JP6128677B2 - Method for determining diseases associated with nerve cell migration disorder and use thereof - Google Patents

Method for determining diseases associated with nerve cell migration disorder and use thereof Download PDF

Info

Publication number
JP6128677B2
JP6128677B2 JP2013020620A JP2013020620A JP6128677B2 JP 6128677 B2 JP6128677 B2 JP 6128677B2 JP 2013020620 A JP2013020620 A JP 2013020620A JP 2013020620 A JP2013020620 A JP 2013020620A JP 6128677 B2 JP6128677 B2 JP 6128677B2
Authority
JP
Japan
Prior art keywords
migration
cells
nerve
nerve cells
disorder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013020620A
Other languages
Japanese (ja)
Other versions
JP2014150734A (en
Inventor
雅巳 山田
雅巳 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka City University
Original Assignee
Osaka City University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka City University filed Critical Osaka City University
Priority to JP2013020620A priority Critical patent/JP6128677B2/en
Publication of JP2014150734A publication Critical patent/JP2014150734A/en
Application granted granted Critical
Publication of JP6128677B2 publication Critical patent/JP6128677B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

本発明は、神経細胞の遊走障害を伴う疾患の判定方法に関する。
また、本発明は、試験物質の神経細胞の遊走活性に与える影響の評価方法にも関する。
The present invention relates to a method for determining a disease associated with nerve cell migration disorder.
The present invention also relates to a method for evaluating the influence of a test substance on the migration activity of nerve cells.

滑脳症は、脳回(大脳皮質のしわ)の欠如、神経細胞の層構造の異常を伴う中枢神経系の先天的な遺伝子疾患の1つであり、知能障害やてんかん、麻痺を伴い、根治療法はいまだ確立されていない。日本では、新生児15000人に1人の割合で発症する。古典的I型滑脳症は、約60%が17番染色体に存在するLIS1遺伝子のヘテロ変異に起因し、当該変異によるLIS1の機能不全が神経細胞の遊走の異常を引き起こすことで発症すると考えられている。   Synovial dysfunction is one of the congenital genetic diseases of the central nervous system, which is accompanied by a lack of gyrus (cerebral cortical wrinkles) and abnormal layer structure of nerve cells. Yes not yet established. In Japan, it affects 1 in 15,000 newborns. Classic type I spondylosis is thought to be caused by about 60% of the heterozygous mutation in the LIS1 gene present in chromosome 17, and the malfunction of LIS1 due to the mutation causes abnormal migration of neurons. Yes.

非特許文献1において、本発明者は、カルパイン阻害剤を用いるインビトロ細胞遊走アッセイにより、滑脳症モデル(LIS1遺伝子ヘテロ欠損)マウスの細胞内におけるLIS1タンパク質の発現量を正常レベルまで回復させ、その滑脳症(様)症状を個体レベルで改善すると共に、野生型マウスに対する副作用がほとんどないことを示している。このことから、非特許文献1に記載されるような細胞遊走アッセイを神経細胞の遊走の程度に基づく疾患の判定や薬物の遊走能への効果の測定に利用し、滑脳症の治療方法を確立することに対する期待が高まっている。   In Non-Patent Document 1, the present inventor restored the expression level of LIS1 protein to the normal level in cells of a spondylosis model (LIS1 gene heterodeficient) mouse by an in vitro cell migration assay using a calpain inhibitor. While improving encephalopathy (like) symptoms at the individual level, it shows almost no side effects on wild-type mice. Based on this, a cell migration assay as described in Non-Patent Document 1 is used for determination of diseases based on the degree of migration of nerve cells and measurement of the effect on drug migration ability, thereby establishing a method for treating spondylosis. Expectation to do is increasing.

Yamada M.ら、Nature Medicine, 2009, vol.15, p.1202-1208Yamada M. et al., Nature Medicine, 2009, vol.15, p.1202-1208

しかしながら、従来の神経細胞の遊走アッセイでは、神経細胞の遊走活性を維持したまま均一な凝集塊を形成させることが困難であった。神経細胞の遊走アッセイは、通常、凝集塊の状態から開始するので、凝集塊の形成は当該アッセイにおいて重要な工程である。また、遊走アッセイでは、一般に、細胞の遊走の程度に基づいて該細胞の遊走能などを評価するが、従来のアッセイでは、遊走することが既知の神経細胞と遊走しないことが既知の神経細胞との間で遊走の程度の差が十分に大きくないため、評価結果の信頼性に影響を及ぼす。したがって、従来の神経細胞の遊走アッセイは、神経細胞の遊走の程度に基づく疾患の判定や薬物の遊走能への効果の測定に利用するには、結果の信頼性および再現性が十分に満足できるものではなかった。   However, in the conventional nerve cell migration assay, it was difficult to form a uniform aggregate while maintaining the migration activity of nerve cells. Since neuronal cell migration assays usually start from an aggregate state, aggregate formation is an important step in the assay. In addition, in the migration assay, the migration ability of the cell is generally evaluated based on the degree of migration of the cell, but in the conventional assay, the nerve cell known to migrate and the nerve cell not known to migrate are compared. The difference in the degree of migration between the two is not sufficiently large, which affects the reliability of the evaluation results. Therefore, the conventional neuronal migration assay is sufficiently satisfactory in the reliability and reproducibility of the results to be used for disease determination based on the degree of neuronal migration and measurement of the effect on drug migration ability. It was not a thing.

本発明者は、鋭意研究を重ねた結果、神経細胞の凝集塊を、精製アルブミンを含むバッファー液中でインキュベートすることにより、上記の課題を解決できることを見出し、本発明を完成するに至った。   As a result of intensive studies, the present inventor has found that the above-mentioned problems can be solved by incubating the aggregate of nerve cells in a buffer solution containing purified albumin, and has completed the present invention.

すなわち、本発明によれば、
生体から採取した脳組織から神経細胞を取得する工程と、
得られた神経細胞の凝集塊を形成させる工程と、
形成された凝集塊を、精製アルブミンを含むバッファー液中でインキュベートし、遊走させる工程と
神経細胞の遊走の程度を測定する工程と、
遊走の程度に基づいて、前記生体が神経細胞の遊走障害を伴う疾患であるか否かを判定する工程と
を含むことを特徴とする、
神経細胞の遊走障害を伴う疾患の判定方法が提供される。
That is, according to the present invention,
Acquiring nerve cells from brain tissue collected from a living body;
A step of forming an aggregate of the obtained nerve cells;
Incubating the formed agglomerates in a buffer solution containing purified albumin to migrate, and measuring the degree of migration of nerve cells,
Determining whether or not the living body is a disease accompanied by a nerve cell migration disorder based on the degree of migration,
A method for determining a disease associated with a neuronal migration disorder is provided.

また、本発明によれば、
神経細胞の遊走障害を伴う疾患の生体から採取した脳組織から神経細胞を取得する工程と、
得られた神経細胞の凝集塊を形成させる工程と、
形成された凝集塊を、試験物質および精製アルブミンを含むバッファー液中でインキュベートし、遊走させる工程と、
神経細胞の遊走の程度を測定する工程と、
遊走の程度に基づいて、前記試験物質が神経細胞の遊走活性に与える影響を評価する工程と
を含むことを特徴とする、
試験物質の神経細胞の遊走活性に与える影響の評価方法が提供される。
Moreover, according to the present invention,
Obtaining nerve cells from brain tissue collected from a living body of a disease associated with nerve cell migration disorder;
A step of forming an aggregate of the obtained nerve cells;
Incubating the formed agglomerates in a buffer solution containing the test substance and purified albumin and allowing them to migrate;
Measuring the degree of nerve cell migration;
A step of evaluating the influence of the test substance on the migration activity of nerve cells based on the degree of migration,
A method for evaluating the influence of a test substance on the migration activity of nerve cells is provided.

更に、上記精製アルブミンを含むバッファー液自体もまた、本発明の範囲内である。   Furthermore, the buffer solution itself containing the purified albumin is also within the scope of the present invention.

本発明は、神経細胞の遊走の程度に基づく疾患の判定や薬物の遊走能への効果の測定に利用するには、結果の信頼性および再現性が十分な神経細胞の遊走障害を伴う疾患の判定方法および試験物質の神経細胞の遊走活性に与える影響の評価方法を提供する。   The present invention can be used for the determination of diseases based on the degree of migration of nerve cells and the measurement of the effect on drug migration ability of diseases associated with nerve cell migration disorders whose results are sufficiently reliable and reproducible. A determination method and a method for evaluating the influence of a test substance on the migration activity of nerve cells are provided.

図1Aおよび図1Bは、カルパイン阻害薬が神経顆粒細胞の遊走活性に与える影響を示す写真およびグラフである。FIG. 1A and FIG. 1B are a photograph and a graph showing the effect of a calpain inhibitor on the migration activity of nerve granule cells.

本発明の測定方法の第1工程は、生体から採取した脳組織から神経細胞を取得する工程である。
生体としては、特に限定されず、哺乳類(例えば、ヒト、マウス、ラット、イヌ、ウサギ)などが挙げられる。好ましくは、生体は、ヒトまたはマウスのような哺乳動物である。脳組織としては、小脳が特に好ましい。神経細胞としては、顆粒細胞が特に好ましい。
組織から細胞を調製する方法としては、特に限定されず、トリプシンおよびDNase Iを含む適切なバッファーで処理する方法などが挙げられる。
The first step of the measurement method of the present invention is a step of acquiring nerve cells from brain tissue collected from a living body.
The living body is not particularly limited, and examples thereof include mammals (eg, humans, mice, rats, dogs, rabbits). Preferably, the living body is a mammal such as a human or a mouse. As the brain tissue, the cerebellum is particularly preferable. As nerve cells, granule cells are particularly preferred.
The method for preparing cells from the tissue is not particularly limited, and examples thereof include a method of treating with an appropriate buffer containing trypsin and DNase I.

本発明の測定方法の第2工程である凝集塊の形成は、例えば、上記のようにして得られた神経細胞を培地中で培養することにより行うことができる。
培地は、神経細胞を培養可能なものであれば特に限定されず、Basal Medium Eagle (BME)培地(Gibco, Sigma, Cat. 21010)、10%のウマ血清(Horse serum(HS), invitrogen)を含む10% HS/BME培地などが挙げられる。
培養温度は、好ましくは30〜40℃であり、より好ましくは35〜37℃である。
培養時間は、好ましくは7〜10時間であり、より好ましくは8〜9時間である。
凝集塊の形成は、細胞同士の接着を容易にするために、細胞接着分子を用いて行うことが好ましい。そのような細胞接着分子としては、当該技術において、培養において足場として用いられるものであれば特に限定されず、ポリ-L-リジン、ポリ-D-リジン、ラミニン、コラーゲンなどが挙げられる。
Aggregate formation, which is the second step of the measurement method of the present invention, can be performed, for example, by culturing the nerve cells obtained as described above in a medium.
The medium is not particularly limited as long as it can cultivate neurons.Basal Medium Eagle (BME) medium (Gibco, Sigma, Cat. 21010), 10% horse serum (Horse serum (HS), invitrogen) Examples thereof include 10% HS / BME medium.
The culture temperature is preferably 30 to 40 ° C, more preferably 35 to 37 ° C.
The culture time is preferably 7 to 10 hours, more preferably 8 to 9 hours.
The formation of the aggregate is preferably performed using a cell adhesion molecule in order to facilitate adhesion between cells. Such cell adhesion molecules are not particularly limited as long as they are used as scaffolds in culture in the art, and include poly-L-lysine, poly-D-lysine, laminin, collagen, and the like.

精製アルブミンとは、当業者に公知の精製方法により精製されたアルブミンを意味し、好ましくはグロブリンを実質的に含まない血清アルブミンである。
アルブミンは、特に限定されず、当業者に公知のものを用いることができる。アルブミンは、公知の市販製品であってもよいし、哺乳動物(例えばヒト、ウシ、ウマ、ヤギなど)の血清などから調製したものであってもよい。
精製方法は、アルブミンを精製可能なものであれば特に限定されず、有機溶媒を用いる沈殿(例えばアルコール沈殿など)、アルコール分画(例えばコーンの低温アルコール分画など)、熱処理および低温処理、低pH処理、結晶化、クロマトグラフィ(イオン交換クロマトグラフィ、アフィニティクロマトグラフィなど)、電気泳動、およびチャコール処理から選択される少なくとも1つの方法が挙げられる。
なお、精製アルブミンは、市販の製品であってもよい。そのような製品としては、例えばAlbumin essentially globulin-free (Sigma, A3156)などが挙げられる。
Purified albumin means albumin purified by a purification method known to those skilled in the art, preferably serum albumin substantially free of globulin.
Albumin is not particularly limited, and those known to those skilled in the art can be used. Albumin may be a known commercial product, or may be prepared from mammals (eg, human, cow, horse, goat, etc.) serum.
The purification method is not particularly limited as long as albumin can be purified. Precipitation using an organic solvent (for example, alcohol precipitation), alcohol fraction (for example, low temperature alcohol fraction of corn), heat treatment and low temperature treatment, low Examples include at least one method selected from pH treatment, crystallization, chromatography (ion exchange chromatography, affinity chromatography, etc.), electrophoresis, and charcoal treatment.
Purified albumin may be a commercially available product. Examples of such products include albumin essentially globulin-free (Sigma, A3156).

バッファー液は、上記の精製アルブミンを適切な溶媒に溶解させたものである。
溶媒は、神経細胞の生存および活性に影響を及ぼさないものであれば特に限定されず、当業者に公知の任意のものを用いることができるが、好ましくはMason's Mediumである。
バッファー液中の精製アルブミンの含有量は、取得した細胞の状態などに応じて適宜設定できるが、通常は5〜25mg/mL、好ましくは8〜20mg/mL、より好ましくは10〜15mg/mLである。
バッファー液は、任意にその他の成分を含んでいてもよい。そのような成分としては、例えばN2-Supplement (Gibco, Cat. 17502-048)のような栄養ストック液、ペニシリンおよびストレプトマイシンのような抗生物質などが挙げられる。
バッファー液中のその他の成分の含有量は、当業者が適宜設定することができる。
The buffer solution is obtained by dissolving the above purified albumin in an appropriate solvent.
The solvent is not particularly limited as long as it does not affect the survival and activity of nerve cells, and any solvent known to those skilled in the art can be used, but Mason's Medium is preferable.
The content of purified albumin in the buffer solution can be appropriately set according to the state of the obtained cells, etc., but is usually 5 to 25 mg / mL, preferably 8 to 20 mg / mL, more preferably 10 to 15 mg / mL. is there.
The buffer solution may optionally contain other components. Examples of such components include nutrient stock solutions such as N2-Supplement (Gibco, Cat. 17502-048), antibiotics such as penicillin and streptomycin.
The content of other components in the buffer solution can be appropriately set by those skilled in the art.

本発明の測定方法の第3工程であるインキュベーション・遊走工程は、上記の精製アルブミンを含むバッファー液中で神経細胞をインキュベートすることにより行う。
インキュベーション時の温度は、30〜40℃、好ましくは35〜38℃、より好ましくは36〜37℃である。
インキュベーション時間は、1〜24時間、好ましくは3〜12時間、より好ましくは6〜9時間である。
インキュベーション・遊走工程は、下記の遊走距離の測定を容易にするために、固体支持体上で行うことが好ましい。固体支持体としては、特に限定されず、カバーガラス(例えばMatsunami;24mm×24mm)、スライドガラス、培養皿などが挙げられる。
The incubation and migration step, which is the third step of the measurement method of the present invention, is performed by incubating the nerve cells in the buffer solution containing the purified albumin.
The temperature at the time of incubation is 30 to 40 ° C, preferably 35 to 38 ° C, more preferably 36 to 37 ° C.
The incubation time is 1 to 24 hours, preferably 3 to 12 hours, more preferably 6 to 9 hours.
The incubation / migration process is preferably performed on a solid support in order to facilitate the measurement of the following migration distance. The solid support is not particularly limited, and examples thereof include a cover glass (for example, Matsunami; 24 mm × 24 mm), a slide glass, and a culture dish.

その後、任意に、下記の第4工程の前に、上記神経細胞の遊走活性に影響し得る因子、例えば遺伝子またはRNAなどを導入する工程を行ってもよい。そのような因子の導入方法としては、特に限定されず、当業者に公知の任意の形質導入法、例えばNeon(登録商標)を用いるエレクトロポレーションなど、およびRNA干渉を用いる方法などが挙げられる。   Thereafter, optionally, before the fourth step described below, a step of introducing a factor capable of affecting the migration activity of the nerve cell, such as a gene or RNA, may be performed. The method for introducing such a factor is not particularly limited, and includes any transduction method known to those skilled in the art, such as electroporation using Neon (registered trademark), and a method using RNA interference.

本発明の判定方法の第4工程は、神経細胞の遊走の程度を測定する工程である。
本明細書において、「遊走の程度」とは、遊走した細胞の数、および細胞の遊走距離またはこれに基づいて算出される面積から取得される、細胞の遊走能を示すデータを意図する。距離としては、例えば、凝集塊の辺縁からの距離、凝集塊の中心からの距離などが挙げられる。面積としては、例えば、各細胞が遊走した領域の面積、遊走した全細胞を包含する領域の面積などが挙げられる。
The fourth step of the determination method of the present invention is a step of measuring the degree of nerve cell migration.
In the present specification, the “degree of migration” intends data indicating the migration ability of a cell obtained from the number of migrated cells and the migration distance of the cells or an area calculated based on the migration distance. Examples of the distance include a distance from the edge of the aggregate, a distance from the center of the aggregate, and the like. Examples of the area include an area of a region where each cell has migrated, an area of a region including all migrated cells, and the like.

本発明の好ましい実施形態においては、略円形となるように置かれた神経細胞の凝集塊を円と仮定してその周を0μmとし、当該仮定した円の半径をrμmとしたときに、(r+20n)μmの半径を有する同心円内に存在する遊走後の神経細胞数から、(r+20(n−1))μmの半径を有する同心円内に存在する遊走後の神経細胞数を減算することにより得られた値を(20n−10)μmの遊走距離を示す細胞数の全細胞数に対する割合(%)として遊走の程度を表す。但し、nは1〜11の整数であり、n≧12のときに得られる細胞数は、n=11のときの細胞数に含めることとする。   In a preferred embodiment of the present invention, an aggregate of nerve cells placed in a substantially circular shape is assumed to be a circle, the circumference thereof is set to 0 μm, and the radius of the assumed circle is set to r μm. ) Obtained by subtracting the number of post-migration neurons existing in a concentric circle having a radius of (r + 20 (n−1)) μm from the number of post-migration neurons existing in a concentric circle having a radius of μm. The degree of migration is expressed as a ratio (%) of the number of cells showing the migration distance of (20n-10) μm to the total number of cells. However, n is an integer of 1 to 11, and the number of cells obtained when n ≧ 12 is included in the number of cells when n = 11.

本発明の別の好ましい実施形態においては、公知の共焦点レーザー顕微鏡及び画像解析ソフトを用いて、20μmごとの半径で描いた各同心円の区画内において、染色された細胞核の数を細胞数としてカウントし、全細胞数に対する割合(%)として遊走の程度を表す。画像解析ソフトとしては、例えば、TCS-SP5共焦点レーザー顕微鏡(Leica)に搭載された解析ソフトが挙げられる。   In another preferred embodiment of the present invention, the number of stained cell nuclei is counted as the number of cells in each concentric compartment drawn at a radius of 20 μm using a known confocal laser microscope and image analysis software. The degree of migration is expressed as a percentage (%) of the total number of cells. Examples of the image analysis software include analysis software mounted on a TCS-SP5 confocal laser microscope (Leica).

遊走の程度の測定の際、任意に染色用試薬を用いて細胞を染色してもよい。そのような試薬としては、特に限定されず、Hoechst、DAPIなどの当業者に公知の細胞核染色用試薬、ならびに当業者に公知の酵素、蛍光物質、発光物質、放射性同位体元素、ビオチンおよびアビジンなどで標識された標識抗体などが挙げられる。
遊走の程度の測定に用いる顕微鏡としては、特に限定されず、共焦点型顕微鏡、例えばTCS-SP5共焦点レーザー顕微鏡(Leica)、および倒立型顕微鏡などが挙げられる。
When measuring the degree of migration, cells may optionally be stained using a staining reagent. Such a reagent is not particularly limited, and reagents for staining cell nuclei known to those skilled in the art such as Hoechst and DAPI, as well as enzymes, fluorescent substances, luminescent substances, radioisotope elements, biotin and avidin known to those skilled in the art. And a labeled antibody labeled with.
The microscope used for measuring the degree of migration is not particularly limited, and examples thereof include a confocal microscope, such as a TCS-SP5 confocal laser microscope (Leica), and an inverted microscope.

本発明の判定方法の第5工程は、遊走の程度に基づいて、生体が神経細胞の遊走障害を伴う疾患を有する否かを判定する工程である。
判定の手法としては、遊走の程度が小さいとき、生体が神経細胞の遊走障害を伴う疾患を有すると判定する。この判定は、神経細胞の遊走の程度に関するデータの蓄積により経験的に行うことができるが、より高い精度で判定するために、所定の閾値との比較により判定することが好ましい。そのような閾値は、例えば、遊走することが既知の細胞および遊走しないことが既知の細胞の遊走の程度に基づいて適宜決定することができる。本発明の好ましい実施形態においては、第4工程で得られる遊走距離に基づいて、10〜210μmの遊走距離を示す細胞数を100%と設定し、10μmの遊走距離を示す細胞数が50%以上、好ましくは60%以上、より好ましくは70%以上であるとき、生体が神経細胞の遊走障害を伴う疾患を有すると判定する。
The fifth step of the determination method of the present invention is a step of determining whether or not the living body has a disease accompanied by a nerve cell migration disorder based on the degree of migration.
As a determination method, when the degree of migration is small, it is determined that the living body has a disease accompanied by nerve cell migration disorder. This determination can be made empirically by accumulating data relating to the degree of migration of nerve cells, but in order to determine with higher accuracy, it is preferable to make a determination by comparison with a predetermined threshold. Such a threshold can be appropriately determined based on, for example, the degree of migration of cells that are known to migrate and cells that are known not to migrate. In a preferred embodiment of the present invention, based on the migration distance obtained in the fourth step, the number of cells showing a migration distance of 10 to 210 μm is set as 100%, and the number of cells showing a migration distance of 10 μm is 50% or more. When it is preferably 60% or more, more preferably 70% or more, it is determined that the living body has a disease associated with a migration disorder of nerve cells.

本発明のもう1つの態様は、
神経細胞の遊走障害を伴う疾患の生体から採取した脳組織から神経細胞を取得する工程と、
得られた神経細胞の凝集塊を形成させる工程と、
形成された凝集塊を、試験物質および精製アルブミンを含むバッファー液中でインキュベートし、遊走させる工程と、
神経細胞の遊走の程度を測定する工程と、
遊走の程度に基づいて、前記試験物質が神経細胞の遊走活性に与える影響を評価する工程と
を含むことを特徴とする、
試験物質の神経細胞の遊走活性に与える影響の評価方法である。
Another aspect of the present invention is:
Obtaining nerve cells from brain tissue collected from a living body of a disease associated with nerve cell migration disorder;
A step of forming an aggregate of the obtained nerve cells;
Incubating the formed agglomerates in a buffer solution containing the test substance and purified albumin and allowing them to migrate;
Measuring the degree of nerve cell migration;
A step of evaluating the influence of the test substance on the migration activity of nerve cells based on the degree of migration,
This is a method for evaluating the influence of a test substance on the migration activity of nerve cells.

神経細胞の遊走障害を伴う疾患としては、特に限定されず、遊走に関連する機能を有する遺伝子(例えばヒト17番染色体に存在するLIS1、X染色体上のダブルコルチン(DCX)、リーリン(Reln)、14-3-3εなど)の変異、欠失および置換などに起因する疾患である。このような疾患の例としては、滑脳症、多小脳回、脳室周囲異所性灰白質、丸石様皮質異形成などが挙げられる。
本発明の1つの実施形態において、神経細胞の遊走障害を伴う疾患は、ヒトの17番染色体に存在するLIS1遺伝子のヘテロ変異(ハプロ不全)に起因する滑脳症である。
The disease associated with the neuronal migration disorder is not particularly limited, and is a gene having a function associated with migration (for example, LIS1 present in human chromosome 17, doublecortin (DCX) on X chromosome, Reln, 14 -3-3ε, etc.) due to mutations, deletions and substitutions. Examples of such diseases include spondylosis, cerebellar gyrus, periventricular ectopic gray matter, cobblestone cortical dysplasia, and the like.
In one embodiment of the present invention, the disease associated with a neuronal migration disorder is spondylosis caused by a heterozygous mutation (haploinsufficiency) in the LIS1 gene present in human chromosome 17.

本発明の評価方法の第1工程は、生体が、上記神経細胞の遊走障害を伴う疾患を罹患するものに限定されることを除いては、上記の測定方法の第1工程と同様である。
本発明の評価方法の第2工程は、上記の測定方法の第2工程と同様である。
The first step of the evaluation method of the present invention is the same as the first step of the above measurement method, except that the living body is limited to those suffering from diseases associated with the above-mentioned nerve cell migration disorder.
The second step of the evaluation method of the present invention is the same as the second step of the measurement method.

本発明の評価方法の第3工程は、形成された凝集塊を、試験物質および精製アルブミンを含むバッファー液中でインキュベートし、遊走させる工程である。
試験物質は、特に限定されず、当業者に公知の任意の化合物またはその塩、ポリヌクレオチド、ポリペプチドなどが挙げられ、神経細胞の遊走障害に対する影響を評価するために添加される。試験物質は、好ましくはシステインプロテアーゼ阻害薬またはカルパイン阻害薬であり、より好ましくはカルパイン阻害薬である。
その後、任意に、上記神経細胞の遊走活性に影響し得る因子の導入工程を行ってもよい。
本発明の評価方法の第4工程は、上記の判定方法の第4工程と同様である。
The third step of the evaluation method of the present invention is a step in which the formed aggregate is incubated and migrated in a buffer solution containing the test substance and purified albumin.
The test substance is not particularly limited, and includes any compound known to those skilled in the art or a salt thereof, a polynucleotide, a polypeptide, and the like, and is added to evaluate the effect on nerve cell migration disorder. The test substance is preferably a cysteine protease inhibitor or a calpain inhibitor, more preferably a calpain inhibitor.
Thereafter, a step of introducing a factor capable of affecting the migration activity of the nerve cell may optionally be performed.
The fourth step of the evaluation method of the present invention is the same as the fourth step of the above determination method.

本発明の評価方法の第5工程は、測定した距離に基づいて、前記試験物質が神経細胞の遊走の程度に与える影響を評価する工程である。
評価の手法としては、試験物質を添加しない場合の神経細胞の遊走の程度と比較して、試験物質を添加する場合の神経細胞の遊走の程度が増大するとき、当該試験物質が神経細胞の遊走の程度に影響を与えたと評価する。本発明の好ましい実施形態においては、上記の第4工程で得られる遊走距離に基づいて、10〜210μmの遊走距離を示す細胞数を100%と設定し、試験物質を添加しない場合と比較して、試験物質を添加する場合に10μmの遊走距離を示す細胞数が30%以上、好ましくは40%以上、より好ましくは50%以上低減するとき、当該試験物質が神経細胞の遊走の程度に影響を与えたと評価する。
The fifth step of the evaluation method of the present invention is a step of evaluating the influence of the test substance on the degree of migration of nerve cells based on the measured distance.
As an evaluation method, when the degree of nerve cell migration with the addition of the test substance is increased compared to the degree of nerve cell migration without the addition of the test substance, the test substance becomes the nerve cell migration. It is evaluated that it has influenced the degree of. In a preferred embodiment of the present invention, the number of cells exhibiting a migration distance of 10 to 210 μm is set as 100% based on the migration distance obtained in the fourth step, compared with the case where no test substance is added. When the test substance is added, when the number of cells having a migration distance of 10 μm is reduced by 30% or more, preferably 40% or more, more preferably 50% or more, the test substance affects the degree of migration of nerve cells. Evaluate that given.

以下、本発明を実施例により詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these Examples.

実施例1:マウス小脳由来の顆粒細胞凝集塊を用いたインビトロ神経細胞遊走活性測定法
(材料)
・マウス;生後2-6日(C57BL/6)
・CF-HBSS
HBSS (Hank's Balanced Salt Solution; Sigma, Cat. H8264) 200 ml
1M MgCl2 (最終濃度5mM) 1 ml
グルコース (最終濃度4mg/ml) 0.8 g
Penicillin/Streptomycin (Gibco, Cat. 15140-122) 2 ml
Example 1: In vitro nerve cell migration activity measurement method (material) using granule cell aggregates derived from mouse cerebellum
・ Mouse; 2-6 days after birth (C57BL / 6)
・ CF-HBSS
HBSS (Hank's Balanced Salt Solution; Sigma, Cat.H8264) 200 ml
1M MgCl 2 (final concentration 5 mM) 1 ml
Glucose (final concentration 4mg / ml) 0.8 g
Penicillin / Streptomycin (Gibco, Cat. 15140-122) 2 ml

・Trypsin-HBSS 10 ml
CF-HBSS 10 ml
2.5% trypsin (最終濃度0.025 %) 100 μl
10 mg/ml DNaseI (最終濃度0.0013 %) 6.3 μl
・ Trypsin-HBSS 10 ml
CF-HBSS 10 ml
2.5% trypsin (final concentration 0.025%) 100 μl
10 mg / ml DNaseI (final concentration 0.0013%) 6.3 μl

・DNase Medium 5 ml
BME (Basal Medium Eagle; Gibco, Sigma, Cat. 21010) 4.5 ml
10 % ウマ血清(Horse Serum; HS) 0.5 ml
2.5% trypsin (最終濃度0.025 %) 100 μl
10 mg/ml DNaseI (最終濃度25 μg/ml) 12.5 μl
・ DNase Medium 5 ml
BME (Basal Medium Eagle; Gibco, Sigma, Cat. 21010) 4.5 ml
10% Horse Serum (HS) 0.5 ml
2.5% trypsin (final concentration 0.025%) 100 μl
10 mg / ml DNaseI (final concentration 25 μg / ml) 12.5 μl

・Mason's Medium 100 ml
Nutrient Stock (N2-Supplement; Gibco, Cat. 17502-048) 1.0 ml
ウシ血清由来精製アルブミン (Albumin essentially globulin-free (Sigma, A3156
))
1.0g
Penicillin/Streptomycin 1 ml
・ Mason's Medium 100 ml
Nutrient Stock (N2-Supplement; Gibco, Cat. 17502-048) 1.0 ml
Bovine serum-derived purified albumin (Albumin essentially globulin-free (Sigma, A3156
))
1.0g
Penicillin / Streptomycin 1 ml

カバーガラスのコーティング
予め、カバーガラス(Matsunami; 24mm X 24mm)を1mM 塩酸で洗浄後、大量の流水ですすぎ、70%EtOHに浸した後に乾燥させた。0.0002%のPoly-D-lysine (Sigma; Cat. P4707)を用いて室温で1時間、その後Laminin (Sigma, Cat; L2020)を用いて室温で1時間カバーガラスをコーティングした後、2回の振り洗いを含めて計10回洗浄した。
Cover glass coating The cover glass (Matsunami; 24 mm X 24 mm) was washed with 1 mM hydrochloric acid, rinsed with a large amount of running water, dipped in 70% EtOH and dried. The cover glass was coated with 0.0002% Poly-D-lysine (Sigma; Cat. P4707) for 1 hour at room temperature, then with Laminin (Sigma, Cat; L2020) for 1 hour at room temperature, and then shaken twice. Washed a total of 10 times including washing.

(方法)
正常または滑脳症モデル(LIS1遺伝子ヘテロ変異モデル)の新生マウスから小脳を摘出し、10個程度の破片にした。これらの小脳片を崩さないように、チューブ(15 ml)に移した。CF-HBSS (5 ml)中に懸濁し、500 rpm x 1分間遠心し、上清を除去した。Trypsin-HBSS (10 ml)を加えて、37℃で20分間、時々タッピングしながらインキュベーションした後、500 rpm x 1分間遠心し、上清を除去した。10%ウマ血清(HS, invitrogen)を含む5mlのBME培地(10%HS/BME)で、2回洗浄(500 rpmで遠心)した。DNase Medium (2 ml)を加えて、30回程度ピペッティングした。DNase Medium (3 ml)を加えて、1分間放置した。70 μmのメッシュ(Cell strainer, Becton Dickinson)を通した。コートしていない培養皿の上で37℃、20分間インキュベーションした。塊を崩さないように、再びチューブ(15 ml)に移し、1,500 rpm x 1分間遠心し、上清を除去した。10%HS/BME (5 ml) を加えて、500 rpm x 1分間遠心し、上清を除去した。適当な量(数ml)の10%HS/BMEを加えて、コートしていない培養皿の上で37℃、8時間インキュベーションして凝集塊を再形成させた。マイクロチューブ(1.5 ml)に丁寧に懸濁液を移し、1分間放置した後、上清を除去した。1.0〜1.2 mlのMason's Mediumを加えて、Poly-D-Lysin (SIGMA)とLaminin (SIGMA)でコートした35 mm Glass Base Dish (IWAKI)上に細胞の塊をのせて、200μMのカルパイン阻害薬を添加したか、または添加せずに、37℃で12時間培養した。その後、Hoechstを加えて核染色し、L15(Leibivitz; Gibco)にMediumを交換して共焦点レーザー顕微鏡(TCS-SP5, Leica)にて観察した。共焦点レーザー顕微鏡(TCS-SP5, Leica)の解析ソフトを用いて、20μmごとの半径で描いたそれぞれの同心円の区画内の核数を細胞数として数えて全細胞数に対する割合(%)で表した。
(Method)
The cerebellum was extracted from a newborn mouse of a normal or spondylosis model (LIS1 gene heterozygous mutation model) and made into about 10 pieces. These cerebellum pieces were transferred to a tube (15 ml) so as not to collapse. The suspension was suspended in CF-HBSS (5 ml), centrifuged at 500 rpm x 1 minute, and the supernatant was removed. Trypsin-HBSS (10 ml) was added and incubated at 37 ° C. for 20 minutes with occasional tapping, followed by centrifugation at 500 rpm for 1 minute to remove the supernatant. Washed twice (centrifuged at 500 rpm) with 5 ml of BME medium (10% HS / BME) containing 10% horse serum (HS, invitrogen). DNase Medium (2 ml) was added and pipetted about 30 times. DNase Medium (3 ml) was added and left for 1 minute. A 70 μm mesh (Cell strainer, Becton Dickinson) was passed. Incubation was carried out at 37 ° C. for 20 minutes on an uncoated culture dish. In order not to break up a lump, it was again transferred to a tube (15 ml) and centrifuged at 1,500 rpm for 1 minute to remove the supernatant. 10% HS / BME (5 ml) was added and centrifuged at 500 rpm for 1 minute, and the supernatant was removed. An appropriate amount (several ml) of 10% HS / BME was added and incubated on an uncoated culture dish at 37 ° C. for 8 hours to reconstitute the aggregate. The suspension was carefully transferred to a microtube (1.5 ml), allowed to stand for 1 minute, and then the supernatant was removed. Add 1.0-1.2 ml of Mason's Medium, place the cell mass on 35 mm Glass Base Dish (IWAKI) coated with Poly-D-Lysin (SIGMA) and Laminin (SIGMA), and add 200 μM calpain inhibitor. Cultured at 37 ° C. for 12 hours with or without addition. Thereafter, Hoechst was added for nuclear staining, medium was exchanged for L15 (Leibivitz; Gibco), and observation was performed with a confocal laser microscope (TCS-SP5, Leica). Using the analysis software of a confocal laser microscope (TCS-SP5, Leica), the number of nuclei in each concentric compartment drawn with a radius of 20 μm is counted as the number of cells and expressed as a percentage (%) of the total number of cells. did.

結果を図1Aおよび図1Bに示す。
薬剤を添加しない場合、正常な神経顆粒細胞の遊走が見られる一方、LIS1ヘテロ変異細胞の遊走距離は小さく、大部分が10μmの遊走距離を示す。このことから、本発明のインビトロ細胞遊走アッセイを、神経細胞の遊走障害を伴う疾患の判定に利用できることがわかった。
また、薬剤を添加した場合、正常細胞では遊走距離に変化はあまり見られなかった一方、LIS1ヘテロ変異細胞では、遊走した細胞の数(n)が増大し、10μmの遊走距離を示す細胞の数は低減した。このことから、本発明のインビトロ細胞遊走アッセイを、試験物質の神経細胞の遊走活性に与える影響の評価に利用できることがわかった。
同様の実験を10回行った。これらの実験は、安定して図1Aおよび図1Bと類似の結果を再現した。
The results are shown in FIGS. 1A and 1B.
When no drug is added, migration of normal neural granule cells is observed, while the migration distance of LIS1 heterozygous cells is small, and most of them exhibit a migration distance of 10 μm. From this, it was found that the in vitro cell migration assay of the present invention can be used for the determination of diseases associated with nerve cell migration disorders.
In addition, when the drug was added, there was not much change in the migration distance in normal cells, whereas in the LIS1 heterozygous mutant cells, the number of migrated cells (n) increased and the number of cells showing a migration distance of 10 μm. Reduced. From this, it was found that the in vitro cell migration assay of the present invention can be used to evaluate the influence of the test substance on the migration activity of nerve cells.
A similar experiment was performed 10 times. These experiments stably reproduced results similar to FIGS. 1A and 1B.

本発明のインビトロ細胞遊走アッセイは、結果の信頼性および再現性が十分であるため、神経細胞の遊走の程度に基づく疾患の判定や薬物の遊走能への効果の測定などに利用することができる。   Since the in vitro cell migration assay of the present invention has sufficient reliability and reproducibility of results, it can be used for disease determination based on the degree of migration of nerve cells and measurement of the effect on drug migration ability. .

Claims (7)

生体から採取した脳組織から神経細胞を取得する工程と、
得られた神経細胞の凝集塊を形成させる工程と、
形成された凝集塊を、精製アルブミンを含むバッファー液中でインキュベートし、遊走させる工程と、
略円形となるように置かれた神経細胞の凝集塊を円と仮定してその周を0μmとし、当該仮定した円の半径をrμmとしたときに、(r+20)μmの半径を有する同心円内に存在する遊走後の神経細胞数から、rμmの半径を有する同心円内に存在する遊走後の神経細胞数を減算することにより得られた、10μmの遊走距離を示す細胞数の全細胞数に対する割合が50%以上である場合に前記生体が神経細胞の遊走障害を伴う疾患であると判定し、50%未満である場合に前記生体が神経細胞の遊走障害を伴う疾患でないと判定する工程と
を含むことを特徴とする、
神経細胞の遊走障害を伴う疾患の判定方法。
Acquiring nerve cells from brain tissue collected from a living body;
A step of forming an aggregate of the obtained nerve cells;
Incubating the formed aggregates in a buffer solution containing purified albumin and allowing them to migrate;
Assuming that the aggregate of nerve cells placed in a substantially circular shape is a circle and its circumference is 0 μm, and the radius of the assumed circle is r μm, it is within a concentric circle having a radius of (r + 20) μm. The ratio of the number of cells showing a migration distance of 10 μm to the total number of cells obtained by subtracting the number of neurons after migration existing in a concentric circle having a radius of r μm from the number of neurons after migration is present. Determining that the living body is a disease accompanied by nerve cell migration disorder when it is 50% or more, and determining that the living body is not a disease accompanied by nerve cell migration disorder when it is less than 50%. It is characterized by
A method for determining a disease associated with a neuronal migration disorder.
神経細胞の遊走障害を伴う疾患の生体から採取した脳組織から神経細胞を取得する工程と、
得られた神経細胞の凝集塊を形成させる工程と、
形成された凝集塊を、試験物質および精製アルブミンを含むバッファー液中でインキュベートし、遊走させる工程と、
神経細胞の遊走の程度を測定する工程と、
遊走の程度に基づいて、前記試験物質が神経細胞の遊走活性に与える影響を評価する工程と
を含むことを特徴とする、
試験物質の神経細胞の遊走活性に与える影響の評価方法。
Obtaining nerve cells from brain tissue collected from a living body of a disease associated with nerve cell migration disorder;
A step of forming an aggregate of the obtained nerve cells;
Incubating the formed agglomerates in a buffer solution containing the test substance and purified albumin and allowing them to migrate;
Measuring the degree of nerve cell migration;
A step of evaluating the influence of the test substance on the migration activity of nerve cells based on the degree of migration,
A method for evaluating the influence of a test substance on the migration activity of nerve cells.
前記精製アルブミンが、有機溶媒を用いる沈殿、アルコール分画、熱処理および低温処理、低pH処理、結晶化、クロマトグラフィ、電気泳動、およびチャコール処理から選択される少なくとも1つの方法により精製されたアルブミンである、請求項1または2に記載の方法。   The purified albumin is albumin purified by at least one method selected from precipitation using an organic solvent, alcohol fractionation, heat treatment and low temperature treatment, low pH treatment, crystallization, chromatography, electrophoresis, and charcoal treatment. The method according to claim 1 or 2. 前記精製アルブミンが、グロブリンを実質的に含まない血清アルブミンである、請求項1〜3のいずれか1つに記載の方法。   The method according to any one of claims 1 to 3, wherein the purified albumin is serum albumin substantially free of globulin. 前記神経細胞の遊走障害を伴う疾患が、遊走に関連する機能を有する遺伝子の変異に起因する、請求項1〜4のいずれか1つに記載の方法。   The method according to any one of claims 1 to 4, wherein the disease accompanied by a neuronal migration disorder is caused by a mutation of a gene having a function associated with migration. 前記神経細胞の遊走障害を伴う疾患が、LIS1遺伝子の変異に起因する、請求項1〜5のいずれか1つに記載の方法。   The method according to any one of claims 1 to 5, wherein the disease associated with a neuronal migration disorder is caused by a mutation in the LIS1 gene. 前記神経細胞の遊走障害を伴う疾患が、滑脳症である、請求項1〜6のいずれか1つに記載の方法。   The method according to any one of claims 1 to 6, wherein the disease accompanied by migration disorder of nerve cells is spondylosis.
JP2013020620A 2013-02-05 2013-02-05 Method for determining diseases associated with nerve cell migration disorder and use thereof Expired - Fee Related JP6128677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013020620A JP6128677B2 (en) 2013-02-05 2013-02-05 Method for determining diseases associated with nerve cell migration disorder and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013020620A JP6128677B2 (en) 2013-02-05 2013-02-05 Method for determining diseases associated with nerve cell migration disorder and use thereof

Publications (2)

Publication Number Publication Date
JP2014150734A JP2014150734A (en) 2014-08-25
JP6128677B2 true JP6128677B2 (en) 2017-05-17

Family

ID=51573259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013020620A Expired - Fee Related JP6128677B2 (en) 2013-02-05 2013-02-05 Method for determining diseases associated with nerve cell migration disorder and use thereof

Country Status (1)

Country Link
JP (1) JP6128677B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7532754B2 (en) 2019-09-04 2024-08-14 株式会社ニコン IMAGE ANALYSIS APPARATUS, CELL CULTURE OBSERVATION APPARATUS, IMAGE ANALYSIS METHOD, AND PROGRAM

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5728553A (en) * 1992-09-23 1998-03-17 Delta Biotechnology Limited High purity albumin and method of producing
JPH08191688A (en) * 1994-12-13 1996-07-30 Sumitomo Bakelite Co Ltd Culture solution for neurocyte and its production
JP3093974B2 (en) * 1995-06-27 2000-10-03 住友ベークライト株式会社 Culture solution for nerve cells, method for producing the same, and method for culturing nerve cells using the same
US8093053B2 (en) * 2008-03-17 2012-01-10 Uti Limited Partnership Methods and compositions for culturing of neural precursor cells

Also Published As

Publication number Publication date
JP2014150734A (en) 2014-08-25

Similar Documents

Publication Publication Date Title
Sidhaye et al. Brain organoids: an ensemble of bioassays to investigate human neurodevelopment and disease
Fligor et al. Three-dimensional retinal organoids facilitate the investigation of retinal ganglion cell development, organization and neurite outgrowth from human pluripotent stem cells
US20220290100A1 (en) Neural organoid composition and methods of use
Hussain et al. CDK6 associates with the centrosome during mitosis and is mutated in a large Pakistani family with primary microcephaly
Kiyama et al. Essential roles of mitochondrial biogenesis regulator Nrf1 in retinal development and homeostasis
Kita-Matsuo et al. Lentiviral vectors and protocols for creation of stable hESC lines for fluorescent tracking and drug resistance selection of cardiomyocytes
Foo et al. Development of a method for the purification and culture of rodent astrocytes
Li et al. Genetic variants associated with Alzheimer’s disease confer different cerebral cortex cell-type population structure
Chan et al. Cerebral organoids as tools to identify the developmental roots of autism
Salinas et al. Invited review: epigenetics in neurodevelopment
Cantley et al. Functional and sustainable 3D human neural network models from pluripotent stem cells
JP2023071728A (en) Differentiation and use of human microglia-like cells from pluripotent stem cells and hematopoietic progenitors
Liu et al. Doublecortin-expressing cell types in temporal lobe epilepsy
WO2006087233A2 (en) Release of extracellular membrane particles carrying the stem cell marker prominin-1 (cd133) from neural progenitors and other epithelial cells
WO2018191656A1 (en) Personalized 3d neural culture system for generating human oligodendrocytes and studying myelination in vitro
Jung et al. hiPSC modeling of inherited cardiomyopathies
Al-Ali et al. High content screening with primary neurons
Banote et al. Amyloid precursor protein-b facilitates cell adhesion during early development in zebrafish
Pesl et al. Phenotypic assays for analyses of pluripotent stem cell–derived cardiomyocytes
EP3841198A1 (en) Reagents and methods for autism and comorbidities thereof
Wen et al. Inactivating Celsr2 promotes motor axon fasciculation and regeneration in mouse and human
Vacca et al. Effects of Mecp2 loss of function in embryonic cortical neurons: a bioinformatics strategy to sort out non-neuronal cells variability from transcriptome profiling
JP6128677B2 (en) Method for determining diseases associated with nerve cell migration disorder and use thereof
Xin et al. L-PGDS (betatrace protein) inhibits astrocyte proliferation and mitochondrial ATP production in vitro
Kangas et al. An approach to comprehensive genome and proteome expression analyses in Schwann cells and neurons during peripheral nerve myelin formation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170410

R150 Certificate of patent or registration of utility model

Ref document number: 6128677

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees