JP6132387B2 - Semiconductor nanoparticles, semiconductor nanoparticle-supporting electrode, and method for producing semiconductor nanoparticles - Google Patents

Semiconductor nanoparticles, semiconductor nanoparticle-supporting electrode, and method for producing semiconductor nanoparticles Download PDF

Info

Publication number
JP6132387B2
JP6132387B2 JP2012287434A JP2012287434A JP6132387B2 JP 6132387 B2 JP6132387 B2 JP 6132387B2 JP 2012287434 A JP2012287434 A JP 2012287434A JP 2012287434 A JP2012287434 A JP 2012287434A JP 6132387 B2 JP6132387 B2 JP 6132387B2
Authority
JP
Japan
Prior art keywords
nanoparticles
semiconductor
semiconductor nanoparticles
precipitate
sns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012287434A
Other languages
Japanese (ja)
Other versions
JP2014129190A (en
Inventor
鳥本 司
司 鳥本
達矢 亀山
達矢 亀山
繁稔 藤田
繁稔 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Tokai National Higher Education and Research System NUC
Original Assignee
Nagoya University NUC
Tokai National Higher Education and Research System NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC, Tokai National Higher Education and Research System NUC filed Critical Nagoya University NUC
Priority to JP2012287434A priority Critical patent/JP6132387B2/en
Publication of JP2014129190A publication Critical patent/JP2014129190A/en
Application granted granted Critical
Publication of JP6132387B2 publication Critical patent/JP6132387B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、半導体ナノ粒子、半導体ナノ粒子担持電極及び半導体ナノ粒子の製法に関する。   The present invention relates to a semiconductor nanoparticle, a semiconductor nanoparticle-supporting electrode, and a method for producing a semiconductor nanoparticle.

高効率太陽電池の作成を目指して、様々な材料探索がなされている。近年、化合物半導体であるCuInSe2(CIS)などのカルコパイライト系半導体を用いて、高効率太陽電池が作成できることが報告され、シリコン太陽電池に変わる次世代太陽電池として注目されている。例えば、特許文献1では、高品位なカルコパイライトナノ粒子の製造方法が提案されている。カルコパイライトナノ粒子を利用すれば、光電変換素子等の作製が容易になると考えられるものの、希少元素であるInを含むために、将来の安定的な供給に不安があり、代替材料の探索が続けられている。 Various materials are being searched for with the aim of creating high-efficiency solar cells. In recent years, it has been reported that a high-efficiency solar cell can be produced using a chalcopyrite semiconductor such as CuInSe 2 (CIS), which is a compound semiconductor, and has attracted attention as a next-generation solar cell that replaces a silicon solar cell. For example, Patent Document 1 proposes a method for producing high-quality chalcopyrite nanoparticles. Although the use of chalcopyrite nanoparticles is expected to make it easier to fabricate photoelectric conversion devices, etc., since it contains In, a rare element, there is concern about a stable supply in the future, and the search for alternative materials continues. It has been.

Ag8SnS6は、希少金属や高毒性元素を含まない半導体として着目されつつある(非特許文献1−3)。例えば、非特許文献1では、SとSnCl2とAgNO3との混合物をオートクレーブに入れ、オートクレーブを密閉して180℃で14時間加熱し、その後室温まで自然冷却することにより、Ag8SnS6を得ている。このAg8SnS6の平均粒径は約60nmである。 Ag 8 SnS 6 is drawing attention as a semiconductor that does not contain rare metals or highly toxic elements (Non-patent Documents 1-3). For example, in Non-Patent Document 1, Ag 8 SnS 6 is obtained by placing a mixture of S, SnCl 2 and AgNO 3 in an autoclave, sealing the autoclave, heating at 180 ° C. for 14 hours, and then naturally cooling to room temperature. It has gained. The average particle size of this Ag 8 SnS 6 is about 60 nm.

特開2008−192542号JP 2008-192542 A

Materials Research Bulletin, vol. 36(2001), p2649-2656Materials Research Bulletin, vol. 36 (2001), p2649-2656 Crystal Growth Design, vol.12(2012), p3458-3464Crystal Growth Design, vol.12 (2012), p3458-3464 Materials Research Bulletin, vol. 38(2003), p823-830Materials Research Bulletin, vol. 38 (2003), p823-830

しかしながら、平均粒径が更に一段と小さいAg8SnS6は、これまで知られていなかった。 However, Ag 8 SnS 6 having an even smaller average particle diameter has not been known so far.

本発明はこのような課題を解決するためになされたものであり、Ag8SnZ6(ZはS又はSe)を主成分とする半導体ナノ粒子であって、平均粒径が従来に比べて一段と小さいものを提供することを主目的とする。 The present invention has been made in order to solve such problems, and is a semiconductor nanoparticle mainly composed of Ag 8 SnZ 6 (Z is S or Se), and has an average particle size much higher than that of the conventional one. The main purpose is to provide small things.

上述した目的を達成するために、本発明者らは、Ag(S2CNEt2)とSn(S2CNEt2) とをオレイルアミン中に入れて加熱撹拌し、得られた懸濁液から沈澱を回収し、該沈澱をヘキサンに溶解させたところ、平均粒径が20nm以下の半導体ナノ粒子の溶液が得られることを見いだし、本発明を完成するに至った。 In order to achieve the above-mentioned object, the present inventors put Ag (S 2 CNEt 2 ) and Sn (S 2 CNEt 2 ) in oleylamine with heating and stirring, and precipitate the precipitate from the resulting suspension. It was recovered and the precipitate was dissolved in hexane. As a result, it was found that a solution of semiconductor nanoparticles having an average particle size of 20 nm or less was obtained, and the present invention was completed.

すなわち、本発明の半導体ナノ粒子は、Ag8SnZ6(但し、ZはS又はSe)を主成分とする粒子であり、粒子サイズが20nm以下のものである。 That is, the semiconductor nanoparticles of the present invention are particles mainly composed of Ag 8 SnZ 6 (where Z is S or Se), and have a particle size of 20 nm or less.

本発明の半導体ナノ粒子担持電極は、上述した半導体ナノ粒子を多孔質金属酸化物電極担体に担持させたものである。   The semiconductor nanoparticle carrying electrode of the present invention is obtained by carrying the above-mentioned semiconductor nanoparticles on a porous metal oxide electrode carrier.

本発明の半導体ナノ粒子の第1の製法は、Z(但し、ZはS又はSe)を配位元素とする配位子を持つAg錯体と、前記配位子を持つSn錯体とを、金属源のモル比がAg:Sn=8:x(x=1〜8)となるように、炭素数4〜20の炭化水素基を有するアルキルアミン又はアルケニルアミンの中に入れ、150〜350℃で加熱撹拌し、得られた懸濁液から沈澱を回収し、該沈澱を有機溶媒に溶解させて半導体ナノ粒子の溶液を得るものである。   The first production method of the semiconductor nanoparticles of the present invention is a method in which an Ag complex having a ligand having Z (where Z is S or Se) as a coordination element and an Sn complex having the ligand are made of metal. It was put in an alkylamine or alkenylamine having a hydrocarbon group having 4 to 20 carbon atoms so that the molar ratio of the source was Ag: Sn = 8: x (x = 1 to 8), and the temperature was 150 to 350 ° C. The mixture is heated and stirred, and the precipitate is recovered from the obtained suspension, and the precipitate is dissolved in an organic solvent to obtain a solution of semiconductor nanoparticles.

本発明の半導体ナノ粒子の第2の製法は、Ag塩と、Sn塩と、チオウレア又はセレノウレアとを、モル比がAg:Sn:S(又はSe)=8:x:y(但し、x=1〜8、y=1〜60)となるように、炭素数4〜20の炭化水素基を有するアルキルアミン又はアルケニルアミンの中に入れ、150〜350℃で加熱撹拌し、得られた懸濁液から沈澱を回収し、該沈澱を有機溶媒に溶解させて半導体ナノ粒子の溶液を得るものである。   The second method for producing the semiconductor nanoparticles of the present invention is to prepare an Ag salt, an Sn salt, and thiourea or selenourea in a molar ratio of Ag: Sn: S (or Se) = 8: x: y (where x = 1-8, y = 1-60) so as to be placed in an alkylamine or alkenylamine having a hydrocarbon group having 4 to 20 carbon atoms, heated and stirred at 150 to 350 ° C., and the resulting suspension The precipitate is recovered from the liquid, and the precipitate is dissolved in an organic solvent to obtain a semiconductor nanoparticle solution.

本発明の半導体ナノ粒子によれば、良好な光電気化学特性が得られる。特にこの半導体ナノ粒子を多孔質金属酸化物担体に担持させた半導体ナノ粒子担持電極は、光増感作用を発揮することから、光増感太陽電池への利用が期待される。また、本発明の半導体ナノ粒子の第1及び第2の製法によれば、上述した半導体ナノ粒子を比較的簡単に製造することができるし、加熱時の温度を調節することにより半導体ナノ粒子の平均粒径を20nm以下の範囲内でコントロールすることができる。   According to the semiconductor nanoparticles of the present invention, good photoelectrochemical properties can be obtained. In particular, a semiconductor nanoparticle-supporting electrode in which the semiconductor nanoparticles are supported on a porous metal oxide carrier exhibits a photosensitizing action, and is expected to be used for a photosensitized solar cell. In addition, according to the first and second methods for producing semiconductor nanoparticles of the present invention, the semiconductor nanoparticles described above can be produced relatively easily, and the temperature of the semiconductor nanoparticles can be adjusted by adjusting the temperature during heating. The average particle size can be controlled within a range of 20 nm or less.

半導体ナノ粒子溶液の模式図。The schematic diagram of a semiconductor nanoparticle solution. 比較例1,2及び実施例1〜4のXRDパターン。XRD patterns of Comparative Examples 1 and 2 and Examples 1 to 4. 比較例1,2及び実施例1〜4の吸収スペクトル。Absorption spectra of Comparative Examples 1 and 2 and Examples 1 to 4. 比較例1,2及び実施例1〜4のSn仕込み比xと金属原子の割合との関係を表すグラフ。The graph showing the relationship between Sn preparation ratio x of the comparative examples 1 and 2 and Examples 1-4, and the ratio of a metal atom. 実施例1〜4のAg8SnS6ナノ粒子のTEM像。TEM images of Ag 8 SnS 6 nanoparticles of Example 1-4. 実施例1〜4のSn仕込み比xと粒径との関係を表すグラフ。The graph showing the relationship between Sn preparation ratio x of Examples 1-4 and a particle size. 実施例5〜8及び実施例2のXRDパターン。The XRD pattern of Examples 5-8 and Example 2. FIG. 実施例5〜8及び実施例2の吸収スペクトル。The absorption spectrum of Examples 5-8 and Example 2. FIG. 実施例5〜8及び実施例2の反応温度と金属原子の割合との関係を表すグラフ。The graph showing the relationship between the reaction temperature of Examples 5-8 and Example 2, and the ratio of a metal atom. 実施例5〜8及び実施例2のAg8SnS6ナノ粒子のTEM像。TEM images of Ag 8 SnS 6 nanoparticles of Examples 5 to 8 and Example 2. 実施例5〜8及び実施例2の反応温度と粒径との関係を表すグラフ。The graph showing the relationship between the reaction temperature of Examples 5-8 and Example 2, and a particle size. 実施例9の電極の拡散反射スペクトル。The diffuse reflection spectrum of the electrode of Example 9. 実施例10の電極の拡散反射スペクトル。The diffuse reflection spectrum of the electrode of Example 10. 実施例9の光照射時及び暗時の電流−電位曲線。The current-potential curve at the time of light irradiation and darkness in Example 9. 実施例10の光照射時及び暗時の電流−電位曲線。The electric current-potential curve at the time of light irradiation of Example 10 and darkness. 実施例9,10の波長とIPCEとの関係を表すグラフ。The graph showing the relationship between the wavelength of Examples 9 and 10 and IPCE. 実施例11のナノ粒子のXRDパターン。The XRD pattern of the nanoparticles of Example 11. 実施例11の吸収スペクトル。Absorption spectrum of Example 11. 実施例11のナノ粒子のTEM像。TEM image of nanoparticles of Example 11. 実施例11の粒径分布。Particle size distribution of Example 11.

本発明の半導体ナノ粒子は、Ag8SnZ6(但し、ZはS又はSe)を主成分とする粒子であり、粒子サイズが20nm以下のものである。 The semiconductor nanoparticles of the present invention are particles mainly composed of Ag 8 SnZ 6 (where Z is S or Se), and have a particle size of 20 nm or less.

本発明の半導体ナノ粒子は、Ag8SnZ6を主成分とする粒子の表面が、炭素数4〜20の炭化水素基を有するアルキルアミン又はアルケニルアミンによって修飾されていることが好ましい。炭素数4〜20の炭化水素基を有するアルキルアミンとしては、例えばn−ブチルアミン、イソブチルアミン、n−ペンチルアミン、n−ヘキシルアミン、オクチルアミン、デシルアミン、ドデシルアミン、ヘキサデシルアミン、オクタデシルアミンなどが挙げられる。また、炭素数4〜20の炭化水素基を有するアルケニルアミンとしては、オレイルアミンなどが挙げられる。こうしたアミンは、粒子表面に結合可能であるが、その結合の様式は、例えば共有結合、イオン結合、配位結合、水素結合、ファンデルワールス結合等の化学結合が挙げられる。 In the semiconductor nanoparticles of the present invention, the surface of particles mainly composed of Ag 8 SnZ 6 is preferably modified with an alkylamine or alkenylamine having a hydrocarbon group having 4 to 20 carbon atoms. Examples of the alkylamine having a hydrocarbon group having 4 to 20 carbon atoms include n-butylamine, isobutylamine, n-pentylamine, n-hexylamine, octylamine, decylamine, dodecylamine, hexadecylamine and octadecylamine. Can be mentioned. Moreover, oleylamine etc. are mentioned as an alkenylamine which has a C4-C20 hydrocarbon group. These amines can be bonded to the particle surface, and examples of the bonding mode include chemical bonds such as a covalent bond, an ionic bond, a coordinate bond, a hydrogen bond, and a van der Waals bond.

本発明の半導体ナノ粒子は、可視光から近赤外光を効率よく光吸収するために、吸収スペクトルの長波長側の吸収端が800nm以上であることが好ましく、太陽光のうち可視光よりも波長の長い近赤外光を吸収することが好ましい。この場合、この半導体ナノ粒子を担持させた電極を太陽電池に組み込んだときに性能が向上することが期待される。   In order to efficiently absorb near-infrared light from visible light, the semiconductor nanoparticles of the present invention preferably have an absorption edge on the long wavelength side of the absorption spectrum of 800 nm or more, more than visible light in sunlight. It is preferable to absorb near infrared light having a long wavelength. In this case, it is expected that the performance is improved when the electrode carrying the semiconductor nanoparticles is incorporated into a solar cell.

本発明の半導体ナノ粒子担持電極は、上述した半導体ナノ粒子を多孔質金属酸化物電極担体に担持させたものである。金属酸化物としては、例えばZnO、TiO2、WO3、SnO2、In23、Al23などが挙げられ、金属酸化物の粒子形状としては、球状やロッド状など種々のものを用いることができる。これらの金属酸化物粒子をFTO基板などの電極基板上に固定することで多孔質金属酸化物電極担体を得ることができる。こうした電極担体への半導体ナノ粒子の担持は、上述した半導体ナノ粒子を有機溶媒に溶解させた半導体ナノ粒子溶液に、多孔質金属酸化物電極担体をディップするという操作を複数回繰り返して行ってもよい。あるいは、半導体ナノ粒子溶液に1回ディップしたあと架橋剤溶液に1回ディップするという操作を複数回繰り返して作製してもよい。架橋剤としては、例えばエチレンジアミン(EDA)、エタンジチオールなどが挙げられる。このような架橋剤を用いることにより、半導体ナノ粒子間が架橋されるため、半導体ナノ粒子をナノロッドに強固に固定することができる。 The semiconductor nanoparticle carrying electrode of the present invention is obtained by carrying the above-mentioned semiconductor nanoparticles on a porous metal oxide electrode carrier. Examples of the metal oxide include ZnO, TiO 2 , WO 3 , SnO 2 , In 2 O 3 , Al 2 O 3 and the like, and the metal oxide has various particle shapes such as a spherical shape and a rod shape. Can be used. A porous metal oxide electrode carrier can be obtained by fixing these metal oxide particles on an electrode substrate such as an FTO substrate. The loading of the semiconductor nanoparticles on the electrode carrier may be performed by repeating the operation of dipping the porous metal oxide electrode carrier a plurality of times in the semiconductor nanoparticle solution in which the semiconductor nanoparticles are dissolved in an organic solvent. Good. Alternatively, the operation of dipping once in the semiconductor nanoparticle solution and then once dipping in the cross-linking agent solution may be repeated a plurality of times. Examples of the crosslinking agent include ethylenediamine (EDA) and ethanedithiol. By using such a crosslinking agent, since the semiconductor nanoparticles are crosslinked, the semiconductor nanoparticles can be firmly fixed to the nanorods.

本発明の半導体ナノ粒子担持電極は、IPCEスペクトルの長波長側の吸収端が800nm以上であることが好ましく、可視光から近赤外光を光照射することによって光応答することが好ましい。この場合、太陽光のうち可視光よりも波長の長い近赤外光を吸収するため、この半導体ナノ粒子担持電極を太陽電池に組み込んだときに性能が向上することが期待される。   The semiconductor nanoparticle-supporting electrode of the present invention preferably has an absorption edge on the long wavelength side of the IPCE spectrum of 800 nm or more, and preferably responds by irradiating near infrared light from visible light. In this case, since near-infrared light having a wavelength longer than that of visible light is absorbed in sunlight, it is expected that the performance is improved when the semiconductor nanoparticle-supporting electrode is incorporated in a solar cell.

本発明の半導体ナノ粒子の第1の製法は、Z(但し、ZはS又はSe)を配位元素とする配位子を持つAg錯体と、前記配位子を持つSn錯体とを、金属源のモル比がAg:Sn=8:x(但し、x=1〜8)となるように、炭素数4〜20の炭化水素基を有するアルキルアミン又はアルケニルアミンの中に入れ、150〜350℃で加熱撹拌し、得られた懸濁液から沈澱を回収し、該沈澱を有機溶媒に溶解させて半導体ナノ粒子の溶液を得るものである。この製法によれば、Ag8SnZ6(但し、ZはS又はSe)を主成分とする粒子であって粒子サイズが20nm以下のものを比較的容易に得ることができる。 The first production method of the semiconductor nanoparticles of the present invention is a method in which an Ag complex having a ligand having Z (where Z is S or Se) as a coordination element and an Sn complex having the ligand are made of metal. It is placed in an alkylamine or alkenylamine having a hydrocarbon group having 4 to 20 carbon atoms so that the molar ratio of the source is Ag: Sn = 8: x (where x = 1 to 8), and 150 to 350 The mixture is heated and stirred at 0 ° C., and the precipitate is recovered from the obtained suspension, and the precipitate is dissolved in an organic solvent to obtain a solution of semiconductor nanoparticles. According to this production method, particles having Ag 8 SnZ 6 (where Z is S or Se) as a main component and having a particle size of 20 nm or less can be obtained relatively easily.

本発明の半導体ナノ粒子の第1の製法において、配位子としては、Sを配位元素とする配位子が好ましい。こうした配位子としては、例えば、2,4−ペンタンジチオンなどのβ−ジチオン類;1,2−ビス(トリフルオロメチル)エチレン−1,2−ジチオールなどのジチオール類;ジエチルジチオカルバミド酸などのジアルキルジチオカルバミン酸などが挙げられる。このうち、ジアルキルジチオカルバミン酸が好ましい。   In the first method for producing semiconductor nanoparticles of the present invention, the ligand is preferably a ligand having S as a coordination element. Examples of such ligands include β-dithiones such as 2,4-pentanedithione; dithiols such as 1,2-bis (trifluoromethyl) ethylene-1,2-dithiol; and diethyldithiocarbamic acid. And dialkyldithiocarbamic acid. Of these, dialkyldithiocarbamic acid is preferred.

本発明の半導体ナノ粒子の第2の製法は、Ag塩と、Sn塩と、チオウレア又はセレノウレアとを、モル比がAg:Sn:S(又はSe)=8:x:y(但し、x=1〜8、y=1〜60)となるように、炭素数4〜20の炭化水素基を有するアルキルアミン又はアルケニルアミンの中に入れ、150〜350℃で加熱撹拌し、得られた懸濁液から沈澱を回収し、該沈澱を有機溶媒に溶解させて半導体ナノ粒子の溶液を得るものである。この製法によっても、Ag8SnZ6(但し、ZはS又はSe)を主成分とする粒子であって粒子サイズが20nm以下のものを比較的容易に得ることができる。 The second method for producing the semiconductor nanoparticles of the present invention is to prepare an Ag salt, an Sn salt, and thiourea or selenourea in a molar ratio of Ag: Sn: S (or Se) = 8: x: y (where x = 1-8, y = 1-60) so as to be placed in an alkylamine or alkenylamine having a hydrocarbon group having 4 to 20 carbon atoms, heated and stirred at 150 to 350 ° C., and the resulting suspension The precipitate is recovered from the liquid, and the precipitate is dissolved in an organic solvent to obtain a semiconductor nanoparticle solution. Also by this production method, particles having Ag 8 SnZ 6 (where Z is S or Se) as a main component and having a particle size of 20 nm or less can be obtained relatively easily.

本発明の半導体ナノ粒子の第1及び第2の製法において、炭素数4〜20の炭化水素基を有するアルキルアミン又はアルケニルアミンについては、既に説明済みのため、ここではその説明を省略する。反応温度は150〜350℃の範囲で適宜設定すればよい。この範囲で温度が低いほど平均粒径が小さく、温度が高いほど平均粒径が大きくなる傾向があるが、平均粒径が20nmを超えることはない。また、反応時間も、使用する単体や化合物の種類、反応温度によって適宜設定すればよいが、通常は数秒〜数時間の範囲で設定するのが好ましく、1〜60分の範囲で設定するのがより好ましい。また、加熱撹拌後に得られた懸濁液から回収した沈澱を有機溶媒に溶解させて半導体ナノ粒子を得る際、有機溶媒として、例えばクロロホルム、トルエン、ヘキサン、n−ブタノールなどを用いることが好ましい。また、懸濁液から回収した沈澱を低級アルコール(例えばメタノールやエタノールなど)で洗浄した後、前出の有機溶媒に溶解させ、沈澱を分離して半導体ナノ粒子溶液としてもよい。   In the 1st and 2nd manufacturing method of the semiconductor nanoparticle of this invention, since it is already demonstrated about the alkylamine or alkenylamine which has a C4-C20 hydrocarbon group, the description is abbreviate | omitted here. What is necessary is just to set reaction temperature suitably in the range of 150-350 degreeC. In this range, the lower the temperature, the smaller the average particle size, and the higher the temperature, the larger the average particle size, but the average particle size never exceeds 20 nm. In addition, the reaction time may be appropriately set depending on the simple substance used, the kind of the compound, and the reaction temperature, but it is usually preferable to set in the range of several seconds to several hours, and in the range of 1 to 60 minutes. More preferred. In addition, when semiconductor nanoparticles are obtained by dissolving the precipitate collected from the suspension obtained after heating and stirring in an organic solvent, it is preferable to use, for example, chloroform, toluene, hexane, n-butanol and the like as the organic solvent. Alternatively, the precipitate recovered from the suspension may be washed with a lower alcohol (for example, methanol or ethanol) and then dissolved in the above organic solvent, and the precipitate may be separated to obtain a semiconductor nanoparticle solution.

1.Ag8SnS6ナノ粒子
(1)Sn(S2CNEt24錯体の合成
0.30moldm-3のN,N−ジエチルジチオカルバミン酸ナトリウム三水和物エタノール溶液を50cm3調製した(溶液Aという)。0.05moldm-3の塩化スズ(IV)五水和物エタノール溶液を50cm3調製した(溶液Bという)。30℃のウォーターバス中で撹拌しながら溶液Aに溶液Bをゆっくりと加え、30分間撹拌した。遠心分離によって沈殿を回収し、水による洗浄を5回、エタノールによる洗浄を2回行った。乾燥後、沈殿をクロロホルムに溶解させ、遠心分離により沈殿を取り除いた。エバポレーターによりクロロホルムを除去し、乾燥させることでSn(S2CNEt24を得た。
1. Ag 8 SnS 6 nanoparticles (1) Synthesis of Sn (S 2 CNEt 2 ) 4 complex 50 cm 3 of 0.30 moldm −3 sodium N, N-diethyldithiocarbamate trihydrate ethanol solution was prepared (referred to as solution A). . 50 cm 3 of 0.05 moldm −3 tin (IV) chloride pentahydrate ethanol solution was prepared (referred to as solution B). While stirring in a water bath at 30 ° C., solution B was slowly added to solution A and stirred for 30 minutes. The precipitate was collected by centrifugation, washed 5 times with water and twice with ethanol. After drying, the precipitate was dissolved in chloroform, and the precipitate was removed by centrifugation. Chloroform was removed with an evaporator and dried to obtain Sn (S 2 CNEt 2 ) 4 .

(2)Ag8SnS6ナノ粒子の合成と特徴−その1
市販のAg(S2CNEt2)0.12mmolに対して、Sn(S2CNEt24を、金属源のモル比がAg:Sn=8:x(x=0(比較例1),0.5(比較例2),1(実施例1),2(実施例2),4(実施例3),8(実施例4))となるように、オレイルアミン3.0cm3、ミクロ撹拌子と共に試験管にいれ、試験管内部を窒素ガスで充填した。この試験管をホットスターラーにセットして300℃で5分間加熱・撹拌を行い、その後室温まで空冷することで錯体の熱分解生成物(懸濁液)を得た。この懸濁液にエタノール約5cm3を加え、遠心分離により沈殿を回収した。得られた沈殿をエタノールで2回洗浄した後、ヘキサン3cm3に分散させ、遠心分離により沈殿を分離し、オレイルアミン修飾Ag8SnS6ナノ粒子のヘキサン溶液を得た。このときの模式図を図1に示す。
(2) Synthesis and characteristics of Ag 8 SnS 6 nanoparticles -Part 1
With respect to 0.12 mmol of commercially available Ag (S 2 CNEt 2 ), Sn (S 2 CNEt 2 ) 4 is used in a molar ratio of a metal source of Ag: Sn = 8: x (x = 0 (Comparative Example 1), 0). .5 (Comparative Example 2), 1 (Example 1), 2 (Example 2), 4 (Example 3), 8 (Example 4)), oleylamine 3.0 cm 3 , micro stirrer At the same time, it was put into a test tube, and the inside of the test tube was filled with nitrogen gas. The test tube was set on a hot stirrer, heated and stirred at 300 ° C. for 5 minutes, and then air-cooled to room temperature to obtain a thermal decomposition product (suspension) of the complex. About 5 cm 3 of ethanol was added to this suspension, and the precipitate was collected by centrifugation. The obtained precipitate was washed twice with ethanol, dispersed in 3 cm 3 of hexane, and separated by centrifugation to obtain a hexane solution of oleylamine-modified Ag 8 SnS 6 nanoparticles. A schematic diagram at this time is shown in FIG.

比較例1,2及び実施例1〜4のXRDパターンを図2に、吸収スペクトルを図3に、Snの仕込み比xと金属原子の割合との関係を表すグラフを図4に示す。図2のXRDパターンから、xの値が1以上(実施例1〜4)のとき、得られた粒子は斜方晶のAg8SnS6に帰属される回折パターンを示した。一方、x=0(比較例1)で作製した粒子のXRDパターンは、Ag2Sの回折パターンとよく一致した。x=0.5(比較例2)で作製した粒子は、Ag8SnS6とAg2Sのいずれにも由来する回折パターンが見られ、これらの混合物が生成していることがわかった。図3に示す吸収スペクトルは、xの値が1以上(実施例1〜4)の粒子で同じ曲線となり、長波長側の吸収端波長は920nmであった。得られた粒子のバンドギャップを吸収端波長から見積もると1.35eVとなり、これはバルクのAg8SnS6で報告されている値(1.28−1.43eV)と良く一致した。図4では、xの値が1以上(実施例1〜4)のいずれの粒子においても、粒子のAgおよびSnの含有割合はAg8SnS6の理論比(Ag:Sn=0.89:0.11)と良く一致した。以上の結果から、xの値を1以上とすることにより、Ag8SnS6が作製できることがわかった。 The XRD patterns of Comparative Examples 1 and 2 and Examples 1 to 4 are shown in FIG. 2, the absorption spectrum is shown in FIG. 3, and the graph showing the relationship between the Sn charging ratio x and the ratio of metal atoms is shown in FIG. From the XRD pattern of FIG. 2, when the value of x is 1 or more (Examples 1 to 4), the obtained particles showed a diffraction pattern attributed to orthorhombic Ag 8 SnS 6 . On the other hand, the XRD pattern of the particles produced at x = 0 (Comparative Example 1) well matched the diffraction pattern of Ag 2 S. The particles produced at x = 0.5 (Comparative Example 2) showed diffraction patterns derived from both Ag 8 SnS 6 and Ag 2 S, and it was found that a mixture of these was formed. The absorption spectrum shown in FIG. 3 was the same curve for particles having an x value of 1 or more (Examples 1 to 4), and the absorption edge wavelength on the long wavelength side was 920 nm. When the band gap of the obtained particles was estimated from the absorption edge wavelength, it was 1.35 eV, which was in good agreement with the value reported for bulk Ag 8 SnS 6 (1.28-1.43 eV). In FIG. 4, in any particle having an x value of 1 or more (Examples 1 to 4), the content ratio of Ag and Sn in the particle is the theoretical ratio of Ag 8 SnS 6 (Ag: Sn = 0.89: 0). .11). From the above results, it was found that Ag 8 SnS 6 can be produced by setting the value of x to 1 or more.

実施例1〜4のAg8SnS6ナノ粒子のTEM像を図5に、Snの仕込み比xと粒径との関係を表すグラフを図6に示す。図5のTEM像から、得られた粒子は球状のナノ粒子であることがわかった。粒子サイズおよびその分布を求めたところ(図6)、x=1からx=8に増加させると、Ag8SnS6ナノ粒子の平均粒径が7.5nm(標準偏差:2.1nm)から15.4nm(標準偏差:3.1nm)に増大することが分かった。標準偏差を図6のエラーバーで示しているが、いずれも平均粒径の30%以下であり、比較的粒径分布の狭いナノ粒子が生成していることがわかる。なお、表1に比較例1,2及び実施例1〜4の合成条件及び特徴をまとめた。 TEM images of Ag 8 SnS 6 nanoparticles of Examples 1 to 4 are shown in FIG. 5, and a graph showing the relationship between the Sn charging ratio x and the particle diameter is shown in FIG. From the TEM image of FIG. 5, it was found that the obtained particles were spherical nanoparticles. When the particle size and its distribution were determined (FIG. 6), the average particle size of Ag 8 SnS 6 nanoparticles increased from 7.5 nm (standard deviation: 2.1 nm) to 15 when x = 1 was increased to x = 8. It was found to increase to 4 nm (standard deviation: 3.1 nm). The standard deviation is indicated by the error bar in FIG. 6, and it can be seen that all are 30% or less of the average particle size, and nanoparticles having a relatively narrow particle size distribution are generated. Table 1 summarizes the synthesis conditions and characteristics of Comparative Examples 1 and 2 and Examples 1 to 4.

(3)Ag8SnS6ナノ粒子の合成と特徴−その2
上述した1.(2)の合成法に従い、Sn仕込み比をx=2で固定し、反応温度を150℃(実施例5)、200℃(実施例6)、250℃(実施例7)、300℃(実施例2)、350℃(実施例8)に設定してナノ粒子を合成した。得られた粒子のXRDパターンを図7に、吸収スペクトルを図8に、反応温度と金属原子の割合との関係を表すグラフを図9に示す。図7のXRDパターンから、いずれの条件でも、得られた粒子は斜方晶のAg8SnS6に帰属される回折パターンのみを示した。図8に示す吸収スペクトルは、反応温度が150〜350℃で同じものとなり、長波長側の吸収端波長はいずれも約920nmであった。また図9から、反応温度が150〜350℃で得られた粒子中のAgおよびSnの含有割合は、Ag8SnS6の理論比と良く一致し、Ag8SnS6ナノ粒子が生成していることがわかった。これらのことから、150℃以上の反応温度では、Ag2Sなどの不純物が生成することなく、Ag8SnS6ナノ粒子が合成できることがわかる。
(3) Synthesis and characteristics of Ag 8 SnS 6 nanoparticles -Part 2
As described above. According to the synthesis method of (2), the Sn charging ratio was fixed at x = 2, and the reaction temperature was 150 ° C. (Example 5), 200 ° C. (Example 6), 250 ° C. (Example 7), 300 ° C. Example 2), nanoparticles were synthesized at 350 ° C. (Example 8). FIG. 7 shows the XRD pattern of the obtained particles, FIG. 8 shows the absorption spectrum, and FIG. 9 shows a graph showing the relationship between the reaction temperature and the ratio of metal atoms. From the XRD pattern of FIG. 7, the obtained particles showed only a diffraction pattern attributed to orthorhombic Ag 8 SnS 6 under any conditions. The absorption spectrum shown in FIG. 8 was the same when the reaction temperature was 150 to 350 ° C., and the absorption wavelength on the long wavelength side was about 920 nm. Also from Figure 9, the content of Ag and Sn in the reaction temperature were obtained at 150 to 350 ° C. particles may coincide with the theoretical ratio of Ag 8 SnS 6, Ag 8 SnS 6 nanoparticles are generated I understood it. From these facts, it can be seen that Ag 8 SnS 6 nanoparticles can be synthesized without generating impurities such as Ag 2 S at a reaction temperature of 150 ° C. or higher.

実施例5〜8及び実施例2のAg8SnS6ナノ粒子のTEM像を図10に、反応温度と粒径との関係を表すグラフを図11に示す。図11から、反応温度が150℃から350℃まで上昇するのに伴って平均粒子サイズが6.8nmから13nmに増大することが分かった。また、標準偏差を、図11のエラーバーで示しているが、いずれも平均粒径の30%以下であり、比較的分布の狭いナノ粒子が生成していることがわかる。なお、表2に実施例5〜8及び実施例2の合成条件及び特徴をまとめた。 TEM images of the Ag 8 SnS 6 nanoparticles of Examples 5 to 8 and Example 2 are shown in FIG. 10, and a graph showing the relationship between the reaction temperature and the particle size is shown in FIG. FIG. 11 shows that the average particle size increases from 6.8 nm to 13 nm as the reaction temperature increases from 150 ° C. to 350 ° C. Moreover, although the standard deviation is shown by the error bar in FIG. 11, it is found that all are 30% or less of the average particle diameter, and nanoparticles having a relatively narrow distribution are generated. Table 2 summarizes the synthesis conditions and characteristics of Examples 5 to 8 and Example 2.

以上のことから、Sn仕込み比xを1以上で反応温度が150℃〜350℃の範囲内となるように適切に合成条件を設定することによって、Ag8SnS6ナノ粒子の粒径を6.8〜15.4nmの範囲で自在に制御できることがわかる。 From the above, the particle size of the Ag 8 SnS 6 nanoparticles is set to 6. by appropriately setting the synthesis conditions so that the Sn charging ratio x is 1 or more and the reaction temperature is in the range of 150 ° C. to 350 ° C. It can be seen that it can be freely controlled in the range of 8 to 15.4 nm.

(4)ナノ粒子担持ZnOナノロッド電極(Ag8SnS6/ZnO NR)の作製
ZnOナノロッド(ロッド長:3.6μm)がフッ素ドープ酸化スズ(FTO)基板に対してほぼ垂直に配向して密に担持されたZnOナノロッド基板(ZnO NR基板)を、既報(RSC Adv., vol.2, p552-559(2012))に従い作製した。用いたAg8SnS6ナノ粒子は、Snの仕込み比x=2、反応温度200℃の条件で作製したものであり、波長500nmでの吸光度が1.5(光路長0.1cm)になるようにヘキサンにAg8SnS6ナノ粒子を溶解させた。ディップコートにより、ZnO NR基板へのAg8SnS6ナノ粒子の担持を行った。ZnO NR基板をAg8SnS6ヘキサン溶液に10秒間浸漬した。続いて、Ag8SnS6ナノ粒子溶液から基板を取り出し、乾燥空気を吹き付けて乾燥させた。このディップコートを10回繰り返すことにより、Ag8SnS6ナノ粒子を密に、ZnO NR基板上に担持した。得られた基板を、200℃で10分間減圧加熱することで、Ag8SnS6ナノ粒子担持ZnOナノロッド電極(Ag8SnS6/ZnO NR、実施例9)を作製した。
(4) Fabrication of nanoparticle-supported ZnO nanorod electrode (Ag 8 SnS 6 / ZnO NR) ZnO nanorods (rod length: 3.6 μm) are oriented almost perpendicularly to the fluorine-doped tin oxide (FTO) substrate and densely packed A supported ZnO nanorod substrate (ZnO NR substrate) was prepared according to a previous report (RSC Adv., Vol. 2, p552-559 (2012)). The Ag 8 SnS 6 nanoparticles used were prepared under the conditions that the Sn charging ratio x = 2 and the reaction temperature was 200 ° C., and the absorbance at a wavelength of 500 nm was 1.5 (optical path length 0.1 cm). Ag 8 SnS 6 nanoparticles were dissolved in hexane. The Ag 8 SnS 6 nanoparticles were supported on the ZnO NR substrate by dip coating. The ZnO NR substrate was immersed in an Ag 8 SnS 6 hexane solution for 10 seconds. Subsequently, the substrate was taken out from the Ag 8 SnS 6 nanoparticle solution and dried by blowing dry air. By repeating this dip coating 10 times, Ag 8 SnS 6 nanoparticles were densely supported on the ZnO NR substrate. The obtained substrate was heated under reduced pressure at 200 ° C. for 10 minutes to produce an Ag 8 SnS 6 nanoparticle-supported ZnO nanorod electrode (Ag 8 SnS 6 / ZnO NR, Example 9).

また、架橋剤としてエチレンジアミン(EDA)を用い、担持したAg8SnS6ナノ粒子間を架橋することによって、ナノ粒子を強固にZnO NR基板に固定した。ZnO NR基板にAg8SnS6ナノ粒子を1回ディップコートしたのち、この基板を0.1moldm-3 EDAエタノール溶液に5秒間浸漬することで、担持したAg8SnS6ナノ粒子とZnO NR、あるいはAg8SnS6ナノ粒子間をEDAで架橋させた。浸漬後の基板をエタノールで洗浄することで余分なEDAを取り除き、その後乾燥させた。ディップコートによる基板上へのAg8SnS6ナノ粒子の担持とEDA溶液への浸漬による粒子間架橋の操作を、10サイクル繰り返した後、200℃で10分間減圧加熱することで、粒子間を架橋したAg8SnS6ナノ粒子担持ZnOナノロッド電極(EDA−Ag8SnS6/ZnO NR、実施例10)を作製した。 Further, ethylenediamine (EDA) was used as a crosslinking agent, and the supported Ag 8 SnS 6 nanoparticles were cross-linked to firmly fix the nanoparticles to the ZnO NR substrate. After dip-coating Ag 8 SnS 6 nanoparticles once on a ZnO NR substrate, the substrate was immersed in a 0.1 moldm −3 EDA ethanol solution for 5 seconds, so that the supported Ag 8 SnS 6 nanoparticles and ZnO NR, or The Ag 8 SnS 6 nanoparticles were crosslinked with EDA. The substrate after the immersion was washed with ethanol to remove excess EDA, and then dried. The operation of supporting the Ag 8 SnS 6 nanoparticles on the substrate by dip coating and cross-linking between particles by dipping in an EDA solution was repeated 10 cycles, and then the particles were cross-linked by heating under reduced pressure at 200 ° C. for 10 minutes. An Ag 8 SnS 6 nanoparticle-supported ZnO nanorod electrode (EDA-Ag 8 SnS 6 / ZnO NR, Example 10) was prepared.

実施例9,10の電極の拡散反射スペクトルをそれぞれ図12,図13に示す。Ag8SnS6ナノ粒子を担持したことで、ZnO NRのみの時に比べ、900nm以下の吸収波長域で(100−R)(ここでRは反射率を示す)の値が増大しており、ZnO NRに担持されたAg8SnS6ナノ粒子が効果的に、可視〜近赤外の波長の光を吸収していることがわかった。特に、波長700nm以下では(100−R)の値が90%以上であり、可視光を充分に吸収するだけの量のAg8SnS6ナノ粒子が電極上に担持されていることが分かる。 The diffuse reflection spectra of the electrodes of Examples 9 and 10 are shown in FIGS. 12 and 13, respectively. By supporting Ag 8 SnS 6 nanoparticles, the value of (100-R) (where R represents reflectance) is increased in the absorption wavelength region of 900 nm or less, compared with the case of ZnO NR alone, and ZnO It was found that the Ag 8 SnS 6 nanoparticles supported on the NR effectively absorb light having a wavelength of visible to near infrared. In particular, when the wavelength is 700 nm or less, the value of (100-R) is 90% or more, and it can be seen that Ag 8 SnS 6 nanoparticles of an amount sufficient to absorb visible light are supported on the electrode.

(5)Ag8SnS6/ZnO NR基板の光電気化学測定
参照電極としてAg/AgCl、対極として白金線を用い、実施例9又は実施例10の電極を作用極とし、三極セルを組立てた。0.1moldm-3LiClO4および0.1moldm-3トリエタノールアミンを含むアセトニトリル溶液を電解質溶液として用いた。なお、トリエタノールアミンは、正孔捕捉剤として用いた。光源として、500nm以下の波長の光をカットした300W Xeランプ光(照射光強度:200mWcm-2、照射光波長>500nm)を用い、ポテンショスタットによってナノ粒子担持電極(電極面積:0.79cm2)に電位を印加しながら光照射した。作用極であるナノ粒子担持電極の電極電位を負電位方向に掃引することで、図14及び図15に示す光照射時及び暗時の電流−電位曲線を得た。図14及び図15の光照射時のグラフから、実施例9,10のいずれの電極を用いた場合でもアノード光電流が観測され、いずれの電極もn型半導体類似の特性を示した。
(5) Photoelectrochemical measurement of Ag 8 SnS 6 / ZnO NR substrate Using Ag / AgCl as a reference electrode, a platinum wire as a counter electrode, and using the electrode of Example 9 or Example 10 as a working electrode, a triode cell was assembled. . An acetonitrile solution containing 0.1 mold 3 -3 LiClO 4 and 0.1 mold 3 -3 triethanolamine was used as the electrolyte solution. Triethanolamine was used as a hole trapping agent. As a light source, 300 W Xe lamp light (irradiation light intensity: 200 mWcm −2 , irradiation light wavelength> 500 nm) obtained by cutting light having a wavelength of 500 nm or less was used, and a nanoparticle-supporting electrode (electrode area: 0.79 cm 2 ) by a potentiostat. The sample was irradiated with light while applying a potential. By sweeping the electrode potential of the nanoparticle-carrying electrode as the working electrode in the negative potential direction, current-potential curves during light irradiation and dark time shown in FIGS. 14 and 15 were obtained. From the graphs at the time of light irradiation in FIGS. 14 and 15, the anode photocurrent was observed when any of the electrodes of Examples 9 and 10 was used, and both electrodes showed characteristics similar to those of the n-type semiconductor.

また、+0.5Vvs.Ag/AgClの電位を印加したナノ粒子担持電極に、モノクロメーターを通して単色化した光を照射し、入射光子数に対する光電流として得られた電子数の比(IPCE)を求めた。IPCEの照射光波長依存性(IPCEスペクトル)のグラフを図16に示す。図16では、IPCEの立ち上がり波長が、用いたAg8SnS6ナノ粒子の吸収端波長とよく一致したことから、Ag8SnS6ナノ粒子が効果的に光増感剤として作用していることが示唆される。しかし架橋剤の有無によってIPCEは大きく異なり、架橋剤を用いていない実施例9の電極の方が、いずれの波長においてもより大きなIPCE値を示した。また図14から、アノード光電流の立ち上がり電位も、架橋剤の有無によって異なり、架橋剤なしの実施例9の電極では+0.25Vvs.Ag/AgCl、架橋剤ありの実施例10の電極では−0.1Vvs.Ag/AgClであった。これらの結果から、架橋剤EDAの存在によってAg8SnS6ナノ粒子担持ZnOナノロッド電極の光電気化学特性が大きく変化したことが示唆される。 Moreover, + 0.5Vvs. The nanoparticle-carrying electrode to which a potential of Ag / AgCl was applied was irradiated with monochromatic light through a monochromator, and the ratio of the number of electrons (IPCE) obtained as the photocurrent with respect to the number of incident photons was determined. FIG. 16 shows a graph of the irradiation light wavelength dependency (IPCE spectrum) of IPCE. In FIG. 16, since the rising wavelength of IPCE coincided well with the absorption edge wavelength of the Ag 8 SnS 6 nanoparticles used, it can be seen that the Ag 8 SnS 6 nanoparticles are effectively acting as a photosensitizer. It is suggested. However, the IPCE greatly differed depending on the presence or absence of the crosslinking agent, and the electrode of Example 9 that did not use the crosslinking agent showed a larger IPCE value at any wavelength. Further, from FIG. 14, the rising potential of the anode photocurrent also varies depending on the presence or absence of the cross-linking agent, and +0.25 Vvs. For the electrode of Example 10 with Ag / AgCl, crosslinker, -0.1 Vvs. Ag / AgCl. These results suggest that the presence of the crosslinking agent EDA greatly changed the photoelectrochemical characteristics of the Ag 8 SnS 6 nanoparticle-supported ZnO nanorod electrode.

2.Ag8SnSe6ナノ粒子
(1)Ag8SnSe6ナノ粒子の合成
酢酸銀(I)0.12mmol、酢酸スズ(IV)0.03mmol、セレノウレアmolモル比 Ag:Sn:Se=8:2:10)をオレイルアミン 3.0 cm3、ミクロ撹拌子と共に試験管に取り、試験管内部に窒素ガスを充填した。この試験管をホットスターラーにセットして250℃で5分間加熱、撹拌を行い、その後室温まで空冷することで懸濁液を得た。この懸濁液にエタノール約5cm3を加え、遠心分離により沈殿を回収した。得られた沈殿をエタノールで2回洗浄した後、ヘキサン3cm3に分散させた。遠心分離により凝集体や大きな粒子を沈殿として分離し、オレイルアミン修飾Ag8SnSe6ナノ粒子(実施例11)のヘキサン溶液を得た。
2. Ag 8 SnSe 6 nanoparticles (1) Synthesis of Ag 8 SnSe 6 nanoparticles 0.12 mmol of silver acetate (I), 0.03 mmol of tin (IV) acetate, molar ratio of selenourea Ag: Sn: Se = 8: 2: 10 ) Was taken into a test tube together with oleylamine 3.0 cm 3 and a micro stir bar, and the inside of the test tube was filled with nitrogen gas. The test tube was set on a hot stirrer, heated and stirred at 250 ° C. for 5 minutes, and then cooled to room temperature to obtain a suspension. About 5 cm 3 of ethanol was added to this suspension, and the precipitate was collected by centrifugation. The resulting precipitate was washed twice with ethanol and then dispersed in 3 cm 3 of hexane. The aggregates and large particles were separated as precipitates by centrifugation to obtain a hexane solution of oleylamine-modified Ag 8 SnSe 6 nanoparticles (Example 11).

(2)Ag8SnSe6ナノ粒子の特徴
実施例11のナノ粒子のXRDパターンを図17に、吸収スペクトルを図18に示す。図17のXRDパターンから、実施例11のナノ粒子は立方晶のAg8SnSe6に帰属される回折パターンを示した。また、図18の吸収スペクトルの吸収端波長(1350nm)から、得られたナノ粒子のバンドギャップが0.92eVと見積もられた。この値はバルクAg8SnSe6で報告されている値(0.83eV)よりも大きく、量子サイズ効果が発現していることが示唆される。
(2) Features of Ag 8 SnSe 6 Nanoparticles FIG. 17 shows the XRD pattern of the nanoparticles of Example 11, and FIG. 18 shows the absorption spectrum. From the XRD pattern of FIG. 17, the nanoparticles of Example 11 showed a diffraction pattern attributed to cubic Ag 8 SnSe 6 . Further, from the absorption edge wavelength (1350 nm) of the absorption spectrum of FIG. 18, the band gap of the obtained nanoparticles was estimated to be 0.92 eV. This value is larger than the value (0.83 eV) reported for bulk Ag 8 SnSe 6 , suggesting that the quantum size effect is manifested.

実施例11のナノ粒子のTEM像を図19に、粒径分布を図20に示す。図20から、平均粒径8.7nm(標準偏差2.3nm)のナノ粒子が得られたことが分かった。EDXによる組成分析の結果、得られた粒子の組成はAg:Sn:Se=52:7:41であり、理論組成のAg:Sn:Se=53:7:40と良い一致を示し、Ag8SnSe6ナノ粒子が生成したことがわかった。 A TEM image of the nanoparticles of Example 11 is shown in FIG. 19, and the particle size distribution is shown in FIG. From FIG. 20, it was found that nanoparticles having an average particle diameter of 8.7 nm (standard deviation 2.3 nm) were obtained. Composition analysis by EDX, the composition of the obtained particles Ag: Sn: Se = 52: 7: is 41, the theoretical composition Ag: Sn: Se = 53: 7: 40 and showed good agreement, Ag 8 It was found that SnSe 6 nanoparticles were produced.

Claims (7)

Ag8SnZ6(但し、ZはS又はSe)を主成分とする粒子であり、粒子サイズが20nm以下であり、前記Ag 8 SnZ 6 を主成分とする粒子の表面が、炭素数4〜20の炭化水素基を有するアルキルアミン又はアルケニルアミンによって修飾されている、半導体ナノ粒子。 Ag 8 SnZ 6 (where, Z is S or Se) are particles composed mainly of state, and are the particle size 20nm or less, the surface of the particles composed mainly of the Ag 8 SNZ 6 is 4 carbon Semiconductor nanoparticles modified with alkylamines or alkenylamines having 20 hydrocarbon groups . 吸収スペクトルの長波長側の吸収端が800nm以上である、請求項1に記載の半導体ナノ粒子。 Absorption edge on the longer wavelength side of the absorption spectrum is 800nm or more, the semiconductor nanoparticles according to claim 1. 請求項1又は2に記載の半導体ナノ粒子を多孔質金属酸化物電極担体に担持させた、半導体ナノ粒子担持電極。 The semiconductor nanoparticle carrying | support electrode which carry | supported the semiconductor nanoparticle of Claim 1 or 2 on the porous metal oxide electrode support | carrier. IPCEスペクトルの長波長側の吸収端が800nm以上である、請求項に記載の半導体ナノ粒子担持電極。 The semiconductor nanoparticle carrying | support electrode of Claim 3 whose absorption edge of the long wavelength side of an IPCE spectrum is 800 nm or more. Z(但し、ZはS又はSe)を配位元素とする配位子を持つAg錯体と、前記配位子を持つSn錯体とを、金属源のモル比がAg:Sn=8:x(但し、x=1〜8)となるように、炭素数4〜20の炭化水素基を有するアルキルアミン又はアルケニルアミンの中に入れ、150〜350℃で加熱撹拌し、得られた懸濁液から沈澱を回収し、該沈澱を有機溶媒に溶解させて半導体ナノ粒子の溶液を得る、半導体ナノ粒子の製法。   The molar ratio of the metal source is Ag: Sn = 8: x (Z), where Z (where Z is S or Se) and the Ag complex having a ligand having a ligand and the Sn complex having the ligand. However, it is placed in an alkylamine or alkenylamine having a hydrocarbon group having 4 to 20 carbon atoms so that x = 1 to 8), and heated and stirred at 150 to 350 ° C. A method for producing semiconductor nanoparticles, comprising collecting a precipitate and dissolving the precipitate in an organic solvent to obtain a solution of semiconductor nanoparticles. 前記配位子は、ジアルキルジチオカルバミン酸である、
請求項に記載の半導体ナノ粒子の製法。
The ligand is a dialkyldithiocarbamic acid;
The manufacturing method of the semiconductor nanoparticle of Claim 5 .
Ag塩と、Sn塩と、チオウレア又はセレノウレアとを、モル比がAg:Sn:S(又はSe)=8:x:y(但し、x=1〜8、y=1〜60)となるように、炭素数4〜20の炭化水素基を有するアルキルアミン又はアルケニルアミンの中に入れ、150〜350℃で加熱撹拌し、得られた懸濁液から沈澱を回収し、該沈澱を有機溶媒に溶解させて半導体ナノ粒子の溶液を得る、半導体ナノ粒子の製法。   Ag salt, Sn salt, and thiourea or selenourea have a molar ratio of Ag: Sn: S (or Se) = 8: x: y (where x = 1 to 8, y = 1 to 60). Into an alkylamine or alkenylamine having a hydrocarbon group having 4 to 20 carbon atoms, the mixture is heated and stirred at 150 to 350 ° C., and the precipitate is recovered from the resulting suspension, and the precipitate is used as an organic solvent. A method for producing semiconductor nanoparticles, which is obtained by dissolving to obtain a solution of semiconductor nanoparticles.
JP2012287434A 2012-12-28 2012-12-28 Semiconductor nanoparticles, semiconductor nanoparticle-supporting electrode, and method for producing semiconductor nanoparticles Active JP6132387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012287434A JP6132387B2 (en) 2012-12-28 2012-12-28 Semiconductor nanoparticles, semiconductor nanoparticle-supporting electrode, and method for producing semiconductor nanoparticles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012287434A JP6132387B2 (en) 2012-12-28 2012-12-28 Semiconductor nanoparticles, semiconductor nanoparticle-supporting electrode, and method for producing semiconductor nanoparticles

Publications (2)

Publication Number Publication Date
JP2014129190A JP2014129190A (en) 2014-07-10
JP6132387B2 true JP6132387B2 (en) 2017-05-24

Family

ID=51407978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012287434A Active JP6132387B2 (en) 2012-12-28 2012-12-28 Semiconductor nanoparticles, semiconductor nanoparticle-supporting electrode, and method for producing semiconductor nanoparticles

Country Status (1)

Country Link
JP (1) JP6132387B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109012696A (en) * 2018-07-03 2018-12-18 昆明理工大学 A kind of triangular pyramidal Ag8SnS6The preparation method of particle

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107029755B (en) * 2017-04-16 2019-07-23 桂林理工大学 A kind of heterojunction photocatalyst and preparation method thereof
TW202236690A (en) * 2021-01-19 2022-09-16 日商富士軟片股份有限公司 Semiconductor film, method for manufacturing semiconductor film, light detection element, and image sensor
CN113929064B (en) * 2021-08-27 2023-06-23 浙江理工大学 SnO with core-shell structure 2-x Se x Material @ C and preparation method thereof
CN115385375A (en) * 2022-08-31 2022-11-25 上海电子信息职业技术学院 Pyramid-shaped Ag 8 SnS 6 Method for preparing nanoparticles
CN115458332A (en) * 2022-08-31 2022-12-09 上海电子信息职业技术学院 Ag 8 SnS x Se 6-x Preparation method and application of film

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5649072B2 (en) * 2009-02-27 2015-01-07 国立大学法人名古屋大学 Semiconductor nanoparticles and production method thereof
JP5765632B2 (en) * 2011-11-30 2015-08-19 株式会社村田製作所 Method for producing compound semiconductor ultrafine particles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109012696A (en) * 2018-07-03 2018-12-18 昆明理工大学 A kind of triangular pyramidal Ag8SnS6The preparation method of particle
CN109012696B (en) * 2018-07-03 2021-07-16 昆明理工大学 Triangular pyramid Ag8SnS6Process for producing fine particles

Also Published As

Publication number Publication date
JP2014129190A (en) 2014-07-10

Similar Documents

Publication Publication Date Title
Tong et al. Near‐infrared, heavy metal‐free colloidal “Giant” core/shell quantum dots
JP6132387B2 (en) Semiconductor nanoparticles, semiconductor nanoparticle-supporting electrode, and method for producing semiconductor nanoparticles
Xu et al. Surface engineering of ZnO nanostructures for semiconductor‐sensitized solar cells
Santra et al. CuInS2-sensitized quantum dot solar cell. Electrophoretic deposition, excited-state dynamics, and photovoltaic performance
Phuan et al. Effects of annealing temperature on the physicochemical, optical and photoelectrochemical properties of nanostructured hematite thin films prepared via electrodeposition method
Marimuthu et al. Facile growth of ZnO nanowire arrays and nanoneedle arrays with flower structure on ZnO-TiO2 seed layer for DSSC applications
Jalali-Moghadam et al. Quantum dot sensitized solar cells fabricated by means of a novel inorganic spinel nanoparticle
Pawar et al. Quantum dot sensitized solar cell based on TiO2/CdS/CdSe/ZnS heterostructure
JP5649072B2 (en) Semiconductor nanoparticles and production method thereof
Mali et al. CdS-sensitized TiO 2 nanocorals: hydrothermal synthesis, characterization, application
Amiri et al. Synthesis and characterization of CuInS2 microsphere under controlled reaction conditions and its application in low-cost solar cells
Al-Azawi et al. Preparation of gold and gold–silver alloy nanoparticles for enhancement of plasmonic dye-sensitized solar cells performance
Nikam et al. SILAR coated Bi2S3 nanoparticles on vertically aligned ZnO nanorods: synthesis and characterizations
Fan et al. In situ deposition of Ag–Ag 2 S hybrid nanoparticles onto TiO 2 nanotube arrays towards fabrication of photoelectrodes with high visible light photoelectrochemical properties
Suresh et al. Metal-free low-cost organic dye-sensitized ZnO-nanorod photoanode for solid-state solar cell
Wu et al. Visible to near-infrared light harvesting in Ag 2 S nanoparticles/ZnO nanowire array photoanodes
Luan et al. Plasmon-enhanced performance of dye-sensitized solar cells based on electrodeposited Ag nanoparticles
Rakhunde et al. Effect of dye absorption time on the performance of a novel 2-HNDBA sensitized ZnO photo anode based dye-sensitized solar cell
Chang et al. Toward the facile and ecofriendly fabrication of quantum dot-sensitized solar cells via thiol coadsorbent assistance
Tan et al. Synthesis of high quality hydrothermally grown ZnO nanorods for photoelectrochemical cell electrode
Altaf et al. Colloidal synthesis of CuInS2 nanoparticles: Crystal phase design and thin film fabrication for photoelectrochemical solar cells
Shin et al. Highly transparent dual-sensitized titanium dioxide nanotube arrays for spontaneous solar water splitting tandem configuration
Chauhan et al. Hierarchical zinc oxide pomegranate and hollow sphere structures as efficient photoanodes for dye-sensitized solar cells
Halder et al. Cation exchange in Zn–Ag–In–Se core/alloyed shell quantum dots and their applications in photovoltaics and water photolysis
Savariraj et al. Stacked Cu 1.8 S nanoplatelets as counter electrode for quantum dot-sensitized solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170321

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170414

R150 Certificate of patent or registration of utility model

Ref document number: 6132387

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250