JP6126192B1 - Oxide-based negative electrode active material for secondary battery and method for producing the same - Google Patents

Oxide-based negative electrode active material for secondary battery and method for producing the same Download PDF

Info

Publication number
JP6126192B1
JP6126192B1 JP2015240698A JP2015240698A JP6126192B1 JP 6126192 B1 JP6126192 B1 JP 6126192B1 JP 2015240698 A JP2015240698 A JP 2015240698A JP 2015240698 A JP2015240698 A JP 2015240698A JP 6126192 B1 JP6126192 B1 JP 6126192B1
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
oxide
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015240698A
Other languages
Japanese (ja)
Other versions
JP2017107743A (en
Inventor
智紀 初森
智紀 初森
井田 雅也
雅也 井田
池上 潤
潤 池上
大神 剛章
剛章 大神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2015240698A priority Critical patent/JP6126192B1/en
Application granted granted Critical
Publication of JP6126192B1 publication Critical patent/JP6126192B1/en
Publication of JP2017107743A publication Critical patent/JP2017107743A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】高性能なリチウムイオン二次電池又はナトリウムイオン二次電池を得るべく、水分の吸着を効果的に抑制することのできる二次電池用酸化物系負極活物質及びその製造方法を提供する。【解決手段】負極活物質用酸化物に、セルロースナノファイバー由来の炭素と、水溶性炭素材料由来の炭素とが担持してなる二次電池用酸化物系負極活物質。【選択図】なしTo provide a high-performance lithium ion secondary battery or sodium ion secondary battery, an oxide-based negative electrode active material for a secondary battery capable of effectively suppressing moisture adsorption, and a method for producing the same. . An oxide-based negative electrode active material for a secondary battery in which carbon derived from cellulose nanofibers and carbon derived from a water-soluble carbon material are supported on an oxide for a negative electrode active material. [Selection figure] None

Description

本発明は、負極活物質用酸化物に、セルロースナノファイバー由来の炭素と、水溶性炭素材料由来の炭素とが、ともに担持されてなる二次電池用酸化物系負極活物質及びその製造方法に関する。   The present invention relates to an oxide-based negative electrode active material for a secondary battery in which carbon derived from cellulose nanofibers and carbon derived from a water-soluble carbon material are supported on an oxide for a negative electrode active material, and a method for producing the same. .

携帯電子機器、ハイブリッド自動車、電気自動車等に用いられる二次電池の開発が行われており、リチウムイオン二次電池やナトリウムイオン二次電池等の二次電池が広く知られている。こうした二次電池では、電池の充放電に伴うガスの生成により、電池内部で劣化反応が引き起こされるおそれもあるなか、水が介在すると、そのおそれが一層高まることも知られている。   Secondary batteries used for portable electronic devices, hybrid cars, electric cars, and the like have been developed, and secondary batteries such as lithium ion secondary batteries and sodium ion secondary batteries are widely known. In such a secondary battery, it is known that the generation of gas accompanying the charging / discharging of the battery may cause a deterioration reaction inside the battery, but if water is present, the risk is further increased.

このような劣化反応が生じるのを回避する上で、例えば、特許文献1にも示されるように、二次電池の正極材料として用いる正極活物質の水分含有量を低減することが有効である。また同様に、負極材料についても、その水分含有量を低減することが有効であり、例えば炭素系負極材料について、特許文献2には、炭素材料を特定の加熱処理に付して吸着した水分を除去した後、これを直接帯状の集電体に塗布する製造方法が開示されており、さらに、特許文献3には、示差熱分析において特定の物性を示す、閉孔の多いハードカーボン(難黒鉛化性炭素)により、負極材料における水分吸着量を低減する方法が開示されている。   In order to avoid the occurrence of such a deterioration reaction, for example, as shown in Patent Document 1, it is effective to reduce the water content of the positive electrode active material used as the positive electrode material of the secondary battery. Similarly, it is effective to reduce the moisture content of the negative electrode material. For example, for a carbon-based negative electrode material, Patent Document 2 discloses moisture adsorbed by subjecting a carbon material to a specific heat treatment. A manufacturing method is disclosed in which, after removal, this is applied directly to a strip-shaped current collector. Further, Patent Document 3 discloses hard carbon (non-graphite) with a large number of closed pores that exhibits specific physical properties in differential thermal analysis. A method for reducing the amount of moisture adsorbed in the negative electrode material is disclosed.

一方、酸化物系負極材料について、特許文献4には、スピネル構造のリチウムチタン複合酸化物を含む負極において、含まれる水分量は負極活物質の質量当たり0.05質量%以下が好ましい旨記載されてはいるものの、かかる水分量を低減する方法については、何ら具体的な検討はなされていない。   On the other hand, regarding the oxide-based negative electrode material, Patent Document 4 describes that in a negative electrode including a spinel-structure lithium-titanium composite oxide, the amount of water contained is preferably 0.05% by mass or less per mass of the negative electrode active material. However, no specific study has been made on how to reduce the amount of moisture.

特開2013−152911号公報JP2013-152911A 特開2002−190299号公報JP 2002-190299 A 国際公開第2007/040007号International Publication No. 2007/040007 国際公開第2013/137272号International Publication No. 2013/137272

こうしたことから、負極材料として活用し得る酸化物を用いた二次電池用負極活物質の吸着水分量を低減する技術が強く望まれている。   For these reasons, a technique for reducing the amount of adsorbed moisture of the negative electrode active material for secondary batteries using an oxide that can be used as a negative electrode material is strongly desired.

したがって、本発明の課題は、高性能なリチウムイオン二次電池又はナトリウムイオン二次電池を得るべく、水分の吸着を効果的に抑制することのできる二次電池用酸化物系負極活物質及びその製造方法を提供することにある。   Accordingly, an object of the present invention is to provide an oxide-based negative electrode active material for a secondary battery that can effectively suppress moisture adsorption in order to obtain a high-performance lithium ion secondary battery or a sodium ion secondary battery, and its It is to provide a manufacturing method.

そこで本発明者らが鋭意検討したところ、負極材料として活用し得る酸化物、いわゆる負極活物質用酸化物の表面は、水との親和性が高いため、炭素系負極材料に比較して乾燥処理のみでは十分に水分を除去しにくいことが判明した。さらに、こうした負極活物質用酸化物は、電子伝導性を向上させるために表面を炭素で被覆する場合が多いものの、正極材料等でよく行われているグルコースなどの水溶性炭素材料に由来する炭化物による表面被覆のみでは、材料表面を完全に被覆することが容易でないことも判明した。このような知見を元に、さらに本発明者らが種々検討したところ、負極活物質用酸化物に、セルロースナノファイバー由来の炭素と、水溶性炭素材料由来の炭素との複数の炭素源由来の炭素が担持されてなる二次電池用酸化物系負極活物質であれば、これらの炭素が負極活物質用酸化物の表面を効率的に被覆して水分の吸着を有効に抑制できるため、リチウムイオン又はナトリウムイオンが有効に電気伝導を担うことのできる二次電池の負極活物質として、極めて有用であることを見出し、本発明を完成させるに至った。   Therefore, the present inventors have intensively studied, and the surface of an oxide that can be used as a negative electrode material, that is, a so-called negative electrode active material oxide, has a high affinity with water, and therefore has a drying treatment as compared with a carbon-based negative electrode material. It has been found that it is difficult to remove moisture sufficiently by itself. Further, such oxides for negative electrode active materials often have carbides derived from water-soluble carbon materials such as glucose, which are often used for positive electrode materials, although the surface is often coated with carbon in order to improve electronic conductivity. It has also been found that it is not easy to completely cover the surface of the material only with the surface coating by. Based on such knowledge, the present inventors have further studied variously, and the oxide for the negative electrode active material is derived from a plurality of carbon sources including carbon derived from cellulose nanofibers and carbon derived from a water-soluble carbon material. If it is an oxide-based negative electrode active material for a secondary battery in which carbon is supported, these carbons can effectively coat the surface of the negative electrode active material oxide and effectively suppress moisture adsorption. It has been found that the ion or sodium ion is extremely useful as a negative electrode active material for a secondary battery capable of effectively carrying electric conduction, and the present invention has been completed.

すなわち、本発明は、負極活物質用酸化物に、セルロースナノファイバー由来の炭素と、水溶性炭素材料由来の炭素とが担持してなる二次電池用酸化物系負極活物質を提供するものである。
また、本発明は、負極活物質用酸化物Xにセルロースナノファイバー、水溶性炭素材料及び水を添加して懸濁液Xを得る工程(I)並びに
得られた懸濁液Xを噴霧乾燥して造粒体Yを得た後、焼成する工程(II)を備える、二次電池用酸化物系負極活物質の製造方法を提供するものである。
That is, the present invention provides an oxide-based negative electrode active material for a secondary battery in which carbon derived from cellulose nanofibers and carbon derived from a water-soluble carbon material are supported on an oxide for a negative electrode active material. is there.
The present invention also includes the step (I) of obtaining a suspension X by adding cellulose nanofibers, a water-soluble carbon material and water to the oxide X for the negative electrode active material, and spray-drying the obtained suspension X. Then, after obtaining the granulated body Y, a method for producing an oxide-based negative electrode active material for a secondary battery, comprising a step (II) of firing is provided.

本発明の二次電池用酸化物系負極活物質によれば、負極活物質特有の酸化物に、セルロースナノファイバー由来の炭素と水溶性炭素材料由来の炭素とが、ともに炭素源として補い合いながら有効に担持されてなることにより、負極活物質用酸化物の表面の一部において、炭素が存在することなく酸化物が露出してしまうのを有効に抑制するので、かかる酸化物表面における露出部が効果的に低減された二次電池の負極活物質を得ることができる。そのため、かかる負極活物質は水分の吸着を効果的に抑制できるため、これを用いたリチウムイオン二次電池又はナトリウムイオン二次電池において、リチウムイオン又はナトリウムイオンが有効に電気伝導を担いつつ、様々な使用環境下でもサイクル特性等の優れた電池特性を安定して発現することができる。   According to the oxide-based negative electrode active material for a secondary battery of the present invention, the carbon oxide derived from cellulose nanofibers and the carbon derived from the water-soluble carbon material are both effectively supplemented as a carbon source to the oxide specific to the negative electrode active material. By supporting the oxide, it is possible to effectively suppress the oxide from being exposed without the presence of carbon in a part of the surface of the oxide for the negative electrode active material. An anode active material for a secondary battery that is effectively reduced can be obtained. Therefore, since such a negative electrode active material can effectively suppress moisture adsorption, in a lithium ion secondary battery or a sodium ion secondary battery using the negative electrode active material, lithium ions or sodium ions effectively carry electric conduction, Excellent battery characteristics such as cycle characteristics can be stably exhibited even in a different use environment.

以下、本発明について詳細に説明する。
本発明の二次電池用酸化物系負極活物質は、負極活物質用酸化物に、セルロースナノファイバー由来の炭素と、水溶性炭素材料由来の炭素とが担持してなるものである。すなわち、炭素源としてセルロースナノファイバー由来の炭素と水溶性炭素材料由来の炭素が共存してなり、負極活物質用酸化物の表面を一方の炭素源由来の炭素が被覆しつつも、かかる炭素が存在することなく負極活物質用酸化物の表面が露出した部位に、他方の炭素源由来の炭素が有効に担持してなる。したがって、これらセルロースナノファイバー由来の炭素と、水溶性炭素材料由来の炭素とが相まって負極活物質用酸化物の表面の露出を効果的に抑制しながら、かかる負極活物質用酸化物の全表面にわたり堅固に担持されてなるため、本発明の二次電池用酸化物系負極活物質における水分吸着を有効に防止することができる。
Hereinafter, the present invention will be described in detail.
The oxide-based negative electrode active material for a secondary battery of the present invention is obtained by supporting carbon derived from cellulose nanofibers and carbon derived from a water-soluble carbon material on an oxide for negative electrode active material. That is, carbon derived from cellulose nanofibers and carbon derived from a water-soluble carbon material coexist as a carbon source, and the carbon derived from one carbon source covers the surface of the oxide for the negative electrode active material. The carbon derived from the other carbon source is effectively supported on the portion where the surface of the oxide for negative electrode active material is exposed without being present. Therefore, the carbon derived from the cellulose nanofibers and the carbon derived from the water-soluble carbon material are combined to effectively suppress the exposure of the surface of the oxide for the negative electrode active material, and over the entire surface of the oxide for the negative electrode active material. Since it is firmly supported, moisture adsorption in the oxide-based negative electrode active material for a secondary battery of the present invention can be effectively prevented.

本発明で用いる負極活物質用酸化物とは、一般に二次電池の負極活物質として用いられる酸化物であれば、特に制限されないが、具体的には例えば、Li4Ti512、Ti2Nb1029、TiNb27、ブルッカイト型TiO2、及びSiOから選ばれる酸化物が挙げられる。 The oxide for negative electrode active material used in the present invention is not particularly limited as long as it is an oxide generally used as a negative electrode active material of a secondary battery. Specifically, for example, Li 4 Ti 5 O 12 , Ti 2 Examples thereof include oxides selected from Nb 10 O 29 , TiNb 2 O 7 , brookite type TiO 2 , and SiO.

Li4Ti512は、チタン化合物及びリチウム化合物を焼成することにより得ることができる。用い得るチタン化合物としては、酸化チタン、オルトチタン酸やメタチタン酸等の含水酸化チタンが挙げられ、これらは1種単独で用いてもよく、2種以上組み合わせて用いてもよい。なかでも、電池物性を高める観点から、アナターゼ型TiO2が好ましい。用い得るリチウム化合物としては、リチウム酸化物又はリチウム水酸化物が挙げられ、具体的には、炭酸リチウム、水酸化リチウム、硝酸リチウム等が挙げられる。これらは1種単独で用いてもよく、2種以上組み合わせて用いてもよい。なかでも、電池物性を高める観点から、炭酸リチウムが好ましい。
これらチタン化合物及びリチウム化合物の所定量を混合・粉砕した後、温度700〜900℃で8〜24時間焼成し、次いで得られた焼成物を粉砕することにより、Li4Ti512を得ることができる。
Li 4 Ti 5 O 12 can be obtained by firing a titanium compound and a lithium compound. Examples of the titanium compound that can be used include hydrous titanium oxides such as titanium oxide, orthotitanic acid, and metatitanic acid. These may be used alone or in combination of two or more. Among these, anatase TiO 2 is preferable from the viewpoint of improving battery physical properties. Examples of the lithium compound that can be used include lithium oxide and lithium hydroxide, and specific examples include lithium carbonate, lithium hydroxide, and lithium nitrate. These may be used alone or in combination of two or more. Among these, lithium carbonate is preferable from the viewpoint of improving battery physical properties.
After mixing and pulverizing predetermined amounts of these titanium compound and lithium compound, Li 4 Ti 5 O 12 is obtained by calcination at a temperature of 700 to 900 ° C. for 8 to 24 hours, and then pulverizing the obtained baked product. Can do.

Ti2Nb1029は、例えばニオブ化合物及びチタン化合物等の所定の材料を用いて懸濁液を調製し、水熱反応により結晶を得た後、熱処理することによって結晶度の高いものを得ることができ、また所定の材料をボールミル等により混合・粉砕して固体を得た後、焼成することによっても得ることができる。ニオブ化合物としては、水酸化ニオブ等を用いることができ、チタン化合物としては、硫酸チタニルや硫酸チタン等の硫酸塩、硝酸塩、塩化物、又は有機酸等を用いることができる。かかるチタン化合物には、不可避的に混入する場合も含め、その一部にチタン及びニオブ以外の異種金属M(MはSn、Zr、Fe、Bi、Cr、Mo、Na、Mg、Al及びSiからなる群より選ばれる少なくとも一種を示す。)を含んでいてもよく、異種金属(M)の含有量は、より良好な電池物性を確保する観点から、チタン化合物中に、好ましくは30質量%以下であり、より好ましくは15質量%以下である。
より具体的な製造方法としては、ニオブ化合物として水酸化ニオブ、チタン源としてアナターゼ型TiO2を用い、過酸化水素及び水とともに懸濁液を調製し、水熱反応を介して得られた固形分を固液分離し、焼成する製造方法が好ましい。なお、上記懸濁液中におけるニオブとチタンのモル比(Nb/Ti)は、好ましくは4.0〜6.0であり、より好ましくは4.5〜5.5である。
For Ti 2 Nb 10 O 29 , for example, a suspension is prepared using a predetermined material such as a niobium compound and a titanium compound, a crystal is obtained by a hydrothermal reaction, and a crystal having a high degree of crystallinity is obtained by heat treatment. It can also be obtained by mixing and pulverizing a predetermined material with a ball mill or the like to obtain a solid, followed by firing. As the niobium compound, niobium hydroxide and the like can be used, and as the titanium compound, sulfates such as titanyl sulfate and titanium sulfate, nitrates, chlorides, organic acids and the like can be used. Such titanium compounds, including cases where they are inevitably mixed, are partly made of different metals M other than titanium and niobium (M is Sn, Zr, Fe, Bi, Cr, Mo, Na, Mg, Al and Si). And at least one selected from the group consisting of different metals (M) in the titanium compound from the viewpoint of securing better battery physical properties, preferably 30% by mass or less. More preferably, it is 15 mass% or less.
As a more specific production method, niobium hydroxide is used as a niobium compound, anatase TiO 2 is used as a titanium source, a suspension is prepared with hydrogen peroxide and water, and a solid content obtained through a hydrothermal reaction is prepared. A production method in which the liquid is separated into solid and liquid and fired is preferable. In addition, the molar ratio (Nb / Ti) of niobium and titanium in the suspension is preferably 4.0 to 6.0, and more preferably 4.5 to 5.5.

TiNb27は、チタン化合物及びニオブ化合物を焼成することにより得ることができる。用い得るチタン化合物としては、酸化チタン、オルトチタン酸やメタチタン酸等の含水酸化チタンが挙げられ、これらは1種単独で用いてもよく、2種以上組み合わせて用いてもよい。なかでも、電池物性を高める観点から、アナターゼ型TiO2が好ましい。かかるチタン化合物には、不可避的に混入する場合も含め、その一部にチタン及びニオブ以外の異種金属M(MはSn、Zr、Fe、Bi、Cr、Mo、Na、Mg、Al及びSiからなる群より選ばれる少なくとも一種を示す。)を含んでいてもよく、異種金属(M)の含有量は、より良好な電池物性を確保する観点から、チタン化合物中に、好ましくは30質量%以下であり、より好ましくは15質量%以下である。用い得るニオブ化合物としては、ニオブ酸化物又はニオブ水酸化物が挙げられる。これらは1種単独で用いてもよく、2種以上組み合わせて用いてもよい。なかでも、電池物性を高める観点から、五酸化ニオブ(Nb)が好ましい。
これらチタン化合物及びニオブ化合物の所定量を混合・粉砕した後、温度1200〜1400℃で4〜24時間焼成し、次いで得られた焼成物を粉砕することにより、TiNb27を得ることができる。
TiNb 2 O 7 can be obtained by firing a titanium compound and a niobium compound. Examples of the titanium compound that can be used include hydrous titanium oxides such as titanium oxide, orthotitanic acid, and metatitanic acid. These may be used alone or in combination of two or more. Among these, anatase TiO 2 is preferable from the viewpoint of improving battery physical properties. Such titanium compounds, including cases where they are inevitably mixed, are partly made of different metals M other than titanium and niobium (M is Sn, Zr, Fe, Bi, Cr, Mo, Na, Mg, Al and Si). And at least one selected from the group consisting of different metals (M) in the titanium compound from the viewpoint of securing better battery physical properties, preferably 30% by mass or less. More preferably, it is 15 mass% or less. Examples of niobium compounds that can be used include niobium oxide and niobium hydroxide. These may be used alone or in combination of two or more. Of these, niobium pentoxide (Nb 2 O 5 ) is preferable from the viewpoint of improving battery physical properties.
After mixing and pulverizing predetermined amounts of these titanium compound and niobium compound, TiNb 2 O 7 can be obtained by calcination at a temperature of 1200 to 1400 ° C. for 4 to 24 hours and then pulverizing the obtained baked product. .

ブルッカイト型TiO2は、ヒドロキシカルボン酸チタン錯体を含有する水溶液を、pHを8〜13に維持しながら100℃〜300℃の温度範囲で水熱処理する方法や、硫酸チタニル等のチタン化合物をシュウ酸や過酸化水素等を用いてペルオキソ化した後、得られた沈殿物を550〜820℃の温度で焼成する方法により得ることができる。また、市販品を好適に用いることもできる。 Brookite-type TiO 2 is a method of hydrothermally treating an aqueous solution containing a hydroxycarboxylic acid titanium complex in a temperature range of 100 ° C. to 300 ° C. while maintaining the pH at 8 to 13, and a titanium compound such as titanyl sulfate is oxalic acid. After peroxylation using hydrogen peroxide or the like, the obtained precipitate can be obtained by baking at a temperature of 550 to 820 ° C. Moreover, a commercial item can also be used suitably.

SiOは、SiOとSiとを所定のモル比で混合後に非酸化性雰囲気中または真空中で1250〜1350℃に加熱して、気化したSiOを析出させる方法、SiOを水素等の還元性ガス中で加熱して所定量還元する方法、SiOを所定量の炭素Cや金属等と混合後に加熱して所定量還元する方法、Siを酸素ガスまたは酸化物と加熱して所定量酸化する方法、及びSiH等のケイ素化合物ガスと酸素の混合ガスを加熱反応またはプラズマ分解反応させる方法等により得ることができる。また、市販品を好適に用いることもできる。 SiO heats the SiO 2 and Si to 1250 to 1350 ° C. after mixing with or in a vacuum in a non-oxidizing atmosphere at a predetermined molar ratio, a method of depositing the vaporized SiO, SiO 2 is hydrogen and the like reducing A method of heating in gas to reduce a predetermined amount, a method of heating SiO 2 after mixing with a predetermined amount of carbon C, metal, etc. and heating to reduce a predetermined amount, and heating Si with oxygen gas or oxide to oxidize a predetermined amount It can be obtained by a method and a method in which a mixed gas of silicon compound gas such as SiH 4 and oxygen is subjected to a heating reaction or a plasma decomposition reaction. Moreover, a commercial item can also be used suitably.

本発明の二次電池用酸化物系負極活物質は、上記負極活物質用酸化物に、セルロースナノファイバー由来の炭素と水溶性炭素材料由来の炭素が担持してなる。すなわち、炭素源としてセルロースナノファイバー及び水溶性炭素材料を用いることにより得られるものであって、セルロースナノファイバーが炭化された炭素と、水溶性炭素材料が炭化された炭素とが共に、上記酸化物に堅固に担持してなる。セルロースナノファイバーとは、全ての植物細胞壁の約5割を占める骨格成分であって、かかる細胞壁を構成する植物繊維をナノサイズまで解繊等することにより得ることができる軽量高強度繊維であり、水への良好な分散性も有している。また、セルロースナノファイバーを構成するセルロース分子鎖では、炭素による周期的構造が形成されていることから、これが炭化されて上記酸化物に堅固に担持されることにより、水溶性炭素材料とも相まって、得られる二次電池における放電特性を有効に高めることができる有用な負極活物質を得ることができる。   The oxide-based negative electrode active material for a secondary battery of the present invention is obtained by supporting carbon derived from cellulose nanofibers and carbon derived from a water-soluble carbon material on the oxide for negative electrode active material. That is, it is obtained by using cellulose nanofiber and a water-soluble carbon material as a carbon source, and both the carbon obtained by carbonizing the cellulose nanofiber and the carbon obtained by carbonizing the water-soluble carbon material include the above oxide. It is firmly supported. Cellulose nanofiber is a skeletal component that occupies about 50% of all plant cell walls, and is a lightweight high-strength fiber that can be obtained by defibrating plant fibers constituting such cell walls to nano size, It also has good dispersibility in water. In addition, since the cellulose molecular chains constituting the cellulose nanofibers have a periodic structure formed of carbon, they are carbonized and firmly supported on the oxide, which is combined with the water-soluble carbon material. It is possible to obtain a useful negative electrode active material that can effectively improve the discharge characteristics of the secondary battery.

用い得るセルロースナノファイバーとしては、植物細胞壁を構成する植物繊維をナノサイズまで解繊等することにより得られたものであれば、特に制限されず、例えば、セリッシュKY−100S(ダイセルファインケム製)等の市販品を用いることができる。セルロースナノファイバーの繊維径は、上記酸化物に堅固に担持させる観点から、好ましくは4〜500nmであり、より好ましくは5〜400nmであり、さらに好ましくは10〜300nmである。   The cellulose nanofiber that can be used is not particularly limited as long as it is obtained by defibrating the plant fiber constituting the plant cell wall to nano size, for example, serish KY-100S (manufactured by Daicel Finechem), etc. Commercial products can be used. The fiber diameter of the cellulose nanofiber is preferably 4 to 500 nm, more preferably 5 to 400 nm, and still more preferably 10 to 300 nm from the viewpoint of firmly supporting the oxide on the oxide.

セルロースナノファイバーは、その後炭化されて、上記負極活物質用酸化物にセルロースナノファイバー由来の担持された炭素として、本発明の二次電池用酸化物系負極活物質中に存在することとなる。かかるセルロースナノファイバー由来の炭素の原子換算量は、本発明の二次電池用酸化物系負極活物質中に、好ましくは0.10〜9質量%であり、より好ましくは0.15〜8質量%であり、さらに好ましくは0.15〜6質量%である。   The cellulose nanofibers are then carbonized, and are present in the oxide-based negative electrode active material for secondary batteries of the present invention as carbon supported on the negative electrode active material-derived cellulose nanofibers. The amount of carbon derived from cellulose nanofibers in terms of atoms is preferably 0.10 to 9% by mass, more preferably 0.15 to 8% by mass in the oxide-based negative electrode active material for secondary battery of the present invention. %, More preferably 0.15 to 6% by mass.

なお、二次電池用酸化物系負極活物質中に存在するセルロースナノファイバー由来の炭素の原子換算量は、炭素・硫黄分析装置を用いて測定した炭素量から、水溶性炭素材料の添加量から求まる水溶性炭素材料由来の炭素の原子換算量を差し引くことにより、確認することができる。   In addition, the atomic equivalent amount of carbon derived from cellulose nanofibers present in the oxide-based negative electrode active material for secondary batteries is calculated from the amount of carbon measured using a carbon / sulfur analyzer and the amount of water-soluble carbon material added. This can be confirmed by subtracting the atomic equivalent amount of carbon derived from the water-soluble carbon material to be obtained.

上記負極活物質用酸化物に炭化された炭素として担持される水溶性炭素材料とは、25℃の水100gに、水溶性炭素材料の炭素原子換算量で0.4g以上、好ましくは1.0g以上溶解する炭素材料を意味し、上記負極活物質用酸化物に担持される炭素源として機能する。かかる水溶性炭素材料としては、例えば、糖類、ポリオール、ポリエーテル、及び有機酸から選ばれる1種又は2種以上が挙げられる。より具体的には、例えば、グルコース、フルクトース、ガラクトース、マンノース等の単糖類;マルトース、スクロース、セロビオース等の二糖類;デンプン、デキストリン等の多糖類;エチレングリコール、プロピレングリコール、ジエチレングリコール、ポリエチレングリコール、ブタンジオール、プロパンジオール、ポリビニルアルコール、グリセリン等のポリオールやポリエーテル;クエン酸、酒石酸、アスコルビン酸等の有機酸が挙げられる。なかでも、溶媒への溶解性及び分散性を高めて炭素材料として効果的に機能させる観点から、グルコース、フルクトース、スクロース、デキストリンが好ましく、グルコースがより好ましい。   The water-soluble carbon material supported as carbon carbonized by the oxide for the negative electrode active material is 0.4 g or more, preferably 1.0 g in terms of carbon atom of the water-soluble carbon material in 100 g of water at 25 ° C. This means a carbon material that dissolves, and functions as a carbon source carried by the oxide for negative electrode active material. Examples of the water-soluble carbon material include one or more selected from saccharides, polyols, polyethers, and organic acids. More specifically, for example, monosaccharides such as glucose, fructose, galactose and mannose; disaccharides such as maltose, sucrose and cellobiose; polysaccharides such as starch and dextrin; ethylene glycol, propylene glycol, diethylene glycol, polyethylene glycol and butane Examples include polyols and polyethers such as diol, propanediol, polyvinyl alcohol, and glycerin; and organic acids such as citric acid, tartaric acid, and ascorbic acid. Among these, glucose, fructose, sucrose, and dextrin are preferable, and glucose is more preferable from the viewpoint of improving the solubility and dispersibility in a solvent and effectively functioning as a carbon material.

かかる水溶性炭素材料由来の炭素の担持量は、セルロースナノファイバー由来の炭素が存在することなく負極活物質用酸化物表面が露出した部位に、水溶性炭素材料由来の炭素を有効に担持させる観点から、本発明の二次電池用正極活物質中に、好ましくは0.10〜9質量%であり、より好ましくは0.15〜7質量%であり、さらに好ましくは0.15〜6質量%である。   The amount of the carbon derived from the water-soluble carbon material is such that the carbon derived from the water-soluble carbon material is effectively supported at the site where the oxide surface for the negative electrode active material is exposed without the carbon derived from cellulose nanofibers. From the above, in the positive electrode active material for a secondary battery of the present invention, it is preferably 0.10 to 9% by mass, more preferably 0.15 to 7% by mass, and further preferably 0.15 to 6% by mass. It is.

セルロースナノファイバー及び水溶性炭素材料の炭素原子換算分は、炭化されたセルロースナノファイバー及び炭化された水溶性炭素材料が負極活物質用酸化物に担持された炭素として本発明の二次電池用酸化物系負極活物質中に共存することとなる。かかるセルロースナノファイバー及び水溶性炭素材料の炭素原子換算量は、これらセルロースナノファイバー由来の炭素及び水溶性炭素材料由来の炭素の合計担持量に相当し、本発明の二次電池用酸化物系負極活物質中に、合計で、好ましくは0.2〜18質量%であり、より好ましくは0.3〜15質量%であり、さらに好ましくは0.3〜12質量%である。   The carbon atom equivalent of the cellulose nanofiber and the water-soluble carbon material is obtained by oxidizing the carbonized cellulose nanofiber and the carbonized water-soluble carbon material as carbon supported on the negative electrode active material oxide for the secondary battery of the present invention. Coexists in the physical negative electrode active material. The carbon atom equivalent amount of the cellulose nanofiber and the water-soluble carbon material corresponds to the total supported amount of the carbon derived from the cellulose nanofiber and the carbon derived from the water-soluble carbon material, and the oxide-based negative electrode for the secondary battery of the present invention. In the active material, the total amount is preferably 0.2 to 18% by mass, more preferably 0.3 to 15% by mass, and further preferably 0.3 to 12% by mass.

本発明の二次電池用酸化物系負極活物質は、セルロースナノファイバー及び水溶性炭素材料が炭化されてなる炭素として互いに補い合いながら、効率的に負極活物質用酸化物に担持されてなるものであり、最終的に焼成することによって、これらセルロースナノファイバー及び水溶性炭素材料由来の炭素を負極活物質用酸化物に堅固に担持させることができ、炭素が存在することなく負極活物質用酸化物の表面が露出してしまうことを有効に回避することが可能となる。   The oxide-based negative electrode active material for a secondary battery of the present invention is efficiently supported on the oxide for negative electrode active material while complementing each other as carbon obtained by carbonizing cellulose nanofibers and a water-soluble carbon material. Yes, by finally firing, these carbon nanofibers and carbon derived from the water-soluble carbon material can be firmly supported on the oxide for negative electrode active material, and the oxide for negative electrode active material without the presence of carbon It is possible to effectively avoid the exposure of the surface.

本発明の二次電池用酸化物系負極活物質は、具体的には、負極活物質用酸化物Xにセルロースナノファイバー、水溶性炭素材料及び水を添加して懸濁液Xを得る工程(I)並びに
得られた懸濁液Xを噴霧乾燥して造粒体Yを得た後、焼成する工程(II)を備える、二次電池用酸化物系負極活物質の製造方法により得ることができる。
Specifically, the oxide-based negative electrode active material for a secondary battery of the present invention is a step of obtaining a suspension X by adding cellulose nanofibers, a water-soluble carbon material and water to the oxide X for negative electrode active material ( It can be obtained by a method for producing an oxide-based negative electrode active material for a secondary battery, comprising the step (II) of spraying and drying the obtained suspension X to obtain a granulated body Y, followed by firing (II). it can.

工程(I)は、負極活物質用酸化物Xにセルロースナノファイバー、水溶性炭素材料及び水を添加して懸濁液Xを得る工程である。かかる工程(I)におけるセルロースナノファイバーの添加量は、上記のとおり、セルロースナノファイバー由来の炭素として、セルロースナノファイバーの炭素原子換算量が上記範囲内になるような量であればよく、例えば、負極活物質用酸化物Xの表面にセルロースナノファイバー由来の炭素を有効に担持させ、且つ、充分な充放電容量を保持する観点から、負極活物質用酸化物X100質量部に対し、好ましくは0.2〜36質量部であり、より好ましくは0.3〜32質量部であり、さらに好ましくは0.4〜24質量部である。   Step (I) is a step of obtaining a suspension X by adding cellulose nanofibers, a water-soluble carbon material and water to the oxide X for negative electrode active material. As described above, the amount of cellulose nanofiber added in the step (I) may be an amount such that the carbon atom-converted amount of cellulose nanofiber is within the above range as carbon derived from cellulose nanofiber. From the viewpoint of effectively supporting carbon derived from cellulose nanofibers on the surface of the oxide X for negative electrode active material and maintaining sufficient charge / discharge capacity, it is preferably 0 with respect to 100 parts by mass of the oxide X for negative electrode active material. 0.2 to 36 parts by mass, more preferably 0.3 to 32 parts by mass, and still more preferably 0.4 to 24 parts by mass.

また、水溶性炭素材料の添加量は、上記のとおり、水溶性炭素材料由来の炭素として、水溶性炭素材料の炭素原子換算量が上記範囲内になるような量であればよく、例えば、負極活物質用酸化物Xの表面に水溶性炭素材料由来の炭素を有効に担持させ、且つ、充分な充放電容量を保持する観点から、負極活物質用酸化物X100質量部に対し、好ましくは0.2〜36質量部であり、より好ましくは0.3〜28質量部であり、さらに好ましくは0.4〜24質量部である。   Further, the amount of the water-soluble carbon material added may be an amount such that the carbon-derived equivalent amount of the water-soluble carbon material falls within the above range as the carbon derived from the water-soluble carbon material as described above. From the viewpoint of effectively supporting the carbon derived from the water-soluble carbon material on the surface of the oxide X for active material and maintaining sufficient charge / discharge capacity, it is preferably 0 with respect to 100 parts by mass of the oxide X for negative electrode active material. 0.2 to 36 parts by mass, more preferably 0.3 to 28 parts by mass, and still more preferably 0.4 to 24 parts by mass.

さらに水の添加量は、懸濁液X中においてセルロースナノファイバー及び水溶性炭素材料を良好に分散させ、これらを炭化されてなる炭素として効率的に負極活物質用酸化物Xの表面に担持させる観点から、負極活物質用酸化物X100質量部に対し、好ましくは30〜300質量部であり、より好ましくは50〜250質量部であり、さらに好ましくは75〜200質量部である。   Furthermore, the amount of water added is such that cellulose nanofibers and water-soluble carbon materials are dispersed well in the suspension X, and these are efficiently supported on the surface of the oxide X for negative electrode active material as carbonized carbon. From the viewpoint, the amount is preferably 30 to 300 parts by mass, more preferably 50 to 250 parts by mass, and further preferably 75 to 200 parts by mass with respect to 100 parts by mass of the oxide X for negative electrode active material.

工程(II)は、工程(I)で得られた懸濁液Xを噴霧乾燥して造粒体Yを得た後、焼成する工程である。工程(II)における噴霧乾燥としては、スプレードライ法による噴霧乾燥が好適であり、かかる装置として、例えば、4流体ノズルを備えたマイクロミストドライヤー(藤崎電気(株)製 MDL−050M)を用いることができる。噴霧乾燥に用いる装置の処理条件としては、エアー圧が0.3〜0.8MPaであるのが好ましく、0.5〜0.7MPaであるのがより好ましく、エアー流量が20〜60NL/minであるのが好ましく、50〜60NL/minであるのがより好ましい。また、熱風量は0.6〜1.2m3/minであるのが好ましく、0.8〜1.1m3/minであるのがより好ましく、入口温度は、100〜250℃であるのが好ましく、150〜200℃であるのがより好ましい。さらに、排気温度は70〜150℃であるのが好ましく、80〜120℃であるのがより好ましく、懸濁液(スラリー)流量は、所望の平均粒径を有する造粒体Yを得る点から、20〜70g/minであるのが好ましく、50〜70g/minであるのがより好ましい。 Step (II) is a step in which the suspension X obtained in step (I) is spray-dried to obtain a granulated body Y and then fired. As the spray drying in the step (II), spray drying by a spray drying method is suitable. For example, a micro mist dryer (MDL-050M manufactured by Fujisaki Electric Co., Ltd.) equipped with a four-fluid nozzle is used as such an apparatus. Can do. As processing conditions of the apparatus used for spray drying, the air pressure is preferably 0.3 to 0.8 MPa, more preferably 0.5 to 0.7 MPa, and the air flow rate is 20 to 60 NL / min. It is preferable that it is 50-60 NL / min. Further, it is preferable hot air amount is 0.6~1.2m 3 / min, more preferably from 0.8~1.1m 3 / min, inlet temperature, and even at 100 to 250 ° C. Preferably, it is 150-200 degreeC. Further, the exhaust temperature is preferably 70 to 150 ° C, more preferably 80 to 120 ° C, and the suspension (slurry) flow rate is from the point of obtaining a granulated body Y having a desired average particle size. It is preferable that it is 20-70 g / min, and it is more preferable that it is 50-70 g / min.

なお、工程(II)において得られる造粒体Yの平均粒径は、セルロースナノファイバー及び水溶性炭素材料をともに炭素として効率的に担持させる観点から、好ましくは50〜2000nmであり、より好ましくは50〜1000nmである。   In addition, the average particle diameter of the granulated body Y obtained in the step (II) is preferably 50 to 2000 nm, more preferably from the viewpoint of efficiently supporting both the cellulose nanofibers and the water-soluble carbon material as carbon. 50-1000 nm.

工程(II)では、次いで得られた造粒体Yを焼成する。焼成は、還元雰囲気又は不活性雰囲気中で行うのが好ましい。かかる焼成により、上記セルロースナノファイバー由来の炭素が上記負極活物質用酸化物の表面に堅固に担持されるとともに、水溶性炭素材料由来の炭素も、かかる酸化物の表面を被覆する炭素として存在することとなり、得られる酸化物系負極活物質における導電性を有効に高めることができる。   In the step (II), the obtained granulated body Y is then fired. Firing is preferably performed in a reducing atmosphere or an inert atmosphere. By such firing, carbon derived from the cellulose nanofibers is firmly supported on the surface of the oxide for negative electrode active material, and carbon derived from the water-soluble carbon material also exists as carbon covering the surface of the oxide. Thus, the conductivity of the obtained oxide-based negative electrode active material can be effectively increased.

焼成温度は、セルロースナノファイバー及び水溶性炭素材料をより有効に炭化させる観点から、好ましくは500〜1000℃であり、より好ましくは600〜850℃であり、さらに好ましくは650〜750℃である。また、焼成時間は、好ましくは10分〜24時間、より好ましくは30分〜12時間とするのがよい。   The firing temperature is preferably 500 to 1000 ° C, more preferably 600 to 850 ° C, and still more preferably 650 to 750 ° C, from the viewpoint of carbonizing the cellulose nanofiber and the water-soluble carbon material more effectively. The firing time is preferably 10 minutes to 24 hours, more preferably 30 minutes to 12 hours.

本発明の二次電池用酸化物系負極活物質は、上記セルロースナノファイバー由来の炭素と、水溶性炭素材料由来の炭素とが、共に負極活物質用酸化物に担持されて相乗的に作用し、二次電池用酸化物系負極活物質における吸着水分量を有効に低減することができる。具体的には、本発明の二次電池用酸化物系負極活物質の吸着水分量は、負極活物質用酸化物がLi4Ti512である二次電池用酸化物系負極活物質では、好ましくは500ppm以下であり、より好ましくは450ppm以下である。また、負極活物質用酸化物がTi2Nb1029である二次電池用酸化物系負極活物質では、二次電池用酸化物系負極活物質中に、好ましくは89ppm以下であり、より好ましくは85ppm以下であり、負極活物質用酸化物がTiNb27である二次電池用酸化物系負極活物質では、二次電池用酸化物系負極活物質中に、好ましくは80ppm以下であり、より好ましくは75ppm以下であり、負極活物質用酸化物がブルッカイト型TiO2である二次電池用酸化物系負極活物質では、好ましくは520ppm以下であり、より好ましくは510ppm以下である。さらに、負極活物質用酸化物がSiOである二次電池用酸化物系負極活物質では、二次電池用酸化物系負極活物質中に、好ましくは128ppm以下であり、より好ましくは125ppm以下である。
なお、かかる吸着水分量は、温度20℃及び相対湿度50%にて平衡に達するまで水分を吸着させ、温度150℃まで昇温して20分間保持した後、さらに温度250℃まで昇温して20分間保持したときの、150℃から昇温を再開するときを始点、及び250℃での恒温状態を終えたときを終点とする、始点から終点までの間に揮発した水分量として測定される値であって、二次電池用酸化物系負極活物質の吸着水分量と、上記始点から終点までの間に揮発した水分量とが、同量であるとみなし、かかる揮発する水分量の測定値を二次電池用酸化物系負極活物質の吸着水分量とするものである。
The oxide-based negative electrode active material for a secondary battery of the present invention has a synergistic action in which the carbon derived from the cellulose nanofiber and the carbon derived from the water-soluble carbon material are both supported on the oxide for the negative electrode active material. The amount of adsorbed moisture in the oxide-based negative electrode active material for secondary batteries can be effectively reduced. Specifically, the amount of adsorbed moisture of the oxide-based negative electrode active material for secondary battery of the present invention is as follows for the oxide-based negative electrode active material for secondary battery in which the oxide for negative electrode active material is Li 4 Ti 5 O 12. , Preferably it is 500 ppm or less, More preferably, it is 450 ppm or less. Further, in the oxide-based negative electrode active material for a secondary battery in which the oxide for the negative electrode active material is Ti 2 Nb 10 O 29 , the oxide-based negative electrode active material for the secondary battery is preferably 89 ppm or less, and more Preferably, it is 85 ppm or less, and the oxide-based negative electrode active material for a secondary battery in which the oxide for the negative electrode active material is TiNb 2 O 7 , preferably 80 ppm or less in the oxide-based negative electrode active material for a secondary battery. Yes, more preferably 75 ppm or less, and in an oxide-based negative electrode active material for a secondary battery in which the anode active material oxide is brookite-type TiO 2 , it is preferably 520 ppm or less, more preferably 510 ppm or less. Furthermore, in the oxide-based negative electrode active material for a secondary battery in which the oxide for the negative electrode active material is SiO, the oxide-based negative electrode active material for the secondary battery is preferably 128 ppm or less, more preferably 125 ppm or less. is there.
The amount of adsorbed water is such that moisture is adsorbed until equilibrium is reached at a temperature of 20 ° C. and a relative humidity of 50%. Measured as the amount of water volatilized from the start point to the end point, starting from when the temperature rise is resumed from 150 ° C. when held for 20 minutes and ending at the constant temperature state at 250 ° C. The amount of adsorbed water of the oxide-based negative electrode active material for a secondary battery and the amount of water volatilized between the start point and the end point are regarded as the same amount, and the amount of volatilized water is measured. The value is the amount of adsorbed water of the oxide-based negative electrode active material for secondary batteries.

このように、本発明の二次電池用酸化物系負極活物質は、水分を吸着しにくいため、製造環境として強い乾燥条件を必要とすることなく吸着水分量を有効に低減することができ、得られるリチウムイオン二次電池及びナトリウムイオン二次電池の双方において、様々な使用環境下でも優れた電池特性を安定して発現することが可能となる。
なお、温度20℃及び相対湿度50%にて平衡に達するまで水分を吸着させ、温度150℃まで昇温して20分間保持した後、さらに温度250℃まで昇温して20分間保持したときの、150℃から昇温を再開するときを始点、及び250℃での恒温状態を終えたときを終点とする、始点から終点までの間に揮発した水分量は、例えばカールフィッシャー水分計を用いて測定することができる。
Thus, since the oxide-based negative electrode active material for a secondary battery of the present invention hardly adsorbs moisture, the amount of adsorbed moisture can be effectively reduced without requiring strong drying conditions as a production environment. Both the obtained lithium ion secondary battery and sodium ion secondary battery can stably exhibit excellent battery characteristics even under various usage environments.
When water is adsorbed until equilibrium is reached at a temperature of 20 ° C. and a relative humidity of 50%, the temperature is raised to 150 ° C. and held for 20 minutes, and further raised to a temperature of 250 ° C. and held for 20 minutes. The amount of water volatilized between the start point and the end point, starting from when the temperature rise is resumed from 150 ° C. and the end point when the constant temperature state at 250 ° C. is completed, is measured using a Karl Fischer moisture meter, for example. Can be measured.

また、本発明の二次電池用酸化物系負極活物質のタップ密度は、優れた電池特性を安定して発現する観点から、負極活物質用酸化物がLi4Ti512である二次電池用酸化物系負極活物質では、好ましくは0.8〜2.5g/cm3であり、より好ましくは1.2〜2.5g/cm3である。また、負極活物質用酸化物がTi2Nb1029である二次電池用酸化物系負極活物質では、好ましくは0.9〜2.7g/cm3であり、より好ましくは1.3〜2.6g/cm3であり、負極活物質用酸化物がTiNb27である二次電池用酸化物系負極活物質では、好ましくは0.9〜2.7g/cm3であり、より好ましくは1.3〜2.6g/cm3であり、負極活物質用酸化物がブルッカイト型TiO2である二次電池用酸化物系負極活物質では、好ましくは0.9〜3.0g/cm3であり、より好ましくは1.1〜2.8g/cm3である。さらに、負極活物質用酸化物がSiOである二次電池用酸化物系負極活物質では、好ましくは0.6〜2.5g/cm3であり、より好ましくは0.8〜2.5g/cm3である。 In addition, the tap density of the oxide-based negative electrode active material for secondary battery of the present invention is a secondary electrode in which the negative electrode active material oxide is Li 4 Ti 5 O 12 from the viewpoint of stably expressing excellent battery characteristics. In the oxide type negative electrode active material for a battery, it is preferably 0.8 to 2.5 g / cm 3 , more preferably 1.2 to 2.5 g / cm 3 . Further, the anode active material for oxide Ti 2 Nb 10 O 29 is a rechargeable battery for oxide-based negative electrode active material is preferably 0.9~2.7g / cm 3, more preferably 1.3 was ~2.6g / cm 3, the negative electrode active material for oxide is TiNb 2 O 7 secondary battery oxide-based negative electrode active material is preferably 0.9~2.7g / cm 3, More preferably, it is 1.3 to 2.6 g / cm 3 , and in an oxide-based negative electrode active material for a secondary battery in which the negative electrode active material oxide is brookite-type TiO 2 , preferably 0.9 to 3.0 g. / Cm 3 , more preferably 1.1 to 2.8 g / cm 3 . Further, in the oxide-based negative electrode active material for secondary batteries in which the oxide for negative electrode active material is SiO, it is preferably 0.6 to 2.5 g / cm 3 , more preferably 0.8 to 2.5 g / cm 2. cm 3 .

得られた二次電池用酸化物系負極活物質を用いて二次電池を製造する方法は特に限定されず、公知の方法をいずれも使用できる。例えば、かかる負極活物質を結着剤や溶剤等の添加剤とともに混合して塗工液を得る。この際、必要に応じて、さらに導電助剤を添加して混合してもよい。かかる結着剤としては、特に限定されず、公知の剤をいずれも使用できる。具体的には、ポリテトラフルオロエチレン、ポリビニリデンフルオライド、ポリビニルクロライド、エチレンプロピレンジエンポリマー等が挙げられる。また、かかる導電助剤としては、特に限定されず、黒鉛以外の公知の剤をいずれも使用できる。具体的には、アセチレンブラック、ケッチェンブラック、繊維状炭素等が挙げられる。次いで、かかる塗工液を銅箔等の集電体上に塗布し、乾燥させて負極とする。   A method for producing a secondary battery using the obtained oxide-based negative electrode active material for a secondary battery is not particularly limited, and any known method can be used. For example, the negative electrode active material is mixed with additives such as a binder and a solvent to obtain a coating liquid. At this time, if necessary, a conductive additive may be further added and mixed. The binder is not particularly limited, and any known agent can be used. Specific examples include polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl chloride, and ethylene propylene diene polymer. Moreover, it does not specifically limit as this conductive support agent, Any well-known agents other than graphite can be used. Specific examples include acetylene black, ketjen black, and fibrous carbon. Next, such a coating solution is applied onto a current collector such as a copper foil and dried to obtain a negative electrode.

本発明の二次電池用酸化物系負極活物質を含む二次電池用負極を適用できる二次電池としては、正極と負極と電解液とセパレータを必須構成とするものであれば特に限定されない。   The secondary battery to which the secondary battery negative electrode containing the secondary battery oxide-based negative electrode active material of the present invention can be applied is not particularly limited as long as it has a positive electrode, a negative electrode, an electrolytic solution, and a separator as essential components.

ここで、正極については、リチウムイオン又はナトリウムイオン等、所定の金属イオンを充電時には放出し、かつ放電時には吸蔵することができれば、その材料構成で特に限定されるものではなく、公知の材料構成のものを用いることができる。例えば、原料を水熱反応させることにより得られる各種オリビン型化合物を好適に用いることが好ましい。   Here, the positive electrode is not particularly limited in its material configuration as long as it can release a predetermined metal ion such as lithium ion or sodium ion at the time of charging and can be occluded at the time of discharging. Things can be used. For example, it is preferable to suitably use various olivine compounds obtained by hydrothermal reaction of the raw materials.

電解液は、有機溶媒に支持塩を溶解させたものである。有機溶媒は、通常リチウムイオン電池やナトリウムイオン電池等の二次電池の電解液に用いられる有機溶媒であれば特に限定されるものではなく、例えば、カーボネート類、ハロゲン化炭化水素、エーテル類、ケトン類、ニトリル類、ラクトン類、オキソラン化合物等を用いることができる。   The electrolytic solution is obtained by dissolving a supporting salt in an organic solvent. The organic solvent is not particularly limited as long as it is an organic solvent that is usually used for an electrolyte of a secondary battery such as a lithium ion battery or a sodium ion battery. For example, carbonates, halogenated hydrocarbons, ethers, ketones , Nitriles, lactones, oxolane compounds and the like can be used.

支持塩は、その種類が特に限定されるものではないが、例えばリチウムイオン二次電池の場合、LiPF、LiBF、LiClO、LiAsFから選ばれる無機塩、該無機塩の誘導体、LiSOCF、LiC(SOCF、LiN(SOCF、LiN(SO及びLiN(SOCF)(SO)から選ばれる有機塩、並びに該有機塩の誘導体の少なくとも1種であることが好ましい。また、例えばナトリウムイオン二次電池の場合、NaPF、NaBF、NaClO及びNaAsFから選ばれる無機塩、該無機塩の誘導体、NaSOCF、NaC(SOCF及びNaN(SOCF、NaN(SO及びNaN(SOCF)(SO)から選ばれる有機塩、並びに該有機塩の誘導体の少なくとも1種であることが好ましい。 The type of the supporting salt is not particularly limited. For example, in the case of a lithium ion secondary battery, an inorganic salt selected from LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , a derivative of the inorganic salt, LiSO 3 CF 3 , LiC (SO 3 CF 3 ) 2 , LiN (SO 3 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 and LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ) It is preferably at least one of an organic salt and a derivative of the organic salt. In the case of a sodium ion secondary battery, for example, an inorganic salt selected from NaPF 6 , NaBF 4 , NaClO 4 and NaAsF 6 , a derivative of the inorganic salt, NaSO 3 CF 3 , NaC (SO 3 CF 3 ) 2 and NaN ( At least one organic salt selected from SO 3 CF 3 ) 2 , NaN (SO 2 C 2 F 5 ) 2 and NaN (SO 2 CF 3 ) (SO 2 C 4 F 9 ), and a derivative of the organic salt Preferably there is.

セパレータは、正極及び負極を電気的に絶縁し、電解液を保持する役割を果たすものである。たとえば、多孔性合成樹脂膜、特にポリオレフィン系高分子(ポリエチレン、ポリプロピレン)の多孔膜を用いればよい。   The separator plays a role of electrically insulating the positive electrode and the negative electrode and holding the electrolytic solution. For example, a porous synthetic resin film, particularly a polyolefin polymer (polyethylene, polypropylene) porous film may be used.

以下、本発明について、実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples.

《製造例1:負極活物資用酸化物=Li4Ti512
[実施例1]
アナターゼ型TiO2(関東化学(株)製) 1.768kg、Li2CO3(関東化学(株)製) 0.654kg、及びエタノール(関東化学(株)製、粉砕助剤) 6gを混合し、ボールミルで4時間粉砕した後、大気雰囲気下、800℃で10時間焼成してLi4Ti512(平均粒子径100nm)を得た。
<< Production Example 1: Oxide for Negative Electrode Active Material = Li 4 Ti 5 O 12 >>
[Example 1]
Anatase TiO 2 (manufactured by Kanto Chemical Co., Inc.) 1.768 kg, Li 2 CO 3 (manufactured by Kanto Chemical Co., Ltd.) 0.654 kg, and ethanol (manufactured by Kanto Chemical Co., Ltd., grinding aid) 6 g are mixed. After pulverizing with a ball mill for 4 hours, Li 4 Ti 5 O 12 (average particle diameter of 100 nm) was obtained by firing at 800 ° C. for 10 hours in an air atmosphere.

得られたLi4Ti512を1000g分取し、これに水 2000g、グルコース(日本食品化工製無水結晶ぶどう糖) 3.75g(負極活物質中における炭素原子換算量で0.15質量%に相当)、及びセルロースナノファイバー (ダイセルファインケム製セリッシュFD−200L、平均繊維径10〜100nm)16.79g(負極活物質中における炭素原子換算量で0.15質量%に相当)を添加して、懸濁液Aを得た。
次いで、懸濁液Aを噴霧乾燥(スプレードライヤー;MDL−050M、藤崎電機(株)製)して造粒体A1を得た後、これをアルゴン水素雰囲気下(水素濃度3%)、750℃で1時間焼成して、グルコース由来の炭素とセルロースナノファイバー由来の炭素が担持された二次電池用負極活物質(Li4Ti512/(CNF+C)、炭素量0.3質量%)を得た。
1000 g of the resulting Li 4 Ti 5 O 12 was fractionated, and 2000 g of water and 3.75 g of glucose (anhydrous crystalline glucose manufactured by Nippon Shokuhin Kako) were added to 0.15% by mass in terms of carbon atoms in the negative electrode active material. Equivalent), and cellulose nanofiber (Daicel Finechem Selish FD-200L, average fiber diameter 10 to 100 nm) 16.79 g (corresponding to 0.15% by mass in terms of carbon atom in the negative electrode active material) were added, to obtain a suspension a 1.
Then, the suspension A 1 spray drying; after (spray dryer MDL-050M, Fujisaki made Electric Co.) to obtain a granule A 1, which in an argon atmosphere of hydrogen (hydrogen concentration: 3%), A negative electrode active material for secondary battery (Li 4 Ti 5 O 12 / (CNF + C), carbon content 0.3% by mass, calcined at 750 ° C. for 1 hour, and supporting carbon derived from glucose and carbon derived from cellulose nanofibers )

[実施例2]
グルコースを62.56g(負極活物質中における炭素原子換算量で2.5質量%に相当)、及びセルロースナノファイバーを279.9g(負極活物質中における炭素原子換算量で2.5質量%に相当)として得た懸濁液B1を懸濁液A1の代わりに用いた以外、実施例1と同様にして、グルコース由来の炭素とセルロースナノファイバー由来の炭素が担持された二次電池用負極活物質(Li4Ti512/(CNF+C)、炭素量5.0質量%)を得た。
[Example 2]
62.56 g of glucose (corresponding to 2.5% by mass in terms of carbon atom in the negative electrode active material) and 279.9 g of cellulose nanofiber (in terms of carbon atom equivalent in the negative electrode active material to 2.5% by mass) For the secondary battery in which carbon derived from glucose and carbon derived from cellulose nanofibers are supported in the same manner as in Example 1 except that the suspension B 1 obtained as the above was used instead of the suspension A 1 A negative electrode active material (Li 4 Ti 5 O 12 / (CNF + C), carbon content 5.0% by mass) was obtained.

[実施例3]
グルコースを157.3g(負極活物質中における炭素原子換算量で6.0質量%に相当)、及びセルロースナノファイバーを671.6g(負極活物質中における炭素原子換算量で6.0質量%に相当)として得た懸濁液C1を懸濁液A1の代わりに用いた以外、実施例1と同様にして、グルコース由来の炭素とセルロースナノファイバー由来の炭素が担持された二次電池用負極活物質(Li4Ti512/(CNF+C)、炭素量12.0質量%)を得た。
[Example 3]
157.3 g of glucose (corresponding to 6.0% by mass in terms of carbon atom in the negative electrode active material) and 671.6g of cellulose nanofiber (in terms of carbon atom equivalent in the negative electrode active material to 6.0% by mass) except for using the suspension C 1 which was obtained as equivalent) in place of the suspension a 1, in the same manner as in example 1, for a secondary battery in which the carbon derived from carbon and cellulose nanofibers from glucose was carried A negative electrode active material (Li 4 Ti 5 O 12 / (CNF + C), carbon content 12.0% by mass) was obtained.

[比較例1]
実施例1において焼成により得られたLi4Ti512を1000g分取し、これに水 2000g、グルコース 125.1g(負極活物質中における炭素原子換算量で5.0質量%に相当)を添加して得た懸濁液D1を懸濁液A1の代わりに用いた以外、実施例1と同様にして、グルコースが炭化されてなる炭素が担持された二次電池用負極活物質(Li4Ti512/C、炭素量5.0質量%)を得た。
[Comparative Example 1]
1,000 g of Li 4 Ti 5 O 12 obtained by firing in Example 1 was collected, and 2000 g of water and 125.1 g of glucose (corresponding to 5.0% by mass in terms of carbon atom in the negative electrode active material) were added thereto. A negative electrode active material for a secondary battery on which carbon formed by carbonizing glucose was supported in the same manner as in Example 1 except that the suspension D 1 obtained by addition was used instead of the suspension A 1. Li 4 Ti 5 O 12 / C, carbon content 5.0% by mass).

[比較例2]
グルコースを262.2g(負極活物質中における炭素原子換算量で10.0質量%に相当)、及びセルロースナノファイバーを1119.3g(負極活物質中における炭素原子換算量で10.0質量%に相当)として得た懸濁液E1を懸濁液A1の代わりに用いた以外、実施例1と同様にして、グルコース由来の炭素とセルロースナノファイバー由来の炭素が担持された二次電池用負極活物質(Li4Ti512/(CNF+C)、炭素量20.0質量%)を得た。
[Comparative Example 2]
262.2 g of glucose (corresponding to 10.0% by mass in terms of carbon atom in the negative electrode active material) and 1119.3 g of cellulose nanofiber (in terms of carbon atom equivalent in the negative electrode active material to 10.0% by mass) except for using the suspension E 1 which was obtained as equivalent) in place of the suspension a 1, in the same manner as in example 1, for a secondary battery in which the carbon derived from carbon and cellulose nanofibers from glucose was carried A negative electrode active material (Li 4 Ti 5 O 12 / (CNF + C), carbon content 20.0% by mass) was obtained.

《製造例2:負極活物資用酸化物=Ti2Nb1029
[実施例4]
500mLポリ容器に、アナターゼ型TiO2(関東化学(株)製) 12.16g、Nb(OH)5(H.C.Starck製) 144.4g、及び水100gとともにφ3mmのジルコニアボール 1300gを入れ、混合・粉砕処理を24時間行った。その後、湿式ふるいでジルコニアボールを洗浄、及び除去した後、フィルタープレスで固液分離した。得られたケーキは、−50℃で12時間凍結乾燥した。得られた固体を大気雰囲気下、1100℃で12時間焼成し、Ti2Nb1029を得た。
<< Production Example 2: Oxide for Negative Electrode Active Material = Ti 2 Nb 10 O 29 >>
[Example 4]
In a 500 mL plastic container, put 12.16 g of anatase TiO 2 (manufactured by Kanto Chemical Co., Ltd.), Nb (OH) 5 (manufactured by HC Starck) 144.4 g, and 100 g of water, 1300 g of zirconia balls having a diameter of 3 mm, Mixing and grinding were performed for 24 hours. Thereafter, the zirconia balls were washed and removed with a wet sieve, and then solid-liquid separated with a filter press. The obtained cake was freeze-dried at −50 ° C. for 12 hours. The obtained solid was calcined at 1100 ° C. for 12 hours in an air atmosphere to obtain Ti 2 Nb 10 O 29 .

得られたTi2Nb1029を1000g分取し、これに水 2000g、グルコース 3.75g(負極活物質中における炭素原子換算量で0.15質量%に相当)、及びセルロースナノファイバー 16.79g(負極活物質中における炭素原子換算量で0.15質量%に相当)を添加して、懸濁液Fを得た。
次いで、懸濁液Fを噴霧乾燥して造粒体F1を得た後、これをアルゴン水素雰囲気下(水素濃度3%)、750℃で1時間焼成して、グルコース由来の炭素とセルロースナノファイバー由来の炭素が担持された二次電池用負極活物質(Ti2Nb1029/(CNF+C)、炭素量0.3質量%)を得た。
1000 g of the obtained Ti 2 Nb 10 O 29 was collected, and 2000 g of water, 3.75 g of glucose (corresponding to 0.15% by mass in terms of carbon atom in the negative electrode active material), and cellulose nanofibers. 79 g (corresponding to 0.15% by mass in terms of carbon atoms content in the anode active material) was added to obtain a suspension F 1.
Next, the suspension F 1 was spray-dried to obtain a granulated body F 1 , which was then calcined at 750 ° C. for 1 hour in an argon-hydrogen atmosphere (hydrogen concentration 3%) to obtain glucose-derived carbon and cellulose. A secondary battery negative electrode active material (Ti 2 Nb 10 O 29 / (CNF + C), carbon content 0.3 mass%) on which carbon derived from nanofibers was supported was obtained.

[実施例5]
グルコースを62.56g(負極活物質中における炭素原子換算量で2.5質量%に相当)、及びセルロースナノファイバーを279.9g(負極活物質中における炭素原子換算量で2.5質量%に相当)として得た懸濁液G1を懸濁液F1の代わりに用いた以外、実施例4と同様にして、グルコース由来の炭素とセルロースナノファイバー由来の炭素が担持された二次電池用負極活物質(Ti2Nb1029/(CNF+C)、炭素量5.0質量%)を得た。
[Example 5]
62.56 g of glucose (corresponding to 2.5% by mass in terms of carbon atom in the negative electrode active material) and 279.9 g of cellulose nanofiber (in terms of carbon atom equivalent in the negative electrode active material to 2.5% by mass) except for using the suspension G 1 which was obtained as equivalent) in place of the suspension F 1, in the same manner as in example 4, for a secondary battery in which the carbon derived from carbon and cellulose nanofibers from glucose was carried A negative electrode active material (Ti 2 Nb 10 O 29 / (CNF + C), carbon content 5.0% by mass) was obtained.

[実施例6]
グルコースを157.3g(負極活物質中における炭素原子換算量で6.0質量%に相当)、及びセルロースナノファイバーを671.6g(負極活物質中における炭素原子換算量で6.0質量%に相当)として得た懸濁液H1を懸濁液F1の代わりに用いた以外、実施例4と同様にして、グルコース由来の炭素とセルロースナノファイバー由来の炭素が担持された二次電池用負極活物質(Ti2Nb1029/(CNF+C)、炭素量12.0質量%)を得た。
[Example 6]
157.3 g of glucose (corresponding to 6.0% by mass in terms of carbon atom in the negative electrode active material) and 671.6g of cellulose nanofiber (in terms of carbon atom equivalent in the negative electrode active material to 6.0% by mass) For the secondary battery in which the carbon derived from glucose and the carbon derived from cellulose nanofibers are supported in the same manner as in Example 4 except that the suspension H 1 obtained as above was used instead of the suspension F 1 A negative electrode active material (Ti 2 Nb 10 O 29 / (CNF + C), carbon content 12.0% by mass) was obtained.

[比較例3]
実施例4において焼成により得られたTi2Nb1029を1000g分取し、これに水 2000g、グルコース 125.1g(負極活物質中における炭素原子換算量で5.0質量%に相当)を添加して得た懸濁液I1を懸濁液F1の代わりに用いた以外、実施例4と同様にして、グルコース由来の炭素が担持された二次電池用負極活物質(Ti2Nb1029/C、炭素量5.0質量%)を得た。
[Comparative Example 3]
1000 g of Ti 2 Nb 10 O 29 obtained by firing in Example 4 was collected, and 2000 g of water and 125.1 g of glucose (corresponding to 5.0% by mass in terms of carbon atom in the negative electrode active material) were added thereto. A negative electrode active material for secondary battery (Ti 2 Nb) on which glucose-derived carbon is supported in the same manner as in Example 4 except that the suspension I 1 obtained by addition was used instead of the suspension F 1. 10 O 29 / C, carbon content 5.0% by mass).

[比較例4]
グルコースを262.2g(負極活物質中における炭素原子換算量で10.0質量%に相当)、及びセルロースナノファイバーを1119.3g(負極活物質中における炭素原子換算量で10.0質量%に相当)として得た懸濁液J1を懸濁液F1の代わりに用いた以外、実施例4と同様にして、グルコース由来の炭素とセルロースナノファイバー由来の炭素が担持された二次電池用負極活物質(Ti2Nb1029/(CNF+C)、炭素量20.0質量%)を得た。
[Comparative Example 4]
262.2 g of glucose (corresponding to 10.0% by mass in terms of carbon atom in the negative electrode active material) and 1119.3 g of cellulose nanofiber (in terms of carbon atom equivalent in the negative electrode active material to 10.0% by mass) except for using the suspension J 1 which was obtained as equivalent) in place of the suspension F 1, in the same manner as in example 4, for a secondary battery in which the carbon derived from carbon and cellulose nanofibers from glucose was carried A negative electrode active material (Ti 2 Nb 10 O 29 / (CNF + C), carbon content 20.0% by mass) was obtained.

《製造例3:負極活物資用酸化物=TiNb27
[実施例7]
5Lポリ容器に、アナターゼ型TiO2(関東化学(株)製) 243.2g、Nb2O5(関東化学(株)製)797.4g、及び水1000gと共に、φ1mmのジルコニアボール13kgを入れ、混合・粉砕処理を24時間行った。その後、湿式ふるいでジルコニアボールを洗浄、及び除去した後、フィルタープレスで固液分離した。
得られたケーキ1質量部に対して1質量部の水を添加してスラリーとした後、実施例1と同様にしてMDL−050Mを用いて噴霧乾燥し、得られた造粒体を大気雰囲気下、1300℃で12時間焼成し、TiNb27を得た。
<< Production Example 3: Oxide for Negative Electrode Active Material = TiNb 2 O 7 >>
[Example 7]
In a 5 L plastic container, put 133.2 kg of zirconia balls with a diameter of 1 mm together with 243.2 g of anatase TiO 2 (manufactured by Kanto Chemical Co., Ltd.), 797.4 g of Nb2O5 (manufactured by Kanto Chemical Co., Ltd.) and 1000 g of water, and mixed and pulverized. The treatment was performed for 24 hours. Thereafter, the zirconia balls were washed and removed with a wet sieve, and then solid-liquid separated with a filter press.
After adding 1 part by mass of water to 1 part by mass of the obtained cake to make a slurry, it was spray-dried using MDL-050M in the same manner as in Example 1, and the resulting granulated product was subjected to an atmospheric atmosphere. Under baking at 1300 ° C. for 12 hours, TiNb 2 O 7 was obtained.

得られたTiNb27を1000g分取し、これに水 2000g、グルコース 3.75g(負極活物質中における炭素原子換算量で0.15質量%に相当)、及びセルロースナノファイバー 16.79g(負極活物質中における炭素原子換算量で0.15質量%に相当)を添加して、懸濁液Kを得た。
次いで、懸濁液Kを噴霧乾燥して造粒体K1を得た後、これをアルゴン水素雰囲気下(水素濃度3%)、750℃で1時間焼成して、グルコース由来の炭素とセルロースナノファイバー由来の炭素が担持された二次電池用負極活物質(TiNb27/(CNF+C)、炭素量0.3質量%)を得た。
1,000 g of the obtained TiNb 2 O 7 was collected, and 2000 g of water, 3.75 g of glucose (corresponding to 0.15% by mass in terms of carbon atom in the negative electrode active material), and 16.79 g of cellulose nanofibers ( corresponds to 0.15% by mass in terms of carbon atoms content in the anode active material) was added to obtain a suspension K 1.
Then, after the suspension K 1 was spray dried to obtain a granule K 1, which argon atmosphere of hydrogen (hydrogen concentration: 3%), and then calcined 1 hour at 750 ° C., glucose-derived carbon and cellulose A secondary battery negative electrode active material (TiNb 2 O 7 / (CNF + C), carbon content 0.3 mass%) on which carbon derived from nanofibers was supported was obtained.

[実施例8]
グルコースを62.56g(負極活物質中における炭素原子換算量で2.5質量%に相当)、及びセルロースナノファイバーを279.9g(負極活物質中における炭素原子換算量で2.5質量%に相当)として得た懸濁液L1を懸濁液K1の代わりに用いた以外、実施例7と同様にして、グルコース由来の炭素とセルロースナノファイバー由来の炭素が担持された二次電池用負極活物質(TiNb27/(CNF+C)、炭素量5.0質量%)を得た。
[Example 8]
62.56 g of glucose (corresponding to 2.5% by mass in terms of carbon atom in the negative electrode active material) and 279.9 g of cellulose nanofiber (in terms of carbon atom equivalent in the negative electrode active material to 2.5% by mass) except for using the suspension L 1 which was obtained as equivalent) in place of the suspension K 1, in the same manner as in example 7, for a secondary battery in which the carbon derived from carbon and cellulose nanofibers from glucose was carried A negative electrode active material (TiNb 2 O 7 / (CNF + C), carbon content 5.0% by mass) was obtained.

[実施例9]
グルコースを157.3g(負極活物質中における炭素原子換算量で6.0質量%に相当)、及びセルロースナノファイバーを671.6g(負極活物質中における炭素原子換算量で6.0質量%に相当)として得た懸濁液M1を懸濁液K1の代わりに用いた以外、実施例7と同様にして、グルコース由来の炭素とセルロースナノファイバー由来の炭素が担持された二次電池用負極活物質(TiNb27/(CNF+C)、炭素量12.0質量%)を得た。
[Example 9]
157.3 g of glucose (corresponding to 6.0% by mass in terms of carbon atom in the negative electrode active material) and 671.6g of cellulose nanofiber (in terms of carbon atom equivalent in the negative electrode active material to 6.0% by mass) except for using the suspension M 1 which was obtained as equivalent) in place of the suspension K 1, in the same manner as in example 7, for a secondary battery in which the carbon derived from carbon and cellulose nanofibers from glucose was carried A negative electrode active material (TiNb 2 O 7 / (CNF + C), carbon content 12.0% by mass) was obtained.

[比較例5]
実施例7において焼成により得られたTiNb27を1000g分取し、これに水 2000g、グルコース 125.1g(負極活物質中における炭素原子換算量で5.0質量%に相当)を添加して得た懸濁液N1を懸濁液K1の代わりに用いた以外、実施例7と同様にして、グルコース由来の炭素が担持された二次電池用負極活物質(TiNb27/C、炭素量5.0質量%)を得た。
[Comparative Example 5]
1,000 g of TiNb 2 O 7 obtained by firing in Example 7 was collected, and 2000 g of water and 125.1 g of glucose (corresponding to 5.0% by mass in terms of carbon atom in the negative electrode active material) were added thereto. The negative electrode active material for secondary battery (TiNb 2 O 7 / C) on which carbon derived from glucose was supported was obtained in the same manner as in Example 7 except that the suspension N 1 obtained in this way was used instead of the suspension K 1. C, carbon mass 5.0% by mass).

[比較例6]
グルコースを262.2g(負極活物質中における炭素原子換算量で10.0質量%に相当)、及びセルロースナノファイバーを1119.3g(負極活物質中における炭素原子換算量で10.0質量%に相当)として得た懸濁液O1を懸濁液K1の代わりに用いた以外、実施例7と同様にして、グルコース由来の炭素とセルロースナノファイバー由来の炭素が担持された二次電池用負極活物質(TiNb27/(CNF+C)、炭素量20.0質量%)を得た。
[Comparative Example 6]
262.2 g of glucose (corresponding to 10.0% by mass in terms of carbon atom in the negative electrode active material) and 1119.3 g of cellulose nanofiber (in terms of carbon atom equivalent in the negative electrode active material to 10.0% by mass) For the secondary battery on which carbon derived from glucose and carbon derived from cellulose nanofibers are supported in the same manner as in Example 7, except that the suspension O 1 obtained as a) was used instead of the suspension K 1 A negative electrode active material (TiNb 2 O 7 / (CNF + C), carbon content 20.0% by mass) was obtained.

《製造例4:負極活物資用酸化物=ブルッカイト型TiO2
[実施例10]
水 4000gに、硫酸チタニル(キシダ化学(株)製) 2656gを添加した後、50℃に加温しながら、24時間攪拌して溶液P1を得た。また、水4000gに、シュウ酸二水和物(関東化学(株)製) 633gを添加し、50℃に加温しながら溶解して溶液Pを得た。次に、溶液P1に、溶液Pを10分間かけて滴下した後、90℃に加温しながら12時間攪拌した。得られた沈殿物をフィルタープレスで分離した後、80℃で24時間乾燥してオキシシュウ酸チタンを得た。得られたオキシシュウ酸チタンを、600℃で2時間焼成して、ブルッカイト型TiO2を得た。
<< Production Example 4: Oxide for Negative Electrode Active Material = Brookite TiO 2 >>
[Example 10]
After adding 2656 g of titanyl sulfate (manufactured by Kishida Chemical Co., Ltd.) to 4000 g of water, the solution was stirred for 24 hours while heating to 50 ° C. to obtain a solution P 1 . Further, the water 4000 g, was added oxalic acid dihydrate (manufactured by Kanto Chemical (Co.)) 633 g, to obtain a solution P 2 was dissolved under warming to 50 ° C.. Then, the solution P 1, was added dropwise over a solution P 2 10 minutes, and stirred for 12 hours while heating at 90 ° C.. The obtained precipitate was separated by a filter press and then dried at 80 ° C. for 24 hours to obtain titanium oxyoxalate. The obtained titanium oxyoxalate was baked at 600 ° C. for 2 hours to obtain brookite type TiO 2 .

得られたブルッカイト型TiO2を1000g分取し、これに水 2000g、グルコース 3.75g(負極活物質中における炭素原子換算量で0.15質量%に相当)、及びセルロースナノファイバー 16.79g(負極活物質中における炭素原子換算量で0.15質量%に相当)を添加して、懸濁液Pを得た。
次いで、懸濁液Pを噴霧乾燥して造粒体P1を得た後、これをアルゴン水素雰囲気下(水素濃度3%)、750℃で1時間焼成して、グルコース由来の炭素とセルロースナノファイバー由来の炭素が担持された二次電池用負極活物質(ブルッカイト型TiO2/(CNF+C)、炭素量0.3質量%)を得た。
1000 g of the obtained brookite-type TiO 2 was collected, and 2000 g of water, 3.75 g of glucose (corresponding to 0.15% by mass in terms of carbon atom in the negative electrode active material), and 16.79 g of cellulose nanofibers ( Suspension P 1 was obtained by adding 0.15% by mass in terms of carbon atoms in the negative electrode active material.
Next, the suspension P 1 was spray-dried to obtain a granulated body P 1 , which was then calcined at 750 ° C. for 1 hour in an argon-hydrogen atmosphere (hydrogen concentration 3%) to obtain glucose-derived carbon and cellulose. A secondary battery negative electrode active material (Brookite TiO 2 / (CNF + C), carbon content 0.3 mass%) on which carbon derived from nanofibers was supported was obtained.

[実施例11]
グルコースを62.56g(負極活物質中における炭素原子換算量で2.5質量%に相当)、及びセルロースナノファイバーを279.9g(負極活物質中における炭素原子換算量で2.5質量%に相当)として得た懸濁液Q1を懸濁液P1の代わりに用いた以外、実施例10と同様にして、グルコース由来の炭素とセルロースナノファイバー由来の炭素が担持された二次電池用負極活物質(ブルッカイト型TiO2/(CNF+C)、炭素量5.0質量%)を得た。
[Example 11]
62.56 g of glucose (corresponding to 2.5% by mass in terms of carbon atom in the negative electrode active material) and 279.9 g of cellulose nanofiber (in terms of carbon atom equivalent in the negative electrode active material to 2.5% by mass) except for using the suspension Q 1 which was obtained as equivalent) in place of the suspension P 1, in the same manner as in example 10, for a secondary battery in which the carbon derived from carbon and cellulose nanofibers from glucose was carried A negative electrode active material (Brookite TiO 2 / (CNF + C), carbon content 5.0% by mass) was obtained.

[実施例12]
グルコースを157.3g(負極活物質中における炭素原子換算量で6.0質量%に相当)、及びセルロースナノファイバーを671.6g(負極活物質中における炭素原子換算量で6.0質量%に相当)として得た懸濁液R1を懸濁液P1の代わりに用いた以外、実施例10と同様にして、グルコース由来の炭素とセルロースナノファイバー由来の炭素が担持された二次電池用負極活物質(ブルッカイト型TiO2/(CNF+C)、炭素量12.0質量%)を得た。
[Example 12]
157.3 g of glucose (corresponding to 6.0% by mass in terms of carbon atom in the negative electrode active material) and 671.6g of cellulose nanofiber (in terms of carbon atom equivalent in the negative electrode active material to 6.0% by mass) For the secondary battery in which carbon derived from glucose and carbon derived from cellulose nanofibers are supported in the same manner as in Example 10, except that the suspension R 1 obtained as the above was used instead of the suspension P 1 A negative electrode active material (Brookite type TiO 2 / (CNF + C), carbon content 12.0% by mass) was obtained.

[比較例7]
実施例10において焼成により得られたブルッカイト型TiO2を1000g分取し、これに水 2000g、グルコース 125.1g(負極活物質中における炭素原子換算量で5.0質量%に相当)を添加して得た懸濁液S1を懸濁液P1の代わりに用いた以外、実施例10と同様にして、グルコース由来の炭素が担持された二次電池用負極活物質(ブルッカイト型TiO2/C、炭素量5.0質量%)を得た。
[Comparative Example 7]
1000 g of brookite-type TiO 2 obtained by firing in Example 10 was collected, and 2000 g of water and 125.1 g of glucose (corresponding to 5.0 mass% in terms of carbon atom in the negative electrode active material) were added thereto. The negative electrode active material for secondary battery on which carbon derived from glucose was supported (Brookite type TiO 2 / V) in the same manner as in Example 10 except that the suspension S 1 obtained in this way was used instead of the suspension P 1. C, carbon mass 5.0% by mass).

[比較例8]
グルコースを262.2g(負極活物質中における炭素原子換算量で10.0質量%に相当)、及びセルロースナノファイバーを1119.3g(負極活物質中における炭素原子換算量で10.0質量%に相当)として得た懸濁液T1を懸濁液P1の代わりに用いた以外、実施例10と同様にして、グルコース由来の炭素とセルロースナノファイバー由来の炭素が担持された二次電池用負極活物質(ブルッカイト型TiO2/(CNF+C)、炭素量20.0質量%)を得た。
[Comparative Example 8]
262.2 g of glucose (corresponding to 10.0% by mass in terms of carbon atom in the negative electrode active material) and 1119.3 g of cellulose nanofiber (in terms of carbon atom equivalent in the negative electrode active material to 10.0% by mass) For the secondary battery in which carbon derived from glucose and carbon derived from cellulose nanofibers are supported in the same manner as in Example 10 except that the suspension T 1 obtained as (equivalent) was used instead of the suspension P 1 A negative electrode active material (Brookite type TiO 2 / (CNF + C), carbon content 20.0% by mass) was obtained.

《製造例5:負極活物資用酸化物=SiO》
[実施例13]
市販のSiO粉末((株)大阪チタニウムテクノロジーズ製) 100gをボールミルで24時間粉砕し、平均粒径200nmのSiO粉末を得た。
<< Production Example 5: Oxide for negative electrode active material = SiO >>
[Example 13]
100 g of commercially available SiO powder (manufactured by Osaka Titanium Technologies Co., Ltd.) was pulverized with a ball mill for 24 hours to obtain SiO powder having an average particle diameter of 200 nm.

得られたSiOを1000g分取し、これに水 2000g、グルコース 3.75g(負極活物質中における炭素原子換算量で0.15質量%に相当)、及びセルロースナノファイバー 16.79g(負極活物質中における炭素原子換算量で0.15質量%に相当)を添加して、懸濁液Uを得た。
次いで、懸濁液Uを噴霧乾燥して造粒体U1を得た後、これをアルゴン水素雰囲気下(水素濃度3%)、750℃で1時間焼成して、グルコース由来の炭素とセルロースナノファイバー由来の炭素が担持された二次電池用負極活物質(SiO/(CNF+C)、炭素量0.3質量%)を得た。
1000 g of the obtained SiO was fractionated, and 2000 g of water, 3.75 g of glucose (corresponding to 0.15% by mass in terms of carbon atom in the negative electrode active material), and 16.79 g of cellulose nanofiber (negative electrode active material) by adding equivalent) to 0.15 wt% in terms of carbon atoms content in the medium to give a suspension U 1.
Next, the suspension U 1 was spray-dried to obtain a granulated body U 1 , which was then calcined at 750 ° C. for 1 hour in an argon-hydrogen atmosphere (hydrogen concentration 3%) to obtain glucose-derived carbon and cellulose. A secondary battery negative electrode active material (SiO / (CNF + C), carbon content 0.3 mass%) on which carbon derived from nanofibers was supported was obtained.

[実施例14]
グルコースを62.56g(負極活物質中における炭素原子換算量で2.5質量%に相当)、及びセルロースナノファイバーを279.9g(負極活物質中における炭素原子換算量で2.5質量%に相当)として得た懸濁液V1を懸濁液U1の代わりに用いた以外、実施例13と同様にして、グルコース由来の炭素とセルロースナノファイバー由来の炭素が担持された二次電池用負極活物質(SiO/(CNF+C)、炭素量5.0質量%)を得た。
[Example 14]
62.56 g of glucose (corresponding to 2.5% by mass in terms of carbon atom in the negative electrode active material) and 279.9 g of cellulose nanofiber (in terms of carbon atom equivalent in the negative electrode active material to 2.5% by mass) except for using the suspension V 1 obtained by the equivalent) in place of the suspension U 1, in the same manner as in example 13, for a secondary battery in which the carbon derived from carbon and cellulose nanofibers from glucose was carried A negative electrode active material (SiO / (CNF + C), carbon content 5.0 mass%) was obtained.

[実施例15]
グルコースを157.3g(負極活物質中における炭素原子換算量で6.0質量%に相当)、及びセルロースナノファイバーを671.6g(負極活物質中における炭素原子換算量で6.0質量%に相当)として得た懸濁液W1を懸濁液U1の代わりに用いた以外、実施例10と同様にして、グルコース由来の炭素とセルロースナノファイバー由来の炭素が担持された二次電池用負極活物質(SiO/(CNF+C)、炭素量12.0質量%)を得た。
[Example 15]
157.3 g of glucose (corresponding to 6.0% by mass in terms of carbon atom in the negative electrode active material) and 671.6g of cellulose nanofiber (in terms of carbon atom equivalent in the negative electrode active material to 6.0% by mass) except for using the suspension W 1 which was obtained as equivalent) in place of the suspension U 1, in the same manner as in example 10, for a secondary battery in which the carbon derived from carbon and cellulose nanofibers from glucose was carried A negative electrode active material (SiO / (CNF + C), carbon content 12.0% by mass) was obtained.

[比較例9]
実施例13において粉砕により得られたSiOを1000g分取し、これに水 2000g、グルコース 125.11g(負極活物質中における炭素原子換算量で5.0質量%に相当)を添加して得た懸濁液X1を懸濁液U1の代わりに用いた以外、実施例13と同様にして、グルコース由来の炭素が担持された二次電池用負極活物質(SiO/C、炭素量5.0質量%)を得た。
[Comparative Example 9]
1000 g of SiO obtained by pulverization in Example 13 was collected, and 2000 g of water and 125.11 g of glucose (corresponding to 5.0 mass% in terms of carbon atom in the negative electrode active material) were added thereto. except for using the suspension X 1 in place of the suspension U 1, in the same manner as in example 13, the negative electrode active material for a secondary battery in which the carbon derived from glucose was carried (SiO / C, the amount of carbon 5. 0% by mass) was obtained.

[比較例10]
グルコースを262.2g(負極活物質中における炭素原子換算量で10.0質量%に相当)、及びセルロースナノファイバーを1119.3g(負極活物質中における炭素原子換算量で10.0質量%に相当)として得た懸濁液Y1を懸濁液U1の代わりに用いた以外、実施例13と同様にして、グルコース由来の炭素とセルロースナノファイバー由来の炭素が担持された二次電池用負極活物質(SiO/(CNF+C)、炭素量20.0質量%)を得た。
[Comparative Example 10]
262.2 g of glucose (corresponding to 10.0% by mass in terms of carbon atom in the negative electrode active material) and 1119.3 g of cellulose nanofiber (in terms of carbon atom equivalent in the negative electrode active material to 10.0% by mass) except for using the suspension Y 1, obtained by the equivalent) in place of the suspension U 1, in the same manner as in example 13, for a secondary battery in which the carbon derived from carbon and cellulose nanofibers from glucose was carried A negative electrode active material (SiO / (CNF + C), carbon content 20.0% by mass) was obtained.

《吸着水分量の測定》
得られた各負極活物質を温度20℃、相対湿度50%の環境に1日間静置して平衡に達するまで水分を吸着させ、温度150℃まで昇温して20分間保持した後、さらに温度250℃まで昇温して20分間保持したときの、150℃から昇温を再開するときを始点とし、及び250℃での恒温状態を終えたときを終点とし、始点から終点までの間に揮発した水分量を、カールフィッシャー水分計(京都電子工業(株)製MKC−610)を用いて測定し、負極活物質における吸着水分量として求めた。
結果を表1に示す。
<Measurement of adsorbed water content>
Each obtained negative electrode active material was allowed to stand in an environment at a temperature of 20 ° C. and a relative humidity of 50% for 1 day to adsorb moisture until it reached equilibrium, heated to a temperature of 150 ° C. and held for 20 minutes, and then further heated to When the temperature is raised to 250 ° C. and held for 20 minutes, the start point is when the temperature rise is resumed from 150 ° C., the end point is when the constant temperature state at 250 ° C. is finished, and volatilization occurs between the start point and the end point. The measured moisture content was measured using a Karl Fischer moisture meter (MKC-610, manufactured by Kyoto Denshi Kogyo Co., Ltd.) and determined as the amount of adsorbed moisture in the negative electrode active material.
The results are shown in Table 1.

《二次電池を用いた充放電特性の評価》
得られた各負極活物質、アセチレンブラック(導電剤)、ポリフッ化ビニリデン(粘結剤)を質量比85:10:5の配合割合で混合し、これにN−メチル−2−ピロリドンを加えて充分混練し、負極スラリーを調製した。
得られた負極スラリーを厚さ10μmの銅箔からなる集電体に塗工機を用いて塗布し、80℃で12時間の真空乾燥を行った。その後、φ14mmの円盤状に打ち抜いてハンドプレスを用いて16MPaで2分間プレスし、負極とした。
次いで、φ15mmに打ち抜いたLi箔を対極とし、電解液としてエチレンカーボネート及びエチルメチルカーボネートを体積比3:7の割合で混合した混合溶媒にLiPF6を1mol/Lの濃度で溶解したものを用い、セパレータに高分子多孔フィルム(ポリプロピレン製)を用いて、露点が−50℃以下の雰囲気で常法により組み込み収容し、コイン型リチウム二次電池(CR−2032)を製造した。
<< Evaluation of charge / discharge characteristics using secondary battery >>
Each obtained negative electrode active material, acetylene black (conductive agent), and polyvinylidene fluoride (binding agent) were mixed at a mass ratio of 85: 10: 5, and N-methyl-2-pyrrolidone was added thereto. The mixture was sufficiently kneaded to prepare a negative electrode slurry.
The obtained negative electrode slurry was applied to a current collector made of a copper foil having a thickness of 10 μm using a coating machine, and vacuum dried at 80 ° C. for 12 hours. Thereafter, it was punched into a disk shape of φ14 mm and pressed at 16 MPa for 2 minutes using a hand press to obtain a negative electrode.
Next, a Li foil punched out to φ15 mm was used as a counter electrode, and a solution obtained by dissolving LiPF 6 at a concentration of 1 mol / L in a mixed solvent in which ethylene carbonate and ethylmethyl carbonate were mixed at a volume ratio of 3: 7 was used as an electrolyte. A polymer porous film (made of polypropylene) was used as a separator, and was housed and housed in a conventional manner in an atmosphere with a dew point of −50 ° C. or lower to produce a coin-type lithium secondary battery (CR-2032).

作成した各リチウム二次電池について、気温30℃環境下、充放電試験における上限電圧、下限電圧、及び2通りの充放電レート(レートA及びレートB)を各々表1に示す値に設定し、各レートで50サイクルの繰返し充放電試験を行い、初回放電容量(mAh/g)と50サイクル後の放電容量(mAh/g)を測定し、下記式(2)により容量保持率(%)を求めた。
容量保持率(%)=(50サイクル後の放電容量)/(1サイクル後の放電容量) ×100 ・・・(2)
結果を表1に示す。
なお、これらの値は、数値が大きいほど好ましく、また電池特性への吸着水分量による影響は、より速い充放電レートにおける容量保持率に現れやすい。
For each lithium secondary battery created, the upper limit voltage, the lower limit voltage, and the two charge / discharge rates (rate A and rate B) in the charge / discharge test were set to the values shown in Table 1, respectively, under an ambient temperature of 30 ° C. 50 cycles of repeated charge / discharge tests were performed at each rate, the initial discharge capacity (mAh / g) and the discharge capacity after 50 cycles (mAh / g) were measured, and the capacity retention rate (%) was calculated by the following formula (2). Asked.
Capacity retention (%) = (discharge capacity after 50 cycles) / (discharge capacity after 1 cycle) × 100 (2)
The results are shown in Table 1.
In addition, these values are so preferable that a numerical value is large, and the influence by the amount of moisture to adsorb | suck to a battery characteristic tends to appear in the capacity | capacitance retention rate in a quick charge / discharge rate.

Figure 0006126192
Figure 0006126192

上記結果より、実施例の負極活物質は、比較例の負極活物質に比して、確実に吸着水分量を低減することができるとともに、得られる電池においても優れた性能を発揮できることがわかる。   From the above results, it can be seen that the negative electrode active material of the example can surely reduce the amount of adsorbed moisture as compared with the negative electrode active material of the comparative example, and can also exhibit excellent performance in the obtained battery.

Claims (7)

負極活物質用酸化物に、炭素の原子換算量で0.10〜9質量%のセルロースナノファイバー由来の炭素と、糖類、ポリオール、ポリエーテル、及び有機酸から選ばれる1種又は2種以上であり、かつ炭素の原子換算量で0.10〜9質量%の水溶性炭素材料由来の炭素とが担持してなる二次電池用酸化物系負極活物質。 In the oxide for negative electrode active material , 0.10-9 mass% of carbon derived from cellulose nanofibers in terms of carbon atom , and one or more selected from saccharides, polyols, polyethers, and organic acids An oxide-based negative electrode active material for a secondary battery, which is supported by 0.10 to 9% by mass of carbon derived from a water-soluble carbon material. セルロースナノファイバー由来の炭素及び水溶性炭素材料由来の炭素の合計担持量が、0.3〜12質量%である請求項1に記載の二次電池用酸化物系負極活物質。The oxide-based negative electrode active material for a secondary battery according to claim 1, wherein the total supported amount of carbon derived from cellulose nanofibers and carbon derived from a water-soluble carbon material is 0.3 to 12% by mass. 水溶性炭素材料が、グルコースである請求項1又は2に記載の二次電池用酸化物系負極活物質。The oxide-based negative electrode active material for a secondary battery according to claim 1 or 2, wherein the water-soluble carbon material is glucose. 負極活物質用酸化物が、Li4Ti512、Ti2Nb1029、TiNb27、ブルッカイト型TiO2、及びSiOから選ばれる酸化物である請求項1〜3のいずれか1項に記載の二次電池用酸化物系負極活物質。 Negative electrode active material for oxide, Li 4 Ti 5 O 12, Ti 2 Nb 10 O 29, TiNb 2 O 7, brookite TiO 2, and any one of claims 1 to 3 is an oxide selected from SiO 1 An oxide-based negative electrode active material for a secondary battery according to Item. 負極活物質用酸化物Xに、負極活物質用酸化物X100質量部に対して0.2〜36質量部のセルロースナノファイバー糖類、ポリオール、ポリエーテル、及び有機酸から選ばれる1種又は2種以上であり、かつ負極活物質用酸化物X100質量部に対して0.2〜36質量部の水溶性炭素材料と、を添加して懸濁液Xを得る工程(I)並びに
得られた懸濁液Xを噴霧乾燥して造粒体Yを得た後、焼成する工程(II)を備える、二次電池用酸化物系負極活物質の製造方法。
One type selected from 0.2 to 36 parts by mass of cellulose nanofibers, saccharides, polyols, polyethers, and organic acids, with respect to 100 parts by mass of the negative electrode active material oxide X. Step (I) in which a suspension X is obtained by adding 0.2 to 36 parts by mass of water-soluble carbon material and water with respect to 100 parts by mass of the negative electrode active material oxide X, and two or more types The manufacturing method of the oxide type negative electrode active material for secondary batteries provided with the process (II) baked, after spray-drying the obtained suspension X and obtaining the granulated body Y.
造粒体Yの平均粒径が、50〜2000nmである請求項5に記載の二次電池用酸化物系負極活物質の製造方法。The manufacturing method of the oxide type negative electrode active material for secondary batteries of Claim 5 whose average particle diameter of the granulated body Y is 50-2000 nm. 負極活物質用酸化物が、Li4Ti512、Ti2Nb1029、TiNb27、ブルッカイト型TiO2、及びSiOから選ばれる酸化物である請求項5又は6に記載の二次電池用酸化物系負極活物質の製造方法。 The oxide according to claim 5 or 6 , wherein the oxide for the negative electrode active material is an oxide selected from Li 4 Ti 5 O 12 , Ti 2 Nb 10 O 29 , TiNb 2 O 7 , brookite type TiO 2 , and SiO. The manufacturing method of the oxide type negative electrode active material for secondary batteries.
JP2015240698A 2015-12-10 2015-12-10 Oxide-based negative electrode active material for secondary battery and method for producing the same Active JP6126192B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015240698A JP6126192B1 (en) 2015-12-10 2015-12-10 Oxide-based negative electrode active material for secondary battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015240698A JP6126192B1 (en) 2015-12-10 2015-12-10 Oxide-based negative electrode active material for secondary battery and method for producing the same

Publications (2)

Publication Number Publication Date
JP6126192B1 true JP6126192B1 (en) 2017-05-10
JP2017107743A JP2017107743A (en) 2017-06-15

Family

ID=58704758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015240698A Active JP6126192B1 (en) 2015-12-10 2015-12-10 Oxide-based negative electrode active material for secondary battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP6126192B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113233504A (en) * 2021-04-29 2021-08-10 武汉理工大学 Preparation method and application of high-conductivity titanium niobate negative electrode material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108275717B (en) * 2018-01-23 2020-02-18 苏州聚康新材料科技有限公司 Preparation method of composite material added with nano spinel lithium titanate
JP7043671B1 (en) * 2021-09-22 2022-03-29 Jx金属株式会社 Method for producing brookite-type crystalline titanium oxide powder and brookite-type crystalline titanium oxide powder

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015156293A (en) * 2014-02-20 2015-08-27 三菱マテリアル株式会社 Negative electrode for lithium ion secondary battery and for lithium ion capacitor
JP2015532514A (en) * 2012-10-22 2015-11-09 ハイドロ−ケベック Method of manufacturing electrode material for lithium-ion secondary battery and lithium-ion battery using the electrode material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015532514A (en) * 2012-10-22 2015-11-09 ハイドロ−ケベック Method of manufacturing electrode material for lithium-ion secondary battery and lithium-ion battery using the electrode material
JP2015156293A (en) * 2014-02-20 2015-08-27 三菱マテリアル株式会社 Negative electrode for lithium ion secondary battery and for lithium ion capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113233504A (en) * 2021-04-29 2021-08-10 武汉理工大学 Preparation method and application of high-conductivity titanium niobate negative electrode material

Also Published As

Publication number Publication date
JP2017107743A (en) 2017-06-15

Similar Documents

Publication Publication Date Title
EP2911223B1 (en) Titanium-niobium composite oxide-based electrode active material and lithium secondary battery using the same
TWI461366B (en) Carbon-coated lithium titanium spinel
JP6138218B2 (en) Oxide-based negative electrode active material for secondary battery and method for producing the same
JP6042515B2 (en) Positive electrode active material for secondary battery and method for producing the same
JP6200529B2 (en) Method for producing negative electrode active material for secondary battery
KR101751787B1 (en) Anodes active material containing Si composite for lithium secondary batteries and its preparation method and lithium secondary batteries comprising the same
JP6042514B2 (en) Positive electrode active material for secondary battery and method for producing the same
JP6023295B2 (en) Positive electrode active material for secondary battery and method for producing the same
JP6434555B2 (en) Negative electrode active material composite for lithium ion secondary battery and method for producing the same
JP6126191B1 (en) Oxide-based negative electrode active material for secondary battery and method for producing the same
JP6126192B1 (en) Oxide-based negative electrode active material for secondary battery and method for producing the same
JP7208147B2 (en) Lithium vanadium oxide crystal, electrode material, and storage device
WO2017047755A1 (en) Fibrous carbon-containing lithium-titanium composite oxide powder, electrode sheet using same, and power storage device using same
JP6243932B2 (en) Method for producing titanium niobium oxide, and method for producing titanium niobium oxide negative electrode active material using titanium niobium oxide obtained therefrom
KR20180120139A (en) Anode containing diatomaceous pitch
CN107408693A (en) Active material for anode of secondary cell and its manufacture method
JP5876771B2 (en) Titanium oxide for electrode and method for producing the same
WO2016143171A1 (en) Positive electrode active substance for secondary cell and method for producing same
JP5863606B2 (en) Electrode active material for lithium ion secondary battery, electrode for lithium ion secondary battery, lithium ion secondary battery using the same, and method for producing electrode active material for lithium ion secondary battery
JP6243946B2 (en) Active material-containing particle mixture for non-aqueous electrolyte secondary battery and method for producing the same
KR101604003B1 (en) Anodes active material containing Si composite for lithium secondary batteries and its preparation method and lithium secondary batteries comprising the same
JP6297285B2 (en) Activated carbon for hybrid capacitor and method for producing the same
KR102385969B1 (en) Cathode active material for secondary battery and manufacturing method thereof
JP6042512B2 (en) Positive electrode active material for secondary battery and method for producing the same
JP6243938B2 (en) Method for producing negative electrode active material for non-aqueous electrolyte secondary battery, and negative electrode active material for non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170406

R150 Certificate of patent or registration of utility model

Ref document number: 6126192

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250