JP6119985B2 - Vacuum valve vacuum degree monitoring method and vacuum valve vacuum degree monitoring apparatus - Google Patents

Vacuum valve vacuum degree monitoring method and vacuum valve vacuum degree monitoring apparatus Download PDF

Info

Publication number
JP6119985B2
JP6119985B2 JP2013141661A JP2013141661A JP6119985B2 JP 6119985 B2 JP6119985 B2 JP 6119985B2 JP 2013141661 A JP2013141661 A JP 2013141661A JP 2013141661 A JP2013141661 A JP 2013141661A JP 6119985 B2 JP6119985 B2 JP 6119985B2
Authority
JP
Japan
Prior art keywords
vacuum
degree
voltage
vacuum valve
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013141661A
Other languages
Japanese (ja)
Other versions
JP2015015172A (en
Inventor
岡田 直喜
直喜 岡田
大木 秀人
秀人 大木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP2013141661A priority Critical patent/JP6119985B2/en
Publication of JP2015015172A publication Critical patent/JP2015015172A/en
Application granted granted Critical
Publication of JP6119985B2 publication Critical patent/JP6119985B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、真空遮断器における真空バルブの真空度劣化状況を監視するその監視方法及び監視装置に関する。   The present invention relates to a monitoring method and a monitoring device for monitoring the degree of vacuum deterioration of a vacuum valve in a vacuum circuit breaker.

真空遮断器に備えられ実質的な電路遮断を行う真空バルブ(真空インタラプタ)は、容器内部の真空度が低下すると絶縁性能、つまり遮断性能が低下するため、その真空度を監視することが行われている。この場合、真空バルブの内部放電(放電開始電圧)と真空度とが相関することから、放電の際の電磁波を検出して真空度を推定することが一つの手法としてある。   The vacuum valve (vacuum interrupter) that is provided in the vacuum circuit breaker and substantially cuts off the electric circuit is monitored because the insulation performance, that is, the interruption performance, decreases when the vacuum inside the container decreases. ing. In this case, since the internal discharge (discharge start voltage) of the vacuum bulb and the degree of vacuum correlate, it is one method to estimate the degree of vacuum by detecting electromagnetic waves during discharge.

例えば特許文献1,2等に開示の手法では、真空バルブの内部放電により生じる電磁波をアンテナにて受信し、受信した電磁波のレベルに基づいて内部放電の有無判定が行われるとともに、いずれの電圧値で放電に至ったかの放電開始電圧の特定が行われる。そして、放電開始電圧と真空度との相関を示したパッシェン曲線(パッシェンカーブ)に基づいて、真空バルブの真空度の劣化状態が推定されている。   For example, in the methods disclosed in Patent Documents 1 and 2 and the like, an electromagnetic wave generated by internal discharge of a vacuum valve is received by an antenna, the presence / absence of internal discharge is determined based on the level of the received electromagnetic wave, and any voltage value The discharge start voltage is determined as to whether or not the discharge has occurred. And the deterioration state of the vacuum degree of a vacuum valve is estimated based on the Paschen curve (Paschen curve) which showed the correlation with a discharge start voltage and a vacuum degree.

特開2002−184275号公報JP 2002-184275 A 特開平7−318447号公報JP-A-7-318447

ところで、パッシェン曲線の特徴として、真空度を実質的な真空状態から大気圧まで変化させると、放電開始電圧は十分大きな電圧値から一旦小さくなり、再び大きな電圧値に変化する。つまり、放電開始電圧が最低電圧値より高い範囲では、同一の放電開始電圧で2つの真空度を取り得てしまう。   By the way, as a characteristic of the Paschen curve, when the degree of vacuum is changed from a substantially vacuum state to atmospheric pressure, the discharge start voltage once decreases from a sufficiently large voltage value and then changes to a large voltage value again. That is, in the range where the discharge start voltage is higher than the minimum voltage value, two degrees of vacuum can be obtained with the same discharge start voltage.

ただ、従来より行われている真空度の良否判定では、大気圧時の放電開始電圧よりも十分高い電圧値に閾値が設定されているため、放電開始電圧の特定にて良否判定を適切に行うことは可能である。   However, since the threshold value is set to a voltage value sufficiently higher than the discharge start voltage at atmospheric pressure in the conventional determination of the degree of vacuum, the pass / fail determination is appropriately performed by specifying the discharge start voltage. It is possible.

しかしながら、大気圧時の放電開始電圧よりも低い範囲では、上記したように同一の放電開始電圧で2つの真空度を取り得ることから、真空度が否判定の中でもその真空度がどのような状況かが判断不能である。   However, in the range lower than the discharge start voltage at atmospheric pressure, two vacuum degrees can be obtained with the same discharge start voltage as described above. It is impossible to judge.

本発明は、上記課題を解決するためになされたものであって、その目的は、真空度の劣化状態の段階的判断が可能な真空バルブの真空度監視方法、及び真空バルブの真空度監視装置を提供することにある。   SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a vacuum degree monitoring method for a vacuum valve and a vacuum degree monitoring apparatus for a vacuum valve capable of stepwise determination of the degree of vacuum deterioration. Is to provide.

上記課題を解決する真空バルブの真空度監視方法は、真空バルブに対する印加電圧に応じて内部放電が生じた際、放電開始電圧と真空度との相関を有するパッシェン曲線に基づいた判定線を用いて前記真空バルブの真空度を推定する真空バルブの真空度監視方法であって、前記真空バルブの内部放電に伴って生じる電磁波の周波数分析を行いその周波数分布様相を加味することで、前記パッシェン曲線に基づく判定線上で前記真空バルブに対する印加電圧にて2つの真空度の推定値を取り得る場合の一方側を選択可能としている。   A vacuum valve vacuum degree monitoring method that solves the above problem uses a judgment line based on a Paschen curve having a correlation between a discharge start voltage and a vacuum degree when an internal discharge occurs according to a voltage applied to the vacuum valve. A vacuum valve monitoring method for estimating a vacuum degree of the vacuum valve, wherein the Paschen curve is obtained by analyzing a frequency of an electromagnetic wave generated along with an internal discharge of the vacuum valve and adding a frequency distribution aspect thereof. It is possible to select one side in the case where two estimated values of the degree of vacuum can be obtained with the applied voltage to the vacuum valve on the determination line.

この構成によれば、真空バルブの内部放電に伴って生じる電磁波の周波数分析を行いその周波数分布様相を加味することで、パッシェン曲線に基づく判定線のみから真空バルブの真空度を推定するのに比べてより詳細な真空度の推定が可能となる。これにより、真空度の劣化状態の段階的な判断が可能となる。   According to this configuration, frequency analysis of electromagnetic waves generated due to internal discharge of the vacuum bulb is performed and the frequency distribution aspect is taken into consideration, compared with estimating the vacuum degree of the vacuum bulb only from the judgment line based on the Paschen curve. This makes it possible to estimate the degree of vacuum in more detail. Thereby, stepwise determination of the degree of vacuum deterioration is possible.

また上記の真空バルブの真空度監視方法において、前記パッシェン曲線に基づく判定線上で放電開始電圧が最低値となる真空度の両側で前記電磁波の周波数分布様相を分け、その2つの周波数分布様相の何れに該当するかで前記真空度の推定値を選択することが好ましい。   In the above vacuum valve vacuum level monitoring method, the electromagnetic wave frequency distribution mode is divided on both sides of the vacuum level at which the discharge start voltage becomes the lowest value on the determination line based on the Paschen curve, and any of the two frequency distribution modes is selected. It is preferable to select the estimated value of the degree of vacuum according to the above.

この構成によれば、パッシェン曲線に基づく判定線上で放電開始電圧が最低値となる真空度の両側で電磁波の周波数分布様相を大別できるため、その2つの周波数分布様相の何れに該当するかを判断するだけで容易に真空度の推定が可能である。   According to this configuration, the frequency distribution aspect of the electromagnetic wave can be broadly divided on both sides of the degree of vacuum at which the discharge start voltage is the lowest value on the determination line based on the Paschen curve, so which of the two frequency distribution aspects is applicable? The degree of vacuum can be easily estimated just by making a judgment.

また上記の真空バルブの真空度監視方法において、前記真空バルブに対する印加電圧は、通常使用時に印加される交流電圧を含むことが好ましい。
この構成によれば、真空バルブに対して通常使用時に印加される交流電圧にて真空度の推定が可能なため、通常使用状態で容易にまた何時でも真空度の推定が可能である。
In the vacuum valve vacuum degree monitoring method described above, the voltage applied to the vacuum valve preferably includes an alternating voltage applied during normal use.
According to this configuration, the degree of vacuum can be estimated with an alternating voltage applied to the vacuum valve during normal use. Therefore, the degree of vacuum can be easily estimated at any time in the normal use state.

また上記課題を解決する真空バルブの真空度監視装置は、真空バルブに対する印加電圧に応じて内部放電が生じた際、放電開始電圧と真空度との相関を有するパッシェン曲線に基づいた判定線を用いて前記真空バルブの真空度を推定する構成の真空バルブの真空度監視装置であって、前記真空バルブの内部放電に伴って生じる電磁波の周波数分析を行いその周波数分布様相を加味することで、前記パッシェン曲線に基づく判定線上で前記真空バルブに対する印加電圧にて2つの真空度の推定値を取り得る場合の一方側を選択可能に構成される。   In addition, the vacuum valve vacuum degree monitoring device that solves the above problem uses a judgment line based on a Paschen curve having a correlation between a discharge start voltage and a vacuum degree when an internal discharge occurs according to a voltage applied to the vacuum valve. The vacuum degree monitoring device of the vacuum valve configured to estimate the vacuum degree of the vacuum valve, and by analyzing the frequency of electromagnetic waves generated along with the internal discharge of the vacuum valve and taking into account its frequency distribution aspect, On the determination line based on the Paschen curve, one side can be selected when two estimated values of the degree of vacuum can be obtained with the applied voltage to the vacuum valve.

この構成によれば、上記したように、真空度の劣化状態の段階的な判断が可能な監視装置として提供できる。   According to this configuration, as described above, it can be provided as a monitoring device capable of stepwise determination of the degree of vacuum deterioration.

本発明の真空バルブの真空度監視方法及び監視装置によれば、真空度の劣化状態の段階的判断を行うことができる。   According to the vacuum degree monitoring method and monitoring apparatus for a vacuum valve of the present invention, it is possible to make a stepwise determination of the degree of vacuum deterioration.

一実施形態における真空遮断器の概略構成図である。It is a schematic block diagram of the vacuum circuit breaker in one Embodiment. 真空度監視装置の電気ブロック図である。It is an electrical block diagram of a vacuum degree monitoring apparatus. 真空度監視手法を説明するための説明図である。It is explanatory drawing for demonstrating the vacuum degree monitoring method. 真空度監視手法を説明するための説明図である。It is explanatory drawing for demonstrating the vacuum degree monitoring method. (a)(b)(c)は、真空度監視手法を説明するための説明図である。(A) (b) (c) is explanatory drawing for demonstrating the vacuum degree monitoring method. 別例での真空度監視手法を説明するための説明図である。It is explanatory drawing for demonstrating the vacuum degree monitoring method in another example. 別例での真空度監視手法を説明するための説明図である。It is explanatory drawing for demonstrating the vacuum degree monitoring method in another example.

以下、真空バルブの真空度監視方法及び監視装置の一実施形態について説明する。
図1に示すように、真空遮断器10のタンク11内において、同一電路を構成する一対の電路導体12間に真空バルブ13が介在されている。真空バルブ13は、各電路導体12とそれぞれ接続される一対の電極(図示略)を自身の容器内に備え、操作器14の動作により電極の接続・切り離しが行われる構成となっている。タンク11の内壁には、真空バルブ13の内部放電に伴う電磁波を受信可能なアンテナ21が装着されている。
Hereinafter, an embodiment of a vacuum valve vacuum degree monitoring method and a monitoring apparatus will be described.
As shown in FIG. 1, in a tank 11 of a vacuum circuit breaker 10, a vacuum valve 13 is interposed between a pair of circuit conductors 12 constituting the same circuit. The vacuum valve 13 includes a pair of electrodes (not shown) connected to the respective electric conductors 12 in its own container, and is configured to be connected / disconnected by operation of the operation unit 14. On the inner wall of the tank 11, an antenna 21 capable of receiving electromagnetic waves accompanying internal discharge of the vacuum bulb 13 is attached.

図2に示すように、真空バルブ13の真空度監視装置20は、アンテナ21及び監視回路22を備えている。監視回路22は、受信機23、A/D変換部24、処理部(CPU)25、及びメモリ26を備える。アンテナ21及び受信機23は、真空バルブ13の内部放電に伴って生じる電磁波を含む所定帯域(f1〜fn帯域)の電磁波を受信する。本実施形態では、受信する電磁波のf1〜fn帯域は、例えば1[MHz]〜1000[MHz]である。また、受信機23は、受信した所定帯域の電磁波をn個に細分し、次段のA/D変換部24は、その細分した各区間の電磁波レベル(例えば区間最大値)をデジタル値に変換して処理部25に出力する。処理部25は、細分したn個の電磁波レベル、即ち受信した電磁波の周波数分析に基づいて、真空バルブ13の真空度の推定を行っている。   As shown in FIG. 2, the vacuum degree monitoring device 20 of the vacuum valve 13 includes an antenna 21 and a monitoring circuit 22. The monitoring circuit 22 includes a receiver 23, an A / D conversion unit 24, a processing unit (CPU) 25, and a memory 26. The antenna 21 and the receiver 23 receive electromagnetic waves in a predetermined band (f1 to fn band) including electromagnetic waves generated with internal discharge of the vacuum bulb 13. In the present embodiment, the f1 to fn band of the received electromagnetic wave is, for example, 1 [MHz] to 1000 [MHz]. The receiver 23 subdivides the received electromagnetic wave in a predetermined band into n pieces, and the A / D converter 24 at the next stage converts the subdivided electromagnetic wave level (for example, the maximum value of the section) into a digital value. And output to the processing unit 25. The processing unit 25 estimates the degree of vacuum of the vacuum valve 13 based on the subdivided n electromagnetic wave levels, that is, the frequency analysis of the received electromagnetic waves.

また、この真空度の推定(内部放電に伴う電磁波の周波数分析)は、電圧印加状態で行われ、例えば通常使用時における交流電圧印加中に行われる。即ち、図4に示すように、判定時に印加される交流電圧はプラス及びマイナスの定格電圧間で正弦波状に変化するものであり、処理部25は、ゼロ電圧を含む電圧V1からプラス側のピーク電圧を含む電圧V5までの間を等分した電圧V1〜V5の5段階に設定し、真空バルブ13にて内部放電が発生した時の電圧値を特定する。因みに、マイナス側については電圧−V1〜−V5に振り分けられるが、プラス側の電圧V1〜V5として同等に扱う。そして、処理部25は、電圧V1〜V5を含む印加電圧を把握することで、内部放電に伴う電磁波が発生した時の印加電圧を特定する。   Further, the estimation of the degree of vacuum (frequency analysis of electromagnetic waves accompanying internal discharge) is performed in a voltage application state, for example, during application of an alternating voltage during normal use. That is, as shown in FIG. 4, the alternating voltage applied at the time of determination changes in a sine wave shape between the positive and negative rated voltages, and the processing unit 25 has a positive peak from the voltage V1 including zero voltage. The voltage V1 including the voltage is set in five stages of voltages V1 to V5 that are equally divided, and the voltage value when the internal discharge is generated in the vacuum valve 13 is specified. Incidentally, although the minus side is distributed to the voltages -V1 to -V5, they are treated equally as the plus side voltages V1 to V5. And the process part 25 pinpoints the applied voltage when the electromagnetic waves accompanying internal discharge generate | occur | produce by grasping | ascertaining the applied voltage containing voltage V1-V5.

ここで、図3は、放電開始電圧と真空度との相関を示したパッシェン曲線の一例を示す。同図3の放電開始電圧には、真空バルブ13の印加電圧V1〜V5も合わせて示している。   Here, FIG. 3 shows an example of a Paschen curve showing the correlation between the discharge start voltage and the degree of vacuum. The discharge start voltage in FIG. 3 also shows the applied voltages V1 to V5 of the vacuum bulb 13.

パッシェン曲線は、真空度が101 [Pa]付近で放電開始電圧が電圧V1以下に低下する。この真空度101 [Pa]から真空度が低くなり大気圧に近づくほど、放電開始電圧が上昇する。真空度が104 〜105 [Pa]の略中間で定格電圧V5と同等の放電開始電圧となり、大気圧の105 [Pa]ではその電圧V5よりも高い放電開始電圧となる。一方、真空度101 [Pa]から真空度が高くなるほど、同様に放電開始電圧が上昇する。真空度が100 〜10-1[Pa]の略中間で定格電圧V5と同等の放電開始電圧となり、真空度が約10-1[Pa]で大気圧(105 [Pa])と同等の放電開始電圧となる。そして、真空度が10-1[Pa]を超えたところから真空度が10-3[Pa]、10-4[Pa]と高まっても、放電開始電圧は略最高電圧で大きく変化しなくなる。因みに、真空度10-4[Pa]が一般的な真空管理値である。 In the Paschen curve, the discharge start voltage drops below the voltage V1 when the degree of vacuum is around 10 1 [Pa]. The discharge start voltage increases as the vacuum level decreases from the vacuum level of 10 1 [Pa] and approaches the atmospheric pressure. The discharge start voltage is equivalent to the rated voltage V5 in the middle of the vacuum degree of 10 4 to 10 5 [Pa], and the discharge start voltage is higher than the voltage V5 at 10 5 [Pa] at atmospheric pressure. On the other hand, as the degree of vacuum increases from a degree of vacuum of 10 1 [Pa], the discharge start voltage similarly increases. The discharge start voltage is approximately equal to the rated voltage V5 at a vacuum between approximately 10 0 and 10 −1 [Pa], and the vacuum is approximately 10 −1 [Pa] and equal to atmospheric pressure (10 5 [Pa]). Discharge start voltage. And even if the degree of vacuum increases from 10 -1 [Pa] to 10 -3 [Pa] and 10 -4 [Pa] after the degree of vacuum exceeds 10 -1 [Pa], the discharge start voltage does not change greatly at the substantially maximum voltage. Incidentally, a degree of vacuum of 10 −4 [Pa] is a general vacuum management value.

そして、図3のようなパッシェン曲線(準じたものも含む)に基づく判定線がメモリ26に保持されている。処理部25は、内部放電が発生した時点の印加電圧が上記の電圧V1〜V5のいずれであったかを特定し、特定した電圧V1〜V5をもとに図3の判定線から真空度の推定を行う。   A determination line based on a Paschen curve (including a conforming one) as shown in FIG. The processing unit 25 specifies which of the voltages V1 to V5 is applied when the internal discharge occurs, and estimates the degree of vacuum from the determination line in FIG. 3 based on the specified voltages V1 to V5. Do.

ところで、図3に示すパッシェン曲線の特徴として、真空度が101 [Pa]で放電開始電圧が略最低値(略電圧V1)を取り、この両側では放電開始電圧がともに上昇していく。つまり、真空バルブ13に対する印加電圧が電圧V1の時に内部放電が生じれば、真空度は101 [Pa]と推定可能であるが、真空バルブ13に対する印加電圧が電圧V2以上となると、真空度の推定値としては2つ取り得る。 By the way, as a feature of the Paschen curve shown in FIG. 3, when the degree of vacuum is 10 1 [Pa], the discharge start voltage takes a substantially lowest value (substantially voltage V1), and the discharge start voltage increases on both sides. That is, if an internal discharge occurs when the applied voltage to the vacuum valve 13 is the voltage V1, the degree of vacuum can be estimated to be 10 1 [Pa], but if the applied voltage to the vacuum valve 13 is equal to or higher than the voltage V2, the degree of vacuum is increased. Two estimation values can be taken.

そこで、受信した電磁波の周波数分析を試みたところ、真空度101 [Pa]が放電開始電圧の略最低値(略電圧V1)の両側で、電磁波の周波数分布の様相が比較的大きく異なることがわかった。これを踏まえ、電磁波の周波数分析を取り入れることで、2つ取り得る真空度の推定値のうち1つを選択できるようにした。 Therefore, when an attempt was made to analyze the frequency of the received electromagnetic wave, the aspect of the frequency distribution of the electromagnetic wave was relatively different on both sides of the vacuum degree 10 1 [Pa] at the substantially lowest value of the discharge start voltage (substantially voltage V1). all right. Based on this, by adopting frequency analysis of electromagnetic waves, one of the two estimated values of the degree of vacuum can be selected.

図5(a)は、真空バルブ13の真空度が正常値(真空管理値)での電磁波の周波数分布様相であり、周波数f1〜fnの帯域全体で一様に電磁波レベルが小さくなっている。一方、図5(b)(c)は、真空バルブ13の真空度が劣化範囲となって内部放電が発生した場合の電磁波の周波数分布様相であり、図5(b)に示す分布様相と、図5(c)に示す分布様相の2つに大別される。   FIG. 5A shows the frequency distribution aspect of the electromagnetic wave when the vacuum degree of the vacuum valve 13 is a normal value (vacuum control value), and the electromagnetic wave level is uniformly reduced over the entire band of frequencies f1 to fn. On the other hand, FIGS. 5B and 5C are frequency distribution patterns of electromagnetic waves when the degree of vacuum of the vacuum valve 13 is in a deterioration range and internal discharge occurs, and the distribution patterns shown in FIG. It is roughly divided into two distribution modes shown in FIG.

図5(b)は、図3参照の放電開始電圧が略最低となる真空度101 [Pa]を分岐点Aとしこの分岐点Aよりも真空度が高い領域X1側の周波数分布様相であって、f1〜fn間の所定周波数fx(本実施形態では、例えば200[MHz])よりも低い周波数帯域で電磁波レベルが一様に大きく、所定周波数fxよりも高い周波数帯域で電磁波レベルが一様に小さくなっている。つまり、真空度が分岐点Aよりも高い状況での内部放電は、低い周波数の電磁波が発生し、所定周波数fxより低い周波数帯に偏倚して電磁波レベルが増大する。 FIG. 5B shows a frequency distribution aspect on the side of the region X1 where the degree of vacuum 10 1 [Pa] at which the discharge start voltage of FIG. Thus, the electromagnetic wave level is uniformly large in a frequency band lower than a predetermined frequency fx (for example, 200 [MHz] in this embodiment) between f1 and fn, and the electromagnetic wave level is uniform in a frequency band higher than the predetermined frequency fx. It is getting smaller. That is, in the internal discharge in a state where the degree of vacuum is higher than the branch point A, an electromagnetic wave with a low frequency is generated, and the electromagnetic wave level is increased by being biased to a frequency band lower than the predetermined frequency fx.

図5(c)は、図3参照の分岐点Aよりも真空度が低い領域X2側の周波数分布様相であって、所定周波数fxを含め周波数f1〜fn間全体で一様に電磁波レベルが大きくなる。つまり、真空度が分岐点Aよりも低い状況での内部放電は、上記よりも高い周波数の電磁波が発生し、周波数f1〜fnの帯域全体で電磁波レベルが増大する。   FIG. 5C shows a frequency distribution aspect on the side of the region X2 where the degree of vacuum is lower than the branch point A of FIG. 3, and the electromagnetic wave level is uniformly large throughout the frequency f1 to fn including the predetermined frequency fx. Become. That is, the internal discharge in a situation where the degree of vacuum is lower than the branch point A generates an electromagnetic wave with a frequency higher than the above, and the electromagnetic wave level increases in the entire band of frequencies f1 to fn.

これらを踏まえ、本実施形態の処理部25は、図5(a)〜(c)の各分布様相が判定可能な判定値、例えば同図5の判定値aのように設定されてメモリ26に保持され、真空バルブ13での内部放電の発生からその真空度の推定を行うようになっている。   Based on these, the processing unit 25 of the present embodiment is set to a determination value that can determine each distribution aspect of FIGS. 5A to 5C, for example, the determination value a of FIG. The degree of vacuum is estimated from the occurrence of internal discharge in the vacuum bulb 13.

つまり、周波数f1〜fx間及び周波数fx〜fn間の両方で電磁波レベルが判定値a以下である場合は、真空バルブ13の真空度は10-2[Pa]より高く、真空度が正常であるという判定となる。これに対し、周波数f1〜fx間の例えば80%で電磁波レベルが判定値aを上回る場合は、真空バルブ13の真空度は分岐点Aである真空度101 [Pa]よりも高い真空度の領域X1にあるという判定となる。周波数f1〜fx間及び周波数fx〜fn間のそれぞれ例えば80%で電磁波レベルが判定値aを上回る場合は、真空バルブ13の真空度は分岐点Aである真空度101 [Pa]よりも低い真空度の領域X2にあるという判定となる。 That is, when the electromagnetic wave level is lower than or equal to the determination value a both between the frequencies f1 and fx and between the frequencies fx and fn, the vacuum degree of the vacuum valve 13 is higher than 10 −2 [Pa] and the degree of vacuum is normal. It becomes the judgment. On the other hand, when the electromagnetic wave level exceeds the determination value a at 80% between the frequencies f1 to fx, the vacuum degree of the vacuum valve 13 is higher than the degree of vacuum 10 1 [Pa] which is the branch point A. It is determined that it is in the region X1. When the electromagnetic wave level exceeds the determination value a at, for example, 80% between the frequencies f1 to fx and between the frequencies fx to fn, the degree of vacuum of the vacuum valve 13 is lower than the degree of vacuum 10 1 [Pa] that is the branch point A. It is determined that the area is in the vacuum level region X2.

次に、本実施形態の動作(作用)を説明する。
真空バルブ13の真空度の推定は電圧印加状態で行われ、例えば通常使用における交流電圧印加状態で行われる。真空度監視装置20の処理部25は、図4のように印加電圧を電圧V1〜V5(電圧−V1〜−V5も同様)の各領域に分け、アンテナ21を介して受信した電磁波の周波数分析(周波数f1〜fn帯域)を各電圧V1〜V5毎に行う。
Next, the operation (action) of this embodiment will be described.
The degree of vacuum of the vacuum valve 13 is estimated in a voltage application state, for example, in an AC voltage application state in normal use. As shown in FIG. 4, the processing unit 25 of the vacuum degree monitoring device 20 divides the applied voltage into each region of the voltages V1 to V5 (the same applies to the voltages −V1 to −V5), and analyzes the frequency of the electromagnetic wave received via the antenna 21. (Frequency f1 to fn band) is performed for each voltage V1 to V5.

次いで、処理部25は、電磁波の周波数分布を行い、細分した個々の電磁波レベルと判定値aとの比較を行う(図5参照)。処理部25は、電磁波レベルが周波数f1〜fx及び周波数fx〜fnのいずれの帯域において判定値aを上回ったかのレベルの大小及びその周波数分布様相、更にはその時の印加電圧V1〜V5に基づいて、真空バルブ13の真空度を推定する(図3参照)。つまり、電磁波レベルの大小で真空バルブ13の内部放電の有無がわかり、電磁波の周波数分布様相で真空バルブ13の真空度状態(領域X1,X2)がわかり、更には内部放電が生じた場合のその時の印加電圧(電圧V1〜V5)で真空度のより具体的な値が推定可能となる。   Next, the processing unit 25 performs frequency distribution of the electromagnetic wave, and compares the subdivided individual electromagnetic wave level with the determination value a (see FIG. 5). The processing unit 25 is based on the magnitude of the level at which the electromagnetic wave level exceeds the determination value a in any band of the frequencies f1 to fx and the frequencies fx to fn, the frequency distribution aspect thereof, and the applied voltages V1 to V5 at that time, The degree of vacuum of the vacuum valve 13 is estimated (see FIG. 3). That is, the presence or absence of internal discharge of the vacuum bulb 13 can be determined by the magnitude of the electromagnetic wave level, the vacuum state (regions X1 and X2) of the vacuum bulb 13 can be determined by the frequency distribution aspect of the electromagnetic wave, and further, when internal discharge occurs. More specific values of the degree of vacuum can be estimated with the applied voltages (voltages V1 to V5).

例えば、真空バルブ13に対する印加電圧が電圧V2で、内部放電に伴う電磁波のレベルが周波数f1〜fxに偏倚して判定値aを超えると、処理部25は、真空バルブ13の真空度が約100 [Pa]であると推定する。また、真空バルブ13に対する印加電圧が電圧V2で、内部放電に伴う電磁波のレベルが周波数f1〜fxと周波数fx〜fnとの両方で判定値aを超えると、処理部25は、真空バルブ13の真空度が約103 [Pa]であると推定する。 For example, when the applied voltage to the vacuum valve 13 is the voltage V2 and the level of electromagnetic waves accompanying internal discharge is biased to the frequencies f1 to fx and exceeds the determination value a, the processing unit 25 has a degree of vacuum of the vacuum valve 13 of about 10 Estimated to be 0 [Pa]. When the applied voltage to the vacuum valve 13 is the voltage V2 and the level of the electromagnetic wave accompanying the internal discharge exceeds the determination value a at both the frequencies f1 to fx and the frequencies fx to fn, the processing unit 25 The degree of vacuum is estimated to be about 10 3 [Pa].

このように本実施形態では、真空バルブ13に対する印加電圧に基づく内部放電の有無の検出に加え、その内部放電に伴って生じる電磁波の周波数分析を行うことで、図3のパッシェン曲線から具体的な1つの真空度の数値の推定が可能となり、段階的な真空度の劣化状況が判断可能である。   As described above, in the present embodiment, in addition to the detection of the presence or absence of internal discharge based on the voltage applied to the vacuum bulb 13, by performing frequency analysis of the electromagnetic wave generated along with the internal discharge, a specific example is obtained from the Paschen curve of FIG. It is possible to estimate the numerical value of one degree of vacuum, and it is possible to determine a stepwise degree of deterioration of the degree of vacuum.

次に、本実施形態の特徴的な効果を記載する。
(1)真空度監視装置20は、真空バルブ13の内部放電に伴って生じる電磁波の周波数分析を行い、その周波数分布様相を加味して真空バルブ13の真空度の推定を行っている。これにより、パッシェン曲線に基づく判定線のみから真空バルブ13の真空度を推定するのに比べて、本実施形態ではより詳細な真空度の推定が可能で、真空度の劣化状態の段階的な判断を行うことができる。
Next, characteristic effects of the present embodiment will be described.
(1) The degree-of-vacuum monitoring device 20 performs frequency analysis of electromagnetic waves generated along with the internal discharge of the vacuum bulb 13, and estimates the degree of vacuum of the vacuum bulb 13 in consideration of the frequency distribution aspect. Thereby, compared with estimating the vacuum degree of the vacuum valve 13 only from the judgment line based on the Paschen curve, more detailed estimation of the vacuum degree is possible in this embodiment, and stepwise judgment of the degree of deterioration of the vacuum degree is possible. It can be performed.

(2)パッシェン曲線に基づく判定線上で放電開始電圧が最低値となる真空度(101 [Pa])の両側(領域X1,X2)で電磁波の周波数分布様相を大別できるため、本実施形態ではその2つの周波数分布様相の何れに該当するかを判断するだけで容易に真空度の推定を行うことができる。 (2) Since the frequency distribution aspect of the electromagnetic wave can be roughly divided on both sides (regions X1, X2) of the degree of vacuum (10 1 [Pa]) at which the discharge start voltage becomes the minimum value on the determination line based on the Paschen curve, this embodiment Then, it is possible to easily estimate the degree of vacuum only by determining which of the two frequency distribution aspects is applicable.

(3)真空バルブ13に対して通常使用時に印加される交流電圧にて真空度の推定を行う構成のため、通常使用状態で容易にまた何時でも真空度の推定を行うことができる。
尚、上記実施形態は、以下のように変更してもよい。
(3) Since the degree of vacuum is estimated with an AC voltage applied to the vacuum valve 13 during normal use, the degree of vacuum can be easily estimated at any time in the normal use state.
In addition, you may change the said embodiment as follows.

・監視装置20のアンテナ21を真空遮断器10のタンク11の内側に設けたが、設置場所はこれに限らず、例えば図1の破線にて示すようにタンク11の外側に設けてもよい。この場合、タンク11内の真空バルブ13からの電磁波が受信可能な位置(絶縁スペーサやブッシングといった非金属部分等)に設置する必要がある。   Although the antenna 21 of the monitoring device 20 is provided inside the tank 11 of the vacuum circuit breaker 10, the installation location is not limited thereto, and may be provided outside the tank 11 as indicated by a broken line in FIG. In this case, it is necessary to install the electromagnetic wave from the vacuum valve 13 in the tank 11 (a non-metallic part such as an insulating spacer or a bushing) where the electromagnetic wave can be received.

・真空バルブ13の真空度の推定を通常使用時の交流電圧印加に基づいて行ったが、例えば試験用の電圧(交流又は直流)を別途用意して行うようにしてもよい。
・電圧V1〜V5の5段階を以て真空度の推定を行ったが、4段階以下、6段階以上で真空度の推定を行うようにしてもよい。
The estimation of the degree of vacuum of the vacuum valve 13 is performed based on the application of an alternating voltage during normal use. However, for example, a test voltage (alternating current or direct current) may be separately prepared.
Although the degree of vacuum is estimated using five stages of voltages V1 to V5, the degree of vacuum may be estimated using four stages or less and six stages or more.

・図6及び図7に示すように、図5(b)の周波数分布様相となる真空度の領域X1と、図5(c)の周波数分布様相となる真空度の領域X2との間に、中間領域X3を設定してもよい。印加電圧が高い側(マイナスでは低い側)では、図5(b)又は図5(c)のように周波数分布様相がより明確に分かれることが考えられるため、印加電圧が高い側(低い側)の電圧Vbの範囲(領域X1,X2)では、上記実施形態と同様に電磁波の周波数分析を併用して真空バルブ13の真空度の推定を行う。一方、印加電圧がゼロに近い電圧Vaの範囲となる中間領域X3(例えば真空度100 〜103 [Pa])において、周波数分布様相の差が小さいような場合では、電磁波の周波数分析を省略してもよい。 As shown in FIG. 6 and FIG. 7, between the vacuum degree region X1 having the frequency distribution aspect in FIG. 5B and the vacuum degree region X2 having the frequency distribution aspect in FIG. The intermediate area X3 may be set. On the higher applied voltage side (lower side at minus), the frequency distribution aspect may be more clearly divided as shown in FIG. 5B or FIG. 5C, so the higher applied voltage side (lower side). In the range of the voltage Vb (regions X1 and X2), the degree of vacuum of the vacuum valve 13 is estimated using frequency analysis of electromagnetic waves in the same manner as in the above embodiment. On the other hand, in the case where the difference in the frequency distribution aspect is small in the intermediate region X3 (for example, the degree of vacuum is 10 0 to 10 3 [Pa]) where the applied voltage is in the range of the voltage Va close to zero, the frequency analysis of the electromagnetic wave is omitted. May be.

・電磁波レベルと判定値aとの比較において各判定領域の80%以上で電磁波レベルが判定値aを上回るか否かで真空バルブ13での放電有無の判定を行っていたが、各判定領域の電磁波レベルの積算値、平均値等で行ってもよい。   In the comparison between the electromagnetic wave level and the determination value a, whether or not the vacuum bulb 13 is discharged is determined based on whether the electromagnetic wave level exceeds the determination value a in 80% or more of each determination region. You may carry out by the integrated value of an electromagnetic wave level, an average value, etc.

・周波数分析後の細分した電磁波レベルにて真空バルブ13での放電有無の判定を行っていたが、全体の電磁波レベルで一先ず真空バルブ13での放電有無の判定を行ってから、その後に周波数分析を行うようにしてもよい。   ・ The presence or absence of discharge in the vacuum bulb 13 was determined at the subdivided electromagnetic wave level after frequency analysis, but first the presence or absence of discharge in the vacuum bulb 13 was determined at the entire electromagnetic wave level, and then frequency analysis was performed. May be performed.

・周波数f1、fx、fnや分岐点A等の設定値は、使用する真空バルブ13等に応じて適宜変更してもよい。   The set values such as the frequencies f1, fx, fn and the branch point A may be appropriately changed according to the vacuum valve 13 to be used.

13…真空バルブ、20…真空度監視装置、V1〜V5…印加電圧。   13 ... Vacuum valve, 20 ... Vacuum degree monitoring device, V1 to V5 ... Applied voltage.

Claims (4)

真空バルブに対する印加電圧に応じて内部放電が生じた際、放電開始電圧と真空度との相関を有するパッシェン曲線に基づいた判定線を用いて前記真空バルブの真空度を推定する真空バルブの真空度監視方法であって、
前記真空バルブの内部放電に伴って生じる電磁波の周波数分析を行いその周波数分布様相を加味することで、前記パッシェン曲線に基づく判定線上で前記真空バルブに対する印加電圧にて2つの真空度の推定値を取り得る場合の一方側を選択可能としたことを特徴とする真空バルブの真空度監視方法。
When the internal discharge occurs according to the voltage applied to the vacuum bulb, the degree of vacuum of the vacuum bulb is estimated using a judgment line based on a Paschen curve having a correlation between the discharge start voltage and the degree of vacuum. A monitoring method,
Analyzing the frequency of electromagnetic waves generated with the internal discharge of the vacuum bulb and taking into account its frequency distribution, two estimated values of the degree of vacuum at the applied voltage to the vacuum bulb on the judgment line based on the Paschen curve A method for monitoring the degree of vacuum of a vacuum valve, wherein one of the possible cases can be selected.
請求項1に記載の真空バルブの真空度監視方法において、
前記パッシェン曲線に基づく判定線上で放電開始電圧が最低値となる真空度の両側で前記電磁波の周波数分布様相を分け、その2つの周波数分布様相の何れに該当するかで前記真空度の推定値を選択するようにしたことを特徴とする真空バルブの真空度監視方法。
In the vacuum valve monitoring method according to claim 1,
The frequency distribution aspect of the electromagnetic wave is divided on both sides of the degree of vacuum at which the discharge start voltage is the lowest value on the determination line based on the Paschen curve, and the estimated value of the degree of vacuum is determined according to which of the two frequency distribution aspects corresponds. A method for monitoring the degree of vacuum of a vacuum valve, characterized by being selected.
請求項1又は2に記載の真空バルブの真空度監視方法において、
前記真空バルブに対する印加電圧は、通常使用時に印加される交流電圧を含むことを特徴とする真空バルブの真空度監視方法。
In the vacuum valve monitoring method for a vacuum valve according to claim 1 or 2,
The method for monitoring the degree of vacuum of a vacuum valve, wherein the applied voltage to the vacuum valve includes an alternating voltage applied during normal use.
真空バルブに対する印加電圧に応じて内部放電が生じた際、放電開始電圧と真空度との相関を有するパッシェン曲線に基づいた判定線を用いて前記真空バルブの真空度を推定する構成の真空バルブの真空度監視装置であって、
前記真空バルブの内部放電に伴って生じる電磁波の周波数分析を行いその周波数分布様相を加味することで、前記パッシェン曲線に基づく判定線上で前記真空バルブに対する印加電圧にて2つの真空度の推定値を取り得る場合の一方側を選択可能に構成されたことを特徴とする真空バルブの真空度監視装置。
When an internal discharge occurs according to the voltage applied to the vacuum valve, a vacuum valve having a configuration in which the degree of vacuum of the vacuum valve is estimated using a determination line based on a Paschen curve having a correlation between the discharge start voltage and the degree of vacuum. A vacuum monitoring device,
Analyzing the frequency of electromagnetic waves generated with the internal discharge of the vacuum bulb and taking into account its frequency distribution, two estimated values of the degree of vacuum at the applied voltage to the vacuum bulb on the judgment line based on the Paschen curve A vacuum degree monitoring device for a vacuum valve, wherein one of the possible cases can be selected.
JP2013141661A 2013-07-05 2013-07-05 Vacuum valve vacuum degree monitoring method and vacuum valve vacuum degree monitoring apparatus Active JP6119985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013141661A JP6119985B2 (en) 2013-07-05 2013-07-05 Vacuum valve vacuum degree monitoring method and vacuum valve vacuum degree monitoring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013141661A JP6119985B2 (en) 2013-07-05 2013-07-05 Vacuum valve vacuum degree monitoring method and vacuum valve vacuum degree monitoring apparatus

Publications (2)

Publication Number Publication Date
JP2015015172A JP2015015172A (en) 2015-01-22
JP6119985B2 true JP6119985B2 (en) 2017-04-26

Family

ID=52436769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013141661A Active JP6119985B2 (en) 2013-07-05 2013-07-05 Vacuum valve vacuum degree monitoring method and vacuum valve vacuum degree monitoring apparatus

Country Status (1)

Country Link
JP (1) JP6119985B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7463085B2 (en) 2019-12-04 2024-04-08 株式会社東芝 Diagnostic device, diagnostic method, and program
CN111948499A (en) * 2020-07-17 2020-11-17 中国科学院合肥物质科学研究院 Testing device for local Paschen test of superconducting magnet

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61263015A (en) * 1985-05-16 1986-11-21 株式会社明電舎 Vacuum drop detector for vacuum interrupter
JPS6255823A (en) * 1985-09-03 1987-03-11 株式会社明電舎 Vacuum drop detector for vacuum interruptor
JPH0357977A (en) * 1989-07-27 1991-03-13 Meidensha Corp Device for detecting partial discharge of gas-insulated switchgear
JP3168751B2 (en) * 1992-04-02 2001-05-21 富士電機株式会社 Method and apparatus for detecting vacuum leak of vacuum valve
JP3302482B2 (en) * 1994-02-16 2002-07-15 株式会社関西テック Internal abnormality detection device for gas insulation equipment
JPH07318447A (en) * 1994-05-30 1995-12-08 Mitsubishi Electric Corp Vacuum degree monitor
JPH10210647A (en) * 1997-01-24 1998-08-07 Tohoku Electric Power Co Inc Insulation abnormality diagnosing equipment
JP2002184275A (en) * 2000-12-12 2002-06-28 Meidensha Corp Degree of vacuum monitoring method and device for vacuum circuit-breaker
JP4169024B2 (en) * 2005-09-13 2008-10-22 株式会社日立製作所 Vacuum switchgear
JP2014142996A (en) * 2011-05-13 2014-08-07 Mitsubishi Electric Corp Vacuum deterioration detector of enclosed switchgear

Also Published As

Publication number Publication date
JP2015015172A (en) 2015-01-22

Similar Documents

Publication Publication Date Title
CN105093082A (en) DC fault arc detection method
KR101352204B1 (en) Apparatus and method for classification of power quality disturbances at power grids
US8736297B2 (en) Method for production of a fault signal, and an electrical protective device
KR101625618B1 (en) Arc detecting apparatus, arc detecting method and power system
CN104092440A (en) Photovoltaic system direct-current arc fault detection method, device, processor and system
JP2017539066A (en) Method for detecting arc generated during power supply of plasma process, control unit for plasma power supply, and plasma power supply
JP2014531022A (en) Method and apparatus for detecting arcs in DC circuits
KR20080100782A (en) Arc detector
CN104483602A (en) Local discharge signal identification method and device
CN205193210U (en) Direct current trouble arc detection device
CN107192941B (en) Analysis method and management method for dynamic load capacity of circuit breaker
JP6119985B2 (en) Vacuum valve vacuum degree monitoring method and vacuum valve vacuum degree monitoring apparatus
CN112582978B (en) Leakage protection method and device and charging pile
WO2016093957A1 (en) Systems and methods for detecting non-operating thyristors in welding systems
US11329471B2 (en) Arc detection circuit, breaker system, connection box system, power conditioner, micro inverter, DC optimizer, and arc detection method
US20160266182A1 (en) Operation apparatus
CN109417284B (en) Apparatus for determining ground fault and related method
US11181569B2 (en) Arc detection method and apparatus using statistical value of electric current
JP2012193975A (en) Electric apparatus insulation diagnostic device
CN106199346B (en) Device for monitoring partial discharges in an electrical network
CN111044858B (en) Risk assessment system and method for extra-high voltage converter transformer
US20230063811A1 (en) Circuit breakers with notification and reporting capability
CN114759673A (en) Method and device for determining fault of mining explosion-proof and intrinsically safe combined frequency converter
WO2021240578A1 (en) Diagnosis device for motor
RU2700809C1 (en) Selective automated system for diagnosing and monitoring the state of insulation of power cable lines

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170314

R150 Certificate of patent or registration of utility model

Ref document number: 6119985

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250