JP6125776B2 - Floodlight device - Google Patents

Floodlight device Download PDF

Info

Publication number
JP6125776B2
JP6125776B2 JP2012193093A JP2012193093A JP6125776B2 JP 6125776 B2 JP6125776 B2 JP 6125776B2 JP 2012193093 A JP2012193093 A JP 2012193093A JP 2012193093 A JP2012193093 A JP 2012193093A JP 6125776 B2 JP6125776 B2 JP 6125776B2
Authority
JP
Japan
Prior art keywords
light
spot
excitation
fluorescence
emitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012193093A
Other languages
Japanese (ja)
Other versions
JP2014049678A (en
Inventor
要介 前村
要介 前村
高橋 幸司
幸司 高橋
宜幸 高平
宜幸 高平
智洋 坂上
智洋 坂上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2012193093A priority Critical patent/JP6125776B2/en
Publication of JP2014049678A publication Critical patent/JP2014049678A/en
Application granted granted Critical
Publication of JP6125776B2 publication Critical patent/JP6125776B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、半導体発光素子から発光する励起光が照射される蛍光部材を備えた投光装置に関する。   The present invention relates to a light projecting device including a fluorescent member irradiated with excitation light emitted from a semiconductor light emitting element.

特許文献1には、光を出射する半導体発光素子と、半導体発光素子から出射した光を集光して蛍光体に照射する集光部材と、蛍光体により波長変換された光を所定の投光領域に投光する投光部材とを備えた車両用灯具(投光装置)が開示されている。   Patent Document 1 discloses a semiconductor light emitting element that emits light, a condensing member that condenses light emitted from the semiconductor light emitting element and irradiates the phosphor, and predetermined light projection of light converted in wavelength by the phosphor A vehicular lamp (light projecting device) including a light projecting member that projects light to a region is disclosed.

この車両用灯具は蛍光体に照射される励起光の照射領域を小さくして高い光密度で蛍光体粒子を励起することにより、蛍光体から輝度の高い光を発生させることができる。この輝度の高い光が投光部材により投光されて照度の高い投光領域を形成することができる。   This vehicular lamp can generate high-luminance light from the phosphor by exciting the phosphor particles with a high light density by reducing the irradiation area of the excitation light irradiated on the phosphor. This high luminance light is projected by the light projecting member, and a light projection region with high illuminance can be formed.

特開2005−150041号公報JP 2005-150041 A

しかしながら、輝度を上げるために蛍光体に照射する励起光の照射スポットをさらに小さくすると、照射スポットに対する蛍光体粒子の粒径が相対的に大きくなり、異なる色の蛍光を発生する複数種の蛍光体粒子を用いた場合に色ムラが発生する問題があった。   However, if the irradiation spot of the excitation light irradiated to the phosphor is further reduced in order to increase the luminance, the particle size of the phosphor particles relative to the irradiation spot becomes relatively large, and multiple types of phosphors that generate fluorescence of different colors When particles are used, there is a problem that color unevenness occurs.

本発明は、上記の問題点を解決するためになされたもので、輝度の高い光源から照度の高い投光領域を得るとともに色ムラの発生を抑制することが可能な投光装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and provides a light projecting device capable of obtaining a light projecting region having high illuminance from a light source having high luminance and suppressing occurrence of color unevenness. With the goal.

上記目的を達成するために本発明は、光を出射する半導体発光素子と、前記半導体発光素子からの光を集光してスポット状の励起光を出射する集光部材と、前記励起光を異なる色の蛍光に変換する複数の種類の蛍光体粒子を含むとともに前記励起光に対応したスポット状の発光スポットから蛍光を出射する蛍光部材と、前記蛍光部材から出射した蛍光を所定領域に投光する投光部材とを備える投光装置において、前記発光スポット内の前記蛍光体粒子のメディアン径に基づいて導出される円の面積が前記発光スポットから出射する蛍光の最大光強度に対して50%以上の光強度を有する発光面積の0.5%以下になることを特徴としている。   In order to achieve the above object, the present invention is different from the semiconductor light emitting device that emits light, the light collecting member that collects light from the semiconductor light emitting device and emits spot-like excitation light, and the excitation light. A plurality of types of phosphor particles that are converted into color fluorescence, and a fluorescent member that emits fluorescence from a spot-like light emission spot corresponding to the excitation light, and the fluorescence emitted from the fluorescent member is projected onto a predetermined region In a light projecting device comprising a light projecting member, the area of a circle derived based on the median diameter of the phosphor particles in the light emitting spot is 50% or more with respect to the maximum light intensity of the fluorescence emitted from the light emitting spot. It is characterized by being 0.5% or less of the light emitting area having the light intensity of.

この構成によると、集光部材から出射される励起光によって蛍光体粒子から異なる色の蛍光が発光スポットから出射する。このとき、発光スポット内の蛍光体粒子のメディアン径に基づいて導出される円の面積が発光スポットから出射する蛍光の最大光強度に対して50%以上の光強度を有する発光面積の0.5%以下になる。これにより、蛍光を出射する発光スポットに対し一個当たりの蛍光体粒子が占める割合が相対的に小さくなり、発光スポットから出射される蛍光の色ムラが抑制される。   According to this configuration, fluorescence of different colors is emitted from the phosphor particles from the phosphor spots by the excitation light emitted from the light collecting member. At this time, the area of the circle derived based on the median diameter of the phosphor particles in the light emission spot is 0.5 of the light emission area having a light intensity of 50% or more with respect to the maximum light intensity of the fluorescence emitted from the light emission spot. % Or less. As a result, the ratio of the phosphor particles per one emission spot to the emission spot that emits fluorescence becomes relatively small, and color unevenness of the fluorescence emitted from the emission spot is suppressed.

また本発明は、上記構成の投光装置において、前記集光部材から複数のスポット状の前記励起光を出射し、各前記励起光に対応する前記発光スポットが互いに重なることを特徴としている。この構成によると、複数の励起光を出射することにより、複数の発光スポットが得られ、光の輝度が上がる。また、重なる発光スポットにおいても各発光スポット内の蛍光体粒子のメディアン径に基づいて導出される円の面積が各発光スポットから出射する蛍光の最大光強度に対して50%以上の光強度を有する発光スポットの面積の0.5%以下となる。これにより、重なる発光スポットにおいて高い光密度で蛍光体粒子を励起することができるとともに各発光スポットから出射する蛍光の色ムラが抑制される。   According to the present invention, in the light projecting device having the above-described configuration, a plurality of spot-like excitation lights are emitted from the light collecting member, and the light emission spots corresponding to the respective excitation lights overlap each other. According to this configuration, by emitting a plurality of excitation lights, a plurality of light emission spots can be obtained, and the brightness of the light is increased. Further, even in the overlapping light emission spots, the area of the circle derived based on the median diameter of the phosphor particles in each light emission spot has a light intensity of 50% or more with respect to the maximum light intensity of the fluorescence emitted from each light emission spot. It becomes 0.5% or less of the area of the light emission spot. Thereby, the phosphor particles can be excited at a high light density in the overlapping light emission spots, and color unevenness of the fluorescence emitted from each light emission spot is suppressed.

また本発明は、上記構成の投光装置において、前記蛍光部材は前記励起光が照射される面に前記発光スポットが形成されることを特徴としている。この構成によると、蛍光部材の内部での励起光と蛍光の散乱が抑えられるため、発光スポットを照射領域の面積に近づけることができる。   According to the present invention, in the light projecting device configured as described above, the fluorescent member has the light emitting spot formed on a surface irradiated with the excitation light. According to this configuration, since the scattering of excitation light and fluorescence inside the fluorescent member can be suppressed, the light emission spot can be brought close to the area of the irradiation region.

また本発明は、上記構成の投光装置において、前記半導体発光素子がレーザー光を発光する半導体レーザ素子であることを特徴としている。この構成によると、蛍光部材により小さい照射領域で高い光密度の励起光を照射することができる。   According to the present invention, in the light projecting device having the above-described configuration, the semiconductor light emitting element is a semiconductor laser element that emits laser light. According to this configuration, the fluorescent member can be irradiated with excitation light having a high light density in a smaller irradiation region.

本発明によると、集光部材から出射される励起光によって異なる色の蛍光に変換する蛍光体粒子が励起して所定の波長の蛍光を発光スポットから出射する。発光スポットから出射した蛍光は投光部材により所定領域に投光される。このとき、発光スポットから出射する蛍光の最大光強度に対して50%以上の光強度を有する発光面積に対して発光スポット内の蛍光体粒子のメディアン径に基づいて導出される円の面積を0.5%以下にすることにより、蛍光を出射する発光スポットに対し一個当たりの蛍光体粒子が占める割合が相対的に小さくなる。これにより、発光スポットから発光する蛍光の色ムラの発生を抑えることができる。したがって、蛍光部材に照射する励起光の照射領域を小さくして高い光密度で蛍光体粒子を励起し、発光スポットの輝度を高くした場合においても、投光部材により投光される投光領域において色ムラの発生を抑制することができる。   According to the present invention, the phosphor particles that are converted into fluorescence of different colors by the excitation light emitted from the light collecting member are excited to emit fluorescence of a predetermined wavelength from the light emitting spot. The fluorescence emitted from the light emitting spot is projected onto a predetermined area by the light projecting member. At this time, the area of the circle derived based on the median diameter of the phosphor particles in the light emission spot is 0 with respect to the light emission area having a light intensity of 50% or more with respect to the maximum light intensity of the fluorescence emitted from the light emission spot. By setting the ratio to 0.5% or less, the ratio of phosphor particles per one light emitting spot emitting fluorescence is relatively small. Thereby, generation | occurrence | production of the color nonuniformity of the fluorescence light-emitted from a light emission spot can be suppressed. Therefore, even in the case where the irradiation area of the excitation light irradiated to the fluorescent member is reduced to excite the phosphor particles with a high light density and the brightness of the light emitting spot is increased, Occurrence of color unevenness can be suppressed.

本発明の第1実施形態に係る投光装置の側面断面図Side surface sectional drawing of the light projection apparatus which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る投光装置の蛍光部材にレーザ光を照射した状態を示した斜視図The perspective view which showed the state which irradiated the laser beam to the fluorescent member of the light projection apparatus which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る投光装置の蛍光部材に含まれる蛍光体粒子を示す拡大平面図The enlarged plan view which shows the fluorescent substance particle contained in the fluorescent member of the light projection apparatus which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る投光装置の蛍光部材から出射する蛍光の発光面積を説明する図The figure explaining the light emission area of the fluorescence radiate | emitted from the fluorescent member of the light projection apparatus which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る投光装置の投光部材の側面断面図Side surface sectional drawing of the light projection member of the light projector which concerns on 1st Embodiment of this invention. 投光装置の色むらの評価するために行った実験を説明するための図The figure for explaining the experiment which was done in order to evaluate the color irregularity of the floodlight 蛍光体粒子のメディアン径と発光スポット内に含まれ占有割合との関係を示した図Diagram showing the relationship between the median diameter of phosphor particles and the occupation ratio contained in the light emission spot 発光スポット内に含まれる蛍光体粒子の占有割合と色温度分布の標準偏差の関係を示した図A diagram showing the relationship between the occupancy ratio of phosphor particles contained in the light emission spot and the standard deviation of the color temperature distribution 本発明の第2実施形態に係る投光装置の側面断面図Side surface sectional drawing of the light projection apparatus which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る投光装置の蛍光部材から出射する蛍光の発光面積を説明する図The figure explaining the light emission area of the fluorescence radiate | emitted from the fluorescent member of the light projection apparatus which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る投光装置の側面断面図Side surface sectional drawing of the light projection apparatus which concerns on 3rd Embodiment of this invention.

<第1実施形態>
以下、本発明の第1実施形態について図面を参照して説明する。図1は第1実施形態に係る投光装置の側面断面図である。投光装置1は例えば自動車などの前方を照明する前照灯として用いられる。投光装置1は半導体発光素子20、集光部材21、反射板29、蛍光部材22、投光部材23、取付部材24、フィルタ部材25を備える。
<First Embodiment>
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a side sectional view of the light projecting device according to the first embodiment. The floodlight device 1 is used as a headlamp that illuminates the front of a car or the like, for example. The light projecting device 1 includes a semiconductor light emitting element 20, a light collecting member 21, a reflecting plate 29, a fluorescent member 22, a light projecting member 23, a mounting member 24, and a filter member 25.

半導体発光素子20から出射した光は集光部材21により集光され、スポット状の励起光を出射する。励起光は反射板29により光路が変更され、投光部材23の内部に入射する。入射した励起光は蛍光部材22に照射され、蛍光部材22では蛍光が励起されて発光スポット22bから出射する。蛍光は投光部材23により所定の投光領域に投光される。   The light emitted from the semiconductor light emitting element 20 is collected by the light collecting member 21 and emits spot-like excitation light. The optical path of the excitation light is changed by the reflection plate 29 and enters the light projecting member 23. The incident excitation light is applied to the fluorescent member 22, and the fluorescent member 22 excites the fluorescent light and exits from the light emitting spot 22b. The fluorescence is projected onto a predetermined light projecting area by the light projecting member 23.

半導体発光素子20は半導体レーザ素子であり、350nm〜420nmの波長領域に発光ピークを持つ近紫外光のレーザ光を出射する。なお、半導体発光素子20とは半導体レーザ素子に限定されず、発光ダイオード素子を用いてもよい。ただし、半導体レーザ素子の方が発光ダイオード素子よりも蛍光部材22により小さい照射領域で高い光密度の励起光を照射することができる。したがって、半導体レーザ素子を用いる方が好ましい。   The semiconductor light emitting element 20 is a semiconductor laser element, and emits near-ultraviolet laser light having an emission peak in a wavelength region of 350 nm to 420 nm. The semiconductor light emitting element 20 is not limited to a semiconductor laser element, and a light emitting diode element may be used. However, the semiconductor laser element can irradiate the fluorescent member 22 with higher light density excitation light in a smaller irradiation region than the light emitting diode element. Therefore, it is preferable to use a semiconductor laser element.

集光部材21は半導体発光素子20からのレーザ光を集光してスポット状の励起光を出射する。このとき、集光部材21は導光部材である光ファイバー21aと、光ファイバーの両端に配されたレンズ21b、21cとを備える。光ファイバー21aは半導体発光素子20から出射したレーザ光を導光する。光ファイバー21aは中芯のコアをコアよりも屈折率の低いクラッドで覆った2層構造を備える。これにより、入射端部から入射したレーザ光は、光ファイバー21aの内部を通り、他方の端部である出射端部から出射する。光ファイバー21aを用いると半導体発光素子20と蛍光部材22との距離を自由に設定することができる。このため、設計の自由度が大きくなる。なお、光ファイバー21aの替わりにミラー又はレンズを用いて蛍光部材22にスポット状の励起光を照射してもよい。   The condensing member 21 condenses the laser light from the semiconductor light emitting element 20 and emits spot-like excitation light. At this time, the condensing member 21 includes an optical fiber 21a which is a light guiding member, and lenses 21b and 21c arranged at both ends of the optical fiber. The optical fiber 21 a guides the laser light emitted from the semiconductor light emitting element 20. The optical fiber 21a has a two-layer structure in which an intermediate core is covered with a clad having a refractive index lower than that of the core. As a result, the laser light incident from the incident end passes through the optical fiber 21a and is emitted from the emission end that is the other end. When the optical fiber 21a is used, the distance between the semiconductor light emitting element 20 and the fluorescent member 22 can be freely set. For this reason, the freedom degree of design becomes large. The fluorescent member 22 may be irradiated with spot-like excitation light using a mirror or a lens instead of the optical fiber 21a.

レンズ21bは半導体発光素子20と光ファイバー21aの入射端部とを光学的に結合する光学部材である。半導体発光素子20から出射されたレーザ光は光ファイバー21aの入射端部に入射する。レンズ21bを介することによって光ファイバー21に入射する励起光のスポット径及び入射角を制御することができる。レンズ21cは光ファイバー21aの出射端部から出射したレーザ光をスポット状の励起光として出射する。レンズ21cを介することによって反射板29で反射されて蛍光部材22に入射する励起光のスポット径及び入射角を制御することができる。   The lens 21b is an optical member that optically couples the semiconductor light emitting element 20 and the incident end of the optical fiber 21a. The laser light emitted from the semiconductor light emitting element 20 enters the incident end of the optical fiber 21a. The spot diameter and incident angle of excitation light incident on the optical fiber 21 can be controlled through the lens 21b. The lens 21c emits laser light emitted from the emission end of the optical fiber 21a as spot-like excitation light. By passing through the lens 21c, the spot diameter and the incident angle of the excitation light reflected by the reflecting plate 29 and incident on the fluorescent member 22 can be controlled.

反射板29は集光部材21からの励起光を蛍光部材22に反射する。また、投光部材23には窓部23bが設けられている。反射板29により反射された励起光は窓部23bを通って投光部材23の内部に入射する。なお、窓部23bは開口してもよいし、励起光を透過可能な透明部材を含むものであってもよい。また、窓部23bは励起光が通過あるいは透過する範囲に設ければよい。なお、反射板29を用いず、レンズ21cからの励起光を蛍光部材22に直接又は間接的に照射してもよい。   The reflector 29 reflects the excitation light from the light collecting member 21 to the fluorescent member 22. Further, the light projecting member 23 is provided with a window portion 23b. The excitation light reflected by the reflecting plate 29 enters the light projecting member 23 through the window portion 23b. The window portion 23b may be opened or may include a transparent member that can transmit excitation light. Moreover, the window part 23b should just be provided in the range which excitation light passes or permeate | transmits. Note that the fluorescent member 22 may be directly or indirectly irradiated with the excitation light from the lens 21c without using the reflection plate 29.

蛍光部材22は集光部材21から出射した励起光を蛍光に変換して出射する。投光部材23は蛍光部材22から出射した蛍光を所定の方向(A方向)に向かって反射して光を投光する。取付部材24はベース部24aと取付部24bとを有する。投光部材23はベース部24aに固定され、取付部24bに蛍光部材22が取り付けられる。フィルタ部材25は集光部材21から出射された励起光を吸収または反射して遮光するとともに蛍光部材22により波長変換された蛍光をA方向に透過する。これにより、励起光が投光部材23の外部に漏れることを防ぐことができる。なお、励起光を照明光の一部として用いる場合には、フィルタ部材25を省略してもよい。   The fluorescent member 22 converts the excitation light emitted from the light collecting member 21 into fluorescence and emits it. The light projecting member 23 projects the light by reflecting the fluorescence emitted from the fluorescent member 22 in a predetermined direction (A direction). The attachment member 24 has a base portion 24a and an attachment portion 24b. The light projecting member 23 is fixed to the base portion 24a, and the fluorescent member 22 is attached to the attachment portion 24b. The filter member 25 absorbs or reflects the excitation light emitted from the light collecting member 21 to shield it, and transmits the fluorescence converted in wavelength by the fluorescent member 22 in the A direction. Thereby, it is possible to prevent the excitation light from leaking outside the light projecting member 23. Note that when the excitation light is used as part of the illumination light, the filter member 25 may be omitted.

図2は蛍光部材22にレーザ光を照射した状態を示した斜視図であり、図3は蛍光部材22に含まれる蛍光体粒子を示すとともに蛍光部材22を上方から示す拡大平面図である。蛍光部材22はレーザ光が照射される照射面22aを有する。照射面22aの中央部には集光部材21を通して集光されたスポット状の励起光が照射される。   FIG. 2 is a perspective view showing a state in which the fluorescent member 22 is irradiated with laser light, and FIG. 3 is an enlarged plan view showing the fluorescent particles contained in the fluorescent member 22 and showing the fluorescent member 22 from above. The fluorescent member 22 has an irradiation surface 22a on which laser light is irradiated. The central portion of the irradiation surface 22a is irradiated with spot-like excitation light condensed through the condensing member 21.

蛍光部材22は封止材(不図示)の内部に蛍光体粒子29を分散させて形成される。なお、蛍光体粒子29を固めて形成してもよい。蛍光部材22は、例えば青紫色光(励起光)を青色光、黄色光にそれぞれ変換して出射する2種類の蛍光体粒子29を用いて形成されている。青紫色光を青色光に変換する蛍光体粒子29としては、例えばBaMgAl1017:Eu、(Sr,Ca,Ba,Mg)10(PO4)6Cl2:Euが挙げられる。青紫色光を黄色光に変換する蛍光体粒子29としては、例えばCa−αSiAlON:Euが挙げられる。なお、封止材は、例えば、ガラス材、シリコーン樹脂等の樹脂材料が用いられる。ガラス材としては低融点ガラスを用いることができる。封止材は透明性の高いものが好ましい。また、半導体発光素子20が出射するレーザ光が高出力の場合には耐熱性及び耐光性の高いものが好ましい。 The fluorescent member 22 is formed by dispersing phosphor particles 29 inside a sealing material (not shown). The phosphor particles 29 may be formed by solidifying. The fluorescent member 22 is formed using, for example, two types of phosphor particles 29 that convert blue-violet light (excitation light) into blue light and yellow light and emit the light. Examples of the phosphor particles 29 that convert blue-violet light into blue light include BaMgAl 10 O 17 : Eu and (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6Cl 2 : Eu. Examples of the phosphor particles 29 that convert blue-violet light into yellow light include Ca-αSiAlON: Eu. For example, a resin material such as a glass material or a silicone resin is used as the sealing material. As the glass material, low melting glass can be used. The sealing material is preferably highly transparent. In addition, when the laser light emitted from the semiconductor light emitting element 20 has a high output, those having high heat resistance and light resistance are preferable.

蛍光部材22から出射する青色光および黄色光の蛍光が混色されることによって、白色光が得られる。なお、蛍光部材22に含まれる蛍光体粒子29は励起光を異なる色の蛍光に変換する複数の蛍光体粒子29を含んでいればよく、半導体発光素子20から出射するレーザ光の中心波長や、蛍光部材22を構成する蛍光体粒子の種類は、適宜変更可能である。   White light is obtained by mixing the fluorescence of the blue light and the yellow light emitted from the fluorescent member 22. The phosphor particles 29 included in the phosphor member 22 only need to include a plurality of phosphor particles 29 that convert excitation light into fluorescence of different colors, such as the center wavelength of the laser light emitted from the semiconductor light emitting element 20, The kind of phosphor particles constituting the fluorescent member 22 can be changed as appropriate.

例えば、青紫色光(励起光)を赤色光、緑色光および青色光にそれぞれ変換して出射する3種類の蛍光体粒子を用いて蛍光部材22にすることができる。青紫色光を赤色光に変換する蛍光体粒子29としては、例えばCaAlSiN3:Euが挙げられる。青紫色光を緑色光に変換する蛍光体粒子29としては、例えばβ−SiAlON:Euが挙げられる。青紫色光を青色光に変換する蛍光体粒子29としては、例えばBaMgAl1017:Eu、(Sr,Ca,Ba,Mg)10(PO46Cl2:Euが挙げられる。赤色光は例えば約640nmの中心波長を有する光であり、緑色光は例えば約520nmの中心波長を有する光である。また、青色光は例えば約450nmの中心波長を有する光である。また、励起光は青紫光に限らず、青色光でもよい。この場合、例えば青色光(励起光)を赤色光、緑色光にそれぞれ変換して出射する2種類の蛍光体粒子を用いて蛍光部材22にすることができる。青色光を赤色光に変換する蛍光体粒子29としては、例えばCaAlSiN3:Euが挙げられる。また、青色光を緑色光に変換する蛍光体粒子29としては、例えばβ−SiAlON:Euが挙げられる。 For example, the fluorescent member 22 can be formed by using three types of phosphor particles that convert blue-violet light (excitation light) into red light, green light, and blue light and emit the light. Examples of the phosphor particles 29 that convert blue-violet light into red light include CaAlSiN 3 : Eu. Examples of the phosphor particles 29 that convert blue-violet light into green light include β-SiAlON: Eu. Examples of the phosphor particles 29 that convert blue-violet light into blue light include BaMgAl 10 O 17 : Eu and (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 Cl 2 : Eu. Red light is light having a center wavelength of about 640 nm, for example, and green light is light having a center wavelength of about 520 nm, for example. Blue light is light having a center wavelength of about 450 nm, for example. Further, the excitation light is not limited to blue-violet light but may be blue light. In this case, for example, the fluorescent member 22 can be formed using two types of phosphor particles that are converted from blue light (excitation light) into red light and green light, respectively. Examples of the phosphor particles 29 that convert blue light into red light include CaAlSiN 3 : Eu. Examples of the phosphor particles 29 that convert blue light into green light include β-SiAlON: Eu.

また、白色光を出射するように、励起光源(半導体発光素子20)および蛍光部材22を構成した例について示したが、白色光以外の光を出射するように、励起光源および蛍光部材を構成してもよい。   In addition, an example in which the excitation light source (semiconductor light emitting element 20) and the fluorescent member 22 are configured to emit white light has been described. However, the excitation light source and the fluorescent member are configured to emit light other than white light. May be.

また、蛍光部材22には蛍光体粒子29が高密度で含有されていることが望ましい。これにより、蛍光部材22での励起光の吸収率を高くすることができる。したがって、励起光を効率よく蛍光に変換することが可能になるので、蛍光部材22の厚みを小さくすることができる。このため、蛍光部材22の放熱性が向上し、蛍光部材22により高輝度な光源(発光スポット22b)が実現される。また、蛍光部材22に蛍光体粒子29が高密度で含有されることで、蛍光部材22の照射面22aに入射した励起光は照射面22aの表面近傍で蛍光に変換されやすくなる。これにより、照射面22aにおいて励起光が照射される照射領域と蛍光が出射する発光スポット22bとがほぼ一致し、発光スポット22bが励起光の照射領域よりも大きくなることを抑制することができる。   Further, it is desirable that the fluorescent member 22 contains phosphor particles 29 at a high density. Thereby, the absorption rate of the excitation light in the fluorescent member 22 can be increased. Therefore, the excitation light can be efficiently converted into fluorescence, and the thickness of the fluorescent member 22 can be reduced. For this reason, the heat dissipation of the fluorescent member 22 is improved, and a high-intensity light source (light emission spot 22b) is realized by the fluorescent member 22. In addition, since the fluorescent particles 29 are contained in the fluorescent member 22 at a high density, the excitation light incident on the irradiation surface 22a of the fluorescent member 22 is easily converted into fluorescence in the vicinity of the surface of the irradiation surface 22a. Thereby, the irradiation area irradiated with excitation light on the irradiation surface 22a and the light emission spot 22b from which the fluorescence is emitted substantially coincide with each other, and the light emission spot 22b can be suppressed from becoming larger than the irradiation area of the excitation light.

図4は蛍光部材22から出射する蛍光の発光面積を説明する図である。図4の上段は蛍光部材22の側面図、中段は蛍光部材22の上面図、下段は発光スポット22bのライン上の光強度分布を示している。蛍光は照射面22aの発光スポット22bから出射する。このとき、発光スポット22bから出射する蛍光の最大光強度に対して50%以上の光強度を有する発光領域を有効発光領域22cとする。有効発光領域22cの発光面積Lに対する発光スポット22b内の蛍光体粒子29のメディアン径(d50)から導出される円の面積s(s=πd50 2/4)の面積比r=s/Lを0.5%以下にしている。このとき、導出された面積比r=s/Lを発光スポット22b内に含まれる1個当たりの蛍光体粒子29の占有割合という。つまり、面積比r=s/Lを0.5%以下にすることで、発光スポット22b内において一個当たりの蛍光体粒子29が占める占有割合が相対的に小さくなる。これにより、発光スポット22bから出射される蛍光の色ムラを抑えることができる。 FIG. 4 is a view for explaining the emission area of the fluorescence emitted from the fluorescent member 22. 4 shows a side view of the fluorescent member 22, a middle portion shows a top view of the fluorescent member 22, and a lower portion shows the light intensity distribution on the line of the light emission spot 22b. The fluorescence is emitted from the light emission spot 22b on the irradiation surface 22a. At this time, a light emitting region having a light intensity of 50% or more with respect to the maximum light intensity of the fluorescence emitted from the light emitting spot 22b is defined as an effective light emitting region 22c. Effective light emitting region 22c area ratio r = s / L of median diameter of the phosphor particles 29 in the light-emitting spot 22b (d 50) area of a circle which is derived from s (s = πd 50 2/ 4) to the emission area L of Is 0.5% or less. At this time, the derived area ratio r = s / L is referred to as an occupation ratio of the phosphor particles 29 included in the light emission spot 22b. That is, by setting the area ratio r = s / L to 0.5% or less, the occupation ratio occupied by one phosphor particle 29 in the light emission spot 22b becomes relatively small. Thereby, the color unevenness of the fluorescence emitted from the light emission spot 22b can be suppressed.

ここで、メディアン径(d50)とは粒子径を基準に発光スポット22b内の蛍光体粒子29のグループを2つに分けたとき、大きい粒子径を有するグループと小さい粒子径を有するグループが等量になるときの蛍光体粒子29の粒径である。 Here, the median diameter (d 50 ) is a group having a large particle diameter and a group having a small particle diameter when the group of phosphor particles 29 in the light emission spot 22b is divided into two based on the particle diameter. This is the particle size of the phosphor particles 29 when the amount is reached.

なお、蛍光部材22は投光部材23の反射面23aの焦点F23を含む領域に配置されており、蛍光部材22の照射面22aの中心は、反射面23aの焦点F23と略一致している。しかし、実際には、照射面22a上の励起光のスポット領域(照射領域)は一定の大きさを有しているので、投光部材23から出射する光は完全な平行光ではない。このため、投光部材23により投光される投光領域が広くなり、投光領域の中心部が暗くなる。   The fluorescent member 22 is disposed in a region including the focal point F23 of the reflecting surface 23a of the light projecting member 23, and the center of the irradiation surface 22a of the fluorescent member 22 substantially coincides with the focal point F23 of the reflecting surface 23a. However, since the spot area (irradiation area) of the excitation light on the irradiation surface 22a has a certain size, the light emitted from the light projecting member 23 is not completely parallel light. For this reason, the light projection area projected by the light projecting member 23 becomes wide, and the central portion of the light projection area becomes dark.

そこで、照射面22a上の励起光の照射領域を小さく絞って発光スポット22cの発光面積を小さくすることにより、投光部材23から投光される光を平行光に近づけることができる。つまり、励起光の照射領域を小さくし、高い光密度で蛍光部材22を励起することで、発光スポット22bがより輝度の高い光源となる。このとき、投光部材23の投光領域が狭まるが投光領域の中心部の照度が向上する。したがって、他の領域に比べて明るく照明する必要がある領域を、投光装置1を用いてより明るく照明することができる。このとき、発光スポット22bの面積に対して一個当たりの蛍光体粒子29が占める占有割合を相対的に小さくすることによって投光部材23から投光される平行光の色ムラを抑えることができる。   Therefore, the light projected from the light projecting member 23 can be made closer to parallel light by narrowing the irradiation area of the excitation light on the irradiation surface 22a to reduce the light emission area of the light emission spot 22c. That is, by reducing the excitation light irradiation area and exciting the fluorescent member 22 with a high light density, the light emission spot 22b becomes a light source with higher luminance. At this time, the light projection area of the light projection member 23 is narrowed, but the illuminance at the center of the light projection area is improved. Therefore, it is possible to illuminate the area that needs to be illuminated brighter than other areas by using the light projecting device 1. At this time, color unevenness of parallel light projected from the light projecting member 23 can be suppressed by relatively reducing the occupation ratio of the phosphor particles 29 per one area with respect to the area of the light emitting spot 22b.

投光部材23から出射される光を平行光に近づけるためには有効発光領域Sの発光面積は0.1mm2以下とすることが好ましく、0.05mm2以下とすることが特に好ましい。このとき、発光スポット22b内の蛍光体粒子29のメディアン径は18μm以下が好ましい。 In order to bring the light emitted from the light projecting member 23 closer to parallel light, the light emitting area of the effective light emitting region S is preferably 0.1 mm 2 or less, and particularly preferably 0.05 mm 2 or less. At this time, the median diameter of the phosphor particles 29 in the light emission spot 22b is preferably 18 μm or less.

図5は投光部材23の側面断面図である。投光部材23の反射面23aは蛍光部材22の照射面22aに対向するように配置されて蛍光部材22からの光を平行光にして所定の方向(A方向)に反射する。また、反射面23aは、例えば放物面の一部を含むように形成されている。具体的には、反射面23aは放物面を、その頂点V23と焦点F23とを結ぶ軸に直交(交差)する面で分割し、かつ、頂点V23と焦点F23とを結ぶ軸に平行な面で分割したような形状に形成されている。   FIG. 5 is a side sectional view of the light projecting member 23. The reflecting surface 23a of the light projecting member 23 is disposed so as to face the irradiation surface 22a of the fluorescent member 22, and converts the light from the fluorescent member 22 into parallel light and reflects it in a predetermined direction (A direction). Moreover, the reflective surface 23a is formed so that a part of paraboloid may be included, for example. Specifically, the reflecting surface 23a is a surface that divides the paraboloid by a plane orthogonal to (intersects) the axis connecting the vertex V23 and the focal point F23, and parallel to the axis connecting the vertex V23 and the focal point F23. It is formed in the shape divided by.

なお、投光部材23の反射面23aを放物面の一部により形成した例について示したが、反射面23aを楕円面の一部により形成してもよい。この場合、蛍光部材22を反射面23aの焦点に位置させることにより、投光装置1から出射する光を容易に集光することができる。また、反射面23aを多数の曲面(例えば放物面)からなるマルチリフレクタや、多数の微細な平面が連続して設けられた自由曲面リフレクタなどにより形成してもよい。また、投光部材23は閉じた円形の開口部を有するパラボラミラーまたはその一部を含むものであってもよい。また、投光部材23にレンズを用いてもよい。このレンズは蛍光を透過して屈折させることで、蛍光を所定の投光方向に向けて投光する光学系である。   In addition, although shown about the example which formed the reflective surface 23a of the light projection member 23 by a part of paraboloid, you may form the reflective surface 23a by a part of ellipsoid. In this case, the light emitted from the light projecting device 1 can be easily condensed by positioning the fluorescent member 22 at the focal point of the reflecting surface 23a. Further, the reflecting surface 23a may be formed by a multi-reflector composed of a large number of curved surfaces (for example, a parabolic surface) or a free curved surface reflector provided with a large number of fine planes continuously. The light projecting member 23 may include a parabolic mirror having a closed circular opening or a part thereof. Further, a lens may be used for the light projecting member 23. This lens is an optical system that projects fluorescence in a predetermined light projecting direction by transmitting and refracting the fluorescence.

投光部材23は金属から成るベース部24aに固定され、ベース部24aは反射面23aの略中心軸上に配されている。取付部24bは反射面23aの中心軸に対して所定の傾斜角α(例えば、0°〜30°)で傾斜する傾斜面を有し、この傾斜面上に蛍光部材22が配される。また、ベース部24aの上面24cは光を反射する機能を有するように形成されていることが好ましい。取付部材24は例えばAlなどの良好な熱伝導性を有する金属により形成されており、蛍光部材22で発生した熱を放熱する機能を有する。また、取付部材24の下面には、放熱フィン(図示せず)が設けられていてもよい。また、投光部材23と取付部材24とを別体で設けた例について説明したが、投光部材23と取付部材24とを一体で形成してもよい。   The light projecting member 23 is fixed to a base portion 24a made of metal, and the base portion 24a is disposed on a substantially central axis of the reflecting surface 23a. The mounting portion 24b has an inclined surface inclined at a predetermined inclination angle α (for example, 0 ° to 30 °) with respect to the central axis of the reflecting surface 23a, and the fluorescent member 22 is disposed on the inclined surface. Further, the upper surface 24c of the base portion 24a is preferably formed so as to have a function of reflecting light. The attachment member 24 is made of a metal having good thermal conductivity such as Al, and has a function of radiating heat generated in the fluorescent member 22. Further, a heat radiating fin (not shown) may be provided on the lower surface of the mounting member 24. Moreover, although the example which provided the light projection member 23 and the attachment member 24 by the separate body was demonstrated, you may form the light projection member 23 and the attachment member 24 integrally.

なお、上記実施形態では、蛍光部材22を取付部24b上に直接取り付けた例について示したが、蛍光部材22を支持板(不図示)に形成した場合、支持板を取付部24bに取り付ける。   In the above-described embodiment, the example in which the fluorescent member 22 is directly attached to the attachment portion 24b has been described. However, when the fluorescent member 22 is formed on a support plate (not shown), the support plate is attached to the attachment portion 24b.

フィルタ部材25は投光部材23及び取付部材24に固定され、投光部材23の軸方向の一端の開口面を覆う。フィルタ部材25は半導体発光素子20からの励起光(近紫外光)を吸収または反射により遮光し、蛍光部材22から出射される蛍光を透過する。フィルタ部材25として、例えば、五鈴精工硝子株式会社製のITY−418や、HOYA株式会社製のL42等のガラス材料を用いることができる。   The filter member 25 is fixed to the light projecting member 23 and the attachment member 24, and covers the opening surface at one end of the light projecting member 23 in the axial direction. The filter member 25 shields the excitation light (near ultraviolet light) from the semiconductor light emitting element 20 by absorption or reflection, and transmits the fluorescence emitted from the fluorescent member 22. As the filter member 25, for example, a glass material such as TY-418 manufactured by Isuzu Seiko Glass Co., Ltd. or L42 manufactured by HOYA Corporation can be used.

次に蛍光部材22の発光スポット22b内に含まれる蛍光体粒子29の占有割合と色ムラについての評価を行った。ここで、蛍光体粒子29の径はレーザ回折散乱粒子分布測定法により測定した。レーザ回折散乱粒子分布測定法はレーザ光を粒子に照射したときの回折・散乱光のパターンから粒子径を測定する。このとき、同じ回折・散乱光のパターンを示す球状粒子の粒子径が被測定物の粒径となる。   Next, the occupation ratio and color unevenness of the phosphor particles 29 included in the light emission spot 22b of the fluorescent member 22 were evaluated. Here, the diameter of the phosphor particles 29 was measured by a laser diffraction scattering particle distribution measurement method. In the laser diffraction / scattering particle distribution measurement method, the particle diameter is measured from the pattern of diffraction / scattered light when laser light is irradiated onto the particle. At this time, the particle diameter of the spherical particles showing the same diffraction / scattered light pattern is the particle diameter of the object to be measured.

図6は色ムラの評価を説明する図である。図6に示すように、半導体発光素子20から出射したレーザ光を集光部材21で集光して励起光を蛍光部材22に照射し、発光スポット22bから光を出射する。発光スポット22bは投光部材23の焦点に配され、投光部材23は発光スポット22bからの光を平行光に反射してターゲット30に投光する。なお、レーザ光の発光波長は405nmとした。蛍光部材22は青色、黄色の異なる色の蛍光を励起する蛍光体粒子29を複数含む。これにより、発光スポット22bから混色された白色の光が出射される。   FIG. 6 is a diagram for explaining evaluation of color unevenness. As shown in FIG. 6, the laser light emitted from the semiconductor light emitting element 20 is condensed by the condensing member 21, irradiated with the excitation light to the fluorescent member 22, and the light is emitted from the light emitting spot 22b. The light emitting spot 22b is disposed at the focal point of the light projecting member 23, and the light projecting member 23 reflects the light from the light emitting spot 22b into parallel light and projects it onto the target 30. The emission wavelength of the laser light was 405 nm. The fluorescent member 22 includes a plurality of phosphor particles 29 that excite fluorescence of different colors of blue and yellow. Thereby, the mixed white light is emitted from the light emission spot 22b.

なお、蛍光部材22に含まれる蛍光体粒子29は励起光を青色光に変換する蛍光体粒子29としてBaMgAl1017:Euを用いた。また、励起光を黄色光に変換する蛍光体粒子29としてCa−αSiAlON:Euを用いた。また、投光部材23として開口部が直径20mmのリフレクタを用いた。また、投光部材23には蛍光部材22により波長変換された蛍光を透過し、405nmの励起光を遮断するフィルタ部材25が設けられ、フィルタ部材25とターゲット30の距離Wを5mとした。 The phosphor particles 29 included in the phosphor member 22 used BaMgAl 10 O 17 : Eu as the phosphor particles 29 that convert excitation light into blue light. Further, Ca-αSiAlON: Eu was used as the phosphor particles 29 for converting the excitation light into yellow light. In addition, a reflector having a diameter of 20 mm was used as the light projecting member 23. Further, the light projecting member 23 is provided with a filter member 25 that transmits the fluorescence converted in wavelength by the fluorescent member 22 and blocks excitation light of 405 nm, and the distance W between the filter member 25 and the target 30 is 5 m.

色ムラの評価は発光スポット22b内に含まれる蛍光体粒子29の占有割合と相関色温度分布の標準偏差との関係から評価した。この評価では発光スポット22b内に含まれる蛍光体粒子29の占有割合が異なる蛍光部材22を複数準備し、有効発光領域22cの発光面積が0.029mm2となるように各蛍光部材22に励起光を照射した。 The color unevenness was evaluated from the relationship between the occupation ratio of the phosphor particles 29 contained in the light emission spot 22b and the standard deviation of the correlated color temperature distribution. In this evaluation, a plurality of fluorescent members 22 having different occupying ratios of the phosphor particles 29 contained in the light emitting spot 22b are prepared, and excitation light is applied to each fluorescent member 22 so that the light emitting area of the effective light emitting region 22c is 0.029 mm 2. Was irradiated.

図7は発光スポット22b内に含まれる蛍光体粒子29の占有割合とメディアン径の関係を示す。縦軸は発光スポット22内に含まれる蛍光体粒子29の占有割合(%)を示し、横軸は発光スポット22b内に含まれる蛍光体粒子29のメディアン径(μm)を示す。図7に示すように、蛍光体粒子29のメディアン径が大きくなれば発光スポット22b内に含まれる蛍光体粒子29の占有割合は上昇する。   FIG. 7 shows the relationship between the occupation ratio of the phosphor particles 29 contained in the light emission spot 22b and the median diameter. The vertical axis represents the occupation ratio (%) of the phosphor particles 29 contained in the light emission spot 22, and the horizontal axis represents the median diameter (μm) of the phosphor particles 29 contained in the light emission spot 22b. As shown in FIG. 7, as the median diameter of the phosphor particles 29 increases, the occupation ratio of the phosphor particles 29 included in the light emission spot 22b increases.

また、相関色温度分布は暗室においてターゲット30に投光された光の相関色温度の角度分布を測定して行った。測定角度は87.5°〜92.5°の範囲で0.5°ステップで測定した。また、相関色温度は測定角度に応じてランダムに変動する。このため、測定は一方向のみのスキャンを方向を変えて4回測定した。4回測定した相関色温度の平均値から相関色温度の標準偏差を導出した。   The correlated color temperature distribution was determined by measuring the angular distribution of the correlated color temperature of the light projected on the target 30 in the dark room. The measurement angle was measured in 0.5 ° steps in the range of 87.5 ° to 92.5 °. The correlated color temperature varies randomly according to the measurement angle. For this reason, the measurement was performed four times by changing the direction of scanning in only one direction. The standard deviation of the correlated color temperature was derived from the average value of the correlated color temperatures measured four times.

図8は色温度分布の標準偏差と発光スポット22b内に含まれる蛍光体粒子29の占有割合の関係を示す。縦軸は色温度分布の標準偏差(K)を示し、横軸は発光スポット22b内に含まれる一個当たりの蛍光体粒子29の占有割合(%)を示す。図8に示すように、発光スポット22b内に含まれる蛍光体粒子29の占有割合が0.53%を超えると、色温度分布の標準偏差が急激に増えた。このため、発光スポット22b内に含まれる一個当たりの蛍光体粒子29の占有割合を0.5%以下とすることで色ムラが解消されることが確認された。   FIG. 8 shows the relationship between the standard deviation of the color temperature distribution and the occupation ratio of the phosphor particles 29 included in the light emission spot 22b. The vertical axis represents the standard deviation (K) of the color temperature distribution, and the horizontal axis represents the occupation ratio (%) of the phosphor particles 29 per particle contained in the light emission spot 22b. As shown in FIG. 8, when the occupation ratio of the phosphor particles 29 included in the light emission spot 22b exceeds 0.53%, the standard deviation of the color temperature distribution increases rapidly. For this reason, it was confirmed that the color unevenness is eliminated by setting the occupation ratio of the phosphor particles 29 included in the light emission spot 22b to 0.5% or less.

本実施形態によると、集光部材21から出射される励起光によって異なる色の蛍光に変換する蛍光体粒子29が励起され、所定の波長の蛍光を発光スポット22bから出射する。発光スポット22bから出射した蛍光は投光部材23で反射して所定方向(A方向)に投光される。このとき、発光スポット22bから出射する蛍光の最大光強度に対して50%以上の光強度を有する有効発光スポット22cの発光面積Lに対して発光スポット22b内の蛍光体粒子29のメディアン径に基づいて導出される円の面積を0.5%以下にすることにより、蛍光を出射する発光スポット22bに対し一個当たりの蛍光体粒子29が占める割合が相対的に小さくなる。これにより、発光スポット22bから発光する蛍光の色ムラの発生を抑えることができる。したがって、蛍光部材22に照射する励起光の照射領域を小さくして高い光密度で蛍光体粒子29を励起し、発光スポット22bを輝度の高い光源とした場合においても、投光部材23により投光される投光領域において色ムラの発生を抑制することができる。   According to the present embodiment, the phosphor particles 29 that are converted into fluorescence of different colors are excited by the excitation light emitted from the light collecting member 21, and the fluorescent light having a predetermined wavelength is emitted from the light emission spot 22b. The fluorescence emitted from the light emitting spot 22b is reflected by the light projecting member 23 and projected in a predetermined direction (A direction). At this time, based on the median diameter of the phosphor particles 29 in the light emission spot 22b with respect to the light emission area L of the effective light emission spot 22c having a light intensity of 50% or more with respect to the maximum light intensity of the fluorescence emitted from the light emission spot 22b. By setting the area of the circle derived in this way to 0.5% or less, the ratio of the phosphor particles 29 to one light emitting spot 22b that emits fluorescence becomes relatively small. Thereby, generation | occurrence | production of the color nonuniformity of the fluorescence light-emitted from the light emission spot 22b can be suppressed. Therefore, even when the phosphor particle 29 is excited with a high light density by reducing the irradiation area of the excitation light that irradiates the fluorescent member 22, and the light emitting spot 22b is used as a light source with high luminance, the light projecting member 23 projects the light. The occurrence of color unevenness can be suppressed in the projected area.

また、蛍光部材22は励起光が照射される領域と発光スポット22bとが同一面に形成されるため、蛍光部材22の内部で散乱される励起光及び蛍光が少ない。このため、発光スポットを照射領域の面積に近づけることができる。したがって、蛍光部材22に照射される励起光の照射領域を小さくして高い光密度で蛍光を発光スポット22bから出射することができる。   In addition, since the fluorescent member 22 has the region irradiated with the excitation light and the light emission spot 22b formed on the same surface, the excitation light and the fluorescence scattered inside the fluorescent member 22 are small. For this reason, the light emission spot can be brought close to the area of the irradiation region. Therefore, it is possible to reduce the irradiation area of the excitation light irradiated to the fluorescent member 22 and emit the fluorescence from the light emitting spot 22b with a high light density.

また、半導体発光素子20にレーザー光を発光する半導体レーザ素子を用いることにより、蛍光部材22により小さい照射領域で高い光密度の励起光を照射することができる。このため、蛍光部材22の発光スポット22bにおいて輝度が高い光源を容易に得ることができる。   Further, by using a semiconductor laser element that emits laser light as the semiconductor light emitting element 20, the fluorescent member 22 can be irradiated with excitation light having a high light density in a smaller irradiation region. For this reason, it is possible to easily obtain a light source having high luminance in the light emission spot 22b of the fluorescent member 22.

<第2実施形態>
図9は第2実施形態に係る投光装置の側面断面図であり、図10は第2実施形態に係る蛍光部材から出射する蛍光の発光面積を説明する図である。図10の上段は蛍光部材22の側面図、中段は蛍光部材22の上面図、下段は発光スポット22bのライン上の光強度分布を示している。なお、第1実施形態と同一部分は同一符号を付して説明を省略する。第1実施形態に対して第2実施形態は複数の半導体発光素子20から出射されたレーザ光を各集光部材21で集光して蛍光部材22に出射し、各励起光に対応する発光スポット22bが互いに重なる。なお、図10では2個の発光スポット22bが重なっているが、3個以上の発光スポット22bを重ねてもよい。また、集光部材21には集光レンズを用いているが光ファイバーを用いてもよい。また、窓部23bは3個の半導体素子20に対して1個設けられているが、それぞれ別個に設けられてもよい。
Second Embodiment
FIG. 9 is a side sectional view of the light projecting device according to the second embodiment, and FIG. 10 is a diagram for explaining the emission area of the fluorescence emitted from the fluorescent member according to the second embodiment. The upper part of FIG. 10 is a side view of the fluorescent member 22, the middle part is a top view of the fluorescent member 22, and the lower part shows the light intensity distribution on the line of the light emission spot 22b. In addition, the same part as 1st Embodiment attaches | subjects the same code | symbol, and abbreviate | omits description. In contrast to the first embodiment, in the second embodiment, the laser beams emitted from the plurality of semiconductor light emitting elements 20 are condensed by the respective condensing members 21 and emitted to the fluorescent member 22, and light emission spots corresponding to the respective excitation lights. 22b overlap each other. In FIG. 10, two light emission spots 22b are overlapped, but three or more light emission spots 22b may be overlapped. Moreover, although the condensing lens is used for the condensing member 21, you may use an optical fiber. In addition, one window portion 23b is provided for the three semiconductor elements 20, but may be provided separately.

このとき、重なる発光スポット22bにおいても各励起光により励起される各発光スポット22b内の蛍光体粒子29のメディアン径に基づいて導出される円の面積を各発光スポット22bから出射する蛍光の最大光強度に対して50%以上の光強度を有する発光面積の0.5%以下とする。これにより、重なる発光スポット22bにおいて高い光密度で蛍光体粒子29を励起することができるとともに各発光スポット22bから出射する蛍光の色ムラが抑制される。したがって、単一の励起源を用いるより高輝度の光源が得られる。   At this time, even in the overlapping light emission spots 22b, the maximum fluorescence light emitted from each light emission spot 22b is the area of a circle derived based on the median diameter of the phosphor particles 29 in each light emission spot 22b excited by each excitation light. The light emission area having a light intensity of 50% or more with respect to the intensity is 0.5% or less. Accordingly, the phosphor particles 29 can be excited at a high light density in the overlapping light emission spots 22b, and color unevenness of the fluorescence emitted from each light emission spot 22b is suppressed. Therefore, a brighter light source using a single excitation source can be obtained.

<第3実施形態>
図11は第3実施形態に係る投光装置の側面断面図である。なお、第1実施形態と同一部分は同一符号を付して説明を省略する。第1実施形態に対して第3実施形態は蛍光部材22の励起光が照射される照射面22aと蛍光が出射する発光スポット22bを含む面が対向配置されている。つまり、第3実施形態の蛍光部材22は励起光が照射される照射面22aと反対側の出射面から光が取り出される。
<Third Embodiment>
FIG. 11 is a side sectional view of the light projecting device according to the third embodiment. In addition, the same part as 1st Embodiment attaches | subjects the same code | symbol, and abbreviate | omits description. In contrast to the first embodiment, in the third embodiment, the irradiation surface 22a on which the excitation light of the fluorescent member 22 is irradiated and the surface including the light emission spot 22b from which the fluorescence is emitted are arranged to face each other. That is, in the fluorescent member 22 of the third embodiment, light is extracted from the emission surface opposite to the irradiation surface 22a irradiated with the excitation light.

このとき、発光スポット22bから出射する蛍光の最大光強度に対して50%以上の光強度を有する発光面積に対して発光スポット内の蛍光体粒子のメディアン径に基づいて導出される円の面積を0.5%以下とすることにより、出射される蛍光の色ムラの発生を抑えることができる。ただし、本実施形態の投光装置1は蛍光部材22の内部で励起光及び蛍光が散乱され、発光スポット22bが励起光の照射領域より大きくなる。このため、励起光の照射領域と発光スポット22bとが一致しない。したがって、発光スポット22bを小さくして高輝度な光源を実現するためには第1実施形態の投光装置1のように励起光が照射される面に発光スポット22bの反射型の投光装置1がより好ましい。   At this time, the area of a circle derived on the basis of the median diameter of the phosphor particles in the light emission spot with respect to the light emission area having a light intensity of 50% or more with respect to the maximum light intensity of the fluorescence emitted from the light emission spot 22b. By setting it to 0.5% or less, it is possible to suppress the occurrence of uneven color of emitted fluorescence. However, in the light projecting device 1 of the present embodiment, excitation light and fluorescence are scattered inside the fluorescent member 22, and the light emission spot 22b becomes larger than the irradiation region of the excitation light. For this reason, the irradiation area | region of excitation light and the light emission spot 22b do not correspond. Therefore, in order to realize a high-intensity light source by reducing the light emitting spot 22b, the reflection type light projecting device 1 having the light emitting spot 22b on the surface irradiated with the excitation light as in the light projecting device 1 of the first embodiment. Is more preferable.

なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description of the embodiments but by the scope of claims for patent, and further includes all modifications within the meaning and scope equivalent to the scope of claims for patent.

また、上記実施形態では、本発明の投光装置を自動車の前照灯に用いた例について示したが、本発明はこれに限らない。本発明の投光装置を、飛行機、船舶、ロボット、バイクまたは自転車や、その他の移動体の前照灯に用いてもよい。   Moreover, in the said embodiment, although the example which used the light projector of this invention for the headlamp of a motor vehicle was shown, this invention is not restricted to this. You may use the light projection apparatus of this invention for the headlamp of an airplane, a ship, a robot, a motorcycle or a bicycle, and another moving body.

また、上記実施形態では、励起光を可視光に変換した例について示したが、本発明はこれに限らず、励起光を可視光以外の光に変換してもよい。例えば、励起光を赤外光に変換する場合には、セキュリティ用CCDカメラの夜間照明装置などにも適用可能である。   Moreover, although the example which converted excitation light into visible light was shown in the said embodiment, this invention is not limited to this, You may convert excitation light into light other than visible light. For example, when the excitation light is converted into infrared light, it can also be applied to a night illumination device of a security CCD camera.

1 投光装置
20 半導体発光素子
21 集光部材
22 蛍光部材
22a 照射面
22b 発光スポット
23 投光部材
23a 反射面
24 取付部材
24a 上面
24b 取付部
25 フィルタ部材
29 蛍光体粒子
F23 焦点
V23 頂点
DESCRIPTION OF SYMBOLS 1 Light projection apparatus 20 Semiconductor light-emitting element 21 Condensing member 22 Fluorescence member 22a Irradiation surface 22b Light emission spot 23 Light projection member 23a Reflection surface 24 Mounting member 24a Upper surface 24b Mounting part 25 Filter member 29 Phosphor particle F23 Focus V23 Vertex

Claims (4)

光を出射する半導体発光素子と、前記半導体発光素子からの光を集光してスポット状の励起光を出射する集光部材と、前記励起光を異なる色の蛍光に変換する複数の種類の蛍光体粒子を含むとともに前記励起光に対応したスポット状の発光スポットから蛍光を出射する蛍光部材と、前記蛍光部材から出射した蛍光を所定領域に投光する投光部材とを備える投光装置において、
前記発光スポット内の前記蛍光体粒子のメディアン径が10μm以上であり、前記発光スポット内の前記蛍光体粒子のメディアン径に基づいて導出される円の面積が前記発光スポットから出射する蛍光の最大光強度に対して50%以上の光強度を有する有効発光領域の発光面積の0.5%以下になり、前記有効発光領域の発光面積が0.1mm 以下であることを特徴とする投光装置。
A semiconductor light emitting device that emits light, a light collecting member that collects light from the semiconductor light emitting device and emits spot-like excitation light, and a plurality of types of fluorescence that converts the excitation light into fluorescent light of different colors In a light projecting device comprising a fluorescent member that includes body particles and emits fluorescence from a spot-like light emission spot corresponding to the excitation light, and a light projecting member that projects fluorescence emitted from the fluorescent member to a predetermined region,
The median diameter of the phosphor particles in the light emission spot is 10 μm or more, and the area of a circle derived based on the median diameter of the phosphor particles in the light emission spot is the maximum fluorescence light emitted from the light emission spot projecting light Ri Do to 0.5% or less of the light-emitting area of the effective light emitting area having 50% or more of the light intensity relative to intensity, the light-emitting area of the effective light-emitting region, characterized in that it is 0.1 mm 2 or less apparatus.
前記集光部材から複数のスポット状の前記励起光を出射し、各前記励起光に対応する前記発光スポットが互いに重なることを特徴とする請求項1に記載の投光装置。   The light projecting device according to claim 1, wherein a plurality of spot-like excitation lights are emitted from the light collecting member, and the light emission spots corresponding to the respective excitation lights overlap each other. 前記蛍光部材は前記励起光が照射される面に前記発光スポットが形成されることを特徴とする請求項1又は請求項2に記載の投光装置。   The light projecting device according to claim 1, wherein the light emitting spot is formed on a surface of the fluorescent member on which the excitation light is irradiated. 前記半導体発光素子がレーザー光を発光する半導体レーザ素子であることを特徴とする請求項1〜請求項3のいずれかに記載の投光装置。   The light projecting apparatus according to claim 1, wherein the semiconductor light emitting element is a semiconductor laser element that emits laser light.
JP2012193093A 2012-09-03 2012-09-03 Floodlight device Expired - Fee Related JP6125776B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012193093A JP6125776B2 (en) 2012-09-03 2012-09-03 Floodlight device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012193093A JP6125776B2 (en) 2012-09-03 2012-09-03 Floodlight device

Publications (2)

Publication Number Publication Date
JP2014049678A JP2014049678A (en) 2014-03-17
JP6125776B2 true JP6125776B2 (en) 2017-05-10

Family

ID=50609023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012193093A Expired - Fee Related JP6125776B2 (en) 2012-09-03 2012-09-03 Floodlight device

Country Status (1)

Country Link
JP (1) JP6125776B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180292059A1 (en) * 2015-11-06 2018-10-11 Sharp Kabushiki Kaisha Light-emitting device
KR102499548B1 (en) * 2015-11-06 2023-03-03 엘지이노텍 주식회사 light emitting Package and automobile lamp using the same
EP3449505B1 (en) * 2016-04-29 2020-08-05 Lumileds Holding B.V. High luminance crisp white led light source
JP6711333B2 (en) * 2017-08-16 2020-06-17 日亜化学工業株式会社 Light emitting device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4213075B2 (en) * 2004-04-14 2009-01-21 シャープ株式会社 LIGHT EMITTING ELEMENT, ELECTRONIC DEVICE, AND LIGHT EMITTING ELEMENT MANUFACTURING METHOD
JP2011129376A (en) * 2009-12-17 2011-06-30 Sharp Corp Light emitting device, lighting system, headlamp for vehicle, and projector
GB2477569A (en) * 2010-02-09 2011-08-10 Sharp Kk Lamp having a phosphor.
JP5558933B2 (en) * 2010-06-25 2014-07-23 シャープ株式会社 Lighting device, vehicle headlight
JP5373742B2 (en) * 2010-10-29 2013-12-18 シャープ株式会社 Light emitting device, vehicle headlamp, lighting device, and laser element
JP5336564B2 (en) * 2010-10-29 2013-11-06 シャープ株式会社 Light emitting device, lighting device, vehicle headlamp, and vehicle
JP2012136686A (en) * 2010-12-07 2012-07-19 Sharp Corp Wavelength conversion member, light emitting device, illuminating device, vehicle headlamp, and production method

Also Published As

Publication number Publication date
JP2014049678A (en) 2014-03-17

Similar Documents

Publication Publication Date Title
US9233639B2 (en) Light-emitting device and vehicle headlight
JP5259791B2 (en) Light emitting device, vehicle headlamp, lighting device, and vehicle
US9863595B2 (en) Light-emitting unit with optical plate reflecting excitation light and transmitting fluorescent light, and light-emitting device, illumination device, and vehicle headlight including the unit
JP5589007B2 (en) Light emitting device, lighting device, and vehicle headlamp
US8702286B2 (en) Vehicle headlight with means for reducing the projection of excitation source light
JP6258083B2 (en) Light emitting unit, light emitting device, lighting device, and vehicle headlamp
US8974089B2 (en) Light emitting device, illumination device, and vehicle headlamp
JP5323998B2 (en) Luminaire with phosphor, excitation light source, optical system, and heat sink
JP5487077B2 (en) Light emitting device, vehicle headlamp and lighting device
JP6161877B2 (en) Light emitting device, vehicle headlamp and lighting device
JP5285038B2 (en) Light projecting structure and lighting device
JP6067629B2 (en) Light emitting device, lighting device, and vehicle headlamp
EP2597735B1 (en) Laser light source device
KR101804310B1 (en) High recycling efficiency solid state light source device
JP6271216B2 (en) Light emitting unit and lighting device
JP6033586B2 (en) Lighting device and vehicle headlamp
JP6185226B2 (en) Floodlight device and driving support system
JP6125776B2 (en) Floodlight device
JP2013039868A (en) Misalignment detection device, light-emitting device, lighting device, projector, vehicle headlight, and misalignment adjustment method
JP2014010918A (en) Luminaire and vehicle headlight
JP2013161552A (en) Light projection device, and laser irradiation device
JP6072447B2 (en) Lighting device and vehicle headlamp
JP2014170758A (en) Lighting device and vehicle headlight
JP2017195061A (en) Luminaire and vehicular headlight
JP6305967B2 (en) Light emitting device, lighting device, and vehicle headlamp

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160308

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161221

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170406

R150 Certificate of patent or registration of utility model

Ref document number: 6125776

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees