JP6134556B2 - Rubber composition and method for producing rubber composition - Google Patents

Rubber composition and method for producing rubber composition Download PDF

Info

Publication number
JP6134556B2
JP6134556B2 JP2013072519A JP2013072519A JP6134556B2 JP 6134556 B2 JP6134556 B2 JP 6134556B2 JP 2013072519 A JP2013072519 A JP 2013072519A JP 2013072519 A JP2013072519 A JP 2013072519A JP 6134556 B2 JP6134556 B2 JP 6134556B2
Authority
JP
Japan
Prior art keywords
rubber
silica
rubber composition
phase
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013072519A
Other languages
Japanese (ja)
Other versions
JP2014196407A (en
Inventor
悟司 浜谷
悟司 浜谷
恵造 芥川
恵造 芥川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2013072519A priority Critical patent/JP6134556B2/en
Publication of JP2014196407A publication Critical patent/JP2014196407A/en
Application granted granted Critical
Publication of JP6134556B2 publication Critical patent/JP6134556B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、シリカを含むゴム組成物及びゴム組成物の製造方法に関するものである。   The present invention relates to a rubber composition containing silica and a method for producing the rubber composition.

近年、環境問題への関心の高まりに関連して、自動車の低燃費化とタイヤの耐久性に関する要求が高まりつつある。このような要求に対応するため、タイヤ性能についても、転がり抵抗の低減(低発熱性)と耐摩耗性の向上の双方が求められている。   In recent years, in connection with the growing interest in environmental issues, there are increasing demands for reducing fuel consumption of automobiles and durability of tires. In order to meet such demands, both reduction of rolling resistance (low heat generation) and improvement of wear resistance are required for tire performance.

タイヤの転がり抵抗を減少する手法として、タイヤ構造を最適化する手法も検討されてきたが、タイヤに適用するゴム組成物としてよりエネルギー損失の低いゴム組成物を用いることが、現在、一般的な手法として行われている。ゴム組成物のエネルギー損失を低減するためには、ゴム成分由来のエネルギー損失及び/または充填剤由来のエネルギー損失を低減することを要する。前者を低減するために最も有効な手段は、ゴム成分のガラス転移点を低温側にシフトさせエネルギー損失を減じることであるが、ガラス転移点の低温側へのシフトは、同時に湿潤路面での摩耗特性をも低下させてしまう、という問題がある。後者を低減するために最も有効な手段は充填剤の使用量を減じることであるが、充填剤の安易な減量はタイヤの摩耗性の大幅な悪化を引き起こすことから容易ではない。すなわち、「転がり抵抗の低減」と、「耐摩耗性の向上」及び「湿潤路面での摩耗特性の向上」とは相反する機能といえる。   As a technique for reducing the rolling resistance of the tire, a technique for optimizing the tire structure has been studied, but it is now common to use a rubber composition having a lower energy loss as a rubber composition applied to the tire. It is done as a method. In order to reduce the energy loss of the rubber composition, it is necessary to reduce the energy loss derived from the rubber component and / or the energy loss derived from the filler. The most effective means to reduce the former is to shift the glass transition point of the rubber component to the low temperature side to reduce energy loss. However, the shift of the glass transition point to the low temperature side is also accompanied by wear on the wet road surface. There is a problem that the characteristics are also degraded. The most effective means to reduce the latter is to reduce the amount of filler used, but easy reduction of the filler is not easy because it causes a significant deterioration in tire wear. That is, it can be said that “reduction of rolling resistance”, “improvement of wear resistance” and “improvement of wear characteristics on wet road surface” are contradictory functions.

湿潤路面での摩耗特性及び耐摩耗性を両立させつつ、タイヤの転がり抵抗を低減するための技術として、ポリマーの変性技術が挙げられる。ポリマー変性技術は、ポリマーと充填剤間の化学結合の形成により、充填剤表面に存在するバウンドラバーといわれる強固なゴム層を増加させることにもつながり、ゴム耐摩耗性能も向上する。この技術は、微量の化学修飾で大きな効果が得られることから、環境的ならびに経済的にも有利である。ポリマー変性技術によるタイヤ転がり抵抗の低減機構は、その変性官能基が充填剤表面と反応することにより、通常凝集することが多い充填剤が分離し、その分散性が向上することでエネルギー損失が減ると考えられている。しかし、変性官能基と充填剤との相互作用を変性官能基の分子設計により強くすると、エネルギー損失低減効果及び耐摩耗性改良効果は頭打ちになることが報告されている(非特許文献1)。以上の点から、変性技術のみで得られるエネルギー損失低減及び耐摩耗性改良効果は制限されると考えられる。   As a technique for reducing the rolling resistance of a tire while achieving both wear characteristics and wear resistance on a wet road surface, there is a polymer modification technique. The polymer modification technique leads to an increase in a strong rubber layer called a bound rubber existing on the surface of the filler by forming a chemical bond between the polymer and the filler, and also improves the rubber wear resistance. This technique is advantageous both environmentally and economically because a great effect can be obtained with a small amount of chemical modification. The tire rolling resistance reduction mechanism by the polymer modification technology is that the modified functional group reacts with the filler surface, so that the filler that normally agglomerates is separated, and the dispersibility is improved, thereby reducing energy loss. It is believed that. However, it has been reported that when the interaction between the modified functional group and the filler is strengthened by the molecular design of the modified functional group, the energy loss reducing effect and the wear resistance improving effect reach a peak (Non-Patent Document 1). From the above points, it is considered that the energy loss reduction and wear resistance improving effects obtained only by the modification technique are limited.

Morikawa,A., Sonw,T., Shibata,M., Tadaki,T., International Rubebr Conference 2005 Yokohama, 26-S1-I-01 (2005)Morikawa, A., Sonw, T., Shibata, M., Tadaki, T., International Rubebr Conference 2005 Yokohama, 26-S1-I-01 (2005) 芥川恵造「有限要素法によるゴムのナノスケール力学シミュレーション技術」日本ゴム協会誌第82巻第5号p.227−232(2009)Keizo Ninagawa “Nanoscale Mechanical Simulation Technology of Rubber by Finite Element Method”, Journal of Japan Rubber Association Vol. 82, No. 5, p. 227-232 (2009)

本発明の課題は、タイヤの低発熱性と耐摩耗性の向上を実現し得るゴム組成物を提供することにある。また、タイヤの低発熱性と耐摩耗性の向上を実現し得るゴム組成物の製造方法を提供することにある。   The subject of this invention is providing the rubber composition which can implement | achieve the low heat_generation | fever property of a tire, and the improvement of abrasion resistance. Another object of the present invention is to provide a method for producing a rubber composition capable of realizing low heat build-up and improved wear resistance of a tire.

本発明のゴム組成物は、2種以上のジエン系ゴムを含むゴム成分合計100重量部に対し、0重量部超100重量部以下のシリカを含み、前記ジエン系ゴムがそれぞれガラス転移温度の異なる2相以上に分かれ、そのうち少なくとも1相が連続構造を有し、また、少なくとも1相が−50℃以上のガラス転移点を有する相であり、前記2相以上の相のうち少なくとも1相のガラス転移点が−50℃未満であり、該相がイソプレンゴム、天然ゴム、ブタジエンゴム、シリコーンゴム、ブチルゴム、スチレン−ブタジエンゴムからなる群のうち少なくとも1つを含み、配合されたゴムの単位体積あたりのシリカ全量の80重量%以上が−50℃以上のガラス転移点を有する1相以上の相に含まれ、該相に含まれるシリカの、ゴム組成物の切削面における、平均凝集アグリゲート面積が2000nm以下である、ことを特徴とする。
本発明における「平均凝集アグリゲート面積」とは、下記の方法で測定された面積をいうものとする。すなわち、加硫後のゴム組成物試料の上面を、集束イオンビームを用いて、該試料の上面に対し角度38°をなす方向に切削した後、切削により形成された該試料の平滑面を、該平滑面に対し垂直な方向から走査型電子顕微鏡を用いて、加速電圧5kVで撮影する。得られた画像を、Otsu法により該試料のゴム部分と充填材であるシリカ部分との2値化像に変換して得られた2値化像に基づき、シリカ部分の凝集アグリゲート面積を求め、シリカ部分の全表面積と凝集アグリゲートの個数とから、単位面積(3μm×3μm)あたりのシリカ部分の平均凝集アグリゲート面積を数平均(相加平均)により算出する。算出に当たり、画像の端(辺)に接している粒子はカウントせず、20ピクセル以下の粒子は、ノイズと見なしカウントしない。
本発明におけるゴム組成物は、それぞれ異なるガラス転移点を有する2相以上に分かれ、−50℃以上の高いガラス転移点を有する相(以下、「高Tg相」と表記する)にシリカが偏在する。一般に高Tg相は、−50℃未満の低いガラス転移点を有する相(以下、「低Tg相」と表記する)と比して、高速の引張力がかかる状態でその硬度を増し、その耐摩耗性が向上しやすいという性質を有する。本発明では、高Tg相にさらにシリカを偏在させることで、当該相をより高い耐摩耗性を有する相としている。一方、低Tg相は、高Tg相と比して柔軟性が高く、タイヤに使用した場合に、その転がり抵抗を低下させる、という性質を有する。
このように、本発明のゴム組成物は、前記高Tg相と前記低Tg相とがブレンドされることで、それぞれの特性を損なうことなく構成されたものであり、これが使用されるタイヤの耐摩耗性と低発熱性の向上を同時に達成するものである。特に少なくとも一方の相を連続構造とすることで、該相の特性が効率よく発揮されるものである。
しかし、このようにシリカを高Tg相に偏在させた場合、高Tg相に歪みが集中する、という問題が生じることが分かった。この問題について、この領域に存在するシリカの凝集塊を小さくすることで、すなわち、シリカ部分の平均凝集アグリゲート面積を2000nm以下とすることで、該歪みを低減し、ゴム組成物を使用したタイヤの耐摩耗性と低発熱性が顕著に改善されることが分かった。
The rubber composition of the present invention contains more than 0 parts by weight and 100 parts by weight or less of silica with respect to a total of 100 parts by weight of rubber components including two or more kinds of diene rubbers, and the diene rubbers have different glass transition temperatures. It is divided into two or more phases, of which at least one phase has a continuous structure, and at least one phase has a glass transition point of −50 ° C. or more, and at least one of the two or more phases of glass. The transition point is less than −50 ° C., and the phase contains at least one member selected from the group consisting of isoprene rubber, natural rubber, butadiene rubber, silicone rubber, butyl rubber, and styrene-butadiene rubber. more than 80 weight percent silica the total amount is included in one or more phases having a glass transition temperature above -50 ° C., the silica contained in said phase, the cutting surface of the rubber composition Kicking, average aggregate aggregate area is 2000 nm 2 or less, wherein the.
The “average aggregate aggregate area” in the present invention refers to an area measured by the following method. That is, after cutting the upper surface of the rubber composition sample after vulcanization in a direction forming an angle of 38 ° with respect to the upper surface of the sample using a focused ion beam, the smooth surface of the sample formed by cutting is The image is taken at an acceleration voltage of 5 kV using a scanning electron microscope from a direction perpendicular to the smooth surface. Based on the binarized image obtained by converting the obtained image into a binarized image of the rubber part of the sample and the silica part as the filler by the Otsu method, the aggregated aggregate area of the silica part is obtained. From the total surface area of the silica portion and the number of aggregates, the average aggregate aggregate area of the silica portion per unit area (3 μm × 3 μm) is calculated by number average (arithmetic average). In the calculation, particles in contact with the edge (side) of the image are not counted, and particles of 20 pixels or less are regarded as noise and are not counted.
The rubber composition in the present invention is divided into two or more phases having different glass transition points, and silica is unevenly distributed in a phase having a high glass transition point of −50 ° C. or more (hereinafter referred to as “high Tg phase”). . In general, a high Tg phase increases its hardness in a state in which a high-speed tensile force is applied, compared with a phase having a low glass transition point of less than −50 ° C. (hereinafter referred to as “low Tg phase”). It has a property that wear resistance is easily improved. In the present invention, silica is further unevenly distributed in the high Tg phase, so that the phase has a higher wear resistance. On the other hand, the low Tg phase is more flexible than the high Tg phase and has the property of reducing its rolling resistance when used in a tire.
As described above, the rubber composition of the present invention is constituted by blending the high Tg phase and the low Tg phase without impairing the respective characteristics. The improvement of wear and low heat generation is achieved at the same time. In particular, when at least one phase has a continuous structure, the characteristics of the phase are efficiently exhibited.
However, it has been found that when the silica is unevenly distributed in the high Tg phase in this way, there is a problem that strain is concentrated in the high Tg phase. With respect to this problem, by reducing the silica agglomerates existing in this region, that is, by making the average aggregate aggregate area of the silica portion 2000 nm 2 or less, the distortion is reduced and the rubber composition is used. It was found that the wear resistance and low heat build-up of the tires improved significantly.

本発明によれば、タイヤの低発熱性と耐摩耗性の向上を実現し得るゴム組成物を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the rubber composition which can implement | achieve the low heat generation property of a tire and the improvement of abrasion resistance can be provided.

ゴム組成物の歪み分布を、ナノスケール有限要素法により計算した解析画像である。(A)シリカ平均凝集アグリゲート面積が2000nm超、(B)シリカ平均凝集アグリゲート面積が2000nm以下。It is the analysis image which calculated the strain distribution of the rubber composition by the nanoscale finite element method. (A) Silica average aggregate aggregate area is more than 2000 nm 2 and (B) Silica average aggregate aggregate area is 2000 nm 2 or less.

以下に、本発明を、その一実施形態に基づき詳細に説明する。
<ゴム組成物>
本発明のゴム組成物は、本発明のゴム組成物は、2種以上のジエン系ゴムを含むゴム成分合計100重量部に対し、0重量部超100重量部以下のシリカを含み、前記ジエン系ゴムがそれぞれガラス転移温度の異なる2相以上に分かれ、そのうち少なくとも1相が連続構造を有し、かつ、少なくとも1相が−50℃以上のガラス転移点を有する相であり、また、前記2相以上の相のうち少なくとも1相のガラス転移点が−50℃未満であり、該相がイソプレンゴム、天然ゴム、ブタジエンゴム、シリコーンゴム、ブチルゴム、スチレン−ブタジエンゴムからなる群のうち少なくとも1つを含み、配合されたシリカの80重量%以上が、−50℃以上のガラス転移点を有する1相以上のうちの1相に含まれ、該相に含まれるシリカの、ゴム組成物の切削面における、平均凝集アグリゲート面積が2000nm以下である、ことを特徴とする。
Hereinafter, the present invention will be described in detail based on an embodiment thereof.
<Rubber composition>
The rubber composition of the present invention comprises the rubber composition of the present invention containing more than 0 parts by weight and 100 parts by weight or less of silica with respect to a total of 100 parts by weight of rubber components including two or more kinds of diene rubbers The rubber is divided into two or more phases each having a different glass transition temperature, of which at least one phase has a continuous structure and at least one phase has a glass transition point of −50 ° C. or more. At least one of the above phases has a glass transition point of less than −50 ° C., and the phase is at least one selected from the group consisting of isoprene rubber, natural rubber, butadiene rubber, silicone rubber, butyl rubber, and styrene-butadiene rubber. wherein, more than 80% by weight of the formulation silica are included in one phase of one or more phases having a glass transition temperature above -50 ° C., the silica contained in said phase, the rubber composition In the cutting surface, average aggregate aggregate area is 2000 nm 2 or less, and wherein.

ここで、平均凝集アグリゲート面積の測定法は、前述の通りであり、加硫後のゴム組成物試料の上面を、集束イオンビームを用いて、該試料の上面に対し角度38°をなす方向に切削した後、切削により形成された該試料の平滑面を、該平滑面に対し垂直な方向から走査型電子顕微鏡を用いて、加速電圧5kVで撮影する。得られた画像を、Otsu法により該試料のゴム部分と充填材であるシリカ部分との2値化像に変換して得られた2値化像に基づき、シリカ部分の凝集アグリゲート面積を求め、シリカ部分の全表面積と凝集アグリゲートの個数とから、単位面積(3μm×3μm)あたりのシリカ部分の平均凝集アグリゲート面積を数平均(相加平均)により算出するものである。但し、算出に当たり、画像の端(辺)に接している粒子はカウントせず、20ピクセル以下の粒子は、ノイズと見なしカウントしない。   Here, the method for measuring the average aggregate aggregate area is as described above, and a direction in which the upper surface of the vulcanized rubber composition sample is formed at an angle of 38 ° with respect to the upper surface of the sample by using a focused ion beam. Then, the smooth surface of the sample formed by cutting is photographed at an acceleration voltage of 5 kV using a scanning electron microscope from a direction perpendicular to the smooth surface. Based on the binarized image obtained by converting the obtained image into a binarized image of the rubber part of the sample and the silica part as the filler by the Otsu method, the aggregated aggregate area of the silica part is obtained. From the total surface area of the silica part and the number of aggregates, the average aggregate aggregate area of the silica part per unit area (3 μm × 3 μm) is calculated by number average (arithmetic average). However, in the calculation, particles in contact with the edge (side) of the image are not counted, and particles of 20 pixels or less are regarded as noise and are not counted.

本発明に係る平均凝集アグリゲート面積の測定にあたり、集束イオンビーム加工観察装置(FIB)と走査電子顕微鏡(SEM)とを一つの装置にしたFIB−SEMを用いることが好ましい。また、走査電子顕微鏡(SEM)として、極低加速電圧走査電子顕微鏡を用いることが好ましい。
FIB−SEMとしては、FEI社製、商品名「NOVA200」(登録商標)、SII Nano Technology Inc.製、商品名「SMI-3050MS2」(登録商標)などが挙げられ、FEI社製、商品名「NOVA200」(登録商標)が好ましい。
2値化像への変換は、Otsu法による画像処理装置を用いる。
In measuring the average aggregate aggregate area according to the present invention, it is preferable to use a FIB-SEM in which a focused ion beam processing observation apparatus (FIB) and a scanning electron microscope (SEM) are combined into one apparatus. Moreover, it is preferable to use a very low acceleration voltage scanning electron microscope as a scanning electron microscope (SEM).
Examples of the FIB-SEM include FEI, trade name “NOVA200” (registered trademark), SII Nano Technology Inc., trade name “SMI-3050MS2” (registered trademark), and the like. NOVA200 "(registered trademark) is preferred.
An image processing apparatus based on the Otsu method is used for conversion to a binary image.

本発明に係る平均凝集アグリゲート面積の測定において、加硫後のゴム組成物試料の上面を、集束イオンビームを用いて、該試料の上面に対し角度38°をなす方向に切削した後、切削により形成された該試料の平滑面を、該平滑面に対し垂直な方向から走査型電子顕微鏡を用いて、加速電圧5kVで撮影する。この方法では、従来の明るさの違いや、ピントのずれ等の影響なしで、試料の平坦な断面につき、断面の表面情報のみを含んだ高精度の画像を取得することができる。これにより、得られた高精度画像に基づき、高分子材料中の充填剤の分散状態を数値化して、シリカを含有する加硫後のゴム組成物の平均凝集アグリゲート面積を、定量的に評価することが可能となった。試料をFIBで切削した場合、FIBの照射方向に平行な方向に形成される切削面が凹凸のない平滑面となり、FIBの照射方向に垂直な方向に形成される切削面は凹凸を有する粗面となる。従って、本発明において撮影に供される平滑面とは、FIBの照射方向に平行な方向に形成される切削面を意味する。
次に、Otsu法を用いて、得られた画像の2値化の閾値を決定する。これによる該試料のゴム部分と充填材であるシリカ部分との2値化像に変換して得られた2値化像に基づき、シリカ部分の凝集アグリゲート面積を求め、シリカ部分の全表面積と凝集アグリゲートの個数とから、単位面積(3μm×3μm)あたりのシリカ部分の平均凝集アグリゲート面積を数平均(相加平均)により算出する。算出に当たり、画像の端(辺)に接している粒子はカウントせず、20ピクセル以下の粒子は、ノイズと見做しカウントしない。
In the measurement of the average aggregate aggregate area according to the present invention, the top surface of the rubber composition sample after vulcanization is cut using a focused ion beam in a direction that forms an angle of 38 ° with respect to the top surface of the sample. The smooth surface of the sample formed by the above is photographed at an acceleration voltage of 5 kV using a scanning electron microscope from a direction perpendicular to the smooth surface. In this method, a high-accuracy image including only the surface information of the cross section can be obtained for a flat cross section of the sample without being affected by the difference in brightness or the focus shift. As a result, based on the high-accuracy image obtained, the dispersion state of the filler in the polymer material is quantified, and the average aggregate aggregate area of the rubber composition after vulcanization containing silica is quantitatively evaluated. It became possible to do. When the sample is cut with FIB, the cut surface formed in the direction parallel to the FIB irradiation direction is a smooth surface without unevenness, and the cutting surface formed in the direction perpendicular to the FIB irradiation direction is rough surface with unevenness. It becomes. Accordingly, the smooth surface used for photographing in the present invention means a cutting surface formed in a direction parallel to the FIB irradiation direction.
Next, a threshold value for binarization of the obtained image is determined using the Otsu method. Based on the binarized image obtained by converting the rubber portion of the sample and the silica portion serving as the filler, the aggregated aggregate area of the silica portion is obtained, and the total surface area of the silica portion is calculated. From the number of aggregates, the average aggregate aggregate area of the silica portion per unit area (3 μm × 3 μm) is calculated by number average (arithmetic average). In the calculation, particles in contact with the edge (side) of the image are not counted, and particles of 20 pixels or less are regarded as noise and are not counted.

本発明のゴム組成物におけるシリカの凝集アグリゲートとは、1又は複数のアグリゲートが凝集したものをいい、単一のアグリゲートも包含される。ここで、アグリゲート(一次凝集体)とは、シリカの基本粒子同士が融着し,連鎖状ないしは不規則な鎖状に枝分かれした複雑な凝集形態を示すものであり、数十〜数百ナノメーターのサイズである。
本発明における凝集アグリゲートは、通常数十ミクロンから数百ミクロンの大きさと考えられているアグロメレート(二次凝集体)と比較してはるかに小さく、両者は全く異なる概念である。
The aggregated aggregate of silica in the rubber composition of the present invention refers to an aggregate of one or a plurality of aggregates, and includes a single aggregate. Here, the aggregate (primary agglomerate) refers to a complex agglomerated form in which silica basic particles are fused together and branched into a chain or irregular chain shape. The size of the meter.
Aggregate aggregates in the present invention are much smaller than agglomerates (secondary aggregates) that are usually considered to be tens to hundreds of microns in size, and they are completely different concepts.

上記シリカの平均凝集アグリゲート面積は、2000nm以下とし、特に、1950nm以下、さらに1900nm以下であることが好ましい。シリカの平均凝集アグリゲート面積が2000nm以下であると、シリカが偏在する高Tg相に歪みが集中することなく、ゴム組成物に良好な耐摩耗性と、低発熱性が付与される。なお、平均凝集アグリゲート面積は小さいほど好ましい。 Average aggregate aggregate area of the silica, and 2000 nm 2 or less, in particular, 1950 nm 2 or less, or more 1900 nm 2 or less. When the average aggregate aggregate area of silica is 2000 nm 2 or less, the rubber composition is imparted with good wear resistance and low heat build-up without strain being concentrated on the high Tg phase in which silica is unevenly distributed. The average aggregate aggregate area is preferably as small as possible.

図1は、ナノスケール有限要素法により、ゴム組成物の歪み分布計算を行った解析画像を示す写真である。(A)シリカ平均凝集アグリゲート面積が2000nm超の一例であり、(B)シリカ平均凝集アグリゲート面積が2000nm以下の一例を示す。(A)の例においては、2相の非連続相に大きな歪みの集中が発生し、低発熱性及び耐破壊性が悪化しやすい。これに対して、(B)のように、2相が共連続構造をとり、かつ、シリカの平均凝集アグリゲート面積が2000nm以下であると、歪みの集中が低減され、低発熱性及び耐破壊性が改善する。 FIG. 1 is a photograph showing an analysis image obtained by calculating a strain distribution of a rubber composition by a nanoscale finite element method. (A) Silica average aggregate aggregate area is an example exceeding 2000 nm 2 and (B) Silica average aggregate aggregate area is an example of 2000 nm 2 or less. In the example of (A), a large strain concentration occurs in the two-phase discontinuous phase, and the low heat buildup and the fracture resistance are likely to deteriorate. On the other hand, as shown in (B), when the two phases have a co-continuous structure and the average aggregate aggregate area of silica is 2000 nm 2 or less, the concentration of strain is reduced, and low heat buildup and resistance Destructibility is improved.

[ゴム成分]
本発明のゴム組成物は、ゴム成分として、全体として2種類以上のジエン系ゴムを含み、それぞれガラス転移点の異なる2相以上のゴム相に分かれる。本明細書において、ガラス転移点が−50℃以上のゴム相を高Tg相、−50℃未満の相を低Tg相と表記する。
[Rubber component]
The rubber composition of the present invention contains two or more types of diene rubber as a whole as a rubber component, and is divided into two or more rubber phases having different glass transition points. In the present specification, a rubber phase having a glass transition point of −50 ° C. or higher is referred to as a high Tg phase, and a phase lower than −50 ° C. is referred to as a low Tg phase.

高Tg相に含まれるゴム成分としては、未変性及び末端変性スチレン−ブタジエン共重合体(SBR)のうち少なくとも1つを含有することが好ましい。特に、末端変性SBRが好適に使用できる。ここでいう「末端変性」とは、アミノ基、イミノ基、ニトリル基、アンモニウム基、イミド基、アミド基、ヒドラゾ基、アゾ基、ジアゾ基、ヒドロキシル基、カルボキシル基、カルボニル基、エポキシ基、オキシカルボニル基、スルフィド基、ジスルフィド基、スルホニル基、スルフィニル基、チオカルボニル基、含窒素複素環基、含酸素複素環基及びアルコキシシリル基からなる群から選ばれる少なくとも一つの極性基を含有する極性基含有単量体を添加し、該極性基含有単量体を重合体の末端に結合させること、または末端スズ変性をいい、これにより配合するシリカとの親和性が高くなる。このような末端変性重合体を使用することにより、配合するシリカが高度に高Tg相に偏在しやすい、という効果が得られる。   The rubber component contained in the high Tg phase preferably contains at least one of unmodified and terminal-modified styrene-butadiene copolymer (SBR). In particular, terminal-modified SBR can be preferably used. The term “terminal modification” as used herein means amino group, imino group, nitrile group, ammonium group, imide group, amide group, hydrazo group, azo group, diazo group, hydroxyl group, carboxyl group, carbonyl group, epoxy group, oxy group. Polar group containing at least one polar group selected from the group consisting of carbonyl group, sulfide group, disulfide group, sulfonyl group, sulfinyl group, thiocarbonyl group, nitrogen-containing heterocyclic group, oxygen-containing heterocyclic group and alkoxysilyl group This is the addition of the containing monomer and bonding the polar group-containing monomer to the end of the polymer, or terminal tin modification, which increases the affinity with the silica to be blended. By using such a terminal-modified polymer, it is possible to obtain an effect that the silica to be blended is likely to be unevenly distributed in a high Tg phase.

以下、末端変性SBRの製造方法について例示する。上記末端変性前のSBRは、アニオン重合又は配位重合により得られるが、アニオン重合により製造することが好ましい。
このアニオン重合に使用する重合開始剤は、アルカリ金属化合物であるが、リチウム化合物が好ましい。リチウム化合物としては、ヒドロカルビルリチウムが好ましい。ヒドロカルビルリチウムを用いることにより、重合開始末端がヒドロカルビル基であるSBRが得られる。
ヒドロカルビルリチウムとしては、炭素数2〜20のヒドロカルビル基を有するものが良く、例えば、エチルリチウム、n−プロピルリチウム、イソプロピルリチウム、n−ブチルリチウム、sec−ブチルリチウム、tert−ブチルリチウム、tert−オクチルリチウム、n−デシルリチウム、フェニルリチウム、2−ナフチルリチウム、2−ブチル−フェニルリチウム、4−フェニル−ブチルリチウム、シクロヘキシルリチウム、シクロペンチルリチウム、ジイソプロペニルベンジエンとブチルリチウムとの反応生成物などが挙げられる。
また、所望により、ランダマイザーとして、一般に使用されている公知の化合物の中から任意のものを適宜選択して用いることができる。具体的には、ジメトキシベンゼン、テトラヒドロフラン、ジメトキシエタン、ジエチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、2,2−ビス(2−テトラヒドロフリル)−プロパン、トリエチルアミン、ピリジン、N−メチルモルホリン、N,N,N’,N’−テトラメチルエチレンジアミン、1,2−ジピぺリジノエタンなどのエーテル類及び第3アミン類などを挙げることができる。また、カリウム−tert−アミレート、カリウム−tert−ブトキシドなどのカリウム塩類、ナトリウム−tert−アミレートなどのナトリウム塩類も用いることができる。
Hereinafter, the production method of the terminal-modified SBR will be exemplified. The SBR before terminal modification is obtained by anionic polymerization or coordination polymerization, but is preferably produced by anionic polymerization.
The polymerization initiator used for the anionic polymerization is an alkali metal compound, but a lithium compound is preferable. As the lithium compound, hydrocarbyl lithium is preferable. By using hydrocarbyllithium, an SBR having a hydrocarbyl group at the polymerization initiation terminal can be obtained.
As the hydrocarbyl lithium, those having a hydrocarbyl group having 2 to 20 carbon atoms are preferable, for example, ethyl lithium, n-propyl lithium, isopropyl lithium, n-butyl lithium, sec-butyl lithium, tert-butyl lithium, tert-octyl. Lithium, n-decyl lithium, phenyl lithium, 2-naphthyl lithium, 2-butyl-phenyl lithium, 4-phenyl-butyl lithium, cyclohexyl lithium, cyclopentyl lithium, reaction products of diisopropenyl benzene and butyl lithium, etc. Can be mentioned.
Further, if desired, any randomizer can be appropriately selected from known compounds that are generally used. Specifically, dimethoxybenzene, tetrahydrofuran, dimethoxyethane, diethylene glycol dibutyl ether, diethylene glycol dimethyl ether, 2,2-bis (2-tetrahydrofuryl) -propane, triethylamine, pyridine, N-methylmorpholine, N, N, N ′, Examples thereof include ethers such as N′-tetramethylethylenediamine and 1,2-dipiperidinoethane, and tertiary amines. Further, potassium salts such as potassium tert-amylate and potassium tert-butoxide, and sodium salts such as sodium tert-amylate can also be used.

アニオン重合によるSBRの製造方法としては特に制限はなく、従来公知の方法を用いることができる。具体的には、反応に不活性な有機溶剤、例えば脂肪族,脂環族,芳香族炭化水素化合物などの炭化水素系溶剤中において、有機リチウム化合物を重合開始剤として、所望により上述のランダマイザーの存在下で、スチレンと1,3−ブタジエンをアニオン重合させることにより、目的のSBRが得られる。この重合反応における温度は、通常−80〜150℃、好ましくは−20〜100℃の範囲で選定される。重合反応は、発生圧力下で行うことができるが、通常は単量体を実質的に液相に保つ十分な圧力で操作することが望ましい。またより高い圧力を用いることができ、このような圧力は重合反応に関して不活性なガスで反応器を加圧する等の適当な方法で得られる。   There is no restriction | limiting in particular as a manufacturing method of SBR by anionic polymerization, A conventionally well-known method can be used. Specifically, in the organic solvent inert to the reaction, for example, hydrocarbon solvents such as aliphatic, alicyclic, and aromatic hydrocarbon compounds, the above-mentioned randomizer may be used as an organic lithium compound as a polymerization initiator. In the presence of styrene, the target SBR is obtained by anionic polymerization of styrene and 1,3-butadiene. The temperature in this polymerization reaction is usually selected in the range of -80 to 150 ° C, preferably -20 to 100 ° C. The polymerization reaction can be carried out under generated pressure, but it is usually desirable to operate at a sufficient pressure to keep the monomer in a substantially liquid phase. Higher pressures can be used, and such pressures can be obtained by any suitable method, such as pressurizing the reactor with a gas that is inert with respect to the polymerization reaction.

末端変性SBRは、例えば、上述のようにして得られた無変性SBRの重合反応完了後、重合停止前にSBRの重合活性末端に、極性基含有単量体をグラフト重合等で結合させることにより得られる。上記極性基含有単量体としては、シリカとの相互作用のあるものが好ましく、アミノ基、イミノ基、ニトリル基、アンモニウム基、イミド基、アミド基、ヒドラゾ基、アゾ基、ジアゾ基、ヒドロキシル基、カルボキシル基、カルボニル基、エポキシ基、オキシカルボニル基、スルフィド基、ジスルフィド基、スルホニル基、スルフィニル基、チオカルボニル基、含窒素複素環基、含酸素複素環基及びアルコキシシリル基からなる群から選ばれる少なくとも一つの極性基を含有する極性基含有単量体が挙げられる。特に、アミノ基、アルコキシシリル基を含有する単量体が好適に用いられる。
また、末端変性SBRは、アニオン重合の開始剤として上記極性基を有する有機リチウム化合物を用いても得られる。
The terminal-modified SBR is obtained, for example, by bonding a polar group-containing monomer to the polymerization active terminal of the SBR after completion of the polymerization reaction of the unmodified SBR obtained as described above, before the polymerization is terminated, by graft polymerization or the like. can get. As the polar group-containing monomer, those having an interaction with silica are preferable, and amino group, imino group, nitrile group, ammonium group, imide group, amide group, hydrazo group, azo group, diazo group, hydroxyl group. , Carboxyl group, carbonyl group, epoxy group, oxycarbonyl group, sulfide group, disulfide group, sulfonyl group, sulfinyl group, thiocarbonyl group, nitrogen-containing heterocyclic group, oxygen-containing heterocyclic group and alkoxysilyl group. And a polar group-containing monomer containing at least one polar group. In particular, a monomer containing an amino group or an alkoxysilyl group is preferably used.
Terminal-modified SBR can also be obtained by using an organolithium compound having the above polar group as an anionic polymerization initiator.

末端スズ変性SBRは、上述のようにして得られた無変性SBRの重合反応完了後、重合停止前にSBRの重合活性末端に、変性剤としてのスズ化合物を反応させることにより得られる。上記スズ化合物としては、例えば四塩化スズ,トリブチルスズクロリド,トリオクチルスズクロリド,ジオクチルスズジクロリド,ジブチルスズジクロリド,塩化トリフェニルスズなどが挙げられる。
また、末端スズ変性SBRは、アニオン重合の開始剤としてスズ原子を有するリチウム化合物を用いても得られる。スズ原子を有するリチウム化合物としては、トリブチルスズリチウム,トリオクチルスズリチウムなどのトリオルガノスズリチウム化合物が挙げられる。
The terminal tin-modified SBR is obtained by reacting a tin compound as a modifier with the polymerization active terminal of SBR after completion of the polymerization reaction of the unmodified SBR obtained as described above. Examples of the tin compound include tin tetrachloride, tributyltin chloride, trioctyltin chloride, dioctyltin dichloride, dibutyltin dichloride, and triphenyltin chloride.
The terminal tin-modified SBR can also be obtained by using a lithium compound having a tin atom as an initiator for anionic polymerization. Examples of the lithium compound having a tin atom include triorganotin lithium compounds such as tributyltin lithium and trioctyltin lithium.

末端変性SBRは、スチレン成分が5〜50重量%の範囲で含まれることが好ましく、10〜40重量%の範囲で含まれることがより好ましく、15〜35重量%の範囲で含まれることがさらに好ましい。また、ブタジエン部分のビニル含有量が70重量%以下であることが好ましい。   The terminal-modified SBR preferably contains a styrene component in a range of 5 to 50% by weight, more preferably in a range of 10 to 40% by weight, and further in a range of 15 to 35% by weight. preferable. Moreover, it is preferable that the vinyl content of a butadiene part is 70 weight% or less.

低Tg相に含まれるゴム成分としては、イソプレンゴム、天然ゴム、ブタジエンゴム、シリコーンゴム、ブチルゴム、スチレン−ブタジエンゴムからなる群のうち、少なくとも1つを含有するこれらのゴム成分は、低Tgであり、タイヤの低発熱性を向上させることを可能とする。なお、配合されるシリカは、低Tg相には極力存在しないようにすることが望まれるため、上記ゴム成分は未変性のものを使用することが好ましい。 The rubber component contained in the low Tg phase contains at least one of the group consisting of isoprene rubber, natural rubber, butadiene rubber, silicone rubber, butyl rubber, and styrene-butadiene rubber . These rubber components have a low Tg and can improve the low heat buildup of the tire. In addition, since it is desired that the compounded silica is not present in the low Tg phase as much as possible, it is preferable to use an unmodified rubber component.

本発明のゴム組成物全体に占める高Tg相の配合量は、30〜90重量%、特に30〜75重量%、さらに30〜65重量%とすることが好ましい。高Tg相の配合量を30重量%以上とすることで、十分な耐摩耗性を付与することができる。一方高Tg相の配合量を90重量%以下とすることで、低発熱性を維持することが可能となる。   The amount of the high Tg phase in the rubber composition of the present invention is preferably 30 to 90% by weight, particularly 30 to 75% by weight, and more preferably 30 to 65% by weight. Sufficient wear resistance can be imparted by adjusting the blending amount of the high Tg phase to 30% by weight or more. On the other hand, when the blending amount of the high Tg phase is 90% by weight or less, it is possible to maintain low exothermic properties.

[シリカ]
本発明のゴム組成物に用いられるシリカとしては市販のあらゆるものが使用でき、なかでも湿式シリカ、乾式シリカ、コロイダルシリカを用いるのが好ましく、湿式シリカを用いるのがさらに好ましい。湿式シリカは、沈降法シリカとゲル法シリカに類別されるが、混練のせん断によりゴム組成物中に分散されやすく、分散後の表面反応による補強性に優れる沈降法シリカが特に好ましい。
また、シリカのCTAB吸着比表面積(JIS K6217法に準拠して測定)としては、140m2/g未満であることが好ましく、60m2/g以上かつ140m2/g未満であることがより好ましい。
CTAB吸着比表面積がこの範囲内である沈降法シリカとしては、Rhodia(株)製、商品名「Zeosil 1115」(登録商標)(CTAB吸着比表面積=110m2/g)、商品名「Zeosil 115」(登録商標)(CTAB吸着比表面積=110m2/g)、商品名「Zeosil 125」(登録商標)(CTAB吸着比表面積=115m2/g)等が好適に挙げられる。
[silica]
As the silica used in the rubber composition of the present invention, any commercially available silica can be used, among which wet silica, dry silica and colloidal silica are preferably used, and wet silica is more preferably used. Wet silica is classified into precipitated silica and gel silica. Precipitated silica is particularly preferable because it is easily dispersed in the rubber composition by kneading shear and has excellent reinforcing properties due to surface reaction after dispersion.
As the CTAB adsorption specific surface area of the silica (measured according to JIS K6217 method), and more preferably preferably less than 140 m 2 / g, less than 60 m 2 / g or more and 140 m 2 / g.
Precipitated silica with a CTAB adsorption specific surface area within this range includes Rhodia Co., Ltd., trade name “Zeosil 1115” (registered trademark) (CTAB adsorption specific surface area = 110 m 2 / g), trade name “Zeosil 115”. (Registered trademark) (CTAB adsorption specific surface area = 110 m 2 / g), trade name “Zeosil 125” (registered trademark) (CTAB adsorption specific surface area = 115 m 2 / g) and the like are preferable.

本発明のゴム組成物は、所望により、上述のシリカに加えてカーボンブラックを含有しても良い。カーボンブラックを含有することにより、電気抵抗を下げて帯電を抑止する効果を享受できる。このカーボンブラックとしては、特に制限はなく、例えば高、中又は低ストラクチャーのSAF、ISAF、IISAF、N339、HAF、FEF、GPF、SRFグレードのカーボンブラック、特にSAF、ISAF、IISAF、N339、HAF、FEFグレードのカーボンブラックを用いるのが好ましい。窒素吸着比表面積(N2SA、JIS K 6217−2:2001に準拠して測定する)が30〜250m2/gであることが好ましい。このカーボンブラックは1種を単独で用いても良く、2種以上を組み合わせて用いても良い。 If desired, the rubber composition of the present invention may contain carbon black in addition to the above-described silica. By containing carbon black, it is possible to enjoy the effect of reducing electrical resistance and suppressing charging. The carbon black is not particularly limited. For example, high, medium or low structure SAF, ISAF, IISAF, N339, HAF, FEF, GPF, SRF grade carbon black, particularly SAF, ISAF, IISAF, N339, HAF, Preferably, FEF grade carbon black is used. The nitrogen adsorption specific surface area (N 2 SA, measured in accordance with JIS K 6217-2: 2001) is preferably 30 to 250 m 2 / g. This carbon black may be used individually by 1 type, and may be used in combination of 2 or more type.

本発明のゴム組成物は、ゴム成分合計100重量部に対して、0重量部超200重量部以下のシリカを含む。好適には、40〜150重量部、より好適には50〜100重量部のシリカを含有する。シリカを0部超配することで、ゴム組成物の耐摩耗性を向上させることができる。シリカを100重量部以下とすることで、低発熱性が阻害されにくい。   The rubber composition of the present invention contains more than 0 parts by weight and 200 parts by weight or less of silica with respect to 100 parts by weight of the total rubber components. Preferably, it contains 40 to 150 parts by weight, more preferably 50 to 100 parts by weight of silica. By providing more than 0 part of silica, the wear resistance of the rubber composition can be improved. By making the silica 100 parts by weight or less, the low heat build-up property is hardly inhibited.

また、本発明のゴム組成物において、ゴム成分100重量部に対して、シリカ及び所望により加えられるカーボンブラック等からなる充填材を40〜200重量部含有することが好ましい。40重量部以上であれば、ゴム組成物の補強性向上の観点から好ましく、200重量部以下であれば、低発熱性の観点から好ましい。
前記充填材中、シリカが40重量%以上であることが耐摩耗性と低発熱性の両立の観点から好ましく、50重量%以上であることがさらに好ましい。
Further, in the rubber composition of the present invention, it is preferable to contain 40 to 200 parts by weight of a filler composed of silica and optionally added carbon black with respect to 100 parts by weight of the rubber component. If it is 40 parts by weight or more, it is preferable from the viewpoint of improving the reinforcing property of the rubber composition, and if it is 200 parts by weight or less, it is preferable from the viewpoint of low heat generation.
In the filler, silica is preferably 40% by weight or more from the viewpoint of achieving both wear resistance and low heat build-up, and more preferably 50% by weight or more.

本発明のゴム組成物において、配合されるシリカのうち80重量%以上、好適には85重量%以上、より好適には90重量%以上が1相以上の高Tg相に含まれる。高Tg相にシリカが偏在することで、高Tg相の耐摩耗性がより高まる一方で、低Tg相に含まれるシリカの量が少ないことから、低Tg相の低発熱性効果が維持される。高Tg相のゴム成分として変性SBRを使用し、低Tg相のゴム成分として未変性ポリマーを使用し、後述の方法でシリカを混練することで、高Tg相にシリカが偏在するゴム組成物を実現することができる。なお、高Tg相に含まれるシリカの割合は多ければ多いほど好ましい。   In the rubber composition of the present invention, 80% by weight or more, preferably 85% by weight or more, more preferably 90% by weight or more of the silica to be blended is contained in one or more high Tg phases. The uneven distribution of silica in the high Tg phase increases the wear resistance of the high Tg phase, while maintaining a low heat generation effect of the low Tg phase because the amount of silica contained in the low Tg phase is small. . A rubber composition in which silica is unevenly distributed in the high Tg phase is obtained by using modified SBR as the rubber component of the high Tg phase, using an unmodified polymer as the rubber component of the low Tg phase, and kneading silica by the method described later. Can be realized. Note that the higher the proportion of silica contained in the high Tg phase, the better.

ここで、高Tg相及び低Tg相におけるシリカの分配率は、下記の方法で計測することが可能である。すなわち、加硫後のゴム組成物試料の上面を、集束イオンビームを用いて、該試料の上面に対し角度38°をなす方向に切削した後、切削により形成された該試料の平滑面を、該平滑面に対し垂直な方向から走査型電子顕微鏡を用いて、加速電圧5kVで撮影する。得られた画像を、Otsu法により該試料の2相のゴム部分と充填材であるシリカ部分との2値化像に変換して得られた2値化像に基づき、シリカ面積全体に対する各相に含まれるシリカ面積の割合を求める。   Here, the distribution ratio of silica in the high Tg phase and the low Tg phase can be measured by the following method. That is, after cutting the upper surface of the rubber composition sample after vulcanization in a direction forming an angle of 38 ° with respect to the upper surface of the sample using a focused ion beam, the smooth surface of the sample formed by cutting is The image is taken at an acceleration voltage of 5 kV using a scanning electron microscope from a direction perpendicular to the smooth surface. Based on the binarized image obtained by converting the obtained image into a binarized image of the two-phase rubber part of the sample and the silica part as the filler by the Otsu method, each phase for the entire silica area is obtained. The ratio of the silica area contained in is obtained.

[シランカップリング剤]
本発明のゴム組成物に用いられるシランカップリング剤としては、公知のシランカップリング剤をいずれも使用可能であるが、ポリスルフィド化合物及びチオエステル化合物から少なくとも1種選ばれるシランカップリング剤であることが好ましい。ポリスルフィド化合物及びチオエステル化合物は、混練中のやけ(スコーチ)が起こりにくく、加工性を良好にできるため好ましい。シランカップリング剤は一種を単独で用いても良く、二種以上を組み合わせて用いても良い。
本発明のゴム組成物のシランカップリング剤の配合量は、シリカの1〜20重量%であることが好ましい。1重量%未満ではゴム組成物の低発熱性向上の効果が発揮しにくくなり、20重量%を超えると、ゴム組成物のコストが過大となり、経済性が低下するからである。更にはシリカの5〜15重量%であることがより好ましく、シリカの5〜10重量%であることが特に好ましい。
[Silane coupling agent]
As the silane coupling agent used in the rubber composition of the present invention, any known silane coupling agent can be used, but it should be at least one selected from polysulfide compounds and thioester compounds. preferable. Polysulfide compounds and thioester compounds are preferred because they are less likely to be burned (scorched) during kneading and can have good processability. A silane coupling agent may be used individually by 1 type, and may be used in combination of 2 or more type.
It is preferable that the compounding quantity of the silane coupling agent of the rubber composition of this invention is 1 to 20 weight% of a silica. If the amount is less than 1% by weight, the effect of improving the low heat build-up of the rubber composition is hardly exhibited. If the amount exceeds 20% by weight, the cost of the rubber composition becomes excessive and the economic efficiency is lowered. Furthermore, 5 to 15% by weight of silica is more preferable, and 5 to 10% by weight of silica is particularly preferable.

[加硫促進剤]
本発明のゴム組成物に好適に用いられる加硫促進剤としては、グアニジン類、スルフェンアミド類、チアゾール類、チウラム類、ジチオカルバミン酸塩類、チオウレア類及びキサントゲン酸塩類が挙げられる。
本発明のゴム組成物に用いられるグアニジン類としては、1,3−ジフェニルグアニジン、1,3−ジ−o−トリルグアニジン、1−o−トリルビグアニド、ジカテコールボレートのジ−o−トリルグアニジン塩、1,3−ジ−o−クメニルグアニジン、1,3−ジ−o−ビフェニルグアニジン、1,3−ジ−o−クメニル−2−プロピオニルグアニジン等が挙げられ、1,3−ジフェニルグアニジン、1,3−ジ−o−トリルグアニジン及び1−o−トリルビグアニドは、反応性が高いので好ましい。
[Vulcanization accelerator]
Examples of the vulcanization accelerator suitably used in the rubber composition of the present invention include guanidines, sulfenamides, thiazoles, thiurams, dithiocarbamates, thioureas and xanthates.
Examples of guanidines used in the rubber composition of the present invention include 1,3-diphenylguanidine, 1,3-di-o-tolylguanidine, 1-o-tolylbiguanide, and di-o-tolylguanidine salt of dicatechol borate. 1,3-di-o-cumenyl guanidine, 1,3-di-o-biphenyl guanidine, 1,3-di-o-cumenyl-2-propionyl guanidine, and the like may be mentioned, 1,3-diphenyl guanidine, 1,3-di-o-tolylguanidine and 1-o-tolylbiguanide are preferable because of high reactivity.

本発明のゴム組成物に用いられるスルフェンアミド類としては、N−シクロヘキシル−2−ベンゾチアゾリルスルフェンアミド、N,N−ジシクロヘキシル−2−ベンゾチアゾリルスルフェンアミド、N−tert−ブチル−2−ベンゾチアゾリルスルフェンアミド、N−オキシジエチレン−2−ベンゾチアゾリルスルフェンアミド、N−メチル−2−ベンゾチアゾリルスルフェンアミド、N−エチル−2−ベンゾチアゾリルスルフェンアミド、N−プロピル−2−ベンゾチアゾリルスルフェンアミド、N−ブチル−2−ベンゾチアゾリルスルフェンアミド、N−ペンチル−2−ベンゾチアゾリルスルフェンアミド、N−ヘキシル−2−ベンゾチアゾリルスルフェンアミド、N−ペンチル−2−ベンゾチアゾリルスルフェンアミド、N−オクチル−2−ベンゾチアゾリルスルフェンアミド、N−2−エチルヘキシル−2−ベンゾチアゾリルスルフェンアミド、N−デシル−2−ベンゾチアゾリルスルフェンアミド、N−ドデシル−2−ベンゾチアゾリルスルフェンアミド、N−ステアリル−2−ベンゾチアゾリルスルフェンアミド、N,N−ジメチル−2−ベンゾチアゾリルスルフェンアミド、N,N−ジエチル−2−ベンゾチアゾリルスルフェンアミド、N,N−ジプロピル−2−ベンゾチアゾリルスルフェンアミド、N,N−ジブチル−2−ベンゾチアゾリルスルフェンアミド、N,N−ジペンチル−2−ベンゾチアゾリルスルフェンアミド、N,N−ジヘキシル−2−ベンゾチアゾリルスルフェンアミド、N,N−ジペンチル−2−ベンゾチアゾリルスルフェンアミド、N,N−ジオクチル−2−ベンゾチアゾリルスルフェンアミド、N,N−ジ−2−エチルヘキシルベンゾチアゾリルスルフェンアミド、N−デシル−2−ベンゾチアゾリルスルフェンアミド、N,N−ジドデシル−2−ベンゾチアゾリルスルフェンアミド、N,N−ジステアリル−2−ベンゾチアゾリルスルフェンアミド等が挙げられる。これらの内、N−シクロヘキシル−2−ベンゾチアゾリルスルフェンアミド及びN−tert−ブチル−2−ベンゾチアゾリルスルフェンアミドは、反応性が高いので好ましい。   Examples of the sulfenamides used in the rubber composition of the present invention include N-cyclohexyl-2-benzothiazolylsulfenamide, N, N-dicyclohexyl-2-benzothiazolylsulfenamide, N-tert-butyl- 2-benzothiazolylsulfenamide, N-oxydiethylene-2-benzothiazolylsulfenamide, N-methyl-2-benzothiazolylsulfenamide, N-ethyl-2-benzothiazolylsulfenamide, N -Propyl-2-benzothiazolylsulfenamide, N-butyl-2-benzothiazolylsulfenamide, N-pentyl-2-benzothiazolylsulfenamide, N-hexyl-2-benzothiazolylsulfenamide N-pentyl-2-benzothiazolylsulfenamide, N-oct Ru-2-benzothiazolylsulfenamide, N-2-ethylhexyl-2-benzothiazolylsulfenamide, N-decyl-2-benzothiazolylsulfenamide, N-dodecyl-2-benzothiazolylsulfen Amides, N-stearyl-2-benzothiazolylsulfenamide, N, N-dimethyl-2-benzothiazolylsulfenamide, N, N-diethyl-2-benzothiazolylsulfenamide, N, N-dipropyl 2-benzothiazolylsulfenamide, N, N-dibutyl-2-benzothiazolylsulfenamide, N, N-dipentyl-2-benzothiazolylsulfenamide, N, N-dihexyl-2-benzothia Zolylsulfenamide, N, N-dipentyl-2-benzothiazolylsulfenamide, N, -Dioctyl-2-benzothiazolylsulfenamide, N, N-di-2-ethylhexylbenzothiazolylsulfenamide, N-decyl-2-benzothiazolylsulfenamide, N, N-didodecyl-2-benzo Examples include thiazolylsulfenamide, N, N-distearyl-2-benzothiazolylsulfenamide, and the like. Of these, N-cyclohexyl-2-benzothiazolylsulfenamide and N-tert-butyl-2-benzothiazolylsulfenamide are preferable because of their high reactivity.

本発明のゴム組成物に用いられるチアゾール類としては、2−メルカプトベンゾチアゾール、ジ−2−ベンゾチアゾリルジスルフィド、2−メルカプトベンゾチアゾールの亜鉛塩、2−メルカプトベンゾチアゾールのシクロヘキシルアミン塩、2−(N,N−ジエチルチオカルバモイルチオ)ベンゾチアゾール、2−(4’−モルホリノジチオ)ベンゾチアゾール、4−メチル−2−メルカプトベンゾチアゾール、ジ−(4−メチル−2−ベンゾチアゾリル)ジスルフィド、5−クロロ−2−メルカプトベンゾチアゾール、2−メルカプトベンゾチアゾールナトリウム、2−メルカプト−6−ニトロベンゾチアゾール、2−メルカプト-ナフト[1,2−d]チアゾール、2−メルカプト−5−メトキシベンゾチアゾール、6−アミノ−2−メルカプトベンゾチアゾール等が挙げられる。これらの内、2−メルカプトベンゾチアゾール及びジ−2−ベンゾチアゾリルジスルフィドは、反応性が高く好ましい。   The thiazoles used in the rubber composition of the present invention include 2-mercaptobenzothiazole, di-2-benzothiazolyl disulfide, zinc salt of 2-mercaptobenzothiazole, cyclohexylamine salt of 2-mercaptobenzothiazole, 2 -(N, N-diethylthiocarbamoylthio) benzothiazole, 2- (4'-morpholinodithio) benzothiazole, 4-methyl-2-mercaptobenzothiazole, di- (4-methyl-2-benzothiazolyl) disulfide, 5 -Chloro-2-mercaptobenzothiazole, 2-mercaptobenzothiazole sodium, 2-mercapto-6-nitrobenzothiazole, 2-mercapto-naphtho [1,2-d] thiazole, 2-mercapto-5-methoxybenzothiazole, 6-amino-2-mer Hept benzothiazole and the like. Of these, 2-mercaptobenzothiazole and di-2-benzothiazolyl disulfide are preferred because of their high reactivity.

本発明のゴム組成物に用いられるチウラム類としては、テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、テトラプロピルチウラムジスルフィド、テトライソプロピルチウラムジスルフィド、テトラブチルチウラムジスルフィド、テトラペンチルチウラムジスルフィド、テトラヘキシルチウラムジスルフィド、テトラヘプチルチウラムジスルフィド、テトラオクチルチウラムジスルフィド、テトラノニルチウラムジスルフィド、テトラデシルチウラムジスルフィド、テトラドデシルチウラムジスルフィド、テトラステアリルチウラムジスルフィド、テトラベンジルチウラムジスルフィド、テトラキス(2−エチルヘキシル)チウラムジスルフィド、テトラメチルチウラムモノスルフィド、テトラエチルチウラムモノスルフィド、テトラプロピルチウラムモノスルフィド、テトライソプロピルチウラムモノスルフィド、テトラブチルチウラムモノスルフィド、テトラペンチルチウラムモノスルフィド、テトラヘキシルチウラムモノスルフィド、テトラヘプチルチウラムモノスルフィド、テトラオクチルチウラムモノスルフィド、テトラノニルチウラムモノスルフィド、テトラデシルチウラムモノスルフィド、テトラドデシルチウラムモノスルフィド、テトラステアリルチウラムモノスルフィド、テトラベンジルチウラムモノスルフィド、ジペンタメチレンチウラムテトラスルフィド等が挙げられる。これらの内、テトラキス(2−エチルヘキシル)チウラムジスルフィド及びテトラベンジルチウラムジスルフィドは、反応性が高いので好ましい。   The thiurams used in the rubber composition of the present invention include tetramethylthiuram disulfide, tetraethylthiuram disulfide, tetrapropylthiuram disulfide, tetraisopropylthiuram disulfide, tetrabutylthiuram disulfide, tetrapentylthiuram disulfide, tetrahexylthiuram disulfide, tetraheptyl Thiuram disulfide, tetraoctyl thiuram disulfide, tetranonyl thiuram disulfide, tetradecyl thiuram disulfide, tetradodecyl thiuram disulfide, tetrastearyl thiuram disulfide, tetrabenzyl thiuram disulfide, tetrakis (2-ethylhexyl) thiuram disulfide, tetramethyl thiuram monosulfide, tetraethyl thiuram Monos Fido, tetrapropyl thiuram monosulfide, tetraisopropyl thiuram monosulfide, tetrabutyl thiuram monosulfide, tetrapentyl thiuram monosulfide, tetrahexyl thiuram monosulfide, tetraheptyl thiuram monosulfide, tetraoctyl thiuram monosulfide, tetranonyl thiuram monosulfide, Examples include tetradecyl thiuram monosulfide, tetradodecyl thiuram monosulfide, tetrastearyl thiuram monosulfide, tetrabenzyl thiuram monosulfide, dipentamethylene thiuram tetrasulfide and the like. Of these, tetrakis (2-ethylhexyl) thiuram disulfide and tetrabenzylthiuram disulfide are preferred because of their high reactivity.

本発明のゴム組成物に用いられるジチオカルバミン酸塩類としては、ジメチルジチオカルバミン酸亜鉛、ジエチルジチオカルバミン酸亜鉛、ジプロピルジチオカルバミン酸亜鉛、ジイソプロピルジチオカルバミン酸亜鉛、ジブチルジチオカルバミン酸亜鉛、ジペンチルジチオカルバミン酸亜鉛、ジヘキシルジチオカルバミン酸亜鉛、ジヘプチルジチオカルバミン酸亜鉛、ジオクチルジチオカルバミン酸亜鉛、ジ(2−エチルヘキシル)ジチオカルバミン酸亜鉛、ジデシルジチオカルバミン酸亜鉛、ジドデシルジチオカルバミン酸亜鉛、N−ペンタメチレンジチオカルバミン酸亜鉛、N−エチル−N−フェニルジチオカルバミン酸亜鉛、ジベンジルジチオカルバミン酸亜鉛、ジメチルジチオカルバミン酸銅、ジエチルジチオカルバミン酸銅、ジプロピルジチオカルバミン酸銅、ジイソプロピルジチオカルバミン酸銅、ジブチルジチオカルバミン酸銅、ジペンチルジチオカルバミン酸銅、ジヘキシルジチオカルバミン酸銅、ジヘプチルジチオカルバミン酸銅、ジオクチルジチオカルバミン酸銅、ジ(2−エチルヘキシル)ジチオカルバミン酸銅、ジデシルジチオカルバミン酸銅、ジドデシルジチオカルバミン酸銅、N-ペンタメチレンジチオカルバミン酸銅、ジベンジルジチオカルバミン酸銅、ジメチルジチオカルバミン酸ナトリウム、ジエチルジチオカルバミン酸ナトリウム、ジプロピルジチオカルバミン酸ナトリウム、ジイソプロピルジチオカルバミン酸ナトリウム、ジブチルジチオカルバミン酸ナトリウム、ジペンチルジチオカルバミン酸ナトリウム、ジヘキシルジチオカルバミン酸ナトリウム、ジヘプチルジチオカルバミン酸ナトリウム、ジオクチルジチオカルバミン酸ナトリウム、ジ(2−エチルヘキシル)ジチオカルバミン酸ナトリウム、ジデシルジチオカルバミン酸ナトリウム、ジドデシルジチオカルバミン酸ナトリウム、N−ペンタメチレンジチオカルバミン酸ナトリウム、ジベンジルジチオカルバミン酸ナトリウム、ジメチルジチオカルバミン酸第二鉄、ジエチルジチオカルバミン酸第二鉄、ジプロピルジチオカルバミン酸第二鉄、ジイソプロピルジチオカルバミン酸第二鉄、ジブチルジチオカルバミン酸第二鉄、ジペンチルジチオカルバミン酸第二鉄、ジヘキシルジチオカルバミン酸第二鉄、ジヘプチルジチオカルバミン酸第二鉄、ジオクチルジチオカルバミン酸第二鉄、ジ(2−エチルヘキシル)ジチオカルバミン酸第二鉄、ジデシルジチオカルバミン酸第二鉄、ジドデシルジチオカルバミン酸第二鉄、N−ペンタメチレンジチオカルバミン酸第二鉄、ジベンジルジチオカルバミン酸第二鉄等が挙げられる。これらの内、ジベンジルジチオカルバミン酸亜鉛、N−エチル−N−フェニルジチオカルバミン酸亜鉛、ジメチルジチオカルバミン酸亜鉛及びジメチルジチオカルバミン酸銅は、反応性が高いため好ましい。   Examples of the dithiocarbamate used in the rubber composition of the present invention include zinc dimethyldithiocarbamate, zinc diethyldithiocarbamate, zinc dipropyldithiocarbamate, zinc diisopropyldithiocarbamate, zinc dibutyldithiocarbamate, zinc dipentyldithiocarbamate, and zinc dihexyldithiocarbamate. , Zinc diheptyldithiocarbamate, zinc dioctyldithiocarbamate, zinc di (2-ethylhexyl) dithiocarbamate, zinc didecyldithiocarbamate, zinc didodecyldithiocarbamate, zinc N-pentamethylenedithiocarbamate, N-ethyl-N-phenyldithiocarbamine Zinc oxide, zinc dibenzyldithiocarbamate, copper dimethyldithiocarbamate, copper diethyldithiocarbamate, di Copper Lopyldithiocarbamate, Copper diisopropyldithiocarbamate, Copper dibutyldithiocarbamate, Copper dipentyldithiocarbamate, Copper dihexyldithiocarbamate, Copper diheptyldithiocarbamate, Copper dioctyldithiocarbamate, Copper di (2-ethylhexyl) dithiocarbamate, Didecyldithiocarbamine Copper acid, copper didodecyl dithiocarbamate, copper N-pentamethylenedithiocarbamate, copper dibenzyldithiocarbamate, sodium dimethyldithiocarbamate, sodium diethyldithiocarbamate, sodium dipropyldithiocarbamate, sodium diisopropyldithiocarbamate, sodium dibutyldithiocarbamate, dipentyl Sodium dithiocarbamate, dihexyl dithiocarbamate Sodium, sodium diheptyldithiocarbamate, sodium dioctyldithiocarbamate, sodium di (2-ethylhexyl) dithiocarbamate, sodium didecyldithiocarbamate, sodium didodecyldithiocarbamate, sodium N-pentamethylenedithiocarbamate, sodium dibenzyldithiocarbamate, dimethyl Ferric dithiocarbamate, ferric diethyldithiocarbamate, ferric dipropyldithiocarbamate, ferric diisopropyldithiocarbamate, ferric dibutyldithiocarbamate, ferric dipentyldithiocarbamate, ferric dihexyldithiocarbamate, di Ferric heptyldithiocarbamate, ferric dioctyldithiocarbamate, di (2-ethylhexyl) dithioca Ferric vammin acid, ferric didecyl dithiocarbamate, ferric didodecyl dithiocarbamate, N- ferric pentamethylene dithiocarbamate, ferric dibenzyldithiocarbamate acid. Of these, zinc dibenzyldithiocarbamate, zinc N-ethyl-N-phenyldithiocarbamate, zinc dimethyldithiocarbamate and copper dimethyldithiocarbamate are preferred because of their high reactivity.

本発明のゴム組成物に用いられるチオウレア類としては、N,N’−ジフェニルチオ尿素、トリメチルチオ尿素、N,N’−ジエチルチオ尿素、N,N’−ジメチルチオ尿素、N,N’−ジブチルチオ尿素、エチレンチオ尿素、N,N’−ジイソプロピルチオ尿素、N,N’−ジシクロヘキシルチオ尿素、1,3−ジ(o−トリル)チオ尿素、1,3−ジ(p−トリル)チオ尿素、1,1−ジフェニル−2−チオ尿素、2,5−ジチオビ尿素、グアニルチオ尿素、1−(1−ナフチル)−2−チオ尿素、1−フェニル−2−チオ尿素、p−トリルチオ尿素、o−トリルチオ尿素等が挙げられる。これらの内、N,N’−ジエチルチオ尿素、トリメチルチオ尿素、N,N’−ジフェニルチオ尿素及びN,N’−ジメチルチオ尿素は、反応性が高いので好ましい。   Examples of thioureas used in the rubber composition of the present invention include N, N′-diphenylthiourea, trimethylthiourea, N, N′-diethylthiourea, N, N′-dimethylthiourea, N, N′-dibutylthiourea. , Ethylenethiourea, N, N′-diisopropylthiourea, N, N′-dicyclohexylthiourea, 1,3-di (o-tolyl) thiourea, 1,3-di (p-tolyl) thiourea, 1, 1-diphenyl-2-thiourea, 2,5-dithiobiurea, guanylthiourea, 1- (1-naphthyl) -2-thiourea, 1-phenyl-2-thiourea, p-tolylthiourea, o-tolylthiourea Etc. Of these, N, N'-diethylthiourea, trimethylthiourea, N, N'-diphenylthiourea and N, N'-dimethylthiourea are preferred because of their high reactivity.

本発明のゴム組成物に用いられるキサントゲン酸塩類としては、メチルキサントゲン酸亜鉛、エチルキサントゲン酸亜鉛、プロピルキサントゲン酸亜鉛、イソプロピルキサントゲン酸亜鉛、ブチルキサントゲン酸亜鉛、ペンチルキサントゲン酸亜鉛、ヘキシルキサントゲン酸亜鉛、ヘプチルキサントゲン酸亜鉛、オクチルキサントゲン酸亜鉛、2−エチルヘキシルキサントゲン酸亜鉛、デシルキサントゲン酸亜鉛、ドデシルキサントゲン酸亜鉛、メチルキサントゲン酸カリウム、エチルキサントゲン酸カリウム、プロピルキサントゲン酸カリウム、イソプロピルキサントゲン酸カリウム、ブチルキサントゲン酸カリウム、ペンチルキサントゲン酸カリウム、ヘキシルキサントゲン酸カリウム、ヘプチルキサントゲン酸カリウム、オクチルキサントゲン酸カリウム、2−エチルヘキシルキサントゲン酸カリウム、デシルキサントゲン酸カリウム、ドデシルキサントゲン酸カリウム、メチルキサントゲン酸ナトリウム、エチルキサントゲン酸ナトリウム、プロピルキサントゲン酸ナトリウム、イソプロピルキサントゲン酸ナトリウム、ブチルキサントゲン酸ナトリウム、ペンチルキサントゲン酸ナトリウム、ヘキシルキサントゲン酸ナトリウム、ヘプチルキサントゲン酸ナトリウム、オクチルキサントゲン酸ナトリウム、2−エチルヘキシルキサントゲン酸ナトリウム、デシルキサントゲン酸ナトリウム、ドデシルキサントゲン酸ナトリウム等が挙げられる。これらの内、イソプロピルキサントゲン酸亜鉛は、反応性が高いので好ましい。   Xanthates used in the rubber composition of the present invention include zinc methylxanthate, zinc ethylxanthate, zinc propylxanthate, zinc isopropylxanthate, zinc butylxanthate, zinc pentylxanthate, zinc hexylxanthate, Zinc heptylxanthate, zinc octylxanthate, zinc 2-ethylhexylxanthate, zinc decylxanthate, zinc dodecylxanthate, potassium methylxanthate, potassium ethylxanthate, potassium propylxanthate, potassium isopropylxanthate, butylxanthate Potassium, potassium pentylxanthate, potassium hexylxanthate, potassium heptylxanthate, octylxa Potassium tomate, potassium 2-ethylhexylxanthate, potassium decylxanthate, potassium dodecylxanthate, sodium methylxanthate, sodium ethylxanthate, sodium propylxanthate, sodium isopropylxanthate, sodium butylxanthate, sodium pentylxanthate Sodium hexyl xanthate, sodium heptyl xanthate, sodium octyl xanthate, sodium 2-ethylhexyl xanthate, sodium decyl xanthate, sodium dodecyl xanthate, and the like. Of these, zinc isopropylxanthate is preferable because of its high reactivity.

本発明のゴム組成物は、ゴム成分100重量部に対して、加硫促進剤を0.1〜10重量部配合することが好ましく、0.2〜5重量部配合することがさらに好ましい。   The rubber composition of the present invention preferably contains 0.1 to 10 parts by weight, more preferably 0.2 to 5 parts by weight, of the vulcanization accelerator with respect to 100 parts by weight of the rubber component.

[有機酸化合物]
本発明のゴム組成物には、有機酸化合物が配合されていてもよい。配合される有機酸化合物としては、ステアリン酸、パルミチン酸、ミリスチン酸、ラウリン酸、アラキジン酸、ベヘン酸、リグノセリン酸、カプリン酸、ペラルゴン酸、カプリル酸、エナント酸、カプロン酸、オレイン酸、バクセン酸、リノール酸、リノレン酸、ネルボン酸等の飽和脂肪酸及び不飽和脂肪酸並びにロジン酸や変性ロジン酸等の樹脂酸などから選ばれる有機酸、前記有機酸の金属塩又はエステル、フェノール誘導体などが挙げられる。
本発明においては、加硫促進助剤としての機能を十分に発揮する必要があることから有機酸化合物中の50モル%以上がステアリン酸であることが好ましい。
[Organic acid compound]
The rubber composition of the present invention may contain an organic acid compound. Organic acid compounds to be blended include stearic acid, palmitic acid, myristic acid, lauric acid, arachidic acid, behenic acid, lignoceric acid, capric acid, pelargonic acid, caprylic acid, enanthic acid, caproic acid, oleic acid, vaccenic acid Organic acids selected from saturated fatty acids such as linoleic acid, linolenic acid, nervonic acid and the like, and resin acids such as rosin acid and modified rosin acid, metal salts or esters of the organic acids, phenol derivatives, etc. .
In the present invention, 50 mol% or more in the organic acid compound is preferably stearic acid because it is necessary to sufficiently exhibit the function as a vulcanization acceleration aid.

[ゴム成分の多相構造]
本発明のゴム組成物における2相以上のゴム成分は、その少なくとも一相が連続構造を有することを要する。連続構造とは例えば、数μm四方のゴムサンプルを測定した際に、連続的に配置されていることをいう。2相以上のゴム成分は、実質的に高Tg相及び低Tg相を1相ずつ有する2相構造であることが好ましい。特に、高Tg相が連続構造を有することが好ましい。高Tg相が組成物全体に連続的に配されることにより、ゴム組成物全体の耐摩耗性を効率よく向上させることが可能となる。
さらに、高Tg相に加えて低Tg相も連続構造を有する、共連続構造をとることがより好ましい。両相がいずれも連続構造を有することで、両相の特性(耐摩耗性、低発熱性)がより発揮されやすい。
[Multiphase structure of rubber component]
The rubber component having two or more phases in the rubber composition of the present invention requires that at least one phase has a continuous structure. For example, the continuous structure refers to a continuous arrangement when rubber samples measuring several μm square are measured. The rubber component having two or more phases preferably has a two-phase structure having one high Tg phase and one low Tg phase. In particular, the high Tg phase preferably has a continuous structure. By continuously disposing the high Tg phase throughout the composition, it becomes possible to efficiently improve the wear resistance of the entire rubber composition.
Furthermore, it is more preferable that the low Tg phase has a continuous structure in addition to the high Tg phase. Since both phases have a continuous structure, the characteristics of both phases (abrasion resistance, low exothermic property) are more easily exhibited.

<ゴム組成物の製造方法>
本発明のゴム組成物における、2種以上のジエン系ゴム合計100重量部に対し、0重量部超100重量部以下のシリカを含み、前記ジエン系ゴムがそれぞれガラス転移温度の異なる2相以上に分かれ、そのうち少なくとも1相が連続構造を有し、配合されたシリカの80重量%以上が、−50℃以上のガラス転移点を有する1相以上の相に含まれ、該相に含まれるシリカの平均凝集アグリゲート面積が2000nm以下であるゴム組成物の製造方法には、何ら制限は無く、どのような混練方法で製造しても良いが、以下の製造方法が、効率よく当該ゴム組成物を生成できるため好ましい。
<Method for producing rubber composition>
In the rubber composition of the present invention, with respect to a total of 100 parts by weight of two or more kinds of diene rubbers, the silica composition contains more than 0 parts by weight and 100 parts by weight or less of silica, and each of the diene rubbers has two or more phases having different glass transition temperatures. And at least one phase has a continuous structure, and 80% by weight or more of the blended silica is contained in one or more phases having a glass transition point of −50 ° C. or more, and the silica contained in the phase There is no limitation on the method for producing a rubber composition having an average aggregate aggregate area of 2000 nm 2 or less, and any kneading method may be used. However, the following production method is effective for the rubber composition. Is preferable.

第1段階として、高Tg相を形成するゴム成分を有するゴム組成物(組成物A)及び低Tg相を形成するゴム成分を有するゴム組成物(組成物B)を別々に形成する。末端変性SBRとシリカの全部又は一部、シランカップリング剤の全部又は一部及び加硫促進剤を加えて混練する(組成物A)。一方、別途、イソプレンゴム等のゴム成分と加硫促進剤を加えて混練する(組成物B)。次いで、第2段階として、必要に応じて残りのシランカップリング剤、加硫促進剤及び有機酸化合物を加え、組成物Aと組成物Bとを混練する。
あるいは、加硫促進剤は、使用する種類によって、第1段階で添加しても、第2段階で添加してもよい。
通常、ゴム組成物に配合される亜鉛華等の加硫活性剤、老化防止剤等の各種配合剤は、必要に応じ、混練の第1段階又は第2段階、あるいは第1段階と第2段階の中間段階において混練される。
As a first step, a rubber composition (composition A) having a rubber component that forms a high Tg phase and a rubber composition (composition B) having a rubber component that forms a low Tg phase are formed separately. All or part of the terminal-modified SBR and silica, all or part of the silane coupling agent, and a vulcanization accelerator are added and kneaded (Composition A). Separately, a rubber component such as isoprene rubber and a vulcanization accelerator are added and kneaded (composition B). Next, as a second step, the remaining silane coupling agent, vulcanization accelerator and organic acid compound are added as necessary, and composition A and composition B are kneaded.
Alternatively, the vulcanization accelerator may be added in the first stage or in the second stage depending on the type used.
Usually, various compounding agents such as vulcanization activator such as zinc white and anti-aging agent blended in the rubber composition are mixed in the first or second stage of kneading, or the first and second stages as required. Kneading in an intermediate stage.

上述の製造方法において、第1段階、第2段階の混練段階は、ゴム成分、充填剤、カップリング剤などの、加硫剤以外の原材料を配合し、混練する工程であり、充填剤のゴム組成物への分散を行い、ゴム成分を補強する為の工程である。   In the manufacturing method described above, the first and second kneading steps are steps of blending and kneading raw materials other than the vulcanizing agent, such as rubber components, fillers, and coupling agents. This is a process for reinforcing the rubber component by dispersing in the composition.

本発明における混練装置としては、二軸押出機、ロール、インテンシブミキサー等の公知の混練装置がいずれも使用可能である。   As the kneading apparatus in the present invention, any known kneading apparatus such as a twin screw extruder, a roll, and an intensive mixer can be used.

第1段階、第2段階の混練段階におけるゴム組成物の最高温度は120〜190℃であることが好ましく、130〜175℃であることがより好ましく、140〜170℃であることがさらに好ましい。なお、混練時間は1〜20分であることが好ましく、1〜15分であることがより好ましく、1〜10分であることがさらに好ましい。
また、架橋に関わる薬品(加硫剤、加硫促進剤)を配合して混練する加硫工程におけるゴム組成物の最高温度は60〜140℃であることが好ましく、70〜140℃であることがより好ましく、70〜120℃であることがさらに好ましい。なお、混練時間は0.5〜15分であることが好ましく、0.5〜10分であることがより好ましく、0.5〜5分であることがさらに好ましい。
本発明のゴム組成物は、上記の混練条件、加硫条件を適宜組み合わせることにより製造可能となるものである。
The maximum temperature of the rubber composition in the first and second kneading steps is preferably 120 to 190 ° C, more preferably 130 to 175 ° C, and further preferably 140 to 170 ° C. The kneading time is preferably 1 to 20 minutes, more preferably 1 to 15 minutes, and further preferably 1 to 10 minutes.
Further, the maximum temperature of the rubber composition in the vulcanization process in which a chemical relating to crosslinking (vulcanizing agent, vulcanization accelerator) is mixed and kneaded is preferably 60 to 140 ° C, and preferably 70 to 140 ° C. Is more preferable, and it is more preferable that it is 70-120 degreeC. The kneading time is preferably 0.5 to 15 minutes, more preferably 0.5 to 10 minutes, and further preferably 0.5 to 5 minutes.
The rubber composition of the present invention can be produced by appropriately combining the above kneading conditions and vulcanizing conditions.

以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。
なお、加硫ゴム組成物の平均凝集アグリゲート面積及び低発熱性(tanδ指数)を下記の方法により評価した。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.
In addition, the average aggregation aggregate area and low exothermic property (tan δ index) of the vulcanized rubber composition were evaluated by the following methods.

<加硫ゴム組成物のシリカの平均凝集アグリゲート面積>
加硫後のゴム組成物試料として、加硫ゴムシートをカミソリでカットすることにより作製した。その形状は5mm×5mm×厚み1mmであった。
FIB−SEM(FEI社製、NOVA200)を用いて、該試料の上面を、電圧30kVの条件で集束イオンビームを用いて、該試料の上面に対し角度38°をなす方向に切削した。切削により形成された該試料の平滑面を、該平滑面に対し垂直な方向からSEMを用いて、加速電圧5kVで撮影した。得られた画像を、Otsu法により該試料のゴム部分と充填材であるシリカ部分との2値化像に変換して得られた2値化像に基づき、シリカ部分の凝集アグリゲート面積を求め、シリカ部分の全表面積と凝集アグリゲートの個数とから、単位面積(3μm×3μm)あたりのシリカ部分の平均凝集アグリゲート面積を数平均(相加平均)により算出した。算出に当たり、画像の端(辺)に接している粒子はカウントせず、20ピクセル以下の粒子は、ノイズと見做しカウントしなかった。
<Average Aggregated Aggregate Area of Silica of Vulcanized Rubber Composition>
A rubber composition sample after vulcanization was prepared by cutting a vulcanized rubber sheet with a razor. The shape was 5 mm × 5 mm × thickness 1 mm.
Using FIB-SEM (manufactured by FEI, NOVA200), the upper surface of the sample was cut in a direction forming an angle of 38 ° with respect to the upper surface of the sample using a focused ion beam under the condition of a voltage of 30 kV. The smooth surface of the sample formed by cutting was photographed at an acceleration voltage of 5 kV using a SEM from a direction perpendicular to the smooth surface. Based on the binarized image obtained by converting the obtained image into a binarized image of the rubber part of the sample and the silica part as the filler by the Otsu method, the aggregated aggregate area of the silica part is obtained. From the total surface area of the silica part and the number of aggregates, the average aggregate aggregate area of the silica part per unit area (3 μm × 3 μm) was calculated by number average (arithmetic mean). In the calculation, particles in contact with the edge (side) of the image were not counted, and particles of 20 pixels or less were regarded as noise and were not counted.

<2相のゴム成分のシリカ分配率>
ミクロトームにより切削された試料の平滑面をAFM(ASYLUM RESEARCH社製MFP-3D)を用いて、測定範囲2μm×2μmで測定した。得られた画像をヒストグラムより2種のポリマーとシリカ部分に3値化像に変換して得られた3値化像に基づき、2種のポリマーそれぞれに含まれるシリカ面積を求め、シリカ総量からシリカの分配率を算出した。2種のポリマー境界面にある場合は、そのシリカがより多く接しているポリマー側に含まれるとした。算出に当たり、画像の端(辺)に接している粒子はカウントせず、9ピクセル以下の粒子は、ノイズと見做しカウントしなかった。
<Silica partition ratio of two-phase rubber component>
The smooth surface of the sample cut by the microtome was measured in a measuring range of 2 μm × 2 μm using AFM (MFP-3D manufactured by ASYLUM RESEARCH). Based on the ternarized image obtained by converting the obtained image into a ternary image with two types of polymers and silica parts from the histogram, the silica area contained in each of the two types of polymers is obtained, and the silica is calculated from the total amount of silica. The distribution ratio was calculated. When it was at the boundary surface between the two types of polymer, the silica was included on the polymer side where more silica was in contact. In the calculation, particles in contact with the edge (side) of the image were not counted, and particles of 9 pixels or less were regarded as noise and were not counted.

<低発熱性(tanδ指数)>
粘弾性測定装置(レオメトリックス社製)を使用し、温度60℃、動歪み5%、周波数15Hzでtanδを測定した。比較例2のtanδの逆数を100として下記式にて指数表示した。指数値が大きい程、低発熱性であり、ヒステリシスロスが小さいことを示す。
低発熱性指数={(比較例1の加硫ゴム組成物のtanδ)/(供試加硫ゴム組成物のtanδ)}×100
<Low exothermic property (tan δ index)>
Using a viscoelasticity measuring device (Rheometrics), tan δ was measured at a temperature of 60 ° C., a dynamic strain of 5%, and a frequency of 15 Hz. The reciprocal of tan δ in Comparative Example 2 was taken as 100 and expressed as an index using the following formula. A larger index value indicates a lower exothermic property and a smaller hysteresis loss.
Low exothermic index = {(tan δ of vulcanized rubber composition of Comparative Example 1) / (tan δ of test vulcanized rubber composition)} × 100

<耐摩耗性>
調製した各加硫ゴムから円板状(直径16.2mm×厚さ6mm)に切り抜いた試験片を用い、JIS−K6264−2:2005に準じて、DIN摩耗試験を行った。室温でDIN摩耗試験を行った際の摩耗量(mm)を測定した。比較例2の摩耗量の逆数を100とした場合の各摩耗量の逆数を指数として示す。指数値が大きい程、耐摩耗性が良好であることを示す。
<Abrasion resistance>
A DIN abrasion test was performed in accordance with JIS-K6264-2: 2005 using a test piece cut into a disc shape (diameter: 16.2 mm × thickness: 6 mm) from each prepared vulcanized rubber. The amount of wear (mm 3 ) when a DIN wear test was performed at room temperature was measured. The reciprocal of each amount of wear when the reciprocal of the amount of wear in Comparative Example 2 is 100 is shown as an index. It shows that abrasion resistance is so favorable that an index value is large.

表1及び表2に示す配合、製造条件で、実施例1〜3及び比較例1〜8のゴム組成物を調製した。表中に略記された化合物名は、詳細には以下の化合物を示す。
(1)イソプレンゴム:JSR(株)製、商品名「IR2200」
(2)未変性SBR:JSR(株)製、溶液重合スチレン−ブタジエン共重合体ゴム(SBR)、商品名「SBR1500」
(3)末端変性SBR:JSR(株)製、商品名「HPR355」
(4)シリカ:東ソー・シリカ(株)製、商品名「AQ」、BET法による窒素吸着比表面積(NSA)=220m2/g)
(5)シランカップリング剤:ビス(3−トリエトシキシリルプロピル)ジスルフィド)、ダイソー(株)製シランカップリング剤、商品名「CABRUS」
(6)アロマ油:プロセスオイル、出光興産(株)製、商品名「ダイアナプロセスオイル」
(7)老化防止剤:N−(1,3−ジメチルブチル)−N’−フェニル−p−フェニレンジアミン、大内新興化学工業株式会社製、商品名「ノクラック6C」
(8)加硫促進剤:ジ−2−ベンゾチアゾリルジスルフィド、三新化学工業株式会社製、商品名「サンセラーDM」
The rubber compositions of Examples 1 to 3 and Comparative Examples 1 to 8 were prepared using the formulations and production conditions shown in Tables 1 and 2. The compound names abbreviated in the table indicate the following compounds in detail.
(1) Isoprene rubber: product name “IR2200” manufactured by JSR Corporation
(2) Unmodified SBR: manufactured by JSR Corporation, solution polymerized styrene-butadiene copolymer rubber (SBR), trade name “SBR1500”
(3) Terminal-modified SBR: manufactured by JSR Corporation, trade name “HPR355”
(4) Silica: manufactured by Tosoh Silica Co., Ltd., trade name “AQ”, nitrogen adsorption specific surface area (N 2 SA) by BET method = 220 m 2 / g)
(5) Silane coupling agent: bis (3-triethoxysilylpropyl) disulfide), Daiso Co., Ltd. silane coupling agent, trade name “CABRUS”
(6) Aroma oil: Process oil, manufactured by Idemitsu Kosan Co., Ltd., trade name “Diana Process Oil”
(7) Anti-aging agent: N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine, manufactured by Ouchi Shinsei Chemical Co., Ltd., trade name “NOCRACK 6C”
(8) Vulcanization accelerator: di-2-benzothiazolyl disulfide, manufactured by Sanshin Chemical Industry Co., Ltd., trade name “Sunceller DM”

<実施例1>
第1段階として、配合表にある硫黄、加硫促進剤以外を萬バリーミキサーで混練し、次いで第1段階と第2段階の間の中間段階として、160℃で40分間混練した。さらに、第2段階として、上記に硫黄、加硫促進剤を添加し、混練した。その後、145℃で40分間混練することで、加硫ゴム組成物を得た。
このゴム組成物から得られた加硫ゴム組成物のシリカ平均凝集アグリゲート面積、シリカ分配率、tanδ指数及び耐摩耗性を上記の方法により評価した。結果を表1に示す。
<Example 1>
As the first stage, the components other than sulfur and vulcanization accelerator in the blending table were kneaded with a soot Barry mixer, and then kneaded at 160 ° C. for 40 minutes as an intermediate stage between the first stage and the second stage. Furthermore, as a second stage, sulfur and a vulcanization accelerator were added to the above and kneaded. Then, the vulcanized rubber composition was obtained by kneading at 145 ° C. for 40 minutes.
The average flocculated aggregate area, silica distribution rate, tan δ index and abrasion resistance of the vulcanized rubber composition obtained from this rubber composition were evaluated by the above methods. The results are shown in Table 1.

<実施例2>
イソプレンゴム及び末端変性SBRの配合量をそれぞれ50重量部、50重量部に変更した以外は、実施例1と同様にして実施例2のゴム組成物を得た。このゴム組成物から得られた加硫ゴム組成物のシリカ平均凝集アグリゲート面積、シリカ分配率、tanδ指数及び耐摩耗性を上記の方法により評価した。結果を表1に示す。
<Example 2>
A rubber composition of Example 2 was obtained in the same manner as in Example 1 except that the blending amounts of isoprene rubber and terminal-modified SBR were changed to 50 parts by weight and 50 parts by weight, respectively. The average flocculated aggregate area, silica distribution rate, tan δ index and abrasion resistance of the vulcanized rubber composition obtained from this rubber composition were evaluated by the above methods. The results are shown in Table 1.

<実施例3>
イソプレンゴム及び末端変性SBRの配合量をそれぞれ30重量部、70重量部に変更した以外は、実施例1と同様にして実施例3のゴム組成物を得た。このゴム組成物から得られた加硫ゴム組成物のシリカ平均凝集アグリゲート面積、シリカ分配率、tanδ指数及び耐摩耗性を上記の方法により評価した。結果を表1に示す。
<Example 3>
A rubber composition of Example 3 was obtained in the same manner as in Example 1 except that the blending amounts of isoprene rubber and terminal-modified SBR were changed to 30 parts by weight and 70 parts by weight, respectively. The average flocculated aggregate area, silica distribution rate, tan δ index and abrasion resistance of the vulcanized rubber composition obtained from this rubber composition were evaluated by the above methods. The results are shown in Table 1.

<実施例4>
イソプレンゴム及び末端変性SBRの配合量をそれぞれ20重量部、80重量部に変更した以外は、実施例1と同様にして実施例5のゴム組成物を得た。このゴム組成物から得られた加硫ゴム組成物のシリカ平均凝集アグリゲート面積、シリカ分配率、tanδ指数及び耐摩耗性を上記の方法により評価した。結果を表1に示す。
<Example 4>
A rubber composition of Example 5 was obtained in the same manner as in Example 1 except that the blending amounts of isoprene rubber and terminal-modified SBR were changed to 20 parts by weight and 80 parts by weight, respectively. The average flocculated aggregate area, silica distribution rate, tan δ index and abrasion resistance of the vulcanized rubber composition obtained from this rubber composition were evaluated by the above methods. The results are shown in Table 1.

<比較例1>
シリカ及びシランカップリングの配合量をそれぞれ40重量部及び4.0重量部に変更し、中間段階に相当する練りを行わず、第2段階として上記に硫黄、加硫促進剤を添加し、かつ、加硫条件を190℃10分間とした以外は、実施例1と同様にして比較例1のゴム組成物を得た。このゴム組成物から得られた加硫ゴム組成物のシリカ平均凝集アグリゲート面積、シリカ分配率、tanδ指数及び耐摩耗性を上記の方法により評価した。結果を表2に示す。
<Comparative Example 1>
The blending amounts of silica and silane coupling are changed to 40 parts by weight and 4.0 parts by weight, respectively, without kneading corresponding to the intermediate stage, sulfur and vulcanization accelerator are added to the above as the second stage, and A rubber composition of Comparative Example 1 was obtained in the same manner as in Example 1 except that the vulcanization condition was 190 ° C. for 10 minutes. The average flocculated aggregate area, silica distribution rate, tan δ index and abrasion resistance of the vulcanized rubber composition obtained from this rubber composition were evaluated by the above methods. The results are shown in Table 2.

<比較例2>
加硫条件を190℃10分とした以外は、実施例1と同様にして比較例2のゴム組成物を得た。このゴム組成物から得られた加硫ゴム組成物のシリカ平均凝集アグリゲート面積、シリカ分配率、tanδ指数及び耐摩耗性を上記の方法により評価した。結果を表2に示す。
<Comparative example 2>
A rubber composition of Comparative Example 2 was obtained in the same manner as in Example 1 except that the vulcanization condition was 190 ° C. for 10 minutes. The average flocculated aggregate area, silica distribution rate, tan δ index and abrasion resistance of the vulcanized rubber composition obtained from this rubber composition were evaluated by the above methods. The results are shown in Table 2.

<比較例3>
中間段階に相当する練りを行わず、第2段階として硫黄、加硫促進剤を添加し、加硫条件を190℃10分間とした以外は、実施例1と同様にして比較例3のゴム組成物を得た。このゴム組成物から得られた加硫ゴム組成物のシリカ平均凝集アグリゲート面積、シリカ分配率、tanδ指数及び耐摩耗性を上記の方法により評価した。結果を表2に示す。
<Comparative Example 3>
The rubber composition of Comparative Example 3 was the same as Example 1 except that kneading corresponding to the intermediate stage was not performed, sulfur and a vulcanization accelerator were added as the second stage, and the vulcanization conditions were 190 ° C. for 10 minutes. I got a thing. The average flocculated aggregate area, silica distribution rate, tan δ index and abrasion resistance of the vulcanized rubber composition obtained from this rubber composition were evaluated by the above methods. The results are shown in Table 2.

<比較例4>
末端変性SBRの代わりに未変性SBRを使用し、加硫条件を190℃10分とした以外は、実施例1と同様にして比較例4のゴム組成物を得た。このゴム組成物から得られた加硫ゴム組成物のシリカ平均凝集アグリゲート面積、シリカ分配率、tanδ指数及び耐摩耗性を上記の方法により評価した。結果を表2に示す。
<Comparative example 4>
A rubber composition of Comparative Example 4 was obtained in the same manner as in Example 1 except that unmodified SBR was used in place of the terminal-modified SBR and the vulcanization condition was 190 ° C. for 10 minutes. The average flocculated aggregate area, silica distribution rate, tan δ index and abrasion resistance of the vulcanized rubber composition obtained from this rubber composition were evaluated by the above methods. The results are shown in Table 2.

<比較例5>
イソプレンゴム及び末端変性SBRの配合量をそれぞれ50重量部、50重量部に変更し、中間段階に相当する練りを行わず、第2段階として上記に硫黄、加硫促進剤を添加し、加硫条件を190℃10分間とした以外は、実施例1と同様にして比較例5のゴム組成物を得た。このゴム組成物から得られた加硫ゴム組成物のシリカ平均凝集アグリゲート面積、シリカ分配率、tanδ指数及び耐摩耗性を上記の方法により評価した。結果を表2に示す。
<Comparative Example 5>
The blending amounts of isoprene rubber and terminal-modified SBR were changed to 50 parts by weight and 50 parts by weight, respectively, and kneading corresponding to the intermediate stage was not performed, and sulfur and a vulcanization accelerator were added to the above as the second stage, followed by vulcanization A rubber composition of Comparative Example 5 was obtained in the same manner as in Example 1 except that the conditions were 190 ° C. and 10 minutes. The average flocculated aggregate area, silica distribution rate, tan δ index and abrasion resistance of the vulcanized rubber composition obtained from this rubber composition were evaluated by the above methods. The results are shown in Table 2.

<比較例6>
イソプレンゴム及び末端変性SBRの配合量をそれぞれ30重量部、70重量部に変更し、中間段階に相当する練りを行わず、第2段階として上記に硫黄、加硫促進剤を添加し、加硫条件を190℃10分とした以外は、実施例1と同様にして比較例6のゴム組成物を得た。このゴム組成物から得られた加硫ゴム組成物のシリカ平均凝集アグリゲート面積、シリカ分配率、tanδ指数及び耐摩耗性を上記の方法により評価した。結果を表2に示す。
<Comparative Example 6>
The blending amounts of isoprene rubber and terminal-modified SBR are changed to 30 parts by weight and 70 parts by weight, respectively, and kneading corresponding to the intermediate stage is not performed, and sulfur and a vulcanization accelerator are added to the above as the second stage, and vulcanized A rubber composition of Comparative Example 6 was obtained in the same manner as in Example 1 except that the conditions were 190 ° C. and 10 minutes. The average flocculated aggregate area, silica distribution rate, tan δ index and abrasion resistance of the vulcanized rubber composition obtained from this rubber composition were evaluated by the above methods. The results are shown in Table 2.

表1及び表2より明らかなように、実施例1〜3のゴム組成物は、比較例1〜6のゴム組成物と比較して、いずれも耐摩耗性及び低発熱性(tanδ指数)が良好であった。イソプレンゴムの配合量の低い実施例4においては、低発熱性は比較例2より軽度に低減したものの、耐摩耗性が向上する効果が見られた。   As is clear from Tables 1 and 2, the rubber compositions of Examples 1 to 3 have both wear resistance and low heat build-up (tan δ index) as compared with the rubber compositions of Comparative Examples 1 to 6. It was good. In Example 4 where the blending amount of isoprene rubber was low, the low heat build-up was slightly reduced compared to Comparative Example 2, but the effect of improving wear resistance was observed.

本発明のゴム組成物は、耐摩耗性と低発熱性に優れるので、乗用車用、小型トラック用、軽乗用車用、軽トラック用及び大型車両用(トラック・バス用、建設車両用等)等の各種空気入りタイヤの各部材、特に空気入りラジアルタイヤのトレッド用部材として好適に用いられる。   Since the rubber composition of the present invention is excellent in wear resistance and low heat build-up, it is used for passenger cars, small trucks, light passenger cars, light trucks and large vehicles (for trucks, buses, construction vehicles, etc.). It is suitably used as a member for various pneumatic tires, particularly as a tread member for pneumatic radial tires.

Claims (7)

2種以上のジエン系ゴムを含むゴム成分合計100重量部に対し、0重量部超100重量部以下のシリカを含み、
前記ジエン系ゴムがそれぞれガラス転移温度の異なる2相以上に分かれ、そのうち少なくとも1相が連続構造を有し、また、少なくとも1相が−50℃以上のガラス転移点を有する相であり、
前記2相以上の相のうち少なくとも1相のガラス転移点が−50℃未満であり、該相がイソプレンゴム、天然ゴム、ブタジエンゴム、シリコーンゴム、ブチルゴム、スチレン−ブタジエンゴムからなる群のうち少なくとも1つを含み、
配合されたゴムの単位体積あたりのシリカ全量の80重量%以上が、−50℃以上のガラス転移点を有する少なくとも1相の相に含まれ、該相に含まれるシリカの、ゴム組成物の切削面における、平均凝集アグリゲート面積が2000nm以下であり、
前記平均凝集アグリゲート面積は、加硫後のゴム組成物の試料の上面を、集束イオンビームを用いて、該試料の上面に対し角度38°をなす方向に切削し、切削により形成された該試料の平滑面を、該平滑面に対し垂直な方向から走査型電子顕微鏡を用いて、加速電圧5kVで撮影し、得られた画像を、Otsu法により該試料のゴム部分とシリカ部分との2値化像に変換して得られた2値化像に基づき、シリカ部分の凝集アグリゲート面積を求め、シリカ部分の全表面積と凝集アグリゲートの個数とから、単位面積(3μm×3μm)あたりのシリカ部分の平均凝集アグリゲート面積を数平均(相加平均)により算出し、該算出に当たり、画像の端(辺)に接している粒子、並びに、20ピクセル以下の粒子をカウントしないことで、求めた値である、ことを特徴とするゴム組成物。
Including 100 parts by weight of silica more than 0 part by weight and 100 parts by weight or less of the total of 100 parts by weight of rubber components including two or more kinds of diene rubbers
The diene rubber is divided into two or more phases each having a different glass transition temperature, of which at least one phase has a continuous structure, and at least one phase has a glass transition point of −50 ° C. or more,
The glass transition point of at least one of the two or more phases is less than −50 ° C., and the phase is at least from the group consisting of isoprene rubber, natural rubber, butadiene rubber, silicone rubber, butyl rubber, and styrene-butadiene rubber. Including one,
80% by weight or more of the total amount of silica per unit volume of the compounded rubber is contained in at least one phase having a glass transition point of −50 ° C. or higher, and the rubber composition is cut by the silica contained in the phase. on the surface, average aggregate aggregate area Ri der 2000 nm 2 or less,
The average aggregate aggregate area is formed by cutting the upper surface of the vulcanized rubber composition sample in a direction that forms an angle of 38 ° with the upper surface of the sample using a focused ion beam. A smooth surface of the sample was photographed at an accelerating voltage of 5 kV from a direction perpendicular to the smooth surface with a scanning electron microscope, and the obtained image was subjected to 2 steps between the rubber portion and the silica portion of the sample by the Otsu method. Based on the binarized image obtained by converting to a binarized image, the aggregated aggregate area of the silica part is obtained, and from the total surface area of the silica part and the number of aggregated aggregates, per unit area (3 μm × 3 μm) The average aggregate aggregate area of the silica part is calculated by the number average (arithmetic average), and in this calculation, the particle contacting the edge (side) of the image and the particle of 20 pixels or less are not counted. value der was , Rubber wherein the composition.
シリカの80重量%以上を含む相が、未変性及び末端変性スチレン−ブタジエン共重合体のうち少なくとも1つを含む、請求項1記載のゴム組成物。   The rubber composition according to claim 1, wherein the phase containing 80% by weight or more of silica contains at least one of unmodified and terminal-modified styrene-butadiene copolymers. 前記ジエン系ゴムが、2相以上の共連続構造を有する、請求項1記載のゴム組成物。   The rubber composition according to claim 1, wherein the diene rubber has a co-continuous structure of two or more phases. ゴム組成物全体に占める、−50℃以上のガラス転移点を有する相の配合量が30〜75重量%である、請求項1記載のゴム組成物。   The rubber composition according to claim 1, wherein the blending amount of the phase having a glass transition point of −50 ° C. or more in the entire rubber composition is 30 to 75% by weight. ゴム組成物全体に占める、−50℃以上のガラス転移点を有する相の配合量が30〜65重量%である、請求項4記載のゴム組成物。   The rubber composition of Claim 4 whose compounding quantity of the phase which has the glass transition point of -50 degreeC or more which occupies for the whole rubber composition is 30 to 65 weight%. ポリスルフィド化合物及びチオエステル化合物から選択される少なくとも1種のシランカップリング剤及び加硫促進剤をさらに含む、請求項1記載のゴム組成物。   The rubber composition according to claim 1, further comprising at least one silane coupling agent and vulcanization accelerator selected from a polysulfide compound and a thioester compound. 2種以上のジエン系ゴムを含むゴム成分合計100重量部に対し、0重量部超100重量部以下のシリカを配合し、
前記ジエン系ゴムがそれぞれガラス転移温度の異なる2相以上に分かれ、そのうち少なくとも1相が連続構造を有し、かつ、少なくとも1相が−50℃以上のガラス転移点を有する相であり、また、前記2相以上の相のうち少なくとも1相のガラス転移点が−50℃未満であり、該相がイソプレンゴム、天然ゴム、ブタジエンゴム、シリコーンゴム、ブチルゴム、スチレン−ブタジエンゴムからなる群のうち少なくとも1つを含み、
配合されたシリカの80%以上が−50℃以上のガラス転移点を有する1相以上のうちの1相に含まれ、該相に含まれるシリカの、ゴム組成物の切削面における、平均凝集アグリゲート面積が2000nm以下となるようにし、
前記平均凝集アグリゲート面積は、加硫後のゴム組成物の試料の上面を、集束イオンビームを用いて、該試料の上面に対し角度38°をなす方向に切削し、切削により形成された該試料の平滑面を、該平滑面に対し垂直な方向から走査型電子顕微鏡を用いて、加速電圧5kVで撮影し、得られた画像を、Otsu法により該試料のゴム部分とシリカ部分との2値化像に変換して得られた2値化像に基づき、シリカ部分の凝集アグリゲート面積を求め、シリカ部分の全表面積と凝集アグリゲートの個数とから、単位面積(3μm×3μm)あたりのシリカ部分の平均凝集アグリゲート面積を数平均(相加平均)により算出し、該算出に当たり、画像の端(辺)に接している粒子、並びに、20ピクセル以下の粒子をカウントしないことで、求めた値である、ことを特徴とするゴム組成物の製造方法。
More than 0 parts by weight and 100 parts by weight or less of silica are blended with respect to a total of 100 parts by weight of rubber components including two or more kinds of diene rubbers,
The diene rubber is divided into two or more phases each having a different glass transition temperature, of which at least one phase has a continuous structure and at least one phase has a glass transition point of −50 ° C. or more, The glass transition point of at least one of the two or more phases is less than −50 ° C., and the phase is at least from the group consisting of isoprene rubber, natural rubber, butadiene rubber, silicone rubber, butyl rubber, and styrene-butadiene rubber. Including one,
80% or more of the compounded silica is contained in one of the one or more phases having a glass transition point of −50 ° C. or more, and the average agglomerated aggregate of silica contained in the phase on the cutting surface of the rubber composition The gate area should be 2000 nm 2 or less ,
The average aggregate aggregate area is formed by cutting the upper surface of the vulcanized rubber composition sample in a direction that forms an angle of 38 ° with the upper surface of the sample using a focused ion beam. A smooth surface of the sample was photographed at an accelerating voltage of 5 kV from a direction perpendicular to the smooth surface with a scanning electron microscope, and the obtained image was subjected to 2 steps between the rubber portion and the silica portion of the sample by the Otsu method. Based on the binarized image obtained by converting to a binarized image, the aggregated aggregate area of the silica part is obtained, and from the total surface area of the silica part and the number of aggregated aggregates, per unit area (3 μm × 3 μm) The average aggregate aggregate area of the silica part is calculated by the number average (arithmetic average), and in this calculation, the particle contacting the edge (side) of the image and the particle of 20 pixels or less are not counted. value der was The method of the rubber composition, characterized in that.
JP2013072519A 2013-03-29 2013-03-29 Rubber composition and method for producing rubber composition Active JP6134556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013072519A JP6134556B2 (en) 2013-03-29 2013-03-29 Rubber composition and method for producing rubber composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013072519A JP6134556B2 (en) 2013-03-29 2013-03-29 Rubber composition and method for producing rubber composition

Publications (2)

Publication Number Publication Date
JP2014196407A JP2014196407A (en) 2014-10-16
JP6134556B2 true JP6134556B2 (en) 2017-05-24

Family

ID=52357442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013072519A Active JP6134556B2 (en) 2013-03-29 2013-03-29 Rubber composition and method for producing rubber composition

Country Status (1)

Country Link
JP (1) JP6134556B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6521611B2 (en) * 2014-11-14 2019-05-29 住友ゴム工業株式会社 Vulcanized rubber composition and tire using the same
WO2016194316A1 (en) * 2015-06-01 2016-12-08 株式会社ブリヂストン Rubber composition and tire
WO2017077714A1 (en) * 2015-11-05 2017-05-11 株式会社ブリヂストン Rubber composition and tire
WO2017077713A1 (en) * 2015-11-05 2017-05-11 株式会社ブリヂストン Rubber composition production method and tire
US20180319960A1 (en) * 2015-11-05 2018-11-08 Bridgestone Corporation Rubber composition and tire
JP6915431B2 (en) * 2017-07-31 2021-08-04 横浜ゴム株式会社 Rubber composition for tires
JP7289186B2 (en) * 2018-03-14 2023-06-09 住友ゴム工業株式会社 Method for Predicting Wear and Fracture Resistance Performance
JP7069874B2 (en) * 2018-03-14 2022-05-18 住友ゴム工業株式会社 How to predict changes in wear resistance and fracture resistance
JPWO2022113896A1 (en) 2020-11-26 2022-06-02
EP4406757A1 (en) * 2021-09-24 2024-07-31 The Yokohama Rubber Co., Ltd. Rubber composition for heavy-load tire

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0977912A (en) * 1995-09-12 1997-03-25 Yokohama Rubber Co Ltd:The Rubber composition for tire tread
JPH11209519A (en) * 1998-01-27 1999-08-03 Yokohama Rubber Co Ltd:The Rubber composition for tire tread
JP2005330319A (en) * 2004-05-18 2005-12-02 Yokohama Rubber Co Ltd:The Rubber composition and method for producing the same
JP5205876B2 (en) * 2007-08-31 2013-06-05 横浜ゴム株式会社 Rubber composition for tire tread
JP2012172000A (en) * 2011-02-18 2012-09-10 Yokohama Rubber Co Ltd:The Rubber composition for tire
JP5634913B2 (en) * 2011-02-18 2014-12-03 東洋ゴム工業株式会社 Rubber composition, method for producing the same, and pneumatic tire
US8980990B2 (en) * 2011-04-28 2015-03-17 Bridgestone Corporation Rubber composition

Also Published As

Publication number Publication date
JP2014196407A (en) 2014-10-16

Similar Documents

Publication Publication Date Title
JP6134556B2 (en) Rubber composition and method for producing rubber composition
JP5894587B2 (en) Method for producing rubber composition
JP6540263B2 (en) Rubber composition
JP5894583B2 (en) Method for producing rubber composition
JP5894586B2 (en) Method for producing rubber composition
WO2012147892A1 (en) Rubber composition
JP5894584B2 (en) Method for producing rubber composition
JP5894585B2 (en) Method for producing rubber composition
JP5894588B2 (en) Method for producing rubber composition
WO2012147893A1 (en) Rubber composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170424

R150 Certificate of patent or registration of utility model

Ref document number: 6134556

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250