント層5との間に、これらの接着性を高める目的で、必要に応じて接着層6が設けられていてもよい。   Further, the battery packaging material of the present invention may be provided with an adhesive layer 6 between the barrier layer 4 and the sealant layer 5 as necessary for the purpose of enhancing the adhesiveness.

2.電池用包装材料を形成する各層の組成
[耐薬品性コーティング層1]
本発明の電池用包装材料において、耐薬品性コーティング層1は基材層2の表面コーティング層として最外層を形成する層である。耐薬品性コーティング層1は、熱硬化性樹脂と、硬化促進剤とを含有する樹脂組成物の硬化物で形成される。このように耐薬品性コーティング層1を、特定組成の樹脂組成物を硬化させて形成することにより、電解液、酸、アルカリ、有機溶剤等の薬品に対して優れた耐性を備え、しかも製造時に高温条件でのエージングを要することなく短時間で硬化させてリードタイムを短縮化することが可能になる。
2. Composition of each layer forming the battery packaging material [chemical resistant coating layer 1]
In the battery packaging material of the present invention, the chemical resistant coating layer 1 is a layer that forms the outermost layer as the surface coating layer of the base material layer 2. The chemical resistant coating layer 1 is formed of a cured product of a resin composition containing a thermosetting resin and a curing accelerator. Thus, by forming the chemical resistant coating layer 1 by curing a resin composition having a specific composition, the chemical resistant coating layer 1 has excellent resistance to chemicals such as an electrolytic solution, an acid, an alkali, and an organic solvent, and at the time of manufacture. The lead time can be shortened by curing in a short time without requiring aging under high temperature conditions.

(熱硬化性樹脂)
耐薬品性コーティング層1の形成に使用される樹脂組成物は、熱硬化性樹脂を含有する。熱硬化性樹脂は、加熱すると重合を起こして高分子の網目構造を形成して硬化するものであればよい。耐薬品性コーティング層1の形成に使用される熱硬化性樹脂として、具体的には、エポキシ樹脂、アミノ樹脂(メラミン樹脂、ベンゾグアナミン樹脂等)、アクリル樹脂、ウレタン樹脂、フェノール樹脂、不飽和ポリエステル樹脂、アルキド樹脂等が挙げられる。
(Thermosetting resin)
The resin composition used for forming the chemical resistant coating layer 1 contains a thermosetting resin. Any thermosetting resin may be used as long as it causes polymerization upon heating to form a polymer network structure and cure. Specific examples of thermosetting resins used for forming the chemical resistant coating layer 1 include epoxy resins, amino resins (melamine resins, benzoguanamine resins, etc.), acrylic resins, urethane resins, phenol resins, unsaturated polyester resins. And alkyd resin.

これらの熱硬化性樹脂は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。   These thermosetting resins may be used individually by 1 type, and may be used in combination of 2 or more type.

これらの熱硬化性樹脂の中でも、耐薬品性コーティング層1の硬化時間のより一層の短縮化、耐薬品性の更なる向上等の観点から、好ましくはウレタン樹脂、エポキシ樹脂、更に好ましく2液硬化性ウレタン樹脂、2液硬化性エポキシ樹脂、特に好ましくは2液硬化性ウレタン樹脂が挙げられる。   Among these thermosetting resins, from the viewpoint of further shortening the curing time of the chemical resistant coating layer 1 and further improving the chemical resistance, preferably a urethane resin, an epoxy resin, and more preferably a two-component curing. Curable urethane resin, two-component curable epoxy resin, particularly preferably two-component curable urethane resin.

2液硬化性ウレタン樹脂として、具体的にはポリオール化合物(主剤)と、イソシアネート系化合物(硬化剤)の組み合わせが挙げられ、2液硬化性エポキシ樹脂として、具体的にはエポキシ樹脂(主剤)と、酸無水物、アミン化合物、又はアミノ樹脂(硬化剤)の組み合わせが挙げられる。   Specific examples of the two-component curable urethane resin include a combination of a polyol compound (main agent) and an isocyanate compound (curing agent). As the two-component curable epoxy resin, specifically, an epoxy resin (main agent) and , Acid anhydrides, amine compounds, or combinations of amino resins (curing agents).

前記2液硬化性ウレタン樹脂において、主剤として使用されるポリオール化合物については、特に制限されないが、例えば、ポリエステルポリオール、ポリエステルポリウレタンポリオール、ポリエーテルポリオール、ポリエーテルポリウレタンポリオール等が挙げられる。これらのポリオール化合物は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。   In the two-component curable urethane resin, the polyol compound used as the main agent is not particularly limited, and examples thereof include polyester polyol, polyester polyurethane polyol, polyether polyol, and polyether polyurethane polyol. These polyol compounds may be used individually by 1 type, and may be used in combination of 2 or more type.

また、前記2液硬化性ウレタン樹脂において、硬化剤として使用されるイソシアネート系化合物については、特に制限されないが、例えば、例えば、ポリイソシアネート、そのアダクト体、そのイソシアヌレート変性体、そのカルボジイミド変性体、そのアロハネート変性体、そのビュレット変性体等が挙げられる。前記ポリイソシアネートとしては、具体的には、ジフェニルメタンジイソシアネート(MDI)、ポリフェニルメタンジイソシアネート(ポリメリックMDI)、トルエンジイソシアネート(TDI)、ヘキサメチレンジイソシアネート(HDI)、ビス(4−イソシアネートシクロヘキシル)メタン(H12MDI)、イソホロンジイソシアネート(IPDI)、1,5−ナフタレンジイソシアネート(1,5−NDI)、3,3'−ジメチル−4,4'−ジフェニレンジイソシアネート(TODI)、キシレンジイソシアネート(XDI)等の芳香族ジイソシアネート;トラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、イソホロンジイソシアネート等の脂肪族ジイソシアネート;4,4’−メチレンビス(シクロヘキシルイソシアネート)、イソホロンジイソシアネート等の脂環族ジイソシアネート;1,5−ナフタレンジイソシアネート(1,5−NDI)等の多環芳香族ジイソシアネート等が挙げられる。前記アダクト体としては、具体的には、前記ポリイソシアネートに、トリメチロールプロパン、グリコール等を付加したものが挙げられる。これらのイソシアネート系化合物は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。   In the two-component curable urethane resin, the isocyanate compound used as a curing agent is not particularly limited. For example, polyisocyanate, its adduct, its isocyanurate modified, its carbodiimide modified, The allophanate modified body, the bullet modified body, etc. are mentioned. Specific examples of the polyisocyanate include diphenylmethane diisocyanate (MDI), polyphenylmethane diisocyanate (polymeric MDI), toluene diisocyanate (TDI), hexamethylene diisocyanate (HDI), and bis (4-isocyanatocyclohexyl) methane (H12MDI). , Aromatic diisocyanates such as isophorone diisocyanate (IPDI), 1,5-naphthalene diisocyanate (1,5-NDI), 3,3′-dimethyl-4,4′-diphenylene diisocyanate (TODI), xylene diisocyanate (XDI) Aliphatic diisocyanates such as tramethylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, isophorone diisocyanate DOO; 4,4'-methylenebis (cyclohexyl isocyanate), alicyclic diisocyanates such as isophorone diisocyanate; 1,5-naphthalene diisocyanate (1, 5-NDI) polycyclic aromatic diisocyanates such as are exemplified. Specific examples of the adduct include those obtained by adding trimethylolpropane, glycol and the like to the polyisocyanate. These isocyanate compounds may be used individually by 1 type, and may be used in combination of 2 or more type.

耐薬品性コーティング層1において、熱硬化性樹脂は、後述する硬化促進剤と併用されることにより、強固な硬化膜を形成し、優れた耐薬品性を備えることができるので、熱硬化性樹脂の構造にいては特に制限されないが、多環芳香族骨格及び/又は複素環骨格を有している熱硬化性樹脂は、より一層優れた耐薬品性を備えることができるので、耐薬品性コーティング層1の形成において特に好適に使用される。多環芳香族骨格を有する熱硬化性樹脂として、具体的には、多環芳香族骨格を有するエポキシ樹脂、多環芳香族骨格を有するウレタン樹脂が挙げられる。また、複素環骨格を有する熱硬化性樹脂として、メラミン樹脂、ベンゾグアナミン樹脂等のアミノ樹脂が挙げられる。これらの多環芳香族骨格及び/又は複素環骨格を有する熱硬化性樹脂は、1液硬化型又は2液型硬化型のいずれであってもよい。   In the chemical-resistant coating layer 1, the thermosetting resin can form a strong cured film and have excellent chemical resistance when used in combination with a curing accelerator to be described later. The thermosetting resin having a polycyclic aromatic skeleton and / or a heterocyclic skeleton can be provided with even better chemical resistance, so that the chemical resistant coating is not particularly limited. It is particularly preferably used in the formation of the layer 1. Specific examples of the thermosetting resin having a polycyclic aromatic skeleton include an epoxy resin having a polycyclic aromatic skeleton and a urethane resin having a polycyclic aromatic skeleton. Examples of the thermosetting resin having a heterocyclic skeleton include amino resins such as melamine resin and benzoguanamine resin. These thermosetting resins having a polycyclic aromatic skeleton and / or a heterocyclic skeleton may be either a one-component curable type or a two-component curable type.

多環芳香族骨格を有するエポキシ樹脂としては、より具体的には、ジヒドロキシナフタレンと、エピハロヒドリンとの反応物;ナフトールとアルデヒド類との縮合物(ナフトールノボラック樹脂)と、エピハロヒドリンとの反応物;ジヒドロキシナフタレンとアルデヒド類との縮合物と、エピハロヒドリンの反応物;モノ又はジヒドロキシナフタレンとキシリレングリコール類との縮合物と、エピハロヒドリンとの反応物;モノ又はジヒドロキシナフタレンとジエン化合物との付加物と、エピハロヒドリンとの反応物;ナフトール同士が直接カップリングしたポリナフトール類とエピハロヒドリンとの反応物等が挙げられる。   More specifically, as an epoxy resin having a polycyclic aromatic skeleton, a reaction product of dihydroxynaphthalene and epihalohydrin; a condensate of naphthol and aldehydes (naphthol novolak resin) and a reaction product of epihalohydrin; dihydroxy Condensate of naphthalene and aldehydes and reaction product of epihalohydrin; condensate of mono or dihydroxynaphthalene and xylylene glycol and reaction product of epihalohydrin; adduct of mono or dihydroxynaphthalene and diene compound, and epihalohydrin A reaction product of polynaphthols in which naphthols are directly coupled with epihalohydrin, and the like.

多環芳香族骨格を有するウレタン樹脂としては、より具体的には、ポリオール化合物と、多環芳香族骨格を有するイソシアネート系化合物との反応物が挙げられる。   More specifically, examples of the urethane resin having a polycyclic aromatic skeleton include a reaction product of a polyol compound and an isocyanate compound having a polycyclic aromatic skeleton.

(硬化促進剤)
耐薬品性コーティング層1の形成に使用される樹脂組成物は、硬化促進剤を含有する。このように、熱硬化性樹脂と共に、硬化促進剤を共存させることにより、優れた耐薬品性を備えさせるだけでなく、製造時に高温条件でのエージングを要することなく短時間で耐薬品性コーティング層1を硬化させて、リードタイムを短縮することも可能になる。
(Curing accelerator)
The resin composition used for forming the chemical resistant coating layer 1 contains a curing accelerator. In this way, by coexisting a curing accelerator with a thermosetting resin, not only has excellent chemical resistance, but also a chemical resistant coating layer in a short time without requiring aging under high temperature conditions during production. It is also possible to shorten the lead time by curing 1.

ここで、「硬化促進剤」とは、自らは架橋構造を形成しないが、熱硬化性樹脂の架橋反応を促進する物質であり、熱硬化性樹の架橋反応を促進する作用を有し、自らも架橋構造を形成する場合もある物質である。   Here, the “curing accelerator” is a substance that does not form a crosslinked structure by itself, but promotes a crosslinking reaction of a thermosetting resin, and has an action of promoting a crosslinking reaction of a thermosetting resin. Is also a substance that may form a crosslinked structure.

硬化促進剤の種類については、使用する熱硬化性樹脂に応じて適宜選定されるが、例えば、アミジン化合物、カルボジイミド化合物、ケチミン化合物、ヒドラジン化合物、スルホニウム塩、ベンゾチアゾリウム塩、第3級アミン化合物等が挙げられる。   The type of curing accelerator is appropriately selected according to the thermosetting resin used. For example, an amidine compound, a carbodiimide compound, a ketimine compound, a hydrazine compound, a sulfonium salt, a benzothiazolium salt, a tertiary amine. Compounds and the like.

前記アミジン化合物としては、特に制限されないが、例えば、イミダゾール化合物、1,8−ジアザビシクロ[5.4.0]ウンデセ−7エン(DBU)、1,5−ジアザビシクロ[4.3.0]ノネ−5−エン(DBN)、グアニジン化合物等が挙げられる。前記イミダゾール化合物としては、具体的には、2−メチルイミダゾール、2−エチルイミダゾール、2−ウンデシルイミダゾール、2,4−ジメチルイミダゾール、2−ヘプタデシルイミダゾール、1,2−ジメチルイミダゾール、1,2−ジエチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール、1−ベンジル−2−フェニルイミダゾール、1−シアノエチル−2−メチルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾール、1−ベンジル−2−メチルイミダゾール、2,4−ジアミノ−6−[2'−メチルイミダゾリル−(1)']−エチル−S−トリアジン、2,4−ジアミノ−6−[2'−エチル−4'−メチルイミダゾリル−(1)']−エチル−S−トリアジン、2,4−ジアミノ−6−[2'−ウンデシルイミダゾリル]−エチル−S−トリアジン、2,4−ジアミノ−6−[2'−メチルイミダゾリル−(1)']−エチル−S−トリアジンイソシアヌール酸化付加物、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール、2−フェニル−4,5−ジヒドロキシメチルイミダゾール、2−アリール−4,5−ジフェニルイミダゾール等が挙げられる。これらのアミジン化合物は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。   The amidine compound is not particularly limited, and examples thereof include imidazole compounds, 1,8-diazabicyclo [5.4.0] undec-7ene (DBU), 1,5-diazabicyclo [4.3.0] none. 5-ene (DBN), a guanidine compound, etc. are mentioned. Specific examples of the imidazole compound include 2-methylimidazole, 2-ethylimidazole, 2-undecylimidazole, 2,4-dimethylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 1,2 -Diethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-benzyl- 2-methylimidazole, 2,4-diamino-6- [2′-methylimidazolyl- (1) ′]-ethyl-S-triazine, 2,4-diamino-6- [2′-ethyl-4′-methyl Imidazolyl- (1) ′]-ethyl-S-triazine, 2,4-diamino- -[2'-undecylimidazolyl] -ethyl-S-triazine, 2,4-diamino-6- [2'-methylimidazolyl- (1) ']-ethyl-S-triazine isocyanurate oxidation adduct, 2- Examples include phenyl-4-methyl-5-hydroxymethylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-aryl-4,5-diphenylimidazole and the like. These amidine compounds may be used individually by 1 type, and may be used in combination of 2 or more type.

前記カルボジイミド化合物としては、特に制限されないが、例えば、N,N’−ジシクロヘキシルカルボジイミド、N,N’−ジイソプロピルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド、N−[3−(ジメチルアミノ)プロピル]−N’−エチルカルボジイミド、N−[3−(ジメチルアミノ)プロピル]−N'−エチルカルボジイミドメチオジド、N−tert−ブチル−N’−エチルカルボジイミド、N−シクロヘキシル−N’−(2−モルホリノエチル)カルボジイミドメソ−p−トルエンスルホネート、N,N’−ジ−tert−ブチルカルボジイミド、N,N’−ジ−p−トリルカルボジイミド等が挙げられる。これらのカルボジイミド化合物は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。   The carbodiimide compound is not particularly limited. For example, N, N′-dicyclohexylcarbodiimide, N, N′-diisopropylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide, N- [3- ( Dimethylamino) propyl] -N'-ethylcarbodiimide, N- [3- (dimethylamino) propyl] -N'-ethylcarbodiimide methiodide, N-tert-butyl-N'-ethylcarbodiimide, N-cyclohexyl-N Examples include '-(2-morpholinoethyl) carbodiimide meso-p-toluenesulfonate, N, N'-di-tert-butylcarbodiimide, N, N'-di-p-tolylcarbodiimide, and the like. These carbodiimide compounds may be used individually by 1 type, and may be used in combination of 2 or more type.

前記ケチミン化合物としては、ケチミン結合(N=C)を有することを限度として特に制限されないが、例えばケトンとアミンとを反応させて得られるケチミン化合物が挙げられる。前記ケトンとしては、具体的には、メチルエチルケトン、メチルイソプロピルケトン、メチル第3ブチルケトン、メチルシクロヘキシルケトン、ジエチルケトン、エチルプロピルケトン、エチルブチルケトン、ジプロピルケトン、ジブチルケトン、ジイソブチルケトン等が挙げられる。また、前記アミンとしては、具体的には、o−フェニレンジアミン、m−フェニレンジアミン、p−フェニレンジアミン、m−キシリレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルフォン、ジアミノジエチルジフェニルメタン等の芳香族ポリアミン;エチレンジアミン、プロピレンジアミン、ブチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、ヘキサメチレンジアミン、トリメチルヘキサメチレンジアミン、1,2−プロパンジアミン、イミノビスプロピルアミン、メチルイミノビスプロピルアミン等の脂肪族ポリアミン;N−アミノエチルピペラジン、3−ブトキシイソプロピルアミン等の主鎖にエーテル結合を有するモノアミンやポリエーテル骨格のジアミン;イソホロンジアミン、1,3−ビスアミノメチルシクロヘキサン、1−シクロヘキシルアミノ−3−アミノプロパン、3−アミノメチル−3,3,5−トリメチルシクロヘキシルアミン等の脂環式ポリアミン:ノルボルナン骨格のジアミン;ポリアミドの分子末端にアミノ基を有するポリアミドアミン;2,5−ジメチル−2,5−ヘキサメチレンジアミン、メンセンジアミン、1,4−ビス(2−アミノ−2−メチルプロピル)ピペラジン等が、具体例として挙げられる。これらのケチミン化合物は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。   The ketimine compound is not particularly limited as long as it has a ketimine bond (N = C), and examples thereof include a ketimine compound obtained by reacting a ketone with an amine. Specific examples of the ketone include methyl ethyl ketone, methyl isopropyl ketone, methyl tertiary butyl ketone, methyl cyclohexyl ketone, diethyl ketone, ethyl propyl ketone, ethyl butyl ketone, dipropyl ketone, dibutyl ketone, and diisobutyl ketone. Specific examples of the amine include o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, m-xylylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, and diaminodiethyldiphenylmethane; ethylenediamine , Propylenediamine, butylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, hexamethylenediamine, trimethylhexamethylenediamine, 1,2-propanediamine, iminobispropylamine, methyliminobispropylamine, etc. Aliphatic polyamines; N-aminoethylpiperazine, 3-butoxyisopropylamine and the like monoamines and polyesters having an ether bond in the main chain Terpone diamines; cyclophoric amines such as isophorone diamine, 1,3-bisaminomethylcyclohexane, 1-cyclohexylamino-3-aminopropane, 3-aminomethyl-3,3,5-trimethylcyclohexylamine: norbornane skeleton Polyamide amine having an amino group at the molecular end of polyamide; 2,5-dimethyl-2,5-hexamethylenediamine, mensendiamine, 1,4-bis (2-amino-2-methylpropyl) piperazine, etc. Is given as a specific example. These ketimine compounds may be used individually by 1 type, and may be used in combination of 2 or more type.

前記ヒドラジン化合物としては、特に制限されないが、例えば、ジピン酸ジヒドラジド、イソフタル酸ジヒドラジド等が挙げられる。これらのヒドラジン化合物は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。   The hydrazine compound is not particularly limited, and examples thereof include dipic acid dihydrazide and isophthalic acid dihydrazide. These hydrazine compounds may be used individually by 1 type, and may be used in combination of 2 or more type.

前記スルホニウム塩としては、特に制限されないが、例えば、4−アセトフェニルジメチルスルホニウムヘキサフルオロアンチモネート、4−アセトフェニルジメチルスルホニウムヘキサフルオロアルセネート、ジメチル−4−(ベンジルオキシカルボニルオキシ)フェニルスルホニウムヘキサフルオロアンチモネート、ジメチル−4−(ベンゾイルオキシ)フェニルスルホニウムヘキサフルオロアンチモネート、ジメチル−4−(ベンゾイルオキシ)フェニルスルホニウムヘキサフルオロアルセネート等のアルキルスルホニウム塩;ベンジル−4−ヒドロキシフェニルメチルスルホニウムヘキサフルオロアンチモネート、4−アセトキシフェニルベンジルメチルスルホニウムヘキサフルオロアンチモネート、ベンジル−4−メトキシフェニルメチルスルホニウムヘキサフルオロアンチモネート、ベンジル−3−クロロ−4−ヒドロキシフェニルメチルスルホニウムヘキサフルオロアルセネート、4−メトキシベンジル−4−ヒドロキシフェニルメチルスルホニウムヘキサフルオロホスフェート等のベンジルスルホニウム塩;ジベンジル−4−ヒドロキシフェニルスルホニウムヘキサフルオロアンチモネート、ジベンジル−4−ヒドロキシフェニルスルホニウムヘキサフルオロホスフェー、ジベンジル−4−メトキシフェニルスルホニウムヘキサフルオロアンチモネート、ベンジル−4−メトキシベンジル−4−ヒドロキシフェニルスルホニウムヘキサフルオロホスフェート等のジベンジルスルホニウム塩;p−クロロベンジル−4−ヒドロキシフェニルメチルスルホニウムヘキサフルオロアンチモネート、p−ニトロベンジル−4−ヒドロキシフェニルメチルスルホニウムヘキサフルオロアンチモネート、3,5−ジクロロベンジル−4−ヒドロキシフェニルメチルスルホニウムヘキサフルオロアンチモネート、o−クロロベンジル−3−クロロ−4−ヒドロキシフェニルメチルスルホニウムヘキサフルオロアンチモネート等の置換ベンジルスルホニウム塩等が挙げられる。これらのスルホニウム塩は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。   The sulfonium salt is not particularly limited. For example, 4-acetophenyldimethylsulfonium hexafluoroantimonate, 4-acetophenyldimethylsulfonium hexafluoroarsenate, dimethyl-4- (benzyloxycarbonyloxy) phenylsulfonium hexafluoroantimony , Alkylsulfonium salts such as dimethyl-4- (benzoyloxy) phenylsulfonium hexafluoroantimonate, dimethyl-4- (benzoyloxy) phenylsulfonium hexafluoroarsenate; benzyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate, 4-acetoxyphenylbenzylmethylsulfonium hexafluoroantimonate, benzyl-4-methoxypheny Benzylsulfonium salts such as methylsulfonium hexafluoroantimonate, benzyl-3-chloro-4-hydroxyphenylmethylsulfonium hexafluoroarsenate, 4-methoxybenzyl-4-hydroxyphenylmethylsulfonium hexafluorophosphate; dibenzyl-4-hydroxyphenyl Dibenzylsulfonium such as sulfonium hexafluoroantimonate, dibenzyl-4-hydroxyphenylsulfonium hexafluorophosphate, dibenzyl-4-methoxyphenylsulfonium hexafluoroantimonate, benzyl-4-methoxybenzyl-4-hydroxyphenylsulfonium hexafluorophosphate Salt; p-chlorobenzyl-4-hydroxyphenylmethylsulfonium hexa Luoantimonate, p-nitrobenzyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate, 3,5-dichlorobenzyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate, o-chlorobenzyl-3-chloro-4- Examples thereof include substituted benzylsulfonium salts such as hydroxyphenylmethylsulfonium hexafluoroantimonate. These sulfonium salts may be used individually by 1 type, and may be used in combination of 2 or more type.

前記ベンゾチアゾリウム塩としては、特に制限されないが、例えば、3−ベンジルベンゾチアゾリウムヘキサフルオロアンチモネート、3−ベンジルベンゾチアゾリウム ヘキサフルオロホスフェート、3−ベンジルベンゾチアゾリウム テトラフルオロボレート、3−(p−メトキシベンジル)ベンゾチアゾリウム ヘキサフルオロアンチモネート、3−ベンジル−2−メチルチオベンゾチアゾリウム ヘキサフルオロアンチモネート、3−ベンジル−5−クロロベンゾチアゾリウム ヘキサフルオロアンチモネート等のベンジルベンゾチアゾリウム塩が挙げられる。これらのベンゾチアゾリウム塩は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。   The benzothiazolium salt is not particularly limited. For example, 3-benzylbenzothiazolium hexafluoroantimonate, 3-benzylbenzothiazolium hexafluorophosphate, 3-benzylbenzothiazolium tetrafluoroborate, Such as 3- (p-methoxybenzyl) benzothiazolium hexafluoroantimonate, 3-benzyl-2-methylthiobenzothiazolium hexafluoroantimonate, 3-benzyl-5-chlorobenzothiazolium hexafluoroantimonate Benzylbenzothiazolium salt. These benzothiazolium salts may be used individually by 1 type, and may be used in combination of 2 or more type.

前記第3級アミン化合物としては、特に制限されないが、例えば、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリエチレンジアミン、1,4−ジアザビシクロ[2.2.2]オクタン、キヌクリジン、3−キヌクリジノール等の脂肪族第3級アミン;ジメチルアニリン等の芳香族第3級アミン;イソキノリン、ピリジン、コリジン、ベータピコリン等の複素環第3級アミン等が挙げられる。これらの第3級アミン化合物は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。   The tertiary amine compound is not particularly limited, and examples thereof include trimethylamine, triethylamine, tripropylamine, tributylamine, triethylenediamine, 1,4-diazabicyclo [2.2.2] octane, quinuclidine, and 3-quinuclidinol. And aliphatic tertiary amines; aromatic tertiary amines such as dimethylaniline; and heterocyclic tertiary amines such as isoquinoline, pyridine, collidine, and betapicoline. These tertiary amine compounds may be used individually by 1 type, and may be used in combination of 2 or more type.

前記硬化促進剤の好適な一例としては、熱酸発生剤として機能するものが挙げられる。熱酸発生剤とは、加熱により酸を発生し、硬化促進剤として機能する物質である。前述する硬化促進剤の内、熱酸発生剤として機能し得るものとしては、具体的には、スルホニウム塩、ベンゾチアゾリウム塩等が挙げられる。   As a suitable example of the said hardening accelerator, what functions as a thermal acid generator is mentioned. A thermal acid generator is a substance that generates an acid by heating and functions as a curing accelerator. Specific examples of the curing accelerator that can function as a thermal acid generator include sulfonium salts and benzothiazolium salts.

また、前記硬化促進剤の他の好適な一例としては、所定の加熱条件下(例えば80〜2000℃、好ましくは100〜160℃)で活性化して熱硬化性樹脂の架橋反応を促進する熱潜在性を備えるものが挙げられる。前述する硬化促進剤の内、熱潜在性である物質としては、具体的には、アミジン化合物、ヒドラジン化合物、第3級アミン化合物等にエポキシ化合物が付加したエポキシアダクトが挙げられる。   In addition, another suitable example of the curing accelerator is a thermal latent that is activated under a predetermined heating condition (for example, 80 to 2000 ° C., preferably 100 to 160 ° C.) to promote the crosslinking reaction of the thermosetting resin. The thing with sex is mentioned. Among the above-mentioned curing accelerators, specific examples of the heat-latent substance include an epoxy adduct obtained by adding an epoxy compound to an amidine compound, a hydrazine compound, a tertiary amine compound, or the like.

更に、前記硬化促進剤の他の好適な一例としては、密閉状態、すなわち湿気遮断状態では硬化剤として機能しないが、密閉状態を開封し、湿気の存在する条件下で加水分解して硬化剤として機能する加水分解型潜在性を備えるものが挙げられる。前述する硬化促進剤の内、加水分解型潜在性である物質としては、具体的には、アミジン化合物、ヒドラジン化合物、第3級アミン化合物等にエポキシ化合物が付加したエポキシアダクトが挙げられる。   Furthermore, as another preferable example of the curing accelerator, it does not function as a curing agent in a sealed state, that is, in a moisture blocking state, but the sealed state is opened and hydrolyzed under the presence of moisture as a curing agent. Those having a hydrolytic potential that functions. Among the above-mentioned curing accelerators, specific examples of the hydrolytic latent substance include an epoxy adduct obtained by adding an epoxy compound to an amidine compound, a hydrazine compound, a tertiary amine compound, or the like.

これらの硬化促進剤は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。これらの硬化促進剤の中でも、好ましくはアミジン化合物、スルホニウム塩、更に好ましくはアミジン化合物が挙げられる。   These hardening accelerators may be used individually by 1 type, and may be used in combination of 2 or more type. Among these curing accelerators, an amidine compound and a sulfonium salt are preferable, and an amidine compound is more preferable.

耐薬品性コーティング層1の形成に使用される樹脂組成物における硬化促進剤の含有量については、使用する熱硬化性樹脂の種類、硬化促進剤の種類等に応じて適宜設定されるが、例えば、熱硬化性樹脂100質量部に対して、硬化促進剤が総量で0.01〜6質量部、好ましくは0.05〜5質量部、更に好ましくは0.1〜2質量部が挙げられる。   About content of the hardening accelerator in the resin composition used for formation of the chemical-resistant coating layer 1, although it sets suitably according to the kind of thermosetting resin to be used, the kind of hardening accelerator, etc., for example The total amount of the curing accelerator is 0.01 to 6 parts by mass, preferably 0.05 to 5 parts by mass, and more preferably 0.1 to 2 parts by mass with respect to 100 parts by mass of the thermosetting resin.

(他の添加剤)
耐薬品性コーティング層1の形成に使用される樹脂組成物には、前述する成分の他に、必要に応じて、マット化剤、スリップ剤、溶剤、エラストマー等の他の添加剤が含まれてもよい。
(Other additives)
The resin composition used for forming the chemical-resistant coating layer 1 contains other additives such as a matting agent, a slip agent, a solvent, and an elastomer, if necessary, in addition to the components described above. Also good.

また、マット化剤やスリップ剤を含有させると、耐薬品性コーティング層1にスリップ効果を付与し、プレス成成形やエンボス加工における成形・加工性を向上させたり、操作性を良好にすることができる。   In addition, when a matting agent or slip agent is contained, a slip effect is imparted to the chemical-resistant coating layer 1 to improve molding / workability in press forming or embossing, or to improve operability. it can.

マット化剤の材質については、特に制限されないが、例えば、金属、金属酸化物、無機物、有機物等が挙げられる。また、マット化剤の形状についても、特に制限されないが、例えば、球状、繊維状、板状、不定形、バルーン状等が挙げられる。マット化剤として、具体的には、はタルク,シリカ,グラファイト、カオリン、モンモリロイド、モンモリロナイト、合成マイカ、ハイドロタルサイト、シリカゲル、ゼオライト、水酸化アルミニウム、水酸化マグネシウム、酸化亜鉛,酸化マグネシウム,酸化アルミニウム,酸化ネオジウム,酸化アンチモン、酸化チタン、酸化セリウム、硫酸カルシウム,硫酸バリウム、炭酸カルシウム,ケイ酸カルシウム、炭酸リチウム、安息香酸カルシウム,シュウ酸カルシウム,ステアリン酸マグネシウム、アルミナ、カーボンブラック、カーボンナノチューブ類、高融点ナイロン、架橋アクリル、架橋スチレン、架橋ポリエチレン、ベンゾグアナミン、金、アルミニウム、銅、ニッケル等が挙げられる。これらのマット化剤は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。これらのマット化剤の中でも、分散安定性やコスト等の観点から、好ましくはりシリカ、硫酸バリウム、酸化チタンが挙げられる。また、マット化剤には、表麺に絶縁処理、高分散性処理等の各種表面処理を施しておいてもよい。   The material of the matting agent is not particularly limited, and examples thereof include metals, metal oxides, inorganic substances, and organic substances. The shape of the matting agent is not particularly limited, and examples thereof include a spherical shape, a fiber shape, a plate shape, an indeterminate shape, and a balloon shape. As a matting agent, specifically, talc, silica, graphite, kaolin, montmorilloid, montmorillonite, synthetic mica, hydrotalcite, silica gel, zeolite, aluminum hydroxide, magnesium hydroxide, zinc oxide, magnesium oxide, oxidation Aluminum, neodymium oxide, antimony oxide, titanium oxide, cerium oxide, calcium sulfate, barium sulfate, calcium carbonate, calcium silicate, lithium carbonate, calcium benzoate, calcium oxalate, magnesium stearate, alumina, carbon black, carbon nanotubes , High melting point nylon, crosslinked acrylic, crosslinked styrene, crosslinked polyethylene, benzoguanamine, gold, aluminum, copper, nickel and the like. These matting agents may be used individually by 1 type, and may be used in combination of 2 or more type. Among these matting agents, silica, barium sulfate, and titanium oxide are preferable from the viewpoint of dispersion stability and cost. The matting agent may be subjected to various surface treatments such as insulation treatment and high dispersibility treatment on the surface noodles.

また、スリップ剤としては、特に制限されないが、例えば、脂肪酸アマイド、金属石鹸、親水性シリコーン、シリコーンをグラフトしたアクリル、シリコーンをグラフトしたエポキシ、シリコーンをグラフトしたポリエーテル、シリコーンをグラフトしたポリエステル、ブロック型シリコーンアクリル共重合体、ポリグリセロール変性シリコーン、パラフィン等が挙げられる。これらのスリップ剤は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。   Further, the slip agent is not particularly limited. For example, fatty acid amide, metal soap, hydrophilic silicone, silicone grafted acrylic, silicone grafted epoxy, silicone grafted polyether, silicone grafted polyester, block Type silicone acrylic copolymer, polyglycerol-modified silicone, paraffin and the like. These slip agents may be used individually by 1 type, and may be used in combination of 2 or more type.

(耐薬品性コーティング層1の厚さ)
耐薬品性コーティング層1の厚さについては、例えば、1〜5μm、好ましくは2〜4μmが挙げられる。
(Thickness of chemical-resistant coating layer 1)
The thickness of the chemical resistant coating layer 1 is, for example, 1 to 5 μm, preferably 2 to 4 μm.

[基材層2]
本発明の電池用包装材料において、基材層2は最外層を形成する層である。基材層2を形成する素材については、絶縁性を備えるものであることを限度として特に制限されるものではない。基材層2を形成する素材としては、例えば、ポリエステル、ポリアミド、エポキシ、アクリル、フッ素樹脂、ポリウレタン、珪素樹脂、フェノール、ポリエーテルイミド、ポリイミド、及びこれらの混合物や共重合物等が挙げられる。
[Base material layer 2]
In the battery packaging material of the present invention, the base material layer 2 is a layer forming the outermost layer. The material for forming the base material layer 2 is not particularly limited as long as it has insulating properties. Examples of the material for forming the base material layer 2 include polyester, polyamide, epoxy, acrylic, fluorine resin, polyurethane, silicon resin, phenol, polyetherimide, polyimide, and mixtures and copolymers thereof.

前記ポリエステルとしては、具体的には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリエチレンイソフタレート、ポリカーボネート、エチレンテレフタレートを繰り返し単位の主体とした共重合ポリエステル、ブチレンテレフタレートを繰り返し単位の主体とした共重合ポリエステル等が挙げられる。また、エチレンテレフタレートを繰り返し単位の主体とした共重合ポリエステルとしては、具体的には、エチレンテレフタレートを繰り返し単位の主体としてエチレンイソフタレートと重合する共重合体ポリエステル(以下、ポリエチレン(テレフタレート/イソフタレート)にならって略す)、ポリエチレン(テレフタレート/イソフタレート)、ポリエチレン(テレフタレート/アジペート)、ポリエチレン(テレフタレート/ナトリウムスルホイソフタレート)、ポリエチレン(テレフタレート/ナトリウムイソフタレート)、ポリエチレン(テレフタレート/フェニル−ジカルボキシレート)、ポリエチレン(テレフタレート/デカンジカルボキシレート)等が挙げられる。また、ブチレンテレフタレートを繰り返し単位の主体とした共重合ポリエステルとしては、具体的には、ブチレンテレフタレートを繰り返し単位の主体としてブチレンイソフタレートと重合する共重合体ポリエステル(以下、ポリブチレン(テレフタレート/イソフタレート)にならって略す)、ポリブチレン(テレフタレート/アジペート)、ポリブチレン(テレフタレート/セバケート)、ポリブチレン(テレフタレート/デカンジカルボキシレート)、ポリブチレンナフタレート等が挙げられる。これらのポリエステルは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。ポリエステルは、耐電解液性に優れ、電解液の付着に対して白化等が発生し難いという利点があり、基材層2の形成素材として好適に使用される。   Specific examples of the polyester include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene isophthalate, polycarbonate, copolymerized polyester mainly composed of ethylene terephthalate, and repeating units of butylene terephthalate. Copolyester etc. mainly composed of The copolymer polyester mainly composed of ethylene terephthalate is a copolymer polyester that polymerizes with ethylene isophthalate mainly composed of ethylene terephthalate (hereinafter, polyethylene (terephthalate / isophthalate)). Abbreviated), polyethylene (terephthalate / isophthalate), polyethylene (terephthalate / adipate), polyethylene (terephthalate / sodium sulfoisophthalate), polyethylene (terephthalate / sodium isophthalate), polyethylene (terephthalate / phenyl-dicarboxylate) And polyethylene (terephthalate / decanedicarboxylate). In addition, as a copolymer polyester mainly composed of butylene terephthalate as a repeating unit, specifically, a copolymer polyester that polymerizes with butylene isophthalate having butylene terephthalate as a repeating unit (hereinafter referred to as polybutylene (terephthalate / isophthalate)). For example), polybutylene (terephthalate / adipate), polybutylene (terephthalate / sebacate), polybutylene (terephthalate / decanedicarboxylate), polybutylene naphthalate and the like. These polyesters may be used individually by 1 type, and may be used in combination of 2 or more type. Polyester has the advantage that it is excellent in resistance to electrolytic solution and hardly causes whitening or the like due to adhesion of the electrolytic solution, and is suitably used as a material for forming the base material layer 2.

また、前記ポリアミドとしては、具体的には、ナイロン6、ナイロン66、ナイロン610、ナイロン12、ナイロン46、ナイロン6とナイロン6,6との共重合体等の脂肪族系ポリアミド;テレフタル酸及び/又はイソフタル酸に由来する構成単位を含むナイロン6I、ナイロン6T、ナイロン6IT、ナイロン6I6T(Iはイソフタル酸、Tはテレフタル酸を表す)等のヘキサメチレンジアミン−イソフタル酸−テレフタル酸共重合ポリアミド、ポリメタキシリレンアジパミド(MXD6)等の芳香族を含むポリアミド;ポリアミノメチルシクロヘキシルアジパミド(PACM6)等の脂環系ポリアミド;さらにラクタム成分や、4,4’−ジフェニルメタン−ジイソシアネート等のイソシアネート成分を共重合させたポリアミド、共重合ポリアミドとポリエステルやポリアルキレンエーテルグリコールとの共重合体であるポリエステルアミド共重合体やポリエーテルエステルアミド共重合体;これらの共重合体等が挙げられる。これらのポリアミドは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。延伸ポリアミドフィルムは延伸性に優れており、成形時の基材層2の樹脂割れによる白化の発生を防ぐことができ、基材層2の形成素材として好適に使用される。   Specific examples of the polyamides include aliphatic polyamides such as nylon 6, nylon 66, nylon 610, nylon 12, nylon 46, and a copolymer of nylon 6 and nylon 6,6; terephthalic acid and / or Or hexamethylenediamine-isophthalic acid-terephthalic acid copolymerized polyamide, polymer, such as nylon 6I, nylon 6T, nylon 6IT, nylon 6I6T (I represents isophthalic acid, T represents terephthalic acid) containing structural units derived from isophthalic acid Polyamides containing aromatics such as taxylylene adipamide (MXD6); Alicyclic polyamides such as polyaminomethylcyclohexyl adipamide (PACM6); and isocyanate components such as lactam components and 4,4′-diphenylmethane-diisocyanate Copolymerized polyamide, Polyester amide copolymer and polyether ester amide copolymer is a copolymer of polymerized polyamide and polyester and polyalkylene ether glycol; copolymers thereof, and the like. These polyamides may be used individually by 1 type, and may be used in combination of 2 or more type. The stretched polyamide film has excellent stretchability, can prevent whitening due to resin cracking of the base material layer 2 during molding, and is suitably used as a material for forming the base material layer 2.

基材層2は、1軸又は2軸延伸された樹脂フィルムで形成されていてもよく、また未延伸の樹脂フィルムで形成してもよい。中でも、1軸又は2軸延伸された樹脂フィルム、とりわけ2軸延伸された樹脂フィルムは、配向結晶化することにより耐熱性が向上しているので、基材層2として好適に使用される。   The base material layer 2 may be formed of a uniaxially or biaxially stretched resin film, or may be formed of an unstretched resin film. Among them, a uniaxially or biaxially stretched resin film, particularly a biaxially stretched resin film has improved heat resistance due to orientation crystallization, and thus is preferably used as the base material layer 2.

これらの中でも、基材層2を形成する樹脂フィルムとして、好ましくはナイロン、ポリエステル、更に好ましくは2軸延伸ナイロン、2軸延伸ポリエステル、特に好ましくは2軸延伸ポリエステルが挙げられる。   Among these, as a resin film which forms the base material layer 2, Preferably nylon and polyester, More preferably, biaxially stretched nylon, biaxially stretched polyester, Most preferably, biaxially stretched polyester is mentioned.

基材層2は、耐ピンホール性及び電池の包装体とした時の絶縁性を向上させるために、異なる素材の樹脂フィルムを積層化することも可能である。具体的には、ポリエステルフィルムとナイロンフィルムとを積層させた多層構造や、2軸延伸ポリエステルと2軸延伸ナイロンとを積層させた多層構造等が挙げられる。基材層2を多層構造にする場合、各樹脂フィルムは接着剤を介して接着してもよく、また接着剤を介さず直接積層させてもよい。接着剤を介さず接着させる場合には、例えば、共押出し法、サンドラミ法、サーマルラミネート法等の熱溶融状態で接着させる方法が挙げられる。また、接着剤を介して接着させる場合、使用する接着剤の組成については、特に制限されないが、硬化時間を短くしてリードタイムの短縮化を図り、更には成形性を向上させる等の観点から、好ましくは、後述する[接着層3]の欄に記載の接着層用樹脂組成物が挙げられる。   The base material layer 2 can also be laminated with resin films of different materials in order to improve pinhole resistance and insulation when used as a battery packaging. Specific examples include a multilayer structure in which a polyester film and a nylon film are laminated, and a multilayer structure in which a biaxially stretched polyester and a biaxially stretched nylon are laminated. When making the base material layer 2 into a multilayer structure, each resin film may be adhere | attached through an adhesive agent, and may be laminated | stacked directly without an adhesive agent. In the case of bonding without using an adhesive, for example, a method of bonding in a hot melt state such as a co-extrusion method, a sand lamination method, or a thermal laminating method can be mentioned. In addition, in the case of bonding via an adhesive, the composition of the adhesive to be used is not particularly limited, but from the viewpoint of shortening the curing time to shorten the lead time, and further improving the moldability. Preferably, the resin composition for an adhesive layer described in the column of [Adhesive layer 3] described later is used.

基材層2の厚さは、例えば、10〜50μm、好ましくは15〜30μmが挙げられる。   As for the thickness of the base material layer 2, 10-50 micrometers, for example, Preferably 15-30 micrometers is mentioned.

[接着層3]
接着層3は、基材層2とバリア層4との間に、これらの層を接着させるために設けられる層である。
[Adhesive layer 3]
The adhesive layer 3 is a layer provided for adhering these layers between the base material layer 2 and the barrier layer 4.

接着層3の形成に使用される接着剤成分は、基材層2とバリア層4を接着可能であることを限度として特に制限されず、2液硬化型接着剤であってもよく、また1液硬化型接着剤であってもよい。更に、接着層3の形成に使用される接着剤成分の接着機構についても、特に制限されず、化学反応型、溶剤揮発型、熱溶融型、熱圧型等のいずれであってもよく、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリエチレンイソフタレート、ポリカーボネート、共重合ポリエステル等のポリエステル系樹脂;ポリエーテル系接着剤;ポリウレタン系接着剤;エポキシ系樹脂;フェノール樹脂系樹脂;ナイロン6、ナイロン66、ナイロン12、共重合ポリアミド等のポリアミド系樹脂;ポリオレフィン、カルボン酸変性ポリオレフィン、金属変性ポリオレフィン等のポリオレフィン系樹脂、ポリ酢酸ビニル系樹脂;セルロース系接着剤;(メタ)アクリル系樹脂;ポリイミド系樹脂;尿素樹脂、メラミン樹脂等のアミノ樹脂;クロロプレンゴム、ニトリルゴム、スチレン−ブタジエンゴム等のゴム;シリコーン系樹脂等が挙げられる。   The adhesive component used for forming the adhesive layer 3 is not particularly limited as long as the base material layer 2 and the barrier layer 4 can be bonded, and may be a two-component curable adhesive. It may be a liquid curable adhesive. Further, the adhesion mechanism of the adhesive component used for forming the adhesive layer 3 is not particularly limited, and may be any of a chemical reaction type, a solvent volatilization type, a heat melting type, a hot pressure type, and the like. Polyester resins such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene isophthalate, polycarbonate, and copolyester; polyether adhesives; polyurethane adhesives; epoxy resins; phenol resin resins Polyamide resins such as nylon 6, nylon 66, nylon 12 and copolymerized polyamides; polyolefin resins such as polyolefins, carboxylic acid modified polyolefins, metal modified polyolefins, polyvinyl acetate resins; cellulose adhesives; (meth) acrylic Tree ; Polyimide resin; urea resins, amino resins such as melamine resins; - chloroprene rubbers, nitrile rubbers, styrene rubbers such as butadiene rubber, silicone-based resins.

接着層3の形成において、製造時に高温条件でのエージングを要することなく短時間で硬化させてリードタイムの短縮化を図り、更には成形性を向上させる等の観点から、好ましくは、熱硬化性樹脂と、硬化促進剤と、エラストマー樹脂とを含有する接着層用樹脂組成物が好適に使用される。熱硬化性樹脂と、硬化促進剤とを併用することにより、高温条件でのエージングを要することなく短時間で硬化させて、リードタイムを短縮することが可能になる。また、更にエラストマー樹脂を含有させることにより、接着層3が硬化時に収縮するのを抑制しつつ、接着層3に適度な柔軟性を付与し、電池用包装材料に優れた成形性を備えさせることが可能になる。   In the formation of the adhesive layer 3, from the viewpoint of shortening the lead time by curing in a short time without requiring aging under high temperature conditions during production, and further improving the moldability, preferably thermosetting A resin composition for an adhesive layer containing a resin, a curing accelerator, and an elastomer resin is preferably used. By using a thermosetting resin and a curing accelerator in combination, the lead time can be shortened by curing in a short time without requiring aging under high temperature conditions. Further, by containing an elastomer resin, the adhesive layer 3 is imparted with appropriate flexibility while suppressing the shrinkage of the adhesive layer 3 during curing, and the battery packaging material has excellent moldability. Is possible.

前記接着層用樹脂組成物に使用される熱硬化性樹脂の種類や好ましいもの等については、前記[耐薬品性コーティング層1]の欄に記載の熱硬化性樹脂と同様である。   About the kind of thermosetting resin used for the said resin composition for contact bonding layers, a preferable thing, etc., it is the same as that of the thermosetting resin as described in the column of said [chemical-resistant coating layer 1].

また、前記接着層用樹脂組成物に使用される硬化促進剤の種類や好ましいもの等については、前記[耐薬品性コーティング層1]の欄に記載の硬化促進剤と同様である。前記接着層用樹脂組成物における硬化促進剤の含有量については、使用する熱硬化性樹脂の種類、硬化促進剤の種類等に応じて適宜設定されるが、例えば、熱硬化性樹脂100質量部に対して、硬化促進剤が総量で0.01〜6質量部、好ましくは0.05〜5質量部、更に好ましくは0.1〜2質量部が挙げられる。   In addition, the types and preferred ones of the curing accelerator used in the adhesive layer resin composition are the same as the curing accelerator described in the column of [Chemical resistance coating layer 1]. About content of the hardening accelerator in the said resin composition for contact bonding layers, although suitably set according to the kind of thermosetting resin to be used, the kind of hardening accelerator, etc., for example, 100 mass parts of thermosetting resins In contrast, the total amount of the curing accelerator is 0.01 to 6 parts by mass, preferably 0.05 to 5 parts by mass, and more preferably 0.1 to 2 parts by mass.

また、前記接着層用樹脂組成物に使用されるエラストマー樹脂の種類については、特に制限されないが、例えば、エチレンと1種又は2種以上の炭素数2〜20のα−オレフィン(エチレンを除く)とを構成モノマーとして含むエチレン系エラストマー等のポリオレフィン系エラストマー;スチレン系エラストマー;ポリエステル系エラストマー;ウレタン系エラストマー;アクリル系エラストマー;ビスフェノールA型エポキシ系エラストマー等のエポキシ系エラストマー;ポリエステルポリオール、ポリエステルポリウレタンポリオール、ポリエーテルポリオール、ポリエーテルポリウレタンポリオール等のポリオール系エラストマー;ニトリルゴム、フッ素ゴム、アクリルゴム、シリコーンゴム、クロロプレンゴム、イソプレンゴム、ブタジエンゴム等のゴム成分等が挙げられる。これらのエラストマー樹脂は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。   In addition, the type of elastomer resin used in the resin composition for the adhesive layer is not particularly limited. For example, ethylene and one or two or more α-olefins having 2 to 20 carbon atoms (excluding ethylene) are used. A styrene elastomer; a polyester elastomer; a urethane elastomer; an acrylic elastomer; an epoxy elastomer such as a bisphenol A type epoxy elastomer; a polyester polyol, a polyester polyurethane polyol, Polyol-based elastomers such as polyether polyol and polyether polyurethane polyol; nitrile rubber, fluorine rubber, acrylic rubber, silicone rubber, chloroprene rubber, isoprene rubber, Rubber components such as Tajiengomu like. These elastomer resins may be used individually by 1 type, and may be used in combination of 2 or more type.

これらのエラストマー樹脂の中でも、好ましくは、ウレタン系エラストマー、エポキシ系エラストマー、ポリオール系エラストマーが挙げられる。   Among these elastomer resins, a urethane elastomer, an epoxy elastomer, and a polyol elastomer are preferable.

前記接着層用樹脂組成物におけるエラストマー樹脂の含有量については、特に制限されないが、例えば、熱硬化性樹脂100質量部に対して、エラストマー樹脂が総量で3〜50質量部、好ましくは5〜30質量部、更に好ましくは10〜20質量部が挙げられる。   The content of the elastomer resin in the adhesive layer resin composition is not particularly limited. For example, the elastomer resin is 3 to 50 parts by mass, preferably 5 to 30 parts by mass with respect to 100 parts by mass of the thermosetting resin. A mass part, More preferably, a 10-20 mass part is mentioned.

更に、前記接着層用樹脂組成物には、必要に応じて、吸光発熱物質を含有してもよい。このように吸光発熱物質を含有させることにより、前記接着層用樹脂組成物を加熱してクイックキュアさせる際に光照射を行うと、当該接着層用樹脂組成物の全体に安定で均一な熱量を供給でき、硬化状態にバラツキが生じるのを抑制し、均一な硬化状態の接着層3の形成が可能になる。   Furthermore, the resin composition for an adhesive layer may contain a light-absorbing exothermic substance as necessary. By containing the light-absorbing exothermic substance in this way, when the light irradiation is performed when the adhesive layer resin composition is heated and quickly cured, a stable and uniform amount of heat is applied to the entire adhesive layer resin composition. It is possible to supply, and it is possible to suppress the occurrence of variations in the cured state and to form the adhesive layer 3 in a uniform cured state.

吸光発熱物質とは、300〜2000nm程度の波長の光の少なくとも一部を吸光して発熱する物質である。本発明に使用される吸光発熱物質としては、特に制限されないが、例えば、金属粉末、無機顔料、カーボン、有機色素等が挙げられる。   The light-absorbing exothermic substance is a substance that generates heat by absorbing at least a part of light having a wavelength of about 300 to 2000 nm. The light-absorbing exothermic substance used in the present invention is not particularly limited, and examples thereof include metal powder, inorganic pigment, carbon, and organic dye.

前記金属粉末としては、例えば、アルミニウム、ステンレス、鉄、チタン、タングステン、ニッケル、これらの合金等の金属粉末が挙げられる。これらの金属粉末は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。   Examples of the metal powder include metal powders such as aluminum, stainless steel, iron, titanium, tungsten, nickel, and alloys thereof. These metal powders may be used individually by 1 type, and may be used in combination of 2 or more type.

前記無機顔料としては、具体的には、酸化亜鉛、酸化チタン、硫酸バリウム、硼酸アルミニウム、チタン酸カリウム、酸化イリジウム、酸化錫、これらの複合物等が挙げられる。これらの無機顔料は、遠赤外光、中赤外光、及び近赤外光を吸収して発熱する特性を備えている。これらの無機顔料は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。   Specific examples of the inorganic pigment include zinc oxide, titanium oxide, barium sulfate, aluminum borate, potassium titanate, iridium oxide, tin oxide, and composites thereof. These inorganic pigments have a property of generating heat by absorbing far-infrared light, mid-infrared light, and near-infrared light. These inorganic pigments may be used alone or in combination of two or more.

前記カーボンとしては、具体的には、カーボンブラックが挙げられる。   Specific examples of the carbon include carbon black.

前記有機色素としては、具体的には、メチン色素、シアニン色素、メロシアニン色素、マーキュロクロム色素、キサンテン系色素、ポルフィリン系色素、フタロシアニン色素(銅フタロシアニン等)、アゾ系色素、クマリン系色素等が挙げられる。1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。   Specific examples of the organic dyes include methine dyes, cyanine dyes, merocyanine dyes, mercurochrome dyes, xanthene dyes, porphyrin dyes, phthalocyanine dyes (copper phthalocyanine, etc.), azo dyes, and coumarin dyes. . You may use individually by 1 type and may be used in combination of 2 or more type.

これらの吸光発熱物質の中でも、好ましくはカーボン、金属粉末、更に好ましくはカーボンブラック、チタン粉末、アルミニウム粉末、鉄粉末、タングステン粉末、ステンレス粉末、ニッケル粉末、更に好ましくはカーボンブラックが挙げられる。   Among these light-absorbing and exothermic substances, carbon, metal powder, more preferably carbon black, titanium powder, aluminum powder, iron powder, tungsten powder, stainless steel powder, nickel powder, and carbon black are more preferable.

吸光発熱物質の平均粒径については、特に制限されないが、例えば1000nm以下、好ましくは10〜1000nmが挙げられる。ここで、吸光発熱物質の平均粒径とは、透過型電子顕微鏡を用いて、1000個の吸光発熱物質の一次粒子の粒子径を測定したときの平均値を意味する。   The average particle diameter of the light-absorbing and exothermic substance is not particularly limited, and examples thereof include 1000 nm or less, preferably 10 to 1000 nm. Here, the average particle diameter of the light-absorbing and exothermic substance means an average value when the particle diameters of primary particles of 1000 light-absorbing and exothermic substances are measured using a transmission electron microscope.

前記接着層用樹脂組成物に吸光発熱物質を含有させる場合、吸光発熱物質の含有量としては、例えば、熱硬化性樹脂100質量部に対して、吸光発熱物質が総量で0.01〜1質量部、好ましくは0.05〜0.7質量部、更に好ましくは0.1〜0.5質量部が挙げられる。   When the light-absorbing and exothermic substance is contained in the adhesive layer resin composition, the content of the light-absorbing and exothermic substance is, for example, 0.01 to 1 mass in total with respect to 100 parts by mass of the thermosetting resin. Parts, preferably 0.05 to 0.7 parts by mass, more preferably 0.1 to 0.5 parts by mass.

接着層3の厚さについては、例えば、2〜50μm、好ましくは3〜25μmが挙げられる。   About the thickness of the contact bonding layer 3, 2-50 micrometers, for example, Preferably 3-25 micrometers is mentioned.

[バリア層4]
本発明の電池用包装材料において、バリア層4は、包装材料の強度向上の他、電池内部に水蒸気、酸素、光等が侵入するのを防止するためのバリア層として機能する層である。バリア層4の材質としては、具体的には、アルミニウム、ステンレス、チタン等の金属箔;酸化珪素、アルミナ等の無機化合物を蒸着したフィルム等が挙げられる。これらの中でも、好ましくは金属箔、更に好ましくはアルミニウム箔が挙げられる。電池用包装材料の製造時にしわやピンホールを防止するために、本発明においてバリア層4として、軟質アルミニウム箔、例えば、焼きなまし処理済みのアルミニウム(JIS A8021P−O)又は(JIS A8079P−O)箔等を用いることが好ましい。
[Barrier layer 4]
In the battery packaging material of the present invention, the barrier layer 4 is a layer that functions as a barrier layer for preventing moisture, oxygen, light, and the like from entering the battery, in addition to improving the strength of the packaging material. Specific examples of the material of the barrier layer 4 include metal foils such as aluminum, stainless steel, and titanium; films on which inorganic compounds such as silicon oxide and alumina are deposited. Among these, metal foil is preferable, and aluminum foil is more preferable. In order to prevent wrinkles and pinholes during the production of battery packaging materials, as the barrier layer 4 in the present invention, soft aluminum foil, for example, annealed aluminum (JIS A8021P-O) or (JIS A8079P-O) foil Etc. are preferably used.

バリア層4の厚さについては、特に制限されないが、例えば、金属箔を使用する場合であれば、通常10〜200μm、好ましくは20〜100μmが挙げられる。   Although it does not restrict | limit especially about the thickness of the barrier layer 4, For example, when using metal foil, 10-200 micrometers normally, Preferably 20-100 micrometers is mentioned.

また、バリア層4として金属箔を使用する場合、接着の安定化、溶解や腐食の防止等のために、少なくとも一方の面、好ましくは少なくともシーラント層側の面、更に好ましくは両面が化成処理されていることが好ましい。ここで、化成処理とは、バリア層4の表面に耐酸性皮膜を形成する処理である。化成処理は、例えば、硝酸クロム、フッ化クロム、硫酸クロム、酢酸クロム、蓚酸クロム、重リン酸クロム、クロム酸アセチルアセテート、塩化クロム、硫酸カリウムクロム等のクロム酸化合物を用いたクロム酸クロメート処理;リン酸ナトリウム、リン酸カリウム、リン酸アンモニウム、ポリリン酸等のリン酸化合物を用いたリン酸クロメート処理;下記一般式(1)〜(4)で表される繰り返し単位からなるアミノ化フェノール重合体を用いたクロメート処理等が挙げられる。   Further, when a metal foil is used as the barrier layer 4, at least one surface, preferably at least the surface on the sealant layer side, more preferably both surfaces are subjected to chemical conversion treatment in order to stabilize adhesion, prevent dissolution and corrosion, and the like. It is preferable. Here, the chemical conversion treatment is a treatment for forming an acid-resistant film on the surface of the barrier layer 4. Chemical conversion treatment is, for example, chromate chromate treatment using a chromic acid compound such as chromium nitrate, chromium fluoride, chromium sulfate, chromium acetate, chromium oxalate, chromium biphosphate, chromic acetyl acetate, chromium chloride, potassium sulfate chromium, etc. ; Phosphoric acid chromate treatment using phosphoric acid compounds such as sodium phosphate, potassium phosphate, ammonium phosphate, polyphosphoric acid; aminated phenol heavy consisting of repeating units represented by the following general formulas (1) to (4) Examples thereof include chromate treatment using a coalescence.

一般式(1)〜(4)中、Xは水素原子、ヒドロキシル基、アルキル基、ヒドロキシアルキル基、アリル基又はベンジル基を示す。また、R1及びR2は、同一又は異なって、ヒドロキシル基、アルキル基、又はヒドロキシアルキル基を示す。一般式(1)〜(4)において、X、R1、R2で示されるアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基等の炭素数1〜4の直鎖又は分枝鎖状アルキル基が挙げられる。また、X、R1、R2で示されるヒドロキシアルキル基としては、例えば、ヒドロキシメチル基、1−ヒドロキシエチル基、2−ヒドロキシエチル基、1−ヒドロキシプロピル基、2−ヒドロキシプロピル基、3−ヒドロキシプロピル基、1−ヒドロキシブチル基、2−ヒドロキシブチル基、3−ヒドロキシブチル基、4−ヒドロキシブチル基等のヒドロキシ基が1個置換された炭素数1〜4の直鎖又は分枝鎖状アルキル基が挙げられる。ことができる。一般式(1)〜(4)において、Xは、水素原子、ヒドロキシル基、及び、ドロキシアルキル基のいずれかであることが好ましい。一般式(1)〜(4)で表される繰り返し単位からなるアミノ化フェノール重合体の数平均分子量は、例えば、約500〜約100万、好ましくは約1000〜約2万が挙げられる。 In general formulas (1) to (4), X represents a hydrogen atom, a hydroxyl group, an alkyl group, a hydroxyalkyl group, an allyl group or a benzyl group. R 1 and R 2 are the same or different and represent a hydroxyl group, an alkyl group, or a hydroxyalkyl group. In the general formulas (1) to (4), examples of the alkyl group represented by X, R 1 and R 2 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, C1-C4 linear or branched alkyl groups, such as a tert- butyl group, are mentioned. Examples of the hydroxyalkyl group represented by X, R 1 and R 2 include a hydroxymethyl group, a 1-hydroxyethyl group, a 2-hydroxyethyl group, a 1-hydroxypropyl group, a 2-hydroxypropyl group, 3- A linear or branched chain having 1 to 4 carbon atoms substituted with one hydroxy group such as hydroxypropyl group, 1-hydroxybutyl group, 2-hydroxybutyl group, 3-hydroxybutyl group, 4-hydroxybutyl group An alkyl group is mentioned. be able to. In the general formulas (1) to (4), X is preferably any one of a hydrogen atom, a hydroxyl group, and a droxyalkyl group. The number average molecular weight of the aminated phenol polymer composed of the repeating units represented by the general formulas (1) to (4) is, for example, about 500 to about 1,000,000, preferably about 1000 to about 20,000.

また、金属箔に耐食性を付与する化成処理方法として、リン酸中に、酸化アルミ、酸化チタン、酸化セリウム、酸化スズ等の金属酸化物や硫酸バリウムの微粒子を分散させたものをコーティングし、150℃以上で焼付け処理を行うことにより、金属箔の表面に耐食処理層を形成する方法が挙げられる。また、前記耐食処理層の上には、カチオン性ポリマーを架橋剤で架橋させた樹脂層を形成してもよい。ここで、カチオン性ポリマーとしては、例えば、ポリエチレンイミン、ポリエチレンイミンとカルボン酸を有するポリマーからなるイオン高分子錯体、アクリル主骨格に1級アミンをグラフトさせた1級アミングラフトアクリル樹脂、ポリアリルアミンまたはその誘導体、アミノフェノール等が挙げられる。これらのカチオン性ポリマーは1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。また、架橋剤としては、例えば、イソシアネート基、グリシジル基、カルボキシル基、及びオキサゾリン基よりなる群から選ばれる少なくとも1種の官能基を有する化合物、シランカップリング剤等が挙げられる。これらの架橋剤は1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。   Further, as a chemical conversion treatment method for imparting corrosion resistance to the metal foil, a metal oxide such as aluminum oxide, titanium oxide, cerium oxide, tin oxide or the like, in which fine particles of barium sulfate are dispersed in phosphoric acid, is coated. A method of forming a corrosion-resistant treatment layer on the surface of the metal foil by performing a baking treatment at a temperature of 0 ° C. or higher can be mentioned. A resin layer obtained by crosslinking a cationic polymer with a crosslinking agent may be formed on the corrosion-resistant treatment layer. Here, as the cationic polymer, for example, polyethyleneimine, an ionic polymer complex composed of a polymer having polyethyleneimine and a carboxylic acid, a primary amine-grafted acrylic resin in which a primary amine is grafted on an acrylic main skeleton, polyallylamine, or Examples thereof include aminophenols and derivatives thereof. These cationic polymers may be used individually by 1 type, and may be used in combination of 2 or more type. Examples of the crosslinking agent include compounds having at least one functional group selected from the group consisting of isocyanate groups, glycidyl groups, carboxyl groups, and oxazoline groups, silane coupling agents, and the like. These crosslinking agents may be used alone or in combination of two or more.

これらの化成処理は、1種の化成処理を単独で行ってもよく、2種以上の化成処理を組み合わせて行ってもよい。更に、これらの化成処理は、1種の化合物を単独で使用して行ってもよく、また2種以上の化合物を組み合わせて使用して行ってもよい。これらの中でも、好ましくはクロム酸クロメート処理、更に好ましくはクロム酸化合物、リン酸化合物、及び前記アミノ化フェノール重合体を組み合わせたクロメート処理が挙げられる。   These chemical conversion treatments may be performed alone or in combination of two or more chemical conversion treatments. Furthermore, these chemical conversion treatments may be carried out using one kind of compound alone, or may be carried out using a combination of two or more kinds of compounds. Among these, chromic acid chromate treatment is preferable, and chromate treatment in which a chromic acid compound, a phosphoric acid compound, and the aminated phenol polymer are combined is more preferable.

化成処理において金属箔の表面に形成させる耐酸性皮膜の量については、特に制限されないが、例えばクロム酸化合物、リン酸化合物、及び前記アミノ化フェノール重合体を組み合わせてクロメート処理を行う場合であれば、金属箔の表面1m2当たり、クロム酸化合物がクロム換算で約0.5〜約50mg、好ましくは約1.0〜約40mg、リン化合物がリン換算で約0.5〜約50mg、好ましくは約1.0〜約40mg、及び前記アミノ化フェノール重合体が約1〜約200mg、好ましくは約5.0〜150mgの割合で含有されていることが望ましい。 The amount of the acid-resistant film to be formed on the surface of the metal foil in the chemical conversion treatment is not particularly limited. For example, if the chromate treatment is performed by combining a chromic acid compound, a phosphoric acid compound, and the aminated phenol polymer, for example. The chromic acid compound is about 0.5 to about 50 mg, preferably about 1.0 to about 40 mg in terms of chromium, and the phosphorus compound is about 0.5 to about 50 mg in terms of phosphorus per 1 m 2 of the surface of the metal foil. About 1.0 to about 40 mg, and the aminated phenol polymer is desirably contained in an amount of about 1 to about 200 mg, preferably about 5.0 to 150 mg.

化成処理は、耐酸性皮膜の形成に使用する化合物を含む溶液を、バーコート法、ロールコート法、グラビアコート法、浸漬法等によって、金属箔の表面に塗布した後に、金属箔の温度が70〜200℃程度になるように加熱することにより行われる。また、バリア層4に化成処理を施す前に、予め金属箔を、アルカリ浸漬法、電解洗浄法、酸洗浄法、電解酸洗浄法等による脱脂処理に供してもよい。このように脱脂処理を行うことにより、金属箔の表面の化成処理を一層効率的に行うことが可能になる。   In the chemical conversion treatment, a solution containing a compound used for forming an acid-resistant film is applied to the surface of the metal foil by a bar coating method, a roll coating method, a gravure coating method, a dipping method or the like, and then the temperature of the metal foil is 70. It is carried out by heating to about 200 ° C. In addition, before the chemical conversion treatment is performed on the barrier layer 4, the metal foil may be subjected to a degreasing treatment in advance by an alkali dipping method, an electrolytic cleaning method, an acid cleaning method, an electrolytic acid cleaning method, or the like. By performing the degreasing treatment in this way, it becomes possible to more efficiently perform the chemical conversion treatment on the surface of the metal foil.

[接着層6]
本発明の電池用包装材料において、接着層6は、バリア層4とシーラント層5を強固に接着させために、これらの間に必要に応じて設けられる層である。
[Adhesive layer 6]
In the battery packaging material of the present invention, the adhesive layer 6 is a layer provided between the barrier layer 4 and the sealant layer 5 as necessary in order to firmly bond the barrier layer 4 and the sealant layer 5.

接着層6は、バリア層4とシーラント層5とを接着可能である接着剤によって形成される。接着層6の形成に使用される接着剤の組成については、特に制限されないが、硬化時間を短くしてリードタイムの短縮化を図り、更には成形性を向上させる等の観点から、好ましくは、前記[接着層3]の欄に記載の接着層用樹脂組成物が挙げられる。   The adhesive layer 6 is formed of an adhesive that can adhere the barrier layer 4 and the sealant layer 5. The composition of the adhesive used for forming the adhesive layer 6 is not particularly limited, but from the viewpoint of shortening the curing time by shortening the lead time, and further improving the moldability, preferably, The resin composition for adhesive layers described in the column of [Adhesive layer 3] is mentioned.

接着層6の厚さについては、例えば、1〜40μm、好ましくは2〜30μmが挙げられる。
[シーラント層5]
本発明の電池用包装材料において、シーラント層5は、最内層に該当し、電池の組み立て時にシーラント層同士が熱溶着して電池素子を密封する層である。
About the thickness of the contact bonding layer 6, 1-40 micrometers is mentioned, for example, Preferably 2-30 micrometers is mentioned.
[Sealant layer 5]
In the battery packaging material of the present invention, the sealant layer 5 corresponds to the innermost layer and is a layer that seals the battery element by heat-sealing the sealant layers when the battery is assembled.

シーラント層5に使用される樹脂成分については、熱溶着可能であることを限度として特に制限されないが、例えば、ポリオレフィン、環状ポリオレフィン、カルボン酸変性ポリオレフィン、カルボン酸変性環状ポリオレフィンが挙げられる。   The resin component used for the sealant layer 5 is not particularly limited as long as it can be thermally welded, and examples thereof include polyolefin, cyclic polyolefin, carboxylic acid-modified polyolefin, and carboxylic acid-modified cyclic polyolefin.

前記ポリオレフィンとしては、具体的には、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン等のポリエチレン;ホモポリプロピレン、ポリプロピレンのブロックコポリマー(例えば、プロピレンとエチレンのブロックコポリマー)、ポリプロピレンのランダムコポリマー(例えば、プロピレンとエチレンのランダムコポリマー)等の結晶性又は非晶性のポリプロピレン;エチレン−ブテン−プロピレンのターポリマー;等が挙げられる。これらのポリオレフィンの中でも、好ましくはポリエチレン及びポリプロピレンが挙げられる。   Specific examples of the polyolefin include polyethylene such as low density polyethylene, medium density polyethylene, high density polyethylene, and linear low density polyethylene; homopolypropylene, polypropylene block copolymer (for example, block copolymer of propylene and ethylene), polypropylene Crystalline polypropylene or amorphous polypropylene such as a random copolymer of propylene and ethylene; an ethylene-butene-propylene terpolymer; and the like. Among these polyolefins, polyethylene and polypropylene are preferable.

前記環状ポリオレフィンは、オレフィンと環状モノマーとの共重合体であり、前記環状ポリオレフィンの構成モノマーであるオレフィンとしては、例えば、エチレン、プロピレン、4−メチル−1−ペンテン、スチレン、ブタジエン、イソプレン、等が挙げられる。また、前記環状ポリオレフィンの構成モノマーである環状モノマーとしては、例えば、ノルボルネン等の環状アルケン;具体的には、シクロペンタジエン、ジシクロペンタジエン、シクロヘキサジエン、ノルボルナジエン等の環状ジエン等が挙げられる。これらのポリオレフィンの中でも、好ましくは環状アルケン、更に好ましくはノルボルネンが挙げられる。   The cyclic polyolefin is a copolymer of an olefin and a cyclic monomer, and examples of the olefin that is a constituent monomer of the cyclic polyolefin include ethylene, propylene, 4-methyl-1-pentene, styrene, butadiene, and isoprene. Is mentioned. Examples of the cyclic monomer that is a constituent monomer of the cyclic polyolefin include cyclic alkenes such as norbornene; specifically, cyclic dienes such as cyclopentadiene, dicyclopentadiene, cyclohexadiene, and norbornadiene. Among these polyolefins, cyclic alkene is preferable, and norbornene is more preferable.

前記カルボン酸変性ポリオレフィンとは、前記ポリオレフィンをカルボン酸で変性したポリマーである。変性に使用されるカルボン酸としては、例えば、マレイン酸、アクリル酸、イタコン酸、クロトン酸、無水マレイン酸、無水イタコン酸等が挙げられる。   The carboxylic acid-modified polyolefin is a polymer obtained by modifying the polyolefin with a carboxylic acid. Examples of the carboxylic acid used for modification include maleic acid, acrylic acid, itaconic acid, crotonic acid, maleic anhydride, itaconic anhydride and the like.

前記カルボン酸変性環状ポリオレフィンとは、環状ポリオレフィンを構成するモノマーの一部を、α,β―不飽和カルボン酸又はその無水物に代えて共重合することにより、或いは環状ポリオレフィンに対してα,β―不飽和カルボン酸又はその無水物をブロック重合又はグラフト重合することにより得られるポリマーである。カルボン酸変性される環状ポリオレフィンについては、前記と同様である。また、変性に使用されるカルボン酸としては、前記酸変性シクロオレフィンコポリマーの変性に使用されるものと同様である。   The carboxylic acid-modified cyclic polyolefin is obtained by copolymerizing a part of the monomer constituting the cyclic polyolefin in place of the α, β-unsaturated carboxylic acid or its anhydride, or α, β with respect to the cyclic polyolefin. -A polymer obtained by block polymerization or graft polymerization of an unsaturated carboxylic acid or its anhydride. The cyclic polyolefin to be modified with carboxylic acid is the same as described above. The carboxylic acid used for modification is the same as that used for modification of the acid-modified cycloolefin copolymer.

これらの樹脂成分の中でも、好ましくは結晶性又は非晶性のポリオレフィン、環状ポリオレフィン、及びこれらのブレンドポリマー;更に好ましくはポリエチレン、ポリプロピレン、エチレンとノルボルネンの共重合体、及びこれらの中の2種以上のブレンドポリマーが挙げられる。   Among these resin components, preferably a crystalline or amorphous polyolefin, a cyclic polyolefin, and a blend polymer thereof; more preferably polyethylene, polypropylene, a copolymer of ethylene and norbornene, and two or more of these The blend polymer of these is mentioned.

シーラント層5は、1種の樹脂成分単独で形成してもよく、また2種以上の樹脂成分を組み合わせたブレンドポリマーにより形成してもよい。更に、シーラント層は、1層のみで形成されていてもよいが、同一又は異なる樹脂成分によって2層以上形成されていてもよい。   The sealant layer 5 may be formed of one kind of resin component alone, or may be formed of a blend polymer in which two or more kinds of resin components are combined. Furthermore, the sealant layer may be formed of only one layer, but may be formed of two or more layers using the same or different resin components.

また、シーラント層5の厚みとしては、特に制限されないが、2〜2000μm、好ましくは5〜1000μm、さらに好ましくは10〜500μmが挙げられる。   Further, the thickness of the sealant layer 5 is not particularly limited, but may be 2 to 2000 μm, preferably 5 to 1000 μm, and more preferably 10 to 500 μm.

3.電池用包装材料の製造方法
本発明の電池用包装材料の製造方法については、所定の組成の各層を積層させた積層体が得られる限り、特に制限されないが、例えば、以下の方法が例示される:
接着層3を介して基材層2とバリア層4を積層させて、基材層2、接着層3、バリア層4が順に積層された積層体(以下、「積層体A」と表記することもある)を形成する第1工程、及び
前記第1工程で得られた積層体Aのバリア層4上に、シーラント層5を積層させる第2工程を含み、
前記第1工程の前、前記第1工程と第2工程の間、又は前記第2工程の後に、基材層2において接着層3を積層させる面とは反対側の面に耐薬品性コーティング層1の形成に使用される樹脂組成物を塗布し、加熱して硬化させる。
3. Method for Producing Battery Packaging Material The method for producing the battery packaging material of the present invention is not particularly limited as long as a laminate in which layers having a predetermined composition are laminated is obtained. For example, the following method is exemplified. :
The base material layer 2 and the barrier layer 4 are laminated via the adhesive layer 3, and the base material layer 2, the adhesive layer 3, and the barrier layer 4 are sequentially laminated (hereinafter referred to as “laminate A”). And a second step of laminating the sealant layer 5 on the barrier layer 4 of the laminate A obtained in the first step,
Before the first step, between the first step and the second step, or after the second step, the chemical resistant coating layer on the surface of the base material layer 2 opposite to the surface on which the adhesive layer 3 is laminated. The resin composition used for forming 1 is applied and heated to be cured.

前記第1工程における積層体Aの形成は、具体的には、基材1上又は必要に応じて表面が化成処理されたバリア層4に接着層3の形成に使用される接着剤を、押出し法、グラビアコート法、ロールコート法等の塗布方法で塗布・乾燥した後に、当該バリア層4又は基材1を積層させて接着層3を硬化させるドライラミネーション法によって行うことができる。   Specifically, the formation of the laminate A in the first step is performed by extruding an adhesive used for forming the adhesive layer 3 on the base material 1 or on the barrier layer 4 whose surface is subjected to chemical conversion treatment as necessary. After applying and drying by a coating method such as a coating method, a gravure coating method, or a roll coating method, the barrier layer 4 or the substrate 1 can be laminated to dry the adhesion layer 3.

例えば、接着層3として前記接着層用樹脂組成物を使用する場合であれば、その硬化条件としては、例えば、150〜200℃、好ましくは160〜190℃で、0.1〜60秒間、好ましくは1〜30秒間が挙げられる。前記接着層用樹脂組成物を使用することによって、接着層3の硬化に高温条件でのエージングを要せず、前記硬化条件のみで接着層3を十分に硬化させることができるので、リードタイムを短縮することができる。   For example, if the resin composition for an adhesive layer is used as the adhesive layer 3, the curing condition is, for example, 150 to 200 ° C, preferably 160 to 190 ° C, preferably 0.1 to 60 seconds. For 1 to 30 seconds. By using the resin composition for an adhesive layer, the adhesive layer 3 can be sufficiently cured only by the curing conditions without requiring aging at a high temperature condition for curing the adhesive layer 3, so that the lead time can be reduced. It can be shortened.

更に、接着層3として、更に吸光発熱物質を含む前記接着層用樹脂組成物を使用する場合であれば、前記加熱による硬化の際に光照射を行うことにより、硬化時に当該接着層用樹脂組成物の全体に安定で均一な熱量を供給でき、硬化状態にバラツキが生じるのを抑制し、均一な硬化状態の接着層3の形成が可能になる。当該光照射は、前記接着層用樹脂組成物に含まれる吸光発熱物質が発熱可能な波長の光を照射すればよく、光照射条件については、使用する吸光発熱物質の種類や発熱性等を踏まえて適宜設定される。光照射条件の一例としては、吸光発熱物質が発熱可能な波長の光の出力密度として、通常1〜10W・m-2、好ましくは3〜9W・m-2更に好ましくは5〜8W・m-2が挙げられる。なお、光照射は、光源を基材層2側に設置し、光を基材層2側から照射することにより行われる。 Furthermore, if the resin composition for an adhesive layer further containing a light-absorbing and exothermic substance is used as the adhesive layer 3, the resin composition for the adhesive layer is cured at the time of curing by irradiating light upon curing by the heating. A stable and uniform amount of heat can be supplied to the entire product, and variations in the cured state can be suppressed, and the adhesive layer 3 in a uniform cured state can be formed. The light irradiation may be performed by irradiating light having a wavelength capable of generating heat by the light-absorbing and exothermic substance contained in the resin composition for the adhesive layer, and the light irradiation condition is based on the type and heat-generating property of the light-absorbing and exothermic substance used. Is set as appropriate. As an example of a light irradiation condition, as the output density of the light absorption pyrogens possible exothermic wavelength, usually 1 to 10 W · m -2, preferably 3~9W · m -2 more preferably 5~8W · m - 2 is mentioned. In addition, light irradiation is performed by installing a light source in the base material layer 2 side, and irradiating light from the base material layer 2 side.

前記第2工程では、積層体Aのバリア層4上に、シーラント層5を積層させる。バリア層4上にシーラント層5を直接積層させる場合には、積層体Aのバリア層4上に、シーラント層5を構成する樹脂成分をグラビアコート法、ロールコート法等の方法により塗布すればよい。また、バリア層4とシーラント層5の間に接着層6を設ける場合には、例えば、(1)積層体Aのバリア層4上に、接着層6及びシーラント層5を共押出しすることにより積層する方法(共押出しラミネーション法)、(2)別途、接着層6とシーラント層5が積層した積層体を形成し、これを積層体Aのバリア層4上に熱ラミネーション法により積層する方法、(3)積層体Aのバリア層4上に、接着層6を形成させるための接着剤を押出し法や溶液コーティングした高温で乾燥さらには焼き付ける方法等により積層させ、この接着層6上に予めシート状に製膜したシーラント層5をサーマルラミネーション法により積層する方法、(4)積層体Aのバリア層4と、予めシート状に製膜したシーラント層5との間に、溶融させた接着層6を流し込みながら、接着層6を介して積層体Aとシーラント層5を貼り合せる方法(サンドラミネーション法)等が挙げられる。   In the second step, the sealant layer 5 is laminated on the barrier layer 4 of the laminate A. When the sealant layer 5 is directly laminated on the barrier layer 4, the resin component constituting the sealant layer 5 may be applied on the barrier layer 4 of the laminate A by a method such as a gravure coating method or a roll coating method. . When the adhesive layer 6 is provided between the barrier layer 4 and the sealant layer 5, for example, (1) the adhesive layer 6 and the sealant layer 5 are laminated on the barrier layer 4 of the laminate A by coextrusion. (2) Separately forming a laminate in which the adhesive layer 6 and the sealant layer 5 are laminated, and laminating the laminate on the barrier layer 4 of the laminate A by the thermal lamination method, ( 3) An adhesive for forming the adhesive layer 6 is laminated on the barrier layer 4 of the laminate A by an extrusion method or a solution-coated high temperature drying and baking method. (4) A melted adhesive layer 6 is placed between the barrier layer 4 of the laminate A and the sealant layer 5 previously formed into a sheet shape. While pouring Sealable layer 6 adhering the laminate A and the sealant layer 5 via method (sand lamination method) and the like.

前記第1工程の前、前記第1工程後且つ第2工程前、又は前記第2工程の後に、基材層2において接着層3を積層させる面とは反対側の面に耐薬品性コーティング層1の形成に使用される樹脂組成物を、グラビアコート法、ロールコート法等の塗布方法で塗布し、加熱して硬化させる。耐薬品性コーティング層1を硬化させる際の加熱条件としては、例えば、150〜200℃、好ましくは160〜190℃で、0.1〜60秒間、好ましくは1〜30秒間が挙げられる。本発明では、耐薬品性コーティング層1の硬化に高温条件でのエージングを要せず、前記硬化条件のみで耐薬品性コーティング層1を十分に硬化させることができるので、従来技術に比して大幅にリードタイムを短縮することができる。   Before the first step, after the first step and before the second step, or after the second step, a chemical resistant coating layer on the surface of the base material layer 2 opposite to the surface on which the adhesive layer 3 is laminated. The resin composition used for forming 1 is applied by a coating method such as a gravure coating method or a roll coating method, and is cured by heating. Examples of the heating conditions for curing the chemical resistant coating layer 1 include 150 to 200 ° C., preferably 160 to 190 ° C., and 0.1 to 60 seconds, preferably 1 to 30 seconds. In the present invention, the chemical resistant coating layer 1 does not require aging under high temperature conditions, and the chemical resistant coating layer 1 can be sufficiently cured only by the curing conditions. Lead time can be greatly shortened.

上記のようにして、耐薬品性コーティング層1/基材層2/接着層3/必要に応じて表面が化成処理されたバリア層4/必要に応じて設けられる接着層6/シーラント層5からなる積層体が形成される。   As described above, from chemical-resistant coating layer 1 / base material layer 2 / adhesive layer 3 / barrier layer 4 whose surface is subjected to chemical conversion treatment as necessary / adhesive layer 6 / sealant layer 5 provided as necessary A laminated body is formed.

本発明の電池用包装材料において、積層体を構成する各層は、必要に応じて、製膜性、積層化加工、最終製品2次加工(パウチ化、エンボス成形)適性等を向上又は安定化するために、コロナ処理、ブラスト処理、酸化処理、オゾン処理等の表面活性化処理を施していてもよい。   In the battery packaging material of the present invention, each layer constituting the laminate improves or stabilizes film forming properties, lamination processing, suitability for final processing (pouching, embossing), etc., as necessary. Therefore, surface activation treatment such as corona treatment, blast treatment, oxidation treatment, ozone treatment may be performed.

4.電池用包装材料の用途
本発明の電池用包装材料は、正極、負極、電解質等の電池素子を密封して収容するための包装材料として使用される。
4). Application of Battery Packaging Material The battery packaging material of the present invention is used as a packaging material for sealing and housing battery elements such as a positive electrode, a negative electrode, and an electrolyte.

具体的には、少なくとも正極、負極、及び電解質を備えた電池素子を、本発明の電池用包装材料で、前記正極及び負極の各々に接続された金属端子が外側に突出させた状態で、電池素子の周縁にフランジ部(シーラント層同士が接触する領域)が形成できるようにして被覆し、前記フランジ部のシーラント層同士をヒートシールして密封させることによって、電池用包装材料を使用した電池が提供される。なお、本発明の電池用包装材料を用いて電池素子を収容する場合、本発明の電池用包装材料のシーラント部分が内側(電池素子と接する面)になるようにして用いられる。   Specifically, a battery element including at least a positive electrode, a negative electrode, and an electrolyte is formed using the battery packaging material of the present invention, with the metal terminals connected to each of the positive electrode and the negative electrode protruding outward. A battery using a battery packaging material is formed by covering the periphery of the element so that a flange portion (a region where the sealant layers are in contact with each other) can be formed, and heat-sealing and sealing the sealant layers of the flange portion. Provided. In addition, when accommodating a battery element using the battery packaging material of the present invention, the battery packaging material of the present invention is used such that the sealant portion is on the inner side (surface in contact with the battery element).

本発明の電池用包装材料は、一次電池、二次電池のいずれに使用してもよいが、好ましくは二次電池である。本発明の電池用包装材料が適用される二次電池の種類については、特に制限されず、例えば、リチウムイオン電池、リチウムイオンポリマー電池、鉛畜電池、ニッケル・水素畜電池、ニッケル・カドミウム畜電池、ニッケル・鉄畜電池、ニッケル・亜鉛畜電池、酸化銀・亜鉛畜電池、金属空気電池、多価カチオン電池、コンデンサー、キャパシター等が挙げられる。これらの二次電池の中でも、本発明の電池用包装材料の好適な適用対象として、リチウムイオン電池及びリチウムイオンポリマー電池が挙げられる。   The battery packaging material of the present invention may be used for either a primary battery or a secondary battery, but is preferably a secondary battery. The type of secondary battery to which the battery packaging material of the present invention is applied is not particularly limited. For example, a lithium ion battery, a lithium ion polymer battery, a lead battery, a nickel / hydrogen battery, a nickel / cadmium battery , Nickel / iron livestock batteries, nickel / zinc livestock batteries, silver oxide / zinc livestock batteries, metal-air batteries, polyvalent cation batteries, capacitors, capacitors and the like. Among these secondary batteries, lithium ion batteries and lithium ion polymer batteries are suitable applications for the battery packaging material of the present invention.

以下に実施例及び比較例を示して本発明を詳細に説明する。但し、本発明は実施例に限定されるものではない。   Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples. However, the present invention is not limited to the examples.

実施例1−32及び比較例1−18
[電池用包装材料の製造]
二軸延伸ナイロンフィルム(厚さ25μm)からなる基材層2の上に、両面に化成処理を施したアルミニウム箔(厚さ40μm)からなるバリア層4をドライラミネーション法により積層させた。具体的には、アルミニウム箔の一方面に、2液型ウレタン接着剤(ポリオール化合物と芳香族イソシアネート系化合物)を塗布し、バリア層4上に接着層2(厚さ4μm)を形成した。次いで、バリア層4上の接着層3と基材層2を加圧加熱貼合した後、40℃で24時間のエージング処理を実施することにより、基材層2/接着層3/バリア層4の積層体を調製した。なお、バリア層4として使用したアルミニウム箔の化成処理は、フェノール樹脂、フッ化クロム化合物、及びリン酸からなる処理液をクロムの塗布量が10mg/m2(乾燥重量)となるように、ロールコート法によりアルミニウム箔の両面に塗布し、皮膜温度が180℃以上となる条件で20秒間焼付けすることにより行った。
Example 1-32 and Comparative Example 1-18
[Manufacture of battery packaging materials]
On the base material layer 2 made of a biaxially stretched nylon film (thickness 25 μm), a barrier layer 4 made of an aluminum foil (thickness 40 μm) subjected to chemical conversion treatment on both surfaces was laminated by a dry lamination method. Specifically, a two-component urethane adhesive (a polyol compound and an aromatic isocyanate compound) was applied to one surface of the aluminum foil, and an adhesive layer 2 (thickness 4 μm) was formed on the barrier layer 4. Next, after bonding the adhesive layer 3 and the base material layer 2 on the barrier layer 4 under pressure and heating, an aging treatment is carried out at 40 ° C. for 24 hours, whereby base material layer 2 / adhesive layer 3 / barrier layer 4 A laminate was prepared. In addition, the chemical conversion treatment of the aluminum foil used as the barrier layer 4 is performed by rolling a treatment liquid composed of a phenol resin, a chromium fluoride compound, and phosphoric acid so that the coating amount of chromium is 10 mg / m 2 (dry weight). The coating was applied to both surfaces of the aluminum foil and baked for 20 seconds under the condition that the film temperature was 180 ° C. or higher.

次いで、基材層1の表面(接着層2とは反対側の面)に、表1〜5に示す樹脂組成物を塗布し、下記の硬化条件で、当該樹脂組成物を硬化させることにより、基材層2の表面の表面に耐薬品性コーティング層1を形成した。
硬化条件A:45℃で7日間
硬化条件B:170℃で60秒間
Next, by applying the resin composition shown in Tables 1 to 5 to the surface of the base material layer 1 (surface opposite to the adhesive layer 2), and curing the resin composition under the following curing conditions, A chemical resistant coating layer 1 was formed on the surface of the base material layer 2.
Curing condition A : 7 days at 45 ° C
Curing condition B : at 170 ° C. for 60 seconds

その後、積層体のバリア層4の上に、カルボン酸変性ポリプロピレン(バリア層側に配置、厚さ23μm)とホモポリプロピレン(最内層、厚さ23μm)を、共押し出しすることにより、バリア層3上に2層からなるシーラント層5を積層させた。斯して、耐薬品性コーティング層1/基材層2/接着層3/バリア層4/シーラント層5(カルボン酸変性ポリプロピレン層/ホモポリプロピレン層)が順に積層された積層体からなる電池用包装材料を得た。   Thereafter, on the barrier layer 4 of the laminate, the carboxylic acid-modified polypropylene (arranged on the barrier layer side, thickness 23 μm) and homopolypropylene (innermost layer, thickness 23 μm) are coextruded to form the barrier layer 3 A two-layer sealant layer 5 was laminated on the substrate. Thus, a battery packaging comprising a laminate in which a chemical resistant coating layer 1 / base material layer 2 / adhesive layer 3 / barrier layer 4 / sealant layer 5 (carboxylic acid-modified polypropylene layer / homopolypropylene layer) are laminated in order. Obtained material.

[シワ発生の評価]
上記で得られた各電池用包装材料について、目視にてシワの発生の有無を確認し、電池用包装材料50枚当たり、シワが発生していた枚数の割合(熱ジワ不良率:%)を算出した。
[Evaluation of wrinkle occurrence]
For each battery packaging material obtained above, visually check for the occurrence of wrinkles, and the ratio of the number of wrinkles generated per 50 battery packaging materials (thermal wrinkle defect rate:%) Calculated.

[耐薬品性の評価]
上記で得られた各電池用包装材料の耐薬品性コーティング層上に、薬品(電解液、エタノール、メチルエチルケトン(MEK)、酢酸エチル、又はトルエン)を0.5ml滴下し、時計皿で被覆した。室温で3時間放置した後、薬品性コーティング層上の各薬品をガーゼで拭き取り、電池用包装材料の耐薬品性コーティング層表面の状態を目視で確認し、以下の基準で評価した。
○:表面に痕跡が全く確認できなかった。
×:表面に白化、膨潤、剥離等の異常が確認された。
[Evaluation of chemical resistance]
0.5 ml of chemicals (electrolytic solution, ethanol, methyl ethyl ketone (MEK), ethyl acetate, or toluene) was dropped on the chemical-resistant coating layer of each battery packaging material obtained above and covered with a watch glass. After standing at room temperature for 3 hours, each chemical on the chemical coating layer was wiped off with gauze, and the state of the chemical resistant coating layer surface of the battery packaging material was visually confirmed and evaluated according to the following criteria.
○: No traces were confirmed on the surface.
X: Abnormalities such as whitening, swelling, and peeling were confirmed on the surface.

[評価結果]
得られた結果を表2に示す。この結果から、耐薬品性コーティング層の形成に、熱硬化性樹脂と、硬化促進剤とを含有する樹脂組成物を使用することにより、短時間で硬化可能で、熱によるシワの発生を抑制でき、しかも、優れた耐薬品性を備えていることが確認された(実施例1〜5)。これに対して、耐薬品性コーティング層の形成に硬化促進剤を使用しなかった場合には、硬化時間を長く設定すると、優れた耐薬品性を備えるが、また加熱温度を高くして短時間で硬化させると、熱によるシワの発生を抑制できたが、耐薬品性が不十分であった(比較例1)。
なお、上記実施例及び比較例において、使用した熱硬化性樹脂の主剤や硬化剤、硬化促進剤は、同じ作用を持つ他の化合物に置換しても、同様の結果が得られることが確認できている。
[Evaluation results]
The obtained results are shown in Table 2. From this result, it is possible to cure in a short time and suppress the generation of wrinkles due to heat by using a resin composition containing a thermosetting resin and a curing accelerator in the formation of the chemical resistant coating layer. And it was confirmed that it has the outstanding chemical resistance (Examples 1-5). In contrast, if a curing accelerator is not used to form the chemical resistant coating layer, setting a long curing time provides excellent chemical resistance, but also increases the heating temperature for a short time. When cured with, the generation of wrinkles due to heat could be suppressed, but the chemical resistance was insufficient (Comparative Example 1).
In the above Examples and Comparative Examples, it can be confirmed that the same results can be obtained even if the main component, curing agent, and curing accelerator of the used thermosetting resin are replaced with other compounds having the same action. ing.

1 耐薬品性コーティング層
2 基材層
3 接着層
4 バリア層
5 シーラント層
1 Chemical-resistant coating layer 2 Base material layer 3 Adhesive layer 4 Barrier layer 5 Sealant layer

Claims (5)

少なくとも、耐薬品性コーティング層、基材層、接着層、バリア層、及びシーラント層をこの順に有する積層体からなり、
前記耐薬品性コーティング層が、熱硬化性樹脂と、硬化促進剤とを含有する樹脂組成物の硬化物であり、
前記熱硬化性樹脂が、多環芳香族骨格及び/又は複素環骨格を有する熱硬化性樹脂であることを特徴とする、電池用包装材料。
It consists of a laminate having at least a chemical resistant coating layer, a base material layer, an adhesive layer, a barrier layer, and a sealant layer in this order,
The chemical resistance coating layer, Ri cured der resin composition containing a thermosetting resin, a curing accelerator,
The thermosetting resin, wherein the thermosetting resin der Rukoto having polycyclic aromatic skeleton and / or heterocyclic skeleton, the packaging material for a battery.
前記硬化促進剤が、アミジン化合物、カルボジイミド化合物、ケチミン化合物、ヒドラジン化合物、スルホニウム塩、ベンゾチアゾリウム塩、及び第3級アミン化合物よりなる群から選択される少なくとも1種である、請求項に記載の電池用包装材料。 The curing accelerator, amidine compounds, carbodiimide compounds, ketimine compound, a hydrazine compound, a sulfonium salt is at least one selected from the benzothiazolium salts and the group consisting of tertiary amine compounds, to claim 1 The packaging material for a battery as described. 前記バリア層が金属箔である、請求項1又は2に記載の電池用包装材料。 The battery packaging material according to claim 1 or 2 , wherein the barrier layer is a metal foil. 耐薬品性コーティング層、基材層、接着層、バリア層、及びシーラント層をこの順に有する積層体からなる電池用包装材料の製造方法であって、
接着層を介して基材層とバリア層を積層させて、基材層、接着層、バリア層が順に積層された積層体を形成する第1工程、及び
前記第1工程で得られた積層体のバリア層上に、シーラント層を積層させる第2工程を含み、
前記第1工程の前、前記第1工程後且つ第2工程前、又は前記第2工程の後に、前記基材層において前記接着層を積層させる面とは反対側の面に、多環芳香族骨格及び/又は複素環骨格を有する熱硬化性樹脂と、硬化促進剤とを含有する樹脂組成物を塗布し、加熱して硬化させることにより、耐薬品性コーティング層を形成することを特徴とする、電池用包装材料の製造方法。
A method for producing a battery packaging material comprising a laminate having a chemical-resistant coating layer, a base material layer, an adhesive layer, a barrier layer, and a sealant layer in this order,
A first step of laminating a base material layer and a barrier layer through an adhesive layer to form a laminate in which the base material layer, the adhesive layer, and the barrier layer are sequentially laminated, and the laminate obtained in the first step A second step of laminating a sealant layer on the barrier layer of
Before the first step, after the first step and before the second step, or after the second step, a polycyclic aromatic is formed on the surface of the base material layer opposite to the surface on which the adhesive layer is laminated. A chemical-resistant coating layer is formed by applying a resin composition containing a thermosetting resin having a skeleton and / or a heterocyclic skeleton and a curing accelerator, and curing by heating. , A method for producing a battery packaging material.
少なくとも正極、負極、及び電解質を備えた電池素子が、請求項1〜のいずれかに記載の電池用包装材料内に収容されている、電池。
The battery by which the battery element provided with the positive electrode, the negative electrode, and the electrolyte at least is accommodated in the packaging material for batteries in any one of Claims 1-3 .
JP2013062995A 2013-03-25 2013-03-25 Battery packaging materials Active JP6135233B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2013062995A JP6135233B2 (en) 2013-03-25 2013-03-25 Battery packaging materials
KR1020157021968A KR102230063B1 (en) 2013-03-25 2014-03-19 Battery packaging material
CN201480017387.XA CN105144422B (en) 2013-03-25 2014-03-19 Battery use packing material
EP14775806.4A EP2980881B1 (en) 2013-03-25 2014-03-19 Battery packaging material
US14/778,904 US10483503B2 (en) 2013-03-25 2014-03-19 Battery packaging material
PCT/JP2014/057606 WO2014156904A1 (en) 2013-03-25 2014-03-19 Battery packaging material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013062995A JP6135233B2 (en) 2013-03-25 2013-03-25 Battery packaging materials

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017087296A Division JP6428841B2 (en) 2017-04-26 2017-04-26 Battery packaging materials

Publications (2)

Publication Number Publication Date
JP2014186984A JP2014186984A (en) 2014-10-02
JP6135233B2 true JP6135233B2 (en) 2017-05-31

Family

ID=51834354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013062995A Active JP6135233B2 (en) 2013-03-25 2013-03-25 Battery packaging materials

Country Status (1)

Country Link
JP (1) JP6135233B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6136432B2 (en) * 2013-03-25 2017-05-31 大日本印刷株式会社 Battery packaging materials
JP6987113B2 (en) * 2014-12-25 2021-12-22 藤森工業株式会社 Laminate for exterior non-aqueous batteries
JP6628472B2 (en) * 2014-12-25 2020-01-08 藤森工業株式会社 Non-aqueous battery exterior laminate
JP6987109B2 (en) * 2014-12-25 2021-12-22 藤森工業株式会社 Laminate for exterior non-aqueous batteries
JP6628349B2 (en) * 2014-12-25 2020-01-08 藤森工業株式会社 Non-aqueous battery exterior laminate
JP6655286B2 (en) * 2014-12-25 2020-02-26 大和製罐株式会社 Laminate for exterior of lithium ion battery and method for producing the same
JP7233457B2 (en) * 2021-01-25 2023-03-06 藤森工業株式会社 Non-aqueous battery exterior laminate

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625388A (en) * 1992-07-06 1994-02-01 Toagosei Chem Ind Co Ltd Thermosetting epoxy resin composition
JPH0939161A (en) * 1995-08-01 1997-02-10 Teijin Ltd Manufacture of laminated film
JP3724047B2 (en) * 1996-04-12 2005-12-07 日立化成工業株式会社 Laminated board for printed wiring boards
JP2002056823A (en) * 2000-08-10 2002-02-22 Dainippon Printing Co Ltd Laminated film for battery, and battery container using it
JP4508491B2 (en) * 2001-09-07 2010-07-21 大日本印刷株式会社 Transfer sheet and manufacturing method thereof
JP2009051100A (en) * 2007-08-27 2009-03-12 Showa Highpolymer Co Ltd Laminated body and production method therefor
JP6136432B2 (en) * 2013-03-25 2017-05-31 大日本印刷株式会社 Battery packaging materials

Also Published As

Publication number Publication date
JP2014186984A (en) 2014-10-02

Similar Documents

Publication Publication Date Title
WO2014156904A1 (en) Battery packaging material
KR102220457B1 (en) Packaging material for batteries
JP6135233B2 (en) Battery packaging materials
JP6020778B2 (en) Battery packaging materials
JP5708860B1 (en) Battery packaging materials
JP5704272B1 (en) Battery packaging materials
JP7010332B2 (en) Battery packaging material
KR20160058834A (en) Packaging material for cell
WO2015041281A1 (en) Packaging material for cell
JP7188079B2 (en) Battery exterior materials and batteries
JP6786802B2 (en) Battery packaging material
JP6136432B2 (en) Battery packaging materials
JP5682648B2 (en) Battery packaging materials
JP5725070B2 (en) Battery packaging materials
JP6286984B2 (en) Battery packaging materials
JP6169115B2 (en) Battery packaging materials
JP6428841B2 (en) Battery packaging materials
JP6428843B2 (en) Battery packaging materials
JP5682688B1 (en) Battery packaging materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170410

R150 Certificate of patent or registration of utility model

Ref document number: 6135233

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150