JP6121484B2 - Method and apparatus for automatic analysis of trace amounts of trace amounts of halogens and sulfur - Google Patents

Method and apparatus for automatic analysis of trace amounts of trace amounts of halogens and sulfur Download PDF

Info

Publication number
JP6121484B2
JP6121484B2 JP2015129359A JP2015129359A JP6121484B2 JP 6121484 B2 JP6121484 B2 JP 6121484B2 JP 2015129359 A JP2015129359 A JP 2015129359A JP 2015129359 A JP2015129359 A JP 2015129359A JP 6121484 B2 JP6121484 B2 JP 6121484B2
Authority
JP
Japan
Prior art keywords
combustion
clean air
sample
sulfur
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015129359A
Other languages
Japanese (ja)
Other versions
JP2017015414A (en
Inventor
潜 長嶋
潜 長嶋
Original Assignee
株式会社 ナックテクノサービス
株式会社 ナックテクノサービス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 ナックテクノサービス, 株式会社 ナックテクノサービス filed Critical 株式会社 ナックテクノサービス
Priority to JP2015129359A priority Critical patent/JP6121484B2/en
Publication of JP2017015414A publication Critical patent/JP2017015414A/en
Application granted granted Critical
Publication of JP6121484B2 publication Critical patent/JP6121484B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Description

本発明は分析試料中の微量の有機多種ハロゲン(F、Cl,Br,I)および硫黄を同時に一括分析する高速自動分析方法および装置に関し、特に1mg以下の超微量の分析試料の自動分析にも適用可能な分析方法および装置に関する。   The present invention relates to a high-speed automatic analysis method and apparatus for simultaneously analyzing trace amounts of organic various halogens (F, Cl, Br, I) and sulfur in an analysis sample at the same time, and particularly for automatic analysis of ultra-trace analysis samples of 1 mg or less. The present invention relates to an applicable analysis method and apparatus.

環境問題への意識の高まりから、廃棄物や土壌等の安全性に関心が寄せられており、それらに含有されている元素の中、とりわけ分析頻度の高い各種ハロゲンおよび硫黄を同時に高速で自動分析する手法が求められている。一方、医薬品、ファインケミカルおよび天然物の分野では、著しく微量において薬効あるいは活性を示す化合物も多く、かつ高価であることから超微量の試料をはかり取って分析する手法が求められている。   Due to the growing awareness of environmental issues, there is an increasing interest in the safety of waste and soil. Among the elements contained in them, especially high-frequency various halogens and sulfur are analyzed simultaneously at high speed. There is a need for a technique to do this. On the other hand, in the fields of pharmaceuticals, fine chemicals, and natural products, there are many compounds that show a medicinal effect or activity in a very small amount, and they are expensive. Therefore, there is a need for a method for measuring and analyzing an extremely small amount of sample.

本発明者等はこれらの多種元素の一括分析について研究開発を重ね、従来から多くの分析技術を提案し、実用化して来た。たとえば、前記多種ハロゲンと硫黄の同時分析のために分析試料を高温で燃焼分解し、得られた燃焼分解生成ガス中の微量のハロゲンおよび硫黄をイオンクロマトグラフィによって定量検出する高速自動分析方法および装置を実施しかつ特許出願している(非特許文献1および特許文献1.2)。   The present inventors have conducted research and development on the collective analysis of these various elements, and have proposed and put to practical use many analysis techniques. For example, a high-speed automatic analysis method and apparatus for quantitatively detecting trace amounts of halogen and sulfur in a combustion decomposition product gas obtained by combustion decomposition at high temperature for simultaneous analysis of the above-mentioned various halogens and sulfur by ion chromatography. It has been implemented and patent applications have been filed (Non-patent Document 1 and Patent Document 1.2).

特開平8−262000号公報JP-A-8-262000 特許第5399996号公報Japanese Patent No. 5399996

分析化学、Vol.49、No.5、pp331−343Analytical chemistry, Vol. 49, no. 5, pp331-343

これらの先行技術文献による燃焼ーイオンクロマトグラフ方式の高速自動分析装置の基本的な構成および作動の概要は次の通りである。   The basic configuration and outline of operation of the combustion-ion chromatograph type high-speed automatic analyzer according to these prior art documents are as follows.

前記高速自動分析装置は分析対象の有機ハロゲンおよび硫黄を含む分析試料を収容して順次燃焼管に供給するオートサンプラと、前記燃焼管に供給された試料を燃焼分解して無機態のハロゲンおよび硫黄の分解生成ガスとする燃焼装置と、前記燃焼装置の下流側から排出される分解生成ガスを酸化剤および還元剤を含む吸収液に吸収溶解し、ハロゲンおよび硫黄をイオン化する吸収装置と、生成したイオンを検出定量するイオンクロマトグラフ装置とを備えている。   The high-speed automatic analyzer includes an autosampler that contains an analysis sample containing organic halogen and sulfur to be analyzed and sequentially supplies the sample to the combustion tube, and an inorganic halogen and sulfur by burning and decomposing the sample supplied to the combustion tube Produced as a decomposition product gas, and an absorption device that absorbs and dissolves the decomposition product gas discharged from the downstream side of the combustion device in an absorbing solution containing an oxidizing agent and a reducing agent to ionize halogen and sulfur. And an ion chromatograph device for detecting and quantifying ions.

前記燃焼ーイオンクロマトグラフ方式の自動分析装置の一例の概要を示す図6においては、オートサンプラ1から分析対象試料を順次石英製の燃焼管2に供給し、白金ボート3に載置した状態で燃焼装置の上流側の試料加熱炉4Aおよび下流側の燃焼炉4B内に順次移動させ、燃焼管の上流側から供給される酸素含有ガス(清浄空気又はO/不活性ガス)により高温に加熱・燃焼して無機態のハロゲンおよび硫黄酸化物の分解生成ガスを発生させる。 In FIG. 6, which shows an outline of an example of the combustion-ion chromatographic automatic analyzer, the sample to be analyzed is sequentially supplied from the autosampler 1 to the combustion tube 2 made of quartz and placed on the platinum boat 3. It is sequentially moved into the sample heating furnace 4A on the upstream side of the combustion apparatus and the combustion furnace 4B on the downstream side, and heated to a high temperature by an oxygen-containing gas (clean air or O 2 / inert gas) supplied from the upstream side of the combustion pipe.・ Burn to generate inorganic halogen and sulfur oxide decomposition products.

得られた分解生成ガスは燃焼炉4Bの下流側の排出口から吸収装置における吸収びん5A、5Bの吸収液中に溶解されて夫々のハロゲン化物イオンおよび硫酸イオンにイオン化される。   The obtained decomposition product gas is dissolved in the absorption liquid of the absorption bottles 5A and 5B in the absorption device from the discharge port on the downstream side of the combustion furnace 4B, and is ionized into respective halide ions and sulfate ions.

ハロゲン化物イオンおよび硫酸イオンを含む吸収液は、さらに引きつづく図示しないイオンクロマトグラフ装置6の分析カラムに送られて展開されサプレッサを通した後、電気伝導度度検出器を用いて検出し、クロマトグラム上に展開されて主にピーク面積法により定量される。   The absorption solution containing halide ions and sulfate ions is further sent to an analysis column of an ion chromatograph apparatus 6 (not shown), developed, passed through a suppressor, detected with an electric conductivity detector, and chromatographed. Developed on the gram and quantified mainly by the peak area method.

前記高速自動分析装置によれば、同一操作により多品種の元素を同時に一括分析することができ高速な自動分析が可能である。   According to the high-speed automatic analyzer, a large variety of elements can be analyzed simultaneously by the same operation, and high-speed automatic analysis is possible.

前記本発明者等による高速自動分析方法および装置によれば微量(ミリグラムオーダ)の試料についてのトレース分析が可能であったが、近年超微量(デシミリグラムオーダ、1mg以下)の超微量試料について分析のニーズが高まっており、これらの要請に応えるために分析試料をより高精度で分析・検出することの可能な分析技術が求められるが、前記の分析方法および装置では対象とする試料や条件によってはこのような超微量の試料成分を精度よく分析・検出することが困難であった。
なお、現時点における超微量に関する明確な定義は定まっていないが、一般にははかり取り量1mg未満とされ、超微量電子天びんにより秤量が行われている。
According to the above-described high-speed automatic analysis method and apparatus by the present inventors, trace analysis was possible for a very small amount (milligram order) sample, but in recent years, an extremely small amount sample (decimilligram order, 1 mg or less) was analyzed. In order to meet these demands, there is a need for an analysis technique that can analyze and detect analysis samples with higher accuracy. However, the above analysis method and apparatus depend on the target sample and conditions. However, it was difficult to accurately analyze and detect such a very small amount of sample components.
In addition, although the clear definition regarding the ultra trace amount at present is not decided, generally, the weighing amount is less than 1 mg, and the weighing is performed by the ultra trace electronic balance.

したがって本発明の目的は前記燃焼ーイオンクロマトグラフ方式によって分析対象試料中の多種ハロゲンおよび硫黄を同時に分析・検出することのできる高速自動分析方法および分析装置において、それらの多種元素を含むデシミリグラムオーダの量の試料の分析についても充分な高精度で対応可能な高速自動分析方法および装置を提供することにある。   Accordingly, an object of the present invention is to provide a high-speed automatic analysis method and analyzer capable of simultaneously analyzing and detecting various halogens and sulfur in a sample to be analyzed by the combustion-ion chromatographic method. It is an object of the present invention to provide a high-speed automatic analysis method and apparatus that can handle a sufficient amount of sample with sufficient accuracy.

本発明者の研究実験の結果からは、超微量の試料の分析に際しての最大の課題はバックグラウンドがもたらす燃焼用空気の汚染およびキャリオーバにあることが判明した。特に多数の試料を逐次分析する際には既に分析された先行試料の一部が系内に残留するいわゆるキャリオーバが次の試料の分析時に大きく影響を与え精度を低下させていることが判明した。   From the results of the inventor's research experiment, it has been found that the biggest problem in analyzing an extremely small amount of sample lies in the contamination and carryover of combustion air caused by the background. In particular, when analyzing a large number of samples sequentially, it has been found that a so-called carry-over in which a part of the previous sample that has already been analyzed remains in the system greatly affects the analysis of the next sample, thus reducing the accuracy.

本発明者は前記のキャリオーバが分析試料の燃焼装置中での加熱燃焼によって生成するガス状の分解生成物が下流側の燃焼炉の排出口付近の管路に付着することにより顕著に顕れることを具体的に突き止め、この付着を低減することにより前記超微量の試料の分析における精度の向上を阻害するキャリオーバが実質的に解消されることを発見して本発明を完成した。   The present inventor has shown that the above-mentioned carryover is noticeably manifested when the gaseous decomposition products generated by the heat combustion in the combustion apparatus of the analysis sample adhere to the pipe line near the discharge port of the downstream combustion furnace. Specifically, the present invention was completed by discovering that the carryover that hinders the improvement of accuracy in the analysis of the extremely small amount of sample is substantially eliminated by reducing this adhesion.

本発明は多種ハロゲンおよび硫黄を含む複数検体の分析試料をオートサンプラによって燃焼装置の石英燃焼管に順次供給し、これを燃焼装置中で酸素を含む清浄空気(キャリヤガス)によってガス状に燃焼分解することにより無機態のハロゲンおよび硫黄の分解生成物を生成し、これら全ての分解生成物を前記燃焼装置の下流側の排出口から清浄空気にのせて下流側の吸収装置の吸収液に導入して溶解させ、イオン化によって生じる吸収液中の多種ハロゲンおよび硫黄の夫々のイオンをイオンクロマトグラフィにより分離、定量する高速自動分析方法において、
前記燃焼装置の下流側の排出口に対して、清浄空気を分解生成物の流れと対向して上流側に向けて導入し、それによって燃焼による分解生成物の前記排出口側への付着を低減し、かつ付着した前記分解生成物を系外に除去することを特徴とする高速自動分析方法を提供する。
In the present invention, analytical samples of a plurality of specimens containing various halogens and sulfur are sequentially supplied to a quartz combustion tube of a combustion apparatus by an autosampler, and this is combusted and decomposed in a gaseous state with clean air (carrier gas) containing oxygen in the combustion apparatus. In this way, inorganic halogen and sulfur decomposition products are produced, and all these decomposition products are introduced into the absorption liquid of the downstream absorption device on the clean air from the downstream discharge port of the combustion device. In the high-speed automatic analysis method, each ion of various halogens and sulfur in the absorbing solution generated by ionization is separated and quantified by ion chromatography.
Clean air is introduced toward the upstream side opposite to the flow of decomposition products to the discharge port on the downstream side of the combustion apparatus, thereby reducing the adhesion of decomposition products to the discharge port side due to combustion. And providing a high-speed automatic analysis method characterized by removing the attached decomposition products out of the system.

また本発明は前記吸収装置の吸収液として酸化剤および還元剤を含む吸収液を用いる前記高速自動分析方法を提供する。   The present invention also provides the high-speed automatic analysis method using an absorbent containing an oxidizing agent and a reducing agent as the absorbent of the absorber.

また本発明は前記イオンクロマトグラフィにおける検量線作成用の標準試料として多種ハロゲンおよび硫黄元素を同一化合物中に含む標準試料を用いる前記高速自動分析方法を提供する。   The present invention also provides the high-speed automatic analysis method using a standard sample containing various halogens and sulfur elements in the same compound as a standard sample for preparing a calibration curve in the ion chromatography.

また本発明は分析精度を向上させるため内標準物質としてのリン酸を吸収液に含む前記高速自動分析方法を提供する。   The present invention also provides the high-speed automatic analysis method comprising phosphoric acid as an internal standard substance in an absorbing solution in order to improve analysis accuracy.

本発明の高速自動装置は多種ハロゲンおよび硫黄を含む複数検体の分析試料を石英燃焼管に順次供給するオートサンプラと、前記石英燃焼管を備え燃焼管中での酸素を含む清浄空気による分析試料の燃焼分解により無機態のハロゲンおよび硫黄の分解生成物を生成させる燃焼装置と、燃焼装置からの清浄空気に含まれる分解生成物を溶解し、溶解に伴って生じる多種ハロゲンおよび硫黄の夫々のイオンに解離する吸収液を備えた吸収装置と、前記分解生成物を含む燃焼用の清浄空気を前記燃焼装置の下流側の排出口より吸収装置に吸引導入する吸引ポンプと、前記吸収装置の下流側に設けられ前記吸収装置からの夫々のイオンを分離展開してイオンクロマトグラムにより定量検知するイオンクロマトグラフ装置とを備えており
前記燃焼装置の下流側の排出口に設けられ分析試料の全ての分解生成物を含む清浄空気をニードル管を通して下流側の吸収装置に吸引するニードル機構と、
前記分解生成物を含む清浄空気の下流側への流れと対向する向きに前記ニードル管の外側から別の流れの清浄空気を前記排出口に供給する吹出口とが設けられている。
The high-speed automatic apparatus of the present invention includes an autosampler that sequentially supplies a plurality of specimens containing various types of halogens and sulfur to a quartz combustion tube, and an analysis sample containing clean air containing oxygen in the combustion tube. Combustion device that generates decomposition products of inorganic halogen and sulfur by combustion decomposition, and dissolves decomposition products contained in clean air from the combustion device, and converts them into various types of halogen and sulfur ions generated by dissolution. An absorption device including an absorbing liquid to be dissociated, a suction pump for sucking and introducing clean air for combustion containing the decomposition products into the absorption device from a discharge port on the downstream side of the combustion device, and a downstream side of the absorption device provided by separating expand each of the ions from the absorber includes an ion chromatographic apparatus for quantitatively detected by an ion chromatogram,
A needle mechanism that is provided in a discharge port on the downstream side of the combustion device and sucks clean air containing all decomposition products of the analysis sample into the absorption device on the downstream side through the needle tube;
There is provided an air outlet for supplying another flow of clean air from the outside of the needle tube to the discharge port in a direction opposite to the downstream flow of the clean air containing the decomposition product .

前記燃焼装置の前記下流側の排出口に供給する清浄ガスは前記燃焼管の上流側に供給する試料の燃焼用の酸素を含む清浄空気の供給源から供給するようになされている。


The clean gas supplied to the discharge port on the downstream side of the combustion apparatus is supplied from a supply source of clean air containing oxygen for combustion of the sample supplied to the upstream side of the combustion pipe .


本発明の方法および装置によれば、燃焼ーイオンクロマトグラフ方式による高速自動分析方法および装置において、燃焼装置下流側の排出口から分析試料の加熱分解による全ての分解生成物を下流側の吸収装置に対して導入すると共に、この流れと対向してニードル機構により清浄空気を前記ニードル管の外側から上流側に向けて供給するようになされているので前記排出口近傍で局所的に過度に進行するおそれのある燃焼分解反応が緩和されて分解生成物の付着が抑止されるものと考えられる。また、排出口近傍へのハロゲンおよび硫黄由来の付着物を除去して先行試料のキャリオーバによる後続の試料への影響を確実に減少させることができ、超微量(約0.1〜1.0 mg)の6試料の高速自動分析を高精度で達成することができる。   According to the method and apparatus of the present invention, in the high-speed automatic analysis method and apparatus based on the combustion-ion chromatographic method, all the decomposition products resulting from the thermal decomposition of the analysis sample from the outlet on the downstream side of the combustion apparatus are absorbed in the downstream The clean air is supplied from the outside of the needle tube to the upstream side by the needle mechanism in opposition to this flow, so that it proceeds excessively in the vicinity of the discharge port. It is considered that the combustion decomposition reaction that may be aggravated is mitigated and adhesion of decomposition products is suppressed. In addition, the deposits derived from halogen and sulfur in the vicinity of the discharge port can be removed to reliably reduce the influence of the carryover of the preceding sample on the succeeding sample, and ultra-trace (about 0.1 to 1.0 mg) 6 samples High-speed automatic analysis can be achieved with high accuracy.

本発明の自動分析装置の全体のシステムを示す概要図である。1 is a schematic diagram showing an entire system of an automatic analyzer according to the present invention. 本発明の自動分析装置の全体のシステムにおけるキャリヤオーバの低減効果を示す図である。It is a figure which shows the reduction effect of the carrier over in the whole system of the automatic analyzer of this invention. 本発明の実施例において得られ分析結果を示すグラフである。It is a graph which shows the analysis result obtained in the Example of this invention. 本発明の実施例において得られ分析結果を示すグラフである。It is a graph which shows the analysis result obtained in the Example of this invention. 本発明の実施例において得られ分析結果を示すグラフである。It is a graph which shows the analysis result obtained in the Example of this invention. 本発明者等による従来の燃焼ーイオンクロマトグラフ方式の自動分析装置の構成を示す概念図である。It is a conceptual diagram which shows the structure of the conventional analyzer of the conventional combustion ion chromatography system by the present inventors.

図1は本発明の自動分析装置の全体を示すシステム図である。図中ハロゲンおよび硫黄を含む分析試料はオートサンプラによって石英燃焼管に順次導入され、各試料毎に図示しない白金ボートに載置された状態で燃焼装置の上流側のフラッシュヒータ(試料加熱炉)および下流側の電気炉(燃焼炉)によって逐次高温に加熱され、燃焼管の上流から導入さる酸素を含む清浄空気(1.0 L/min)により加熱燃焼されて無機態のハロゲンおよびSO等からなる燃焼分解生成ガスとなる。ここで試料燃焼用の酸素を含む清浄空気中の酸素は必要に応じて混合比を調節してもよい。 FIG. 1 is a system diagram showing the entire automatic analyzer according to the present invention. In the figure, analysis samples containing halogen and sulfur are sequentially introduced into a quartz combustion tube by an autosampler, and each sample is placed on a platinum boat (not shown) and a flash heater (sample heating furnace) on the upstream side of the combustion apparatus and Combustion consisting of inorganic halogen, SO 2, etc. after being heated to a high temperature by a downstream electric furnace (combustion furnace) and heated and burned with clean air (1.0 L / min) containing oxygen introduced from the upstream of the combustion pipe It becomes cracked product gas. Here, the oxygen in clean air containing oxygen for sample combustion may be adjusted in the mixing ratio as necessary.

分解生成物は下流側の電気炉の端部の排出口に設けたニードル機構を介して吸収液を含む吸収びんに溶解・吸収されイオン化されてハロゲンのイオンおよび硫酸イオンとなる。この実施態様では吸収液はBrおよびI等のハロゲンのイオンおよびSOイオンの効率的な生成のため酸化/還元系(H/NHNH含有純水)の吸収液を用いている。吸収装置の吸収びんは実際には第1および第2吸収びんを切換バルブを介して直列に接続して用いられるが、図1では簡単のために単一の吸収びんとして示してある。 The decomposition products are dissolved and absorbed in the absorption bottle containing the absorption liquid through the needle mechanism provided at the discharge port at the end of the downstream electric furnace, and are ionized into halogen ions and sulfate ions. In this embodiment, the absorption liquid is an oxidation / reduction system (pure water containing H 2 O 2 / NH 2 NH 2 ) for efficient generation of halogen ions such as Br and I and SO 4 ions. Yes. The absorber bottle of the absorber is actually used by connecting the first and second absorber bottles in series via a switching valve, but in FIG. 1, it is shown as a single absorber bottle for the sake of simplicity.

生成された各種のハロゲン化物イオンおよび硫酸イオンを含む吸収液は吸収びんから図示しないイオンクロマトグラフ装置 に注液されカラム内で経時的に分離展開され、サプレッサを通した後に電気伝導度検出器を用いて検知され、定量分析の結果が表示される。   The produced absorption solution containing various halide ions and sulfate ions is poured from an absorption bottle into an ion chromatograph (not shown), separated and developed over time in the column, passed through a suppressor, and then an electric conductivity detector is installed. The result of quantitative analysis is displayed.

ここでイオンクロマトグラムの検量線作成のためには種々の標準試料が用いられるが、本発明の実施態様では効率化のために一つの化合物中に多種ハロゲンおよび硫黄を同時に含む化合物を用いることが好ましい、この標準試料については後述する。   Here, various standard samples are used for preparing a calibration curve of an ion chromatogram, but in the embodiment of the present invention, a compound containing multiple halogens and sulfur simultaneously in one compound is used for efficiency. A preferable standard sample will be described later.


またイオンクロマトグラムでの検量線の作成に際して良好な精度を得るために内部標準物質としてリン酸を用いている。
,
In addition, phosphoric acid is used as an internal standard substance in order to obtain good accuracy when preparing a calibration curve in an ion chromatogram.

本発明の高速分析装置では一連の分析試料は燃焼装置の電気炉(燃焼炉)で完全に燃焼分解されてガス化されるが、この分析試料の燃焼分解後、電気炉の先端部にある下流側の排出口およびその付近の管路には、各分析試料の分解生成ガスが燃焼分解終了後に内周側に微量の付着物として不可避的に残存する。特に本願で測定対象が超微量(1mg以下)の分析試料の場合には、これが引きつづく試料の加熱分解時に再度混入して(クロスオーバ)測定値に無視できない誤差をもたらし、測定精度を低下させていた。   In the high-speed analysis apparatus of the present invention, a series of analysis samples are completely burnt and decomposed in an electric furnace (combustion furnace) of a combustion apparatus and gasified. The decomposition product gas of each analysis sample inevitably remains as a small amount of deposits on the inner peripheral side after completion of the combustion decomposition at the discharge port on the side and the pipe line in the vicinity thereof. In particular, in the present application, when the measurement target is an extremely small amount (1 mg or less) of the analytical sample, it is mixed again at the time of thermal decomposition of the sample (crossover), resulting in a non-negligible error in the measured value and reducing the measurement accuracy. It was.

このため図1に示す本実施態様の装置では前記電気炉の排出口側のニードル機構に清浄空気(0.1 L/min)を供給してこの付着物を除き系外に除去する。これによって次の分析試料に対する混入を防止して、分析誤差を目的とする許容値以下に減少させることができクロスオーバを実質的に解消して極微量の試料分析が可能となる。   For this reason, in the apparatus of this embodiment shown in FIG. 1, clean air (0.1 L / min) is supplied to the needle mechanism on the outlet side of the electric furnace to remove this deposit and remove it from the system. This prevents the next analysis sample from being mixed, and the analysis error can be reduced to a target allowable value or less, so that crossover is substantially eliminated and a very small amount of sample can be analyzed.

尚本発明の図1の実施態様では燃焼装置での加熱燃焼のための清浄空気は燃焼管の上流側に設けた清浄空気および酸素含有分調節のため酸素の夫々の供給源から供給される。尚清浄空気の代わりに酸素と不活性ガスたとえばAr、He等との混合ガスを用いてもよい。   In the embodiment of FIG. 1 of the present invention, the clean air for heating and burning in the combustion apparatus is supplied from clean air provided upstream of the combustion pipe and oxygen for adjusting the oxygen content. Instead of clean air, a mixed gas of oxygen and an inert gas such as Ar or He may be used.

以下図1に概要を示した本発明の高速分析装置を用いて行った各種実験の結果を実施例として示す。   The results of various experiments conducted using the high-speed analyzer of the present invention schematically shown in FIG. 1 are shown as examples.

尚燃焼ーイオンクロマトグラフ方式の高速分析における使用機器および測定条件は次の通りである。
The equipment used and the measurement conditions in the combustion-ion chromatography high-speed analysis are as follows.

イオンクロマトグラフにおける検量線作成用の各種標準試料としては市販の試料の他本発明者等の開発した多種ハロゲン・硫黄を含む化合物を用いた。これにより検量線作成に関する分析作業が大幅に効率化される。このような化合物としては下記の3種が挙げられる。
As various standard samples for preparing a calibration curve in the ion chromatograph, commercially available samples and compounds containing various halogens and sulfur developed by the present inventors were used. This greatly improves the efficiency of the analysis work related to the calibration curve creation. Examples of such compounds include the following three types.

実施例1
(キャリオーバ防止効果の検証)
本発明の分析装置におけるキャリオーバ防止の効果を検証するために、多元素共有標準試料として前記NAC−st4(1480mg)(F、Cl、Br、I、S含有)を用いて燃焼ーイオンクロマトグラフ方式を実施した。汚染を低減させるために装置は完全密閉構造とした。試験結果を下表に示し、測定前後の状態からのクロマトグラフを図3に示す。NAC−st4を用いた燃焼ークロマトグラフ方式による分析結果を得たのち(B)、清浄空気を供給してキャリオ−バを解消し(C)、これを試験前のブランク(A)と比較した。キャリオーバの影響は各元素とも0.5%未満であり、許容値1%未満を十分に下まわっていた。
Example 1
(Verification of carry-over prevention effect)
In order to verify the effect of carryover prevention in the analyzer of the present invention, combustion-ion chromatography using the NAC-st4 (1480 mg) (containing F, Cl, Br, I, and S) as a multi-element shared standard sample Carried out. In order to reduce the contamination, the apparatus has a completely sealed structure. The test results are shown in the following table, and a chromatograph from the state before and after the measurement is shown in FIG. After obtaining the analysis result by the combustion-chromatography method using NAC-st4 (B), clean air was supplied to eliminate the carrier (C), and this was compared with the blank (A) before the test. The effect of carryover was less than 0.5% for each element, which was well below the allowable value of less than 1%.

実施例2
前記多元素含有標準試料は燃焼ーイオンクロマトグラフ方式における試料分析において有効であることがすでに確認されているが、以下の試験では本発明の分析におけるその適合性を市販の標準試料と対比して示す。
Example 2
Although the multi-element-containing standard sample has already been confirmed to be effective in the sample analysis in the combustion-ion chromatographic method, in the following test, its suitability in the analysis of the present invention is compared with a commercially available standard sample. Show.

(フッ素分析)
NAC−st1および市販試薬p−安息香酸を用いて燃焼ーイオンクロマトグラフ方式の試料分析を実施した結果を下記表および図3のグラフに示す。グラフから明らかなようにp−フルオロ安息香酸(A)およびNAC−st1(B)の検量線は同等の傾向を示し、両者を合わせた検量線の相関係数(R2)は0.999以上を示し、よく一致した(A+B)。
(Fluorine analysis)
The results of performing a combustion-ion chromatographic sample analysis using NAC-st1 and commercially available reagent p-benzoic acid are shown in the following table and the graph of FIG. As is clear from the graph, the calibration curves of p-fluorobenzoic acid (A) and NAC-st1 (B) show the same tendency, and the correlation coefficient (R 2 ) of the combined calibration curve shows 0.999 or more. Agreed well (A + B).

(臭素分析)
多元素含有試薬としてのNAC−st1および市販の4−ブロモアセトアニリドを用いて燃焼ーイオンクロマトグラフ方式の分析における検量線を作成した。結果を図4に示す。両者の検量線はH/NHNH含有移動相を含む第2吸収びんの吸収液ー(2)の場合ではほぼ一致していた。
(Bromine analysis)
Using NAC-st1 as a multi-element-containing reagent and commercially available 4-bromoacetanilide, a calibration curve in the combustion-ion chromatographic analysis was prepared. The results are shown in FIG. Both calibration curves were almost the same in the case of the absorption liquid of the second absorption bottle containing the mobile phase containing H 2 O 2 / NH 2 NH 2- (2).

実施例3
(多元素標準試料による検量線)
多元素標準試料NAC−st1、NAC−st2を用いて燃焼ーイオンクロマトグラフ分析において計り取った試料中の各元素量とピーク面積の関係から夫々の元素の検量線を作成した。二次式における検量線の方程式と相関係数Rを下記表に示す。いずれの元素についてもRは0.999以上の相関性を示した。
Example 3
(Calibration curve with multi-element standard sample)
A calibration curve of each element was created from the relationship between the amount of each element in the sample measured in the combustion-ion chromatographic analysis using the multi-element standard samples NAC-st1 and NAC-st2, and the peak area. The correlation coefficient R 2 and equation of the calibration curve in the quadratic shown in the following Table. For any element, R 2 showed a correlation of 0.999 or more.

実施例4
(デシミリグラム量の有機ハロゲン・硫黄の分析結果)
市販の標準試料をデシミリグラムの範囲の試料量で用いて各ハロゲンおよび硫黄の含有量を分析した。結果を下記の表に示し、F、Cl、Br、S、についてのクロマトグラフを図5に示す。いずれの元素についても許容誤差±0.3%以内の結果が得られ、本発明が超微量試料に充分適用できることが確認された。
Example 4
(Analysis result of organic halogen and sulfur in Decimilligram amount)
Commercial halogen standards were used to analyze the content of each halogen and sulfur using sample amounts in the decimilligram range. The results are shown in the following table, and the chromatograph for F, Cl, Br, S is shown in FIG. For any element, a result within an allowable error of ± 0.3% was obtained, and it was confirmed that the present invention can be sufficiently applied to a very small amount of sample.

本発明は、従来から適用されて来た比較的大量の試料(100〜1,000mg)中の超微量成分分析の他に、特に1.0mg未満の超微量試料を正確にはかり取り、含有するハロゲンおよび硫黄の多元素を高速自動分析法により精度よく測定できるようになり、その産業上の利用可能性は大きいものと考える。   In addition to the ultra-trace component analysis in a relatively large amount of sample (100 to 1,000 mg) that has been conventionally applied, the present invention accurately measures an ultra-trace sample particularly less than 1.0 mg and contains halogen and It is possible to measure sulfur multi-elements with high-speed automatic analysis with high accuracy, and its industrial applicability is considered large.

1 オートサンプラ
2 燃焼管
3 白金ボート
4A 試料加熱炉
4B 燃焼炉
5A,5B 吸収びん
1 Autosampler 2 Combustion tube 3 Platinum boat 4A Sample heating furnace 4B Combustion furnace 5A, 5B Absorption bottle

Claims (1)

多種ハロゲンおよび硫黄を含む複数検体の分析試料を石英燃焼管に順次供給するオートサンプラと、前記石英燃焼管を備え燃焼管中での酸素を含む清浄空気による分析試料の燃焼分解により無機態のハロゲンおよび硫黄の分解生成物を生成させる燃焼装置と、燃焼装置からの清浄空気に含まれる分解生成物を溶解し、溶解に伴って生じる多種ハロゲンおよび硫黄の夫々のイオンに解離する吸収液を備えた吸収装置と前記分解生成物を含む燃焼用の清浄空気を前記燃焼装置の下流側の排出口より吸収装置に吸引導入する吸引ポンプと、前記吸収装置の下流側に設けられ前記吸収装置からの夫々のイオンを分離展開してイオンクロマトグラムにより定量検知するイオンクロマトグラフ装置とを備え
前記燃焼装置の下流側の排出口に設けられ分析試料の全ての分解生成物を含む清浄空気をニードル管を通して下流側の吸収装置に吸引するニードル機構と、
前記分解生成物を含む清浄空気の下流側への流れと対向する向きに前記ニードル管の外側から別の流れの清浄空気を前記排出口に供給する吹出口を設けた高速自動分析装置において
前記燃焼装置の前記下流側の排出口に供給する清浄空気を前記燃焼管の上流側に供給する試料燃焼用の酸素を含む清浄空気の供給源から供給することを特徴とする前記高速自動分析装置。
An autosampler that sequentially supplies analysis samples of a plurality of specimens containing various halogens and sulfur to a quartz combustion tube, and an inorganic halogen by combustion decomposition of the analysis sample with clean air containing oxygen in the combustion tube provided with the quartz combustion tube And a combustion device that generates a decomposition product of sulfur, and an absorption liquid that dissolves the decomposition product contained in the clean air from the combustion device and dissociates into various halogen and sulfur ions that accompany the dissolution A suction pump for sucking and introducing clean air for combustion containing the absorption device and the decomposition products into the absorption device from a discharge port on the downstream side of the combustion device, and a suction pump provided on the downstream side of the absorption device, respectively. a ion chromatographic apparatus for quantitatively detected by the ion separating expanded ion chromatogram,
A needle mechanism that is provided in a discharge port on the downstream side of the combustion device and sucks clean air containing all decomposition products of the analysis sample into the absorption device on the downstream side through the needle tube;
In a high-speed automatic analyzer provided with a blowout port for supplying another flow of clean air from the outside of the needle tube to the discharge port in a direction opposite to the flow of clean air containing the decomposition product to the downstream side,
The high-speed automatic analyzer is characterized in that the clean air supplied to the discharge port on the downstream side of the combustion device is supplied from a supply source of clean air containing oxygen for sample combustion supplied to the upstream side of the combustion pipe. .
JP2015129359A 2015-06-28 2015-06-28 Method and apparatus for automatic analysis of trace amounts of trace amounts of halogens and sulfur Active JP6121484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015129359A JP6121484B2 (en) 2015-06-28 2015-06-28 Method and apparatus for automatic analysis of trace amounts of trace amounts of halogens and sulfur

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015129359A JP6121484B2 (en) 2015-06-28 2015-06-28 Method and apparatus for automatic analysis of trace amounts of trace amounts of halogens and sulfur

Publications (2)

Publication Number Publication Date
JP2017015414A JP2017015414A (en) 2017-01-19
JP6121484B2 true JP6121484B2 (en) 2017-04-26

Family

ID=57829134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015129359A Active JP6121484B2 (en) 2015-06-28 2015-06-28 Method and apparatus for automatic analysis of trace amounts of trace amounts of halogens and sulfur

Country Status (1)

Country Link
JP (1) JP6121484B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102155406B1 (en) * 2017-08-18 2020-09-11 주식회사 엘지화학 Quantitative Analysis Method of Residual Chlorine in Zinc Ferrite
CN114062522A (en) * 2020-07-30 2022-02-18 湖南三德盈泰环保科技有限公司 Sample pretreatment automation device and method
WO2024029415A1 (en) * 2022-08-03 2024-02-08 株式会社島津製作所 Recovery solution generating device for combustion ion chromatograph
CN115343387B (en) * 2022-08-04 2023-05-05 浙江大学 Method for detecting content of nonmetallic elements in organic hazardous waste

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645886Y2 (en) * 1989-01-14 1994-11-24 株式会社堀場製作所 Combustion furnace for analytical samples
JPH08262000A (en) * 1995-03-22 1996-10-11 Sankyo Co Ltd Automatic analyzer and automatic analyzing method for halogen and sulfur in organic compound
JP2001021925A (en) * 1999-07-12 2001-01-26 Canon Inc Liquid crystal device

Also Published As

Publication number Publication date
JP2017015414A (en) 2017-01-19

Similar Documents

Publication Publication Date Title
JP6121484B2 (en) Method and apparatus for automatic analysis of trace amounts of trace amounts of halogens and sulfur
Huang et al. An improved dual-stage protocol to pre-concentrate mercury from airborne particles for precise isotopic measurement
Wang et al. Coupling on-line preconcentration by ion-exchange with ETAAS: a novel flow injection approach based on the use of a renewable microcolumn as demonstrated for the determination of nickel in environmental and biological samples
Dane et al. Selective ionization of melamine in powdered milk by using argon direct analysis in real time (DART) mass spectrometry
Krata et al. Simultaneous speciation analysis of mercury in marine origin samples by high performance liquid chromatography and species-specific isotope dilution inductively coupled plasma mass spectrometry
de Jesus et al. Determination of mercury in gasoline by photochemical vapor generation coupled to graphite furnace atomic absorption spectrometry
US10656130B2 (en) Elemental analysis system and method with a reactor having two metal zeolite nitrogen oxides reduction reaction zones
Prieto et al. Simultaneous speciation of methylmercury and butyltin species in environmental samples by headspace-stir bar sorptive extraction–thermal desorption–gas chromatography–mass spectrometry
Palm et al. Performance of a new coaxial ion–molecule reaction region for low-pressure chemical ionization mass spectrometry with reduced instrument wall interactions
Carrasco et al. Determination of methylmercury in marine sediment samples: method validation and occurrence data
Liu et al. Determination of total mercury in biological tissue by isotope dilution ICPMS after UV photochemical vapor generation
Antes et al. Development of a vaporization system for direct determination of chlorine in petroleum coke by ICP-MS
WO2024016761A1 (en) Gas chromatography-mass spectrometry analysis method for haloacetic acid in drinking water
JP5941794B2 (en) Soil continuous analysis method
Borowska et al. Photochemical vapor generation combined with headspace solid phase microextraction for determining mercury species by microwave-induced plasma optical emission spectrometry
Federherr et al. A novel high‐temperature combustion based system for stable isotope analysis of dissolved organic carbon in aqueous samples. I: development and validation
Xu et al. Radiocarbon in dissolved organic carbon by UV oxidation: Procedures and blank characterization at NOSAMS
Niemelä et al. Development of analytical methods for the determination of sub-ppm concentrations of palladium and iron in methotrexate
Pancras et al. Multi-element electrothermal AAS determination of 11 marker elements in fine ambient aerosol slurry samples collected with SEAS-II
Lo Dico et al. Simultaneous determination of As, Cu, Cr, Se, Sn, Cd, Sb and Pb levels in infant formulas by ICP-MS after microwave-assisted digestion: Method validation
Kang et al. Determination of trace chlorine dioxide based on the plasmon resonance scattering of silver nanoparticles
Zeng et al. Chemical vapor generation coupled with atomic fluorescence spectrometry for the determination of manganese in food samples
Peschel et al. A radiotracer study on the volatilization and transport effects of thermochemical reagents used in the analysis of alumina powders by slurry electrothermal vaporization inductively coupled plasma mass spectrometry
JP2008232729A (en) Liquid chromatograph analyzer and method
Dyckmans et al. Comparison of methods to determine triple oxygen isotope composition of N2O

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170329

R150 Certificate of patent or registration of utility model

Ref document number: 6121484

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250