JP6131525B2 - Thermoelectric conversion element control device - Google Patents

Thermoelectric conversion element control device Download PDF

Info

Publication number
JP6131525B2
JP6131525B2 JP2012076457A JP2012076457A JP6131525B2 JP 6131525 B2 JP6131525 B2 JP 6131525B2 JP 2012076457 A JP2012076457 A JP 2012076457A JP 2012076457 A JP2012076457 A JP 2012076457A JP 6131525 B2 JP6131525 B2 JP 6131525B2
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
conversion element
circuit
voltage
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012076457A
Other languages
Japanese (ja)
Other versions
JP2013207178A (en
Inventor
隆文 深田
隆文 深田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2012076457A priority Critical patent/JP6131525B2/en
Publication of JP2013207178A publication Critical patent/JP2013207178A/en
Application granted granted Critical
Publication of JP6131525B2 publication Critical patent/JP6131525B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は熱電変換素子の制御装置に関し、更に詳しくは、熱電変換素子から低コストで効率よく電力を取り出すことができる熱電変換素子の制御装置に関する。   The present invention relates to a control device for a thermoelectric conversion element, and more particularly to a control device for a thermoelectric conversion element that can efficiently extract electric power from a thermoelectric conversion element at low cost.

近年、産業用の各種プラントや自動車などから発生するいわゆる「廃熱」を、有用な電気エネルギーに変換する技術として、温度差によって電力を発生することができる熱電変換素子が注目されている。   2. Description of the Related Art In recent years, thermoelectric conversion elements capable of generating electric power due to a temperature difference have attracted attention as a technique for converting so-called “waste heat” generated from various industrial plants and automobiles into useful electrical energy.

この熱電変換素子の出力性能(電力カーブ)は、熱電変換素子への温度差により変化するという特徴を有している。例えば図3の例からは、熱電変換素子への温度差が大きくなると、熱電変換素子の開放電圧が高くなって、電力カーブのピーク(最大電力点)が増加することが分かる。従って、廃熱の有する熱エネルギーを効率的に利用するためには、熱電変換素子への温度差がどのように変わっても、常に最大電力点又はその近傍において電力を取り出すようにする制御を行う必要がある。   The output performance (power curve) of this thermoelectric conversion element has a feature that it changes depending on the temperature difference to the thermoelectric conversion element. For example, it can be seen from the example of FIG. 3 that when the temperature difference to the thermoelectric conversion element increases, the open-circuit voltage of the thermoelectric conversion element increases and the peak (maximum power point) of the power curve increases. Therefore, in order to efficiently use the thermal energy of waste heat, control is performed so that power is always taken out at or near the maximum power point, regardless of how the temperature difference to the thermoelectric conversion element changes. There is a need.

このような制御の例として、熱電変換素子の温度差を温度センサで検出し、出力特性テーブルを用いて最大電力点を決定する制御方法が提案されている(特許文献1を参照)。しかしながら、この制御方法では、温度センサが高価であるためコストが増加するという問題があった。   As an example of such control, a control method has been proposed in which a temperature difference between thermoelectric conversion elements is detected by a temperature sensor and a maximum power point is determined using an output characteristic table (see Patent Document 1). However, this control method has a problem that the cost increases because the temperature sensor is expensive.

そのような問題を解決するために、通常の熱電変換素子の最大電力点は開放電力の約1/2にあるという特徴を利用して、熱電モジュールの出力電流が短絡電流の1/2となるように、熱電モジュールとDC−DCコンバータとの間に設けられたスイッチング素子をオンオフする制御装置が提案されている(特許文献2を参照)。   In order to solve such a problem, the output current of the thermoelectric module becomes ½ of the short circuit current by utilizing the feature that the maximum power point of a normal thermoelectric conversion element is about ½ of the open power. Thus, a control device for turning on and off a switching element provided between a thermoelectric module and a DC-DC converter has been proposed (see Patent Document 2).

しかしながら、上記の制御装置では温度センサが不要になる代わりに、熱電変換素子ごとにセンサや演算装置などが必要となるため、熱電モジュールを構成する熱電変換素子が多数になると、システムが複雑となってコストが増大してしまうことになる。   However, in the above control device, a temperature sensor is not required, but a sensor, an arithmetic device, and the like are required for each thermoelectric conversion element. Therefore, when the number of thermoelectric conversion elements constituting the thermoelectric module becomes large, the system becomes complicated. This increases the cost.

特開平6−22572号公報JP-A-6-22572 特開2007−12768号公報JP 2007-12768 A

本発明の目的は、熱電変換素子から低コストで効率よく電力を取り出すことができる熱電変換素子の制御装置を提供する。   The objective of this invention provides the control apparatus of the thermoelectric conversion element which can take out electric power efficiently from a thermoelectric conversion element at low cost.

上記の目的を達成する本発明の熱電変換素子の制御装置は、熱を電力に変換して出力する熱電変換素子(1)と、前記熱電変換素子(1)に並列接続する2個の直列接続された抵抗(R、R)と、前記2個の抵抗(R、R)のうちの片方の抵抗(R)にかかる電圧を外部からのトリガーのタイミングに合わせてコンデンサ(C)に保持させる電圧ホールド回路(3)と、前記コンデンサ(C)と前記熱電変換素子(1)との差電圧に
応じて前記熱電変換素子(1)からの出力電流を制御する電流制御回路(5)と、前記電圧ホールド回路(3)のトリガーを発するタイミング回路(2)と、前記コンデンサ(C)と前記電流制御回路(5)との間に設けられたPWM発生回路(4)と、を備え、前記タイミング回路(2)が、前記熱電変換素子(1)の開放電圧の発生時において前記トリガーを発して前記コンデンサ(C)に電圧を保持させた後に、その保持された電圧を前記PWM発生回路(4)を通じて前記電流制御回路(5)に出力することを所定の間隔で行い、前記電流制御回路(5)は、前記熱電変換素子(1)と並列に接続されたダイオード(D)及びFETからなるスイッチング素子(St)と、前記熱電変換素子(1)に接続された接続端子(6)の片方に通じるコイル(L)とを備え、前記スイッチング素子(St)をオンオフすることにより、前記熱電変換素子(1)及び前記2個の抵抗(R 、R )に流れる電流の大きさを制御する、ことを特徴とするものである。
The thermoelectric conversion element control device of the present invention that achieves the above object includes a thermoelectric conversion element (1) that converts heat into electric power and outputs it, and two serial connections that are connected in parallel to the thermoelectric conversion element (1). The voltage applied to one resistor (R 2 ) of the two resistors (R 1 , R 2 ) and one of the two resistors (R 1 , R 2 ) according to the trigger timing from the outside (C ) And a current control circuit that controls an output current from the thermoelectric conversion element (1) according to a voltage difference between the capacitor (C) and the thermoelectric conversion element (1). 5), a timing circuit (2) for triggering the voltage hold circuit (3), a PWM generation circuit (4) provided between the capacitor (C) and the current control circuit (5), The timing circuit (2) When the open-circuit voltage of the thermoelectric conversion element (1) is generated, the trigger is generated to cause the capacitor (C) to hold the voltage, and then the held voltage is supplied to the current control through the PWM generation circuit (4). The output to the circuit (5) is performed at a predetermined interval, and the current control circuit (5) is a switching element (St) composed of a diode (D) and FET connected in parallel with the thermoelectric conversion element (1). And a coil (L) leading to one of the connection terminals (6) connected to the thermoelectric conversion element (1), and turning on and off the switching element (St), thereby enabling the thermoelectric conversion element (1) and Controlling the magnitude of the current flowing through the two resistors (R 1 , R 2 ) .

本発明の熱電変換素子の制御装置によれば、従来に比べて簡易な回路構成で熱電変換素子の最大電力点を追従する制御を行うので、熱電変換素子から低コストで効率よく電力を取り出すことができる。   According to the thermoelectric conversion element control device of the present invention, control is performed so as to follow the maximum power point of the thermoelectric conversion element with a simpler circuit configuration than in the past, so that electric power can be efficiently extracted from the thermoelectric conversion element at low cost. Can do.

本発明の実施形態からなる制御装置の構成を示す回路図である。It is a circuit diagram which shows the structure of the control apparatus which consists of embodiment of this invention. タイミング回路からのパルスの形状を示す波形図である。It is a wave form diagram which shows the shape of the pulse from a timing circuit. 熱電変換素子の出力特性の例を示すグラフである。It is a graph which shows the example of the output characteristic of a thermoelectric conversion element.

以下に、本発明の実施の形態について、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の実施形態からなる熱電変換素子の制御装置の回路構成を示す。   FIG. 1 shows a circuit configuration of a control device for a thermoelectric conversion element according to an embodiment of the present invention.

この制御装置は、熱電変換素子1への温度差が変化した場合でも、常に熱電変換素子1の最大電力点において電力を取り出す最大電力点追従制御を行うものである。   This control device performs maximum power point tracking control that always extracts power at the maximum power point of the thermoelectric conversion element 1 even when the temperature difference to the thermoelectric conversion element 1 changes.

制御装置の回路は、熱電変換素子1に並列する2個の直列接続された抵抗R1、R2と、後者の抵抗R2にかかる電圧をタイミング回路2から発せられるトリガーのタイミングに合わせて保持する電圧ホールド回路3と、その電圧ホールド回路3の電圧と熱電変換素子1の出力電圧との差を演算する回路(オペアンプ)7Aとその出力に比例したPWM発生回路4を通じて接続する電流制御回路5とを有している。回路端部の外部接続端子6には、熱電変換素子1で発生した電力を外部機器で使用できるように昇圧又は降圧するコンバータなどが接続される。 The circuit of the control device holds two series-connected resistors R 1 and R 2 parallel to the thermoelectric conversion element 1 and the voltage applied to the latter resistor R 2 in accordance with the timing of the trigger generated from the timing circuit 2. A voltage hold circuit 3 that operates, a circuit (operational amplifier) 7A that calculates the difference between the voltage of the voltage hold circuit 3 and the output voltage of the thermoelectric conversion element 1, and a current control circuit 5 that is connected through a PWM generation circuit 4 that is proportional to the output. And have. The external connection terminal 6 at the circuit end is connected to a converter for stepping up or down the electric power generated in the thermoelectric conversion element 1 so that it can be used by an external device.

熱電変換素子1は、自動車や焼却炉などの排ガス経路などに設置され、排ガスが有する熱エネルギーを電気エネルギーである電力に変換する。実際の使用に際しては、個々の熱電変換素子1の起電力が非常に小さいため、複数個をまとめて熱電モジュールを構成させるようにする。   The thermoelectric conversion element 1 is installed in an exhaust gas path such as an automobile or an incinerator, and converts the thermal energy of the exhaust gas into electric power that is electrical energy. In actual use, since the electromotive force of each thermoelectric conversion element 1 is very small, a plurality of thermoelectric modules are configured together.

トリガーを発するタイミング回路2には、矩形波を発生する発振回路などを用いることができる。電圧ホールド回路3は、コンデンサCとオペアンプ7Aとに接続する切替スイッチSwを出力側に有するオペアンプ7Bから構成されている。電流制御回路5は、熱電変換素子1と並列に接続されたダイオードD及びスイッチング素子Stと、接続端子6の片方に通じるコイルLとから構成されており、FETからなるスイッチング素子Stをオンオフすることにより、熱電変換素子1及び2個の抵抗R1、R2に流れる電流の大きさを制御することができる。 As the timing circuit 2 that generates a trigger, an oscillation circuit that generates a rectangular wave or the like can be used. The voltage hold circuit 3 includes an operational amplifier 7B having a changeover switch Sw connected to the capacitor C and the operational amplifier 7A on the output side. The current control circuit 5 includes a diode D and a switching element St connected in parallel to the thermoelectric conversion element 1, and a coil L that leads to one side of the connection terminal 6. The current control circuit 5 turns on and off the switching element St made of an FET. Thus, the magnitude of the current flowing through the thermoelectric conversion element 1 and the two resistors R 1 and R 2 can be controlled.

このような制御装置における制御動作の内容を以下に説明する。   The contents of the control operation in such a control device will be described below.

PWM発生回路4を停止して電流制御回路5をオフした状態では、熱電変換素子1の電圧はほぼ開放電圧となる。ここで、抵抗R1にはE×R1/(R1+R2)の電圧が発生している。タイミング回路2のトリガーにより切替スイッチSwをオンにしてコンデンサCに電圧を記憶させると、オペアンプ7BはコンデンサCに記憶した電圧と熱電変換素子1との差電圧を出力する。この差電圧に比例してPWM回路4が駆動することにより、電流制御回路が電流を流して、熱電変換素子1の電圧が降下してE×R1/(R1+R2)になる。 In a state where the PWM generation circuit 4 is stopped and the current control circuit 5 is turned off, the voltage of the thermoelectric conversion element 1 is substantially the open circuit voltage E. Here, a voltage of E × R 1 / (R 1 + R 2 ) is generated in the resistor R 1 . When the changeover switch Sw is turned on by the trigger of the timing circuit 2 and the voltage is stored in the capacitor C, the operational amplifier 7B outputs a difference voltage between the voltage stored in the capacitor C and the thermoelectric conversion element 1. When the PWM circuit 4 is driven in proportion to the difference voltage, the current control circuit 5 causes a current to flow, and the voltage of the thermoelectric conversion element 1 drops to E × R 1 / (R 1 + R 2 ).

電流制御回路5を停止、開放電圧からの狙い電圧をコンデンサCに記憶⇒電流制御開始⇒電流制御回路5を停止、開放電圧からの狙い電圧をコンデンサCに記憶、を繰り返すことにより、熱電変換素子1の熱源温度が変化しても追従しての最大電圧制御が可能になる。   By stopping the current control circuit 5 and storing the target voltage from the open voltage in the capacitor C ⇒ starting current control ⇒ stopping the current control circuit 5 and storing the target voltage from the open voltage in the capacitor C, the thermoelectric conversion element Even if the heat source temperature of 1 changes, the maximum voltage control can be performed.

このように、従来よりも簡易な回路構成により、熱電変換素子1の最大電力点追従制御を行うことができるので、熱電変換素子1から低コストで効率よく電力を取り出すことができる。また、タイミング回路2から発生されるトリガーを利用して、最大電力点追従を瞬間的に行うので、熱電変換素子1が複数となる熱電モジュールを使用する場合においてもコンバータなどに安定的に電力を供給することができる。   As described above, since the maximum power point tracking control of the thermoelectric conversion element 1 can be performed with a simpler circuit configuration than before, electric power can be efficiently extracted from the thermoelectric conversion element 1 at low cost. In addition, since the maximum power point tracking is instantaneously performed using a trigger generated from the timing circuit 2, even when a thermoelectric module having a plurality of thermoelectric conversion elements 1 is used, power can be stably supplied to the converter. Can be supplied.

制御装置においてタイミング回路2が動作を行う所定の間隔としては、熱エネルギーの変動状態にもよるが、自動車等へ適用する場合には30〜60秒の範囲とすることが望ましい。その場合、タイミング回路2から発せられるパルスは、例えば図2のような大きさの矩形波となる。   The predetermined interval at which the timing circuit 2 operates in the control device is preferably in the range of 30 to 60 seconds when applied to an automobile or the like, although it depends on the fluctuation state of the thermal energy. In this case, the pulse emitted from the timing circuit 2 is a rectangular wave having a size as shown in FIG.

1 熱電変換素子
2 タイミング回路
3 電圧ホールド回路
4 PWM発生回路
5 電流制御回路
6 外部接続端子
7A、7B オペアンプ
DESCRIPTION OF SYMBOLS 1 Thermoelectric conversion element 2 Timing circuit 3 Voltage hold circuit 4 PWM generation circuit 5 Current control circuit 6 External connection terminal 7A, 7B Operational amplifier

Claims (1)

熱を電力に変換して出力する熱電変換素子(1)と、前記熱電変換素子(1)に並列接続する2個の直列接続された抵抗(R、R)と、前記2個の抵抗(R、R)のうちの片方の抵抗(R)にかかる電圧を外部からのトリガーのタイミングに合わせてコンデンサ(C)に保持させる電圧ホールド回路(3)と、前記コンデンサ(C)と前記熱電変換素子(1)との差電圧に応じて前記熱電変換素子(1)からの出力電流を制御する電流制御回路(5)と、前記電圧ホールド回路(3)のトリガーを発するタイミング回路(2)と、前記コンデンサ(C)と前記電流制御回路(5)との間に設けられたPWM発生回路(4)と、を備え、
前記タイミング回路(2)が、前記熱電変換素子(1)の開放電圧の発生時において前記トリガーを発して前記コンデンサ(C)に電圧を保持させた後に、その保持された電圧を前記PWM発生回路(4)を通じて前記電流制御回路(5)に出力することを所定の間隔で行い、
前記電流制御回路(5)は、前記熱電変換素子(1)と並列に接続されたダイオード(D)及びFETからなるスイッチング素子(St)と、前記熱電変換素子(1)に接続された接続端子(6)の片方に通じるコイル(L)とを備え、前記スイッチング素子(St)をオンオフすることにより、前記熱電変換素子(1)及び前記2個の抵抗(R 、R )に流れる電流の大きさを制御する、ことを特徴とする熱電変換素子の制御装置。
A thermoelectric conversion element (1) that converts heat into electric power and outputs it, two series-connected resistors (R 1 , R 2 ) connected in parallel to the thermoelectric conversion element (1), and the two resistances A voltage hold circuit (3) for holding a voltage applied to one of the resistors (R 2 ) of (R 1 , R 2 ) in a capacitor (C) in accordance with an external trigger timing; and the capacitor (C) Current control circuit (5) for controlling the output current from the thermoelectric conversion element (1) according to the voltage difference between the thermoelectric conversion element (1) and the timing circuit for triggering the voltage hold circuit (3) (2) and a PWM generation circuit (4) provided between the capacitor (C) and the current control circuit (5),
The timing circuit (2) emits the trigger when the open voltage of the thermoelectric conversion element (1) is generated to hold the voltage in the capacitor (C), and then the held voltage is used as the PWM generation circuit. Outputting to the current control circuit (5) through (4) at a predetermined interval ;
The current control circuit (5) includes a switching element (St) composed of a diode (D) and an FET connected in parallel to the thermoelectric conversion element (1), and a connection terminal connected to the thermoelectric conversion element (1). And a coil (L) that leads to one of (6), and the current flowing through the thermoelectric conversion element (1) and the two resistors (R 1 , R 2 ) by turning on and off the switching element (St). A control device for a thermoelectric conversion element, characterized by controlling the size of the thermoelectric conversion element.
JP2012076457A 2012-03-29 2012-03-29 Thermoelectric conversion element control device Expired - Fee Related JP6131525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012076457A JP6131525B2 (en) 2012-03-29 2012-03-29 Thermoelectric conversion element control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012076457A JP6131525B2 (en) 2012-03-29 2012-03-29 Thermoelectric conversion element control device

Publications (2)

Publication Number Publication Date
JP2013207178A JP2013207178A (en) 2013-10-07
JP6131525B2 true JP6131525B2 (en) 2017-05-24

Family

ID=49525946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012076457A Expired - Fee Related JP6131525B2 (en) 2012-03-29 2012-03-29 Thermoelectric conversion element control device

Country Status (1)

Country Link
JP (1) JP6131525B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6459218B2 (en) * 2014-05-21 2019-01-30 株式会社リコー Power generation apparatus, image forming apparatus, power generation method, and program

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5159351A (en) * 1974-11-22 1976-05-24 Honda Motor Co Ltd Batsuterino judenreberukenshutsusochi
JPS5620790B2 (en) * 1974-12-27 1981-05-15
GB1569860A (en) * 1975-11-08 1980-06-25 Lucas Industries Ltd Battery charge detector and charging system including such detector
JPS59147281A (en) * 1983-02-14 1984-08-23 Toyoda Autom Loom Works Ltd Battery residual capacity meter
JPS63140665A (en) * 1986-12-03 1988-06-13 Hitachi Ltd Switching power circuit
JP2656060B2 (en) * 1988-03-22 1997-09-24 松下電工株式会社 Storage battery charge control circuit
JPH02128206A (en) * 1988-11-09 1990-05-16 Mitsubishi Electric Corp Solar battery simulator
JP2000125578A (en) * 1998-07-02 2000-04-28 Citizen Watch Co Ltd Electrothermic type system
JP3829981B2 (en) * 2002-02-04 2006-10-04 ソニー株式会社 Power supply apparatus and method
JP4123163B2 (en) * 2004-02-17 2008-07-23 トヨタ自動車株式会社 Power generator
JP4715340B2 (en) * 2005-06-29 2011-07-06 トヨタ自動車株式会社 Thermoelectric generator
JP5060724B2 (en) * 2005-12-07 2012-10-31 学校法人神奈川大学 Power supply
JP2008022688A (en) * 2006-07-11 2008-01-31 Hiroshi Nagayoshi System for tracking and controlling maximum power operating point

Also Published As

Publication number Publication date
JP2013207178A (en) 2013-10-07

Similar Documents

Publication Publication Date Title
US10193046B2 (en) Thermoelectric generating device and thermoelectric generating method
JP5276349B2 (en) System, method and apparatus for extracting power from a photovoltaic power source
JP5840067B2 (en) Current detection device for power conversion device and semiconductor module provided with this current detection device
KR101806731B1 (en) Gate driving apparatus
JP2007295695A5 (en)
JP2013522717A5 (en)
EP2926443A2 (en) Dc-dc high voltage converter with jfet switch
EP1705794A3 (en) Power generation control system for vehicle generator
US20130265023A1 (en) Output power control circuit for a thermoelectric generator
JP4715340B2 (en) Thermoelectric generator
JP2018023195A5 (en)
JP2011200111A5 (en)
JP5060724B2 (en) Power supply
JP2008022688A (en) System for tracking and controlling maximum power operating point
JP6131525B2 (en) Thermoelectric conversion element control device
US20170093149A1 (en) Motor driving circuit and method for detecting output phase loss
EP3540703B1 (en) Single stage current controller for a notification appliance
JP2017195664A (en) Resonance type power supply unit
JP2010178528A5 (en)
JP6473800B2 (en) Thermoelectric power generation apparatus and thermoelectric power generation method
JP5615978B2 (en) Method and circuit configuration for charging an intermediate circuit capacitor
JP6023341B2 (en) Drive circuit for at least two contactors and method for driving at least two contactors
JP2007013022A (en) Operation system and method of solar cell module
KR20170075318A (en) Rectifier circuit and piezoelectric energy harvester comprising the same
CN107800278B (en) Current sampling circuit and method, surge protection circuit and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170321

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170403

R150 Certificate of patent or registration of utility model

Ref document number: 6131525

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees