JP6116881B2 - Insulation case - Google Patents

Insulation case Download PDF

Info

Publication number
JP6116881B2
JP6116881B2 JP2012268677A JP2012268677A JP6116881B2 JP 6116881 B2 JP6116881 B2 JP 6116881B2 JP 2012268677 A JP2012268677 A JP 2012268677A JP 2012268677 A JP2012268677 A JP 2012268677A JP 6116881 B2 JP6116881 B2 JP 6116881B2
Authority
JP
Japan
Prior art keywords
group
thermoplastic resin
case according
weight
insulating case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012268677A
Other languages
Japanese (ja)
Other versions
JP2014116421A (en
Inventor
秀輔 吉原
秀輔 吉原
俊朗 江▲崎▼
俊朗 江▲崎▼
中村 充
充 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2012268677A priority Critical patent/JP6116881B2/en
Publication of JP2014116421A publication Critical patent/JP2014116421A/en
Application granted granted Critical
Publication of JP6116881B2 publication Critical patent/JP6116881B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、絶縁ケースに関し、詳しくは、大電流を取扱う装置中のバスバーやコイルなどの発熱体から発生する熱を、ヒートシンクなどの放熱部材に効率よく伝達するとともに、発熱体同士または発熱体と放熱部材との絶縁を確保するのに好適に用いることができる、熱伝導性樹脂組成物からなる絶縁ケースに関する。   The present invention relates to an insulating case, and more specifically, heat generated from a heating element such as a bus bar or a coil in a device that handles a large current is efficiently transmitted to a heat radiating member such as a heat sink. The present invention relates to an insulating case made of a thermally conductive resin composition that can be suitably used to ensure insulation from a heat radiating member.

ハイブリッド車、電気自動車などで使用される電力変換装置や充電器のような電気・電子機器は大電流を取り扱うため、バスバーやコイルなどの発熱体からの発熱量は大きく、金属製ヒートシンクなどの電気伝導性の放熱部材を用いて放熱するケースが多い。その際、発熱体同士または発熱体と放熱部材との間の絶縁性を確保するために、絶縁物を間に介する必要がある。絶縁物としては一般的に低熱伝導率の樹脂材料が使用されているが、発熱体をモールドするまたは収容する絶縁ケースは、発生する熱を効率よく放熱部材へ伝熱することが好ましく、特許文献1には、バスバーをモールドする絶縁体として、高熱伝導性の樹脂を用いることが記載されている。またこの際には絶縁ケースは厚み方向に高熱伝導性を有することが求められる。また常時使用温度が150℃近くなることから、絶縁ケースに対しては150℃の長期耐熱性が求められる。   Since electric and electronic devices such as power converters and chargers used in hybrid vehicles and electric vehicles handle large currents, the amount of heat generated from heating elements such as bus bars and coils is large, and electric heat such as metal heat sinks is used. There are many cases where heat is dissipated using a conductive heat dissipating member. In that case, in order to ensure the insulation between heat generating bodies or between a heat generating body and a heat radiating member, it is necessary to interpose an insulator. Generally, a resin material with low thermal conductivity is used as the insulator, but the insulating case for molding or housing the heating element preferably transfers the generated heat to the heat radiating member efficiently. 1 describes the use of a highly thermally conductive resin as an insulator for molding a bus bar. In this case, the insulating case is required to have high thermal conductivity in the thickness direction. In addition, since the normal use temperature is close to 150 ° C., long-term heat resistance of 150 ° C. is required for the insulating case.

このような課題を解決するために、熱伝導性充填材を大量に熱可塑性樹脂中に配合することで、高熱伝導性樹脂組成物を得ようとする試みが広くなされている。熱伝導性充填材としては、グラファイト、炭素繊維、アルミナ、窒化ホウ素、等の熱伝導性充填材を、通常は30体積%以上、さらには50体積%以上もの高含有量で樹脂中に配合する必要がある。しかしながら、充填材を大量に配合しても樹脂単体の熱伝導率が低いために、特に厚み方向の熱伝導率を高めるのは困難であった。特許文献2には低融点合金としてSn−Cu合金、融点400℃以上の金属粉末及び/又は炭素繊維、六方晶窒化ホウ素粉末、酸化マグネシウム粉末を含有する樹脂組成物が厚み方向に高熱伝導性を有することが記載されている。しかしながら低融点合金や金属粉末、炭素繊維を使用しているため非絶縁体となり、絶縁ケースに使用することはできない。また特許文献3または4には球形または粒子径の熱伝導性充填材と板状熱伝導性充填材を含有する樹脂組成物について熱伝導率の異方性が小さくなると記載されている。しかしながらベース樹脂の熱伝導率が低いために、厚み方向の熱伝導率を向上させづらいという問題があった。そこでベース樹脂の熱伝導性の向上が求められていた。   In order to solve such problems, attempts have been widely made to obtain a highly thermally conductive resin composition by blending a large amount of a thermally conductive filler into a thermoplastic resin. As the thermally conductive filler, a thermally conductive filler such as graphite, carbon fiber, alumina, boron nitride or the like is usually blended in the resin at a high content of 30% by volume or more, and further 50% by volume or more. There is a need. However, even when a large amount of filler is blended, it is difficult to increase the thermal conductivity in the thickness direction in particular because the thermal conductivity of the resin alone is low. In Patent Document 2, a resin composition containing a Sn—Cu alloy, a metal powder having a melting point of 400 ° C. and / or carbon fiber, a hexagonal boron nitride powder, and a magnesium oxide powder as a low melting point alloy has high thermal conductivity in the thickness direction. It is described that it has. However, since a low melting point alloy, metal powder, or carbon fiber is used, it becomes a non-insulator and cannot be used for an insulating case. Patent Document 3 or 4 describes that the anisotropy of thermal conductivity is reduced with respect to a resin composition containing a spherical or particle-shaped thermally conductive filler and a plate-like thermally conductive filler. However, since the thermal conductivity of the base resin is low, there is a problem that it is difficult to improve the thermal conductivity in the thickness direction. Therefore, improvement of the thermal conductivity of the base resin has been demanded.

特許文献5に特定構造の熱可塑性樹脂が樹脂単体で高熱伝導性を示し、熱伝導性充填材を配合することで樹脂組成物の熱伝導率が大きく向上することが記載されている。記載されている熱可塑性樹脂の多くは加熱時にスメクチック液晶性を示すことが非特許文献1〜3に記載されている。しかしながら、樹脂材料が有する150℃の長期耐熱性については一切言及されていない。   Patent Document 5 describes that a thermoplastic resin having a specific structure exhibits high thermal conductivity as a single resin, and that the thermal conductivity of the resin composition is greatly improved by blending a thermal conductive filler. It is described in Non-patent Documents 1 to 3 that many of the described thermoplastic resins exhibit smectic liquid crystallinity when heated. However, no mention is made of the long-term heat resistance at 150 ° C. of the resin material.

特開2006−031959号公報JP 2006-031959 A 特開2007−070587号公報JP 2007-070587 A 特表2011−503328号公報Special table 2011-503328 gazette 特開2012−136684号公報JP 2012-136684 A 国際公開番号WO2010/050202号公報International Publication Number WO2010 / 050202

Journal of Polymer Science Polymer Physics Edition, 21, 1119−1131(1983)Journal of Polymer Science Polymer Physics Edition, 21, 1119-1131 (1983) Macromolecules, 16, 1271−1279(1983)Macromolecules, 16, 1271-1279 (1983) Macromolecules, 17, 2288−2295(1984)Macromolecules, 17, 2288-2295 (1984).

本発明は、厚み方向に高い熱伝導性と絶縁性、150℃の長期耐熱性を有する絶縁ケースを提供することが目的である。 An object of the present invention is to provide an insulating case having high thermal conductivity and insulation in the thickness direction and long-term heat resistance of 150 ° C.

上記の課題を解決すべく鋭意研究を重ねた結果、加熱時にスメクチック液晶性を示す熱可塑性樹脂が、樹脂単体で熱伝導率が高いことに加え、高温での長期耐熱性に優れることを見出した。この発見をもとに、特に結晶相からスメクチック液晶相への転移点が180℃以上であることを特徴とする熱可塑性樹脂に球状または粒状の熱伝導性充填材、および繊維状充填材および針状充填材からなる群より選ばれる少なくとも1種の強化材を特定量含有した熱可塑性樹脂組成物からなる絶縁ケースが、150℃の長期耐熱性に優れ、かつ厚み方向に高熱伝導性を有することを見出し、本発明に至った。
即ち、本発明は、下記1)〜13)である。
As a result of diligent research to solve the above problems, it was found that a thermoplastic resin exhibiting smectic liquid crystal properties when heated has high thermal conductivity as a single resin and excellent long-term heat resistance at high temperatures. . Based on this discovery, a spherical or granular heat conductive filler, a fibrous filler and a needle, which are characterized in that the transition point from the crystalline phase to the smectic liquid crystal phase is 180 ° C. or more. An insulating case made of a thermoplastic resin composition containing a specific amount of at least one reinforcing material selected from the group consisting of fillers of the shape is excellent in long-term heat resistance at 150 ° C. and has high thermal conductivity in the thickness direction. And found the present invention.
That is, the present invention includes the following 1) to 13).

1)加熱時にスメクチック液晶性を示し、結晶相からスメクチック液晶相への転移点が180℃以上であることを特徴とする熱可塑性樹脂(A)100重量部に対し、球状または粒状の熱伝導性充填材(B1)を50〜250重量部、および繊維状充填材および針状充填材からなる群より選ばれる少なくとも1種の強化材(C)を10〜100重量部を含有する熱伝導性樹脂組成物からなる絶縁ケース。   1) Spheric or granular thermal conductivity with respect to 100 parts by weight of the thermoplastic resin (A), which exhibits smectic liquid crystallinity upon heating and has a transition point from the crystal phase to the smectic liquid crystal phase of 180 ° C. or higher. Thermally conductive resin containing 50 to 250 parts by weight of filler (B1) and 10 to 100 parts by weight of at least one reinforcing material (C) selected from the group consisting of fibrous fillers and needle-like fillers An insulating case made of the composition.

2)前記熱伝導性樹脂組成物が5〜100重量部の難燃剤(D)をさらに含有する1)に記載の絶縁ケース。   2) The insulating case according to 1), wherein the thermally conductive resin composition further contains 5 to 100 parts by weight of a flame retardant (D).

3)前記熱伝導性樹脂組成物が板状の熱伝導性充填材(B2)をさらに20〜200重量部含有し、球状または粒状の熱伝導性充填材(B1)との含有率が体積比で(B1)/(B2)=5/95〜70/30である1)または2)に記載の絶縁ケース。   3) The thermally conductive resin composition further contains 20 to 200 parts by weight of a plate-like thermally conductive filler (B2), and the content ratio with the spherical or granular thermally conductive filler (B1) is a volume ratio. (B1) / (B2) = 5/95 to 70/30, wherein 1) or 2).

4)球状または粒状の熱伝導性充填材(B1)が、吸水率が0.5%以下の酸化マグネシウムである、1)〜3)のいずれかに記載の絶縁ケース。   4) The insulating case according to any one of 1) to 3), wherein the spherical or granular thermally conductive filler (B1) is magnesium oxide having a water absorption rate of 0.5% or less.

5)板状の熱伝導性充填材(B2)がタルク、六方晶窒化ほう素から選ばれる少なくとも1種である、3)または4)に記載の絶縁ケース。   5) The insulating case according to 3) or 4), wherein the plate-like thermally conductive filler (B2) is at least one selected from talc and hexagonal boron nitride.

6)強化材(C)が、ガラス繊維、ワラストナイト、チタン酸カリウムウィスカー、およびホウ酸アルミニウムウィスカーよりなる群より選ばれる少なくとも1つである1)〜5)のいずれかに記載の絶縁ケース。   6) The insulating case according to any one of 1) to 5), wherein the reinforcing material (C) is at least one selected from the group consisting of glass fiber, wollastonite, potassium titanate whisker, and aluminum borate whisker. .

7)前記熱伝導性樹脂組成物が空気雰囲気下、150℃で2000時間加熱処理後に、曲げ強度の保持率が85%以上である1)〜6)のいずれかに記載の絶縁ケース。   7) The insulating case according to any one of 1) to 6), wherein the heat conductive resin composition has a bending strength retention of 85% or more after heat treatment at 150 ° C. for 2000 hours in an air atmosphere.

8)前記熱可塑性樹脂の主鎖の構造が、主として一般式(1)で示される単位の繰り返し単位からなる1)〜7)のいずれかに記載の絶縁ケース。
−M−Sp− ...(1)
(式中、Mはメソゲン基、Spはスペーサーを示す。)
9)前記熱可塑性樹脂が主として下記一般式(2)で示される単位の繰り返しからなる8)に記載の絶縁ケース。
−A−x−A−OCO(CHCOO− ...(2)
(式中、AおよびAは、各々独立して芳香族基、縮合芳香族基、脂環基、脂環式複素環基から選ばれる置換基を示す。xは、各々独立して直接結合、−O−、−S−、−CH−CH−、−C=C−、−C=C(Me)−、−C≡C−、−CO−O−、−CO−NH−、−CH=N−、−CH=N−N=CH−、−N=N−または−N(O)=N−の群から選ばれる2価の置換基を示す。mは2〜20の整数を示す。)
10)前記熱可塑性樹脂の−A−x−A−が下記一般式(3)であることを特徴とする、9)に記載の熱可塑性樹脂成形体。
8) The insulating case according to any one of 1) to 7), wherein the structure of the main chain of the thermoplastic resin is mainly composed of repeating units represented by the general formula (1).
-M-Sp- . . . (1)
(In the formula, M represents a mesogenic group, and Sp represents a spacer.)
9) The insulating case according to 8), wherein the thermoplastic resin is mainly composed of repeating units represented by the following general formula (2).
-A 1 -x-A 2 -OCO ( CH 2) m COO- . . . (2)
(In the formula, A 1 and A 2 each independently represent a substituent selected from an aromatic group, a condensed aromatic group, an alicyclic group, and an alicyclic heterocyclic group. Bond, —O—, —S—, —CH 2 —CH 2 —, —C═C—, —C═C (Me) —, —C≡C—, —CO—O—, —CO—NH—. , —CH═N—, —CH═N—N═CH—, —N═N— or —N (O) ═N—, wherein m represents 2 to 20. Indicates an integer.)
10) The thermoplastic resin molded article according to 9), wherein -A 1 -xA 2 -of the thermoplastic resin is represented by the following general formula (3).

Figure 0006116881
Figure 0006116881

(式中、Rはそれぞれ独立して脂肪族炭化水素基、F、Cl、Br、I、CN、またはNO、yは2〜4の整数、nは0〜4の整数を示す。)
11)前記熱可塑性樹脂のmが4〜14の偶数から選ばれる少なくとも1種である9)または10)のいずれかに記載の絶縁ケース。
(In the formula, each R is independently an aliphatic hydrocarbon group, F, Cl, Br, I, CN, or NO 2 , y is an integer of 2 to 4, and n is an integer of 0 to 4.)
11) The insulating case according to any one of 9) or 10), wherein m of the thermoplastic resin is at least one selected from an even number of 4 to 14.

12)前記熱可塑性樹脂の数平均分子量が3000〜40000である、1)〜11)のいずれかに記載の絶縁ケース。   12) The insulating case according to any one of 1) to 11), wherein the thermoplastic resin has a number average molecular weight of 3000 to 40000.

13)1)から12)のいずれかに記載の絶縁ケースを用いて形成してなるパワーモジュール。   13) A power module formed by using the insulating case according to any one of 1) to 12).

本発明の絶縁ケースは、厚み方向の熱伝導性に優れるだけでなく、150℃の長期加熱処理によっても強度を保持するため、大電流を取り扱う電気・電子機器に適用可能であり、電気・電子機器の小型化または高性能化に貢献できる。   The insulating case of the present invention is not only excellent in thermal conductivity in the thickness direction, but also retains strength by long-term heat treatment at 150 ° C., and thus can be applied to electric / electronic devices that handle large currents. Contributes to downsizing or higher performance of equipment.

本発明の絶縁ケースは加熱時にスメクチック液晶性を示し、結晶相からスメクチック液晶相への転移点が180℃以上であることを特徴とする熱可塑性樹脂(A)100重量部に対し、球状または粒状の熱伝導性充填材(B1)を50〜250重量部、および繊維状充填材および針状充填材からなる群より選ばれる少なくとも1種の強化材(C)を10〜100重量部を含有する熱伝導性樹脂組成物からなることを特徴としている。   The insulating case of the present invention exhibits a smectic liquid crystal property when heated, and has a transition point from a crystalline phase to a smectic liquid crystal phase of 180 ° C. or more, which is spherical or granular with respect to 100 parts by weight of the thermoplastic resin (A). 50 to 250 parts by weight of the thermally conductive filler (B1) and 10 to 100 parts by weight of at least one reinforcing material (C) selected from the group consisting of a fibrous filler and an acicular filler. It is characterized by comprising a thermally conductive resin composition.

本発明で言う熱可塑性とは、加熱により可塑化する性質のことである。本発明における熱可塑性樹脂は液晶相の状態がスメクチック液晶となりうる。スメクチック液晶は、分子の並び方が分子軸に概ね並行に連なり、更に並行に連なった部分の重心が同一平面上にあって、分子軸に対して概ね直角に層状態を持って連なるスメクチック層と呼ばれる層構造を有する。スメクチック液晶は直交偏光下の顕微鏡観察では短棒状(batonets)組織、モザイク組織、扇状組織等の特有のパターンを示すことが知られている。また液晶状態における広角X線回折測定からスメクチック層の周期に由来する回折ピークが観測されるのが特徴である。   The thermoplasticity referred to in the present invention is a property of plasticizing by heating. The thermoplastic resin in the present invention can be a smectic liquid crystal in the liquid crystal phase. A smectic liquid crystal is called a smectic layer in which molecules are arranged almost parallel to the molecular axis, and the center of gravity of the parallel connected parts is on the same plane and has a layer state substantially perpendicular to the molecular axis. It has a layer structure. It is known that smectic liquid crystals exhibit a peculiar pattern such as a batonets structure, a mosaic structure, a fan-like structure, etc. in microscopic observation under orthogonal polarization. In addition, a diffraction peak derived from the period of the smectic layer is observed from wide-angle X-ray diffraction measurement in a liquid crystal state.

スメクチック液晶性を示す熱可塑性樹脂の熱物性としては、一般的に昇温過程において、固相からスメクチック液晶相への転移点Tとスメクチック液晶相から等方相への転移点Tを示す。樹脂によってはTより低い温度にてスメクチック液晶相からネマチック液晶相への転移点Tを示す場合もある。これらの相転移点はDSC測定の昇温過程において吸熱ピークのピークトップとして確認できる。 The thermophysical properties of a thermoplastic resin exhibiting smectic liquid crystallinity generally indicate a transition point T S from a solid phase to a smectic liquid crystal phase and a transition point T i from a smectic liquid crystal phase to an isotropic phase in the temperature rising process. . Some resins also indicate transition point T N to nematic liquid crystal phase from the smectic liquid crystal phase at a temperature lower than T i. These phase transition points can be confirmed as the peak top of the endothermic peak in the temperature rising process of DSC measurement.

本発明の「結晶相からスメクチック液晶相への転移点が180℃以上であることを特徴とする」とはTが180℃以上であることを意味し、好ましくは190℃以上、より好ましくは200℃以上であることが、150℃の長期耐熱性の点で好ましい。長期耐熱性の観点からTは高ければ高いほど好ましいが、樹脂材料の成形加工性の観点からTは350℃以下であることが好ましく、330℃以下であることがより好ましく、310℃以下であることがさらに好ましい。 By "characterized by transition from the crystalline phase to the smectic liquid crystal phase is 180 ° C. or more" of the present invention means that the T S is 180 ° C. or higher, preferably 190 ° C. or higher, more preferably 200 degreeC or more is preferable at the point of 150 degreeC long-term heat resistance. Although from the standpoint of long-term heat resistance T S is preferably as high as possible, it is preferred that the T S from the viewpoint of moldability of the resin material is 350 ° C. or less, more preferably 330 ° C. or less, 310 ° C. or less More preferably.

これまで実用化されてきた液晶性を示す樹脂としてはネマチック液晶性を示すものがほとんどであり、その多くは全芳香族の分子構造をしているため、固相から液晶相への転移点が250℃以上のものが多く、したがって150℃の長期耐熱性を有するものが多かった。しかしながら、溶融時にネマチック液晶性となる樹脂は、例えば射出成形時に金型内でのせん断流動によりその分子鎖は配向するが、熱伝導性充填材を配合しても樹脂組成物の厚み方向の熱伝導率は大きく向上しない。一方で特許文献5や非特許文献1〜3に記載のとおり、スメクチック液晶性を示す多くの熱可塑性樹脂の分子構造中にはメチレン鎖などの屈曲性基が存在するため、固相から液晶相への転移温度はネマチック液晶性の樹脂に比較して低く、高いものでも200℃前後のものが多い。このような比較的低い固相―液晶相転移温度を示すスメクチック液晶性の樹脂が、150℃の長期耐熱性を有することは思いがけない発見であった。さらにスメクチック液晶性を示す樹脂に熱伝導性充填材を配合すると、樹脂組成物の熱伝導率は大きく向上する。   Most of the liquid crystalline resins that have been put to practical use so far have nematic liquid crystalline properties, and most of them have a fully aromatic molecular structure, so there is a transition point from the solid phase to the liquid crystal phase. Many of them had a temperature of 250 ° C. or higher, and therefore many had long-term heat resistance of 150 ° C. However, a resin that becomes nematic liquid crystalline when melted, for example, has its molecular chain oriented due to shear flow in the mold during injection molding. However, even if a thermally conductive filler is blended, heat in the thickness direction of the resin composition can be obtained. The conductivity is not greatly improved. On the other hand, as described in Patent Document 5 and Non-Patent Documents 1 to 3, since a flexible group such as a methylene chain exists in the molecular structure of many thermoplastic resins exhibiting smectic liquid crystallinity, the liquid crystal phase is changed from the solid phase. The transition temperature to is lower than that of nematic liquid crystalline resins, and many of them have a high temperature of around 200 ° C. It was an unexpected discovery that such a smectic liquid crystalline resin exhibiting a relatively low solid phase-liquid crystal phase transition temperature has a long-term heat resistance of 150 ° C. Furthermore, when a thermally conductive filler is blended with a resin exhibiting smectic liquid crystallinity, the thermal conductivity of the resin composition is greatly improved.

本発明における熱可塑性樹脂(A)はT未満では結晶相となる。スメクチック液晶性を示す結晶性の熱可塑性樹脂は、T未満の温度において結晶化度も比較的高くなるため、これにより150℃の長期耐熱性を有すると考えられる。この観点から、室温(25℃)における結晶化度としては、20%以上であることが好ましく、40%以上であることがより好ましく、60%以上であることがさらに好ましい。結晶化度はX線回折測定からRuland法によって求められる。 Thermoplastic resin (A) in the present invention is a crystal phase is less than T S. Crystalline thermoplastic resin exhibiting a smectic liquid crystallinity, since at temperatures below T S becomes relatively high crystallinity, thereby believed to have a long-term heat resistance of 0.99 ° C.. From this viewpoint, the degree of crystallinity at room temperature (25 ° C.) is preferably 20% or more, more preferably 40% or more, and further preferably 60% or more. The degree of crystallinity is obtained from the X-ray diffraction measurement by the Ruland method.

本発明における樹脂組成物は球状または粒状の熱伝導性充填材(B1)を含有することを特徴とする。熱伝導性充填材の形状が球状または粒状であることにより、樹脂組成物を薄肉に成形した際も、厚み方向に熱伝導率を高めることができる。厚み方向の熱伝導率としては2.0W/(m・K)以上であることが好ましく、2.2W/(m・K)以上であることがより好ましく、2.5W/(m・K)以上であることがさらに好ましく、3.0W/(m・K)以上であることが特に好ましい。   The resin composition in the present invention is characterized by containing a spherical or granular heat conductive filler (B1). When the shape of the thermally conductive filler is spherical or granular, the thermal conductivity can be increased in the thickness direction even when the resin composition is formed into a thin wall. The thermal conductivity in the thickness direction is preferably 2.0 W / (m · K) or more, more preferably 2.2 W / (m · K) or more, and 2.5 W / (m · K). More preferably, it is more preferably 3.0 W / (m · K) or more.

熱伝導性充填材(B1)の使用量は、熱可塑性樹脂(A)100重量部に対し50〜250重量部、好ましくは60〜200重量部、より好ましくは70〜150重量部である。50重量部未満であると、絶縁ケースの厚み方向の熱伝導率が不十分となり、250重量部を超えると成形加工性の悪化、樹脂への配合に使用する押出機や成形金型の摩耗を引き起こす。   The usage-amount of a heat conductive filler (B1) is 50-250 weight part with respect to 100 weight part of thermoplastic resins (A), Preferably it is 60-200 weight part, More preferably, it is 70-150 weight part. If it is less than 50 parts by weight, the thermal conductivity in the thickness direction of the insulating case will be insufficient, and if it exceeds 250 parts by weight, the molding processability will be deteriorated, and the extruder and mold used for compounding with the resin will wear. cause.

熱伝導性充填材(B1)の平均粒子径は、好ましくは10μm〜100μm、より好ましくは20μm〜80μm、特に好ましくは30μm〜60μmの範囲内である。10μm未満の場合は、絶縁ケースの熱伝導率が不十分となる場合があり、100μmを超えると成形加工性が悪化する場合がある。   The average particle diameter of the thermally conductive filler (B1) is preferably in the range of 10 μm to 100 μm, more preferably 20 μm to 80 μm, and particularly preferably 30 μm to 60 μm. If it is less than 10 μm, the thermal conductivity of the insulating case may be insufficient, and if it exceeds 100 μm, the moldability may be deteriorated.

熱伝導性充填材(B1)としては例えば、アルミナ、窒化アルミニウム、酸化マグネシウム、フッ化カルシウム、ガラスビーズ、球状または粒状に凝集した六方晶窒化ほう素などが挙げられ、これらのいずれを使用しても良いが、酸化マグネシウムが、低モース硬度、熱伝導性、コストの点で好ましい。酸化マグネシウムは吸水率が0.5%以下であることが好ましく、0.3%以下であることがより好ましい。0.5%を超えると、樹脂への配合時に樹脂を加水分解する、または成形加工時に発砲する場合がある。例えば、酸化マグネシウムを1900℃以上の高温で焼成する、またはシランカップリング剤などで表面処理することで吸水率を0.5%以下にすることができる。ここで吸水率は、温度85℃、相対湿度85%の雰囲気下で、48時間処理した際の質量変化率である。   Examples of the heat conductive filler (B1) include alumina, aluminum nitride, magnesium oxide, calcium fluoride, glass beads, and hexagonal boron nitride aggregated in a spherical shape or a granular shape. However, magnesium oxide is preferable in terms of low Mohs hardness, thermal conductivity, and cost. Magnesium oxide preferably has a water absorption rate of 0.5% or less, and more preferably 0.3% or less. If it exceeds 0.5%, the resin may be hydrolyzed when blended with the resin, or fired during molding. For example, the water absorption can be reduced to 0.5% or less by baking magnesium oxide at a high temperature of 1900 ° C. or higher, or by surface treatment with a silane coupling agent or the like. Here, the water absorption is a mass change rate when treated for 48 hours in an atmosphere of a temperature of 85 ° C. and a relative humidity of 85%.

本発明における樹脂組成物は繊維状充填材および針状充填材からなる群より選ばれる少なくとも1種の強化材(C)を含有することを特徴とする。これにより、樹脂組成物から得られる成形品の強度や耐熱性を高めることが可能となる。上記繊維状充填材としては、例えば、ガラス繊維、炭素繊維、ホウ素繊維、アラミド繊維、液晶ポリエステル繊維などが挙げられ、また、上記針状充填材としては、例えば、ワラストナイト(メタ珪酸カルシウム)、チタン酸カリウムウィスカー、ホウ酸アルミニウムウィスカー、酸化亜鉛ウィスカー、炭酸カルシウムウィスカーなどが挙げられる。中でも、強化材(C)としては、高強度、低コストの観点からはガラス繊維を使用することが好ましく、表面平滑性の高い成形品が得られる観点からは針状充填剤を使用することが好ましい。特に、白度を保持する観点からガラス繊維、ワラストナイト(メタ珪酸カルシウム)、チタン酸カリウムウィスカー、ホウ酸アルミニウムウィスカーを好ましく使用できる。   The resin composition in the present invention is characterized by containing at least one reinforcing material (C) selected from the group consisting of a fibrous filler and an acicular filler. Thereby, the strength and heat resistance of the molded product obtained from the resin composition can be increased. Examples of the fibrous filler include glass fiber, carbon fiber, boron fiber, aramid fiber, and liquid crystal polyester fiber. Examples of the needle-shaped filler include wollastonite (calcium metasilicate). Potassium titanate whisker, aluminum borate whisker, zinc oxide whisker, calcium carbonate whisker and the like. Among these, as the reinforcing material (C), it is preferable to use glass fiber from the viewpoint of high strength and low cost, and from the viewpoint of obtaining a molded product having high surface smoothness, it is preferable to use an acicular filler. preferable. In particular, glass fiber, wollastonite (calcium metasilicate), potassium titanate whisker, and aluminum borate whisker can be preferably used from the viewpoint of maintaining whiteness.

このような強化材(C)は、熱可塑性樹脂(A)への分散性を高めるため、あるいは、熱可塑性樹脂(A)との接着性を高めるために、シランカップリング剤、および/または、アクリル樹脂、ウレタン樹脂、エポキシ樹脂などで表面処理されていることが好ましい。   Such a reinforcing material (C) is a silane coupling agent and / or in order to increase the dispersibility in the thermoplastic resin (A) or to improve the adhesion to the thermoplastic resin (A). It is preferable that the surface treatment is performed with an acrylic resin, a urethane resin, an epoxy resin, or the like.

本発明における樹脂組成物中の強化材(C)の含有量は、熱可塑性樹脂(A)100重量部に対して10〜100重量部、好ましくは15〜80質量部、より好ましくは20〜60重量部の範囲内である。10重量部未満であると、本発明の樹脂組成物からなる成形品の機械的強度および長期耐熱性が低下し、100重量部を超えると、成形加工性が低下する。   The content of the reinforcing material (C) in the resin composition in the present invention is 10 to 100 parts by weight, preferably 15 to 80 parts by weight, more preferably 20 to 60 parts by weight based on 100 parts by weight of the thermoplastic resin (A). Within the range of parts by weight. When the amount is less than 10 parts by weight, the mechanical strength and long-term heat resistance of the molded article made of the resin composition of the present invention are lowered, and when it exceeds 100 parts by weight, the moldability is lowered.

本発明における熱伝導性樹脂組成物は5〜100重量部の難燃剤(D)をさらに含有することが好ましい。熱可塑性樹脂組成物の難燃性はUL−94規格におけるV−0相当であることが大電流を取り扱う電気・電子機器において採用される条件となりうる。
難燃剤(D)の使用量としては、7〜80重量部であることがより好ましく、10〜60重量部であることがさらに好ましく、12〜40重量部であることがさらに好ましい。難燃剤(D)は各種のものが知られており、例えばシーエムシー化学発行の「高分子難燃化の技術と応用」(P149〜221)等に記載された種々のものが挙げられるが、これらに限定されるわけではない。これら難燃剤のなかでも、リン系難燃剤、ハロゲン系難燃剤、無機系難燃剤を好ましく用いることができる。
It is preferable that the heat conductive resin composition in this invention further contains 5-100 weight part flame retardant (D). The flame retardancy of the thermoplastic resin composition may be a condition adopted in electric / electronic devices that handle a large current that is equivalent to V-0 in the UL-94 standard.
As a usage-amount of a flame retardant (D), it is more preferable that it is 7-80 weight part, It is more preferable that it is 10-60 weight part, It is further more preferable that it is 12-40 weight part. Various flame retardants (D) are known, and examples include various ones described in “Technology and Application of Polymer Flame Retardation” (P149-221) issued by CMC Chemical. However, it is not limited to these. Among these flame retardants, phosphorus flame retardants, halogen flame retardants, and inorganic flame retardants can be preferably used.

リン系難燃剤としては、リン酸エステル、含ハロゲンリン酸エステル、縮合リン酸エステル、ポリリン酸塩、赤リンなどを挙げることができる。これらのリン系難燃剤は、1種単独で、あるいは2種以上を混合して使用しても良い。ハロゲン系難燃剤としては、具体的には、臭素化ポリスチレン、臭素化ポリフェニレンエーテル、臭素化ビスフェノール型エポキシ系重合体、臭素化スチレン無水マレイン酸重合体、臭素化エポキシ樹脂、臭素化フェノキシ樹脂、デカブロモジフェニルエーテル、デカブロモビフェニル、臭素化ポリカーボネート、パークロロシクロペンタデカン、臭素化架橋芳香族重合体であり、特に臭素化ポリスチレン、臭素化ポリフェニレンエーテルが好ましい。これらのハロゲン系難燃剤は1種単独で、あるいは2種以上を混合して使用しても良い。また、これらのハロゲン系難燃剤のハロゲン元素含量は15〜87%であることが好ましい。   Examples of phosphorus flame retardants include phosphate esters, halogen-containing phosphate esters, condensed phosphate esters, polyphosphates, and red phosphorus. These phosphorus flame retardants may be used alone or in combination of two or more. Specific examples of the halogen flame retardant include brominated polystyrene, brominated polyphenylene ether, brominated bisphenol type epoxy polymer, brominated styrene maleic anhydride polymer, brominated epoxy resin, brominated phenoxy resin, deca Brominated diphenyl ether, decabromobiphenyl, brominated polycarbonate, perchlorocyclopentadecane, brominated crosslinked aromatic polymer, particularly brominated polystyrene and brominated polyphenylene ether are preferred. These halogen flame retardants may be used alone or in combination of two or more. In addition, the halogen element content of these halogen flame retardants is preferably 15 to 87%.

無機系難燃剤としては、具体的な例としては、水酸化アルミニウム、三酸化アンチモン、五酸化アンチモン、アンチモン酸ナトリウム、酸化錫、酸化亜鉛、酸化鉄、水酸化マグネシウム、水酸化カルシウム、硼酸亜鉛、カオリンクレー、炭酸カルシウムが挙げられる。これらの無機化合物はシランカップラーやチタンカップラーなどで処理されていても良く、1種単独で、あるいは2種以上を混合して使用しても良い。   Specific examples of the inorganic flame retardant include aluminum hydroxide, antimony trioxide, antimony pentoxide, sodium antimonate, tin oxide, zinc oxide, iron oxide, magnesium hydroxide, calcium hydroxide, zinc borate, Examples include kaolin clay and calcium carbonate. These inorganic compounds may be treated with a silane coupler, a titanium coupler, or the like, or may be used alone or in combination of two or more.

本発明における熱伝導性樹脂組成物は板状の熱伝導性充填材(B2)をさらに20〜200重量部含有し、球状または粒状の熱伝導性充填材(B1)との含有率が体積比で(B1)/(B2)=5/95〜70/30であることが好ましい。熱伝導性樹脂組成物の厚み方向の熱伝導率を効率よく高めるのに、熱伝導性充填材(B2)の含有量は好ましくは30〜180重量部であり、より好ましくは40〜160重量部であり、さらに好ましくは50〜140重量部であり、最も好ましくは60〜120重量部である。球状または粒状の熱伝導性充填材(B1)の比率が体積比で(B1)/(B2)=5/95より少ない場合、板状の熱伝導性充填材が面内方向に配向しやすいために、熱伝導性充填材の総量を多くしても厚み方向の熱伝導率が高くならない場合がある。また球状または粒状の熱伝導性充填材(B1)の比率が(B1)/(B2)=70/30より多い場合、厚み方向に熱伝導率を高めるために、熱伝導性充填材の総量を増やす必要がある。(B1)/(B2)=5/95〜70/30のような条件で熱伝導性充填材(B1)および(B2)を使用すると、特にモース硬度の比較的高い球状または粒状の熱伝導性充填材(B1)の総量を抑制しつつ厚み方向の熱伝導率を高めることができるので、樹脂組成物の成形加工性をより高めることができる。より好ましい体積比は(B1)/(B2)=10/90〜65/35であり、さらに好ましくは(B1)/(B2)=20/80〜660/40である。   The thermally conductive resin composition in the present invention further contains 20 to 200 parts by weight of a plate-like thermally conductive filler (B2), and the content ratio with the spherical or granular thermally conductive filler (B1) is a volume ratio. It is preferable that (B1) / (B2) = 5/95 to 70/30. In order to efficiently increase the thermal conductivity in the thickness direction of the thermally conductive resin composition, the content of the thermally conductive filler (B2) is preferably 30 to 180 parts by weight, more preferably 40 to 160 parts by weight. More preferably, it is 50-140 weight part, Most preferably, it is 60-120 weight part. When the ratio of the spherical or granular thermally conductive filler (B1) is less than (B1) / (B2) = 5/95 in volume ratio, the plate-like thermally conductive filler is easily oriented in the in-plane direction. In addition, even if the total amount of the thermally conductive filler is increased, the thermal conductivity in the thickness direction may not be increased. When the ratio of the spherical or granular heat conductive filler (B1) is more than (B1) / (B2) = 70/30, the total amount of the heat conductive filler is set to increase the thermal conductivity in the thickness direction. Need to increase. When the thermally conductive fillers (B1) and (B2) are used under the conditions of (B1) / (B2) = 5/95 to 70/30, the heat conductivity of a spherical or granular material having a relatively high Mohs hardness is obtained. Since the thermal conductivity in the thickness direction can be increased while suppressing the total amount of the filler (B1), the moldability of the resin composition can be further improved. A more preferable volume ratio is (B1) / (B2) = 10/90 to 65/35, and further preferably (B1) / (B2) = 20/80 to 660/40.

上記板状の熱伝導性充填材(B2)としては、タルク、マイカ、六方晶窒化ほう素、アルミナなどが挙げられるが、樹脂に配合した際の熱伝導率の向上効果と樹脂組成物の成形加工性を低下させづらい点で六方晶窒化ほう素が、また熱伝導率をある程度向上できることおよびコストの点でタルクが好ましい。   Examples of the plate-like thermally conductive filler (B2) include talc, mica, hexagonal boron nitride, and alumina. The effect of improving the thermal conductivity when blended with a resin and the molding of the resin composition are included. Hexagonal boron nitride is preferable because it is difficult to lower the workability, and talc is preferable from the viewpoint of improving thermal conductivity to some extent and cost.

熱伝導性充填材(B2)の平均粒子径は、好ましくは10μm〜300μm、より好ましくは20μm〜150μm、特に好ましくは30μm〜60μmの範囲内である。10μm未満の場合は、絶縁ケースの熱伝導率が不十分となる場合があり、300μmを超えると成形加工性が悪化する場合がある。   The average particle diameter of the heat conductive filler (B2) is preferably 10 μm to 300 μm, more preferably 20 μm to 150 μm, and particularly preferably 30 μm to 60 μm. When the thickness is less than 10 μm, the thermal conductivity of the insulating case may be insufficient, and when it exceeds 300 μm, the moldability may be deteriorated.

本発明における熱可塑性樹脂組成物は空気雰囲気下、150℃で2000時間加熱処理後に、曲げ強度の保持率が85%以上であるという長期耐熱性を有しうる。これにより、絶縁ケースのみならず、150℃の長期耐熱性を要求される他用途にも応用することができる。150℃とは大電流を取り扱う電気・電子機器の常時使用温度の最高温度に近く、広く「150℃の長期耐熱性」は電気・電子機器において採用される条件である。
本発明の絶縁ケースの絶縁破壊強度は15kV/mm以上であることが好ましく、20kV/mm以上であることがより好ましく、25kV/mm以上であることがさらに好ましい。15kV/mm未満である場合、大電流を取り扱う電気・電子機器において使用が不可能となる場合がある。
The thermoplastic resin composition of the present invention may have long-term heat resistance such that the bending strength retention is 85% or more after heat treatment at 150 ° C. for 2000 hours in an air atmosphere. Thereby, it can be applied not only to the insulating case but also to other uses requiring long-term heat resistance of 150 ° C. 150 ° C. is close to the maximum temperature of electric / electronic devices that handle large currents, and “150 ° C. long-term heat resistance” is a widely adopted condition for electric / electronic devices.
The dielectric breakdown strength of the insulating case of the present invention is preferably 15 kV / mm or more, more preferably 20 kV / mm or more, and further preferably 25 kV / mm or more. If it is less than 15 kV / mm, it may be impossible to use in electric / electronic devices that handle a large current.

本発明における熱可塑性樹脂は、主鎖の構造が、主として一般式(1)で示される単位の繰り返し単位からなることが好ましい。
−M−Sp− ...(1)
(式中、Mはメソゲン基、Spはスペーサーを示す。)
ここで主としてとは、分子鎖の主鎖中に含まれる一般式(1)の量について、全構成単位に対して50mol%以上であり、好ましくは70mol%以上であり、より好ましくは90mol%以上であり、最も好ましくは実質的に100mol%であることをいう。50mol%未満の場合は、分子構造の乱れから高熱伝導性を示さない、またはスメクチック液晶性を示さない場合がある。
The thermoplastic resin in the present invention preferably has a main chain structure composed mainly of repeating units represented by the general formula (1).
-M-Sp- . . . (1)
(In the formula, M represents a mesogenic group, and Sp represents a spacer.)
Here, mainly means that the amount of the general formula (1) contained in the main chain of the molecular chain is 50 mol% or more, preferably 70 mol% or more, more preferably 90 mol% or more, based on all the structural units. And most preferably substantially 100 mol%. If it is less than 50 mol%, high thermal conductivity may not be exhibited due to disorder of the molecular structure, or smectic liquid crystallinity may not be exhibited.

本発明の熱可塑性樹脂に含まれるメソゲン基Mとは、剛直で配向性の高い置換基を意味する。メソゲン基Mは、下記一般式(2)の中では一般式(4)に相当し、好ましく適用できる。
−A−x−A−OCO(CHCOO− ...(2)
−A−x−A− ...(4)
(式中、AおよびAは、各々独立して芳香族基、縮合芳香族基、脂環基、脂環式複素環基から選ばれる置換基を示す。xは、各々独立して直接結合、−O−、−S−、−CH−CH−、−C=C−、−C=C(Me)−、−C≡C−、−CO−O−、−CO−NH−、−CH=N−、−CH=N−N=CH−、−N=N−または−N(O)=N−の群から選ばれる2価の置換基を示す。mは2〜20の整数を示す。)
ここでA、Aは各々独立して、炭素数6〜12のベンゼン環を有する炭化水素基、炭素数10〜20のナフタレン環を有する炭化水素基、炭素数12〜24のビフェニル構造を有する炭化水素基、炭素数12〜36のベンゼン環を3個以上有する炭化水素基、炭素数12〜36の縮合芳香族基を有する炭化水素基、炭素数4〜36の脂環式複素環基から選択されるものであることが好ましい。
The mesogenic group M contained in the thermoplastic resin of the present invention means a rigid and highly oriented substituent. The mesogenic group M corresponds to the general formula (4) in the following general formula (2) and can be preferably applied.
-A 1 -x-A 2 -OCO ( CH 2) m COO- . . . (2)
-A 1 -x-A 2 -. . . (4)
(In the formula, A 1 and A 2 each independently represent a substituent selected from an aromatic group, a condensed aromatic group, an alicyclic group, and an alicyclic heterocyclic group. Bond, —O—, —S—, —CH 2 —CH 2 —, —C═C—, —C═C (Me) —, —C≡C—, —CO—O—, —CO—NH—. , —CH═N—, —CH═N—N═CH—, —N═N— or —N (O) ═N—, wherein m represents 2 to 20. Indicates an integer.)
Here, A 1 and A 2 each independently represent a hydrocarbon group having a benzene ring having 6 to 12 carbon atoms, a hydrocarbon group having a naphthalene ring having 10 to 20 carbon atoms, or a biphenyl structure having 12 to 24 carbon atoms. A hydrocarbon group having 3 or more benzene rings having 12 to 36 carbon atoms, a hydrocarbon group having a condensed aromatic group having 12 to 36 carbon atoms, and an alicyclic heterocyclic group having 4 to 36 carbon atoms It is preferable that it is selected from.

、Aの具体例としては、フェニレン、ビフェニレン、ナフチレン、アントラセニレン、シクロヘキシル、ピリジル、ピリミジル、チオフェニレン等が挙げられる。また、これらは無置換であっても良く、脂肪族炭化水素基、ハロゲン基、シアノ基、ニトロ基などの置換基を有する誘導体であっても良い。xは結合子であり、直接結合、−CH−、−C(CH−、−O−、−S−、−CH−CH−、−C=C−、−C≡C−、−CO−、−CO−O−、−CO−NH−、−CH=N−、−CH=N−N=CH−、−N=N−または−N(O)=N−の群から選ばれる2価の置換基を示す。これらのうち、結合子に相当するxの主鎖の原子数が偶数であるものが好ましい。すなわち直接結合、−CH−CH−、−C=C−、−C≡C−、−CO−O−、−CO−NH−、−CH=N−、−CH=N−N=CH−、−N=N−または−N(O)=N−の群から選ばれる2価の置換基が好ましい。xの主鎖の原子数が奇数の場合、メソゲン基の分子幅の増加と、結合の回転の自由度の増加による屈曲性のため、結晶化率の低下を促し、樹脂単体の熱伝導率を低下させる場合がある。 Specific examples of A 1 and A 2 include phenylene, biphenylene, naphthylene, anthracenylene, cyclohexyl, pyridyl, pyrimidyl, thiophenylene, and the like. These may be unsubstituted or may be a derivative having a substituent such as an aliphatic hydrocarbon group, a halogen group, a cyano group, or a nitro group. x is a bond, direct bond, —CH 2 —, —C (CH 3 ) 2 —, —O—, —S—, —CH 2 —CH 2 —, —C═C—, —C≡C —, —CO—, —CO—O—, —CO—NH—, —CH═N—, —CH═N—N═CH—, —N═N— or —N (O) ═N—. A divalent substituent selected from Among these, those in which the number of atoms in the main chain of x corresponding to the connector is an even number are preferable. That is, a direct bond, —CH 2 —CH 2 —, —C═C—, —C≡C—, —CO—O—, —CO—NH—, —CH═N—, —CH═N—N═CH A divalent substituent selected from the group of-, -N = N- or -N (O) = N- is preferred. When the number of atoms in the main chain of x is an odd number, the increase in molecular width of the mesogenic group and the flexibility due to the increase in the degree of freedom of rotation of the bond promotes a decrease in the crystallization rate, thereby reducing the thermal conductivity of the resin alone. May decrease.

このような好ましいメソゲン基の具体例として、ビフェニル、ターフェニル、クォーターフェニル、スチルベン、ジフェニルエーテル、1,2−ジフェニルエチレン、ジフェニルアセチレン、ベンゾフェノン、フェニルベンゾエート、フェニルベンズアミド、アゾベンゼン、アゾキシベンゼン、2−ナフトエート、フェニル−2−ナフトエート、およびこれらの誘導体等から水素を2個除去した構造を持つ2価の基が挙げられるがこれらに限るものではない。   Specific examples of such preferred mesogenic groups include biphenyl, terphenyl, quarterphenyl, stilbene, diphenyl ether, 1,2-diphenylethylene, diphenylacetylene, benzophenone, phenylbenzoate, phenylbenzamide, azobenzene, azoxybenzene, 2-naphthoate. , Phenyl-2-naphthoate, and derivatives thereof, and the like, but divalent groups having a structure in which two hydrogens are removed are not limited thereto.

さらに好ましくは下記一般式(3)で表されるメソゲン基である。このメソゲン基はその構造ゆえに剛直で配向性が高く、さらには入手または合成が容易である。   More preferably, it is a mesogenic group represented by the following general formula (3). This mesogenic group is rigid and highly oriented due to its structure, and is easily available or synthesized.

Figure 0006116881
Figure 0006116881

(式中、Xはそれぞれ独立して脂肪族炭化水素基、F、Cl、Br、I、CN、またはNO、yは2〜4の整数、nは0〜4の整数を示す。)
成形性に優れた熱可塑性樹脂組成物を得るためには、熱可塑性樹脂に含まれるメソゲン基は、架橋性の置換基を含まないものであることが好ましい。
(In the formula, X is independently an aliphatic hydrocarbon group, F, Cl, Br, I, CN, or NO 2 , y is an integer of 2 to 4, and n is an integer of 0 to 4.)
In order to obtain a thermoplastic resin composition having excellent moldability, the mesogenic group contained in the thermoplastic resin preferably does not contain a crosslinkable substituent.

熱可塑性樹脂に含まれるスペーサーSpとは、屈曲性分子鎖を意味し、メソゲン基との結合基を含む。熱可塑性樹脂のスペーサーの主鎖原子数は好ましくは4〜28であり、より好ましくは6〜24であり、さらに好ましくは8〜20である。スペーサーの主鎖原子数が4未満の場合、熱可塑性樹脂の分子構造に十分な屈曲性が発現されず、結晶性が低下し、熱伝導率が低下する場合があり、29以上である場合、結晶性が低下し、熱伝導率が低下する場合がある。スペーサーの主鎖を構成する原子の種類は特に限定されず何でも使用できるが、好ましくはC、H、O、S、Nから選ばれる少なくとも1種の原子である。
スペーサーSpは、下記一般式(2)の中では一般式(5)に相当し、好ましく適用できる。
−A−x−A−OCO(CHCOO− ...(2)
−OCO(CHCOO− ...(5)
(式中、AおよびAは、各々独立して芳香族基、縮合芳香族基、脂環基、脂環式複素環基から選ばれる置換基を示す。xは、各々独立して直接結合、−O−、−S−、−CH−CH−、−C=C−、−C=C(Me)−、−C≡C−、−CO−O−、−CO−NH−、−CH=N−、−CH=N−N=CH−、−N=N−または−N(O)=N−の群から選ばれる2価の置換基を示す。mは2〜20の整数を示す。)
mは2〜20の整数であることが好ましく、4〜14の整数であることがより好ましい。またmは偶数であることが好ましい。奇数の場合、メソゲン基が傾くため、結晶化度が低下し、熱伝導率が低下する場合がある。特に熱伝導率が優れた樹脂が得られるという観点から、mは8、10、12から選ばれる少なくとも1種であることが好ましい。
The spacer Sp included in the thermoplastic resin means a flexible molecular chain and includes a bonding group with a mesogenic group. The number of main chain atoms of the spacer of the thermoplastic resin is preferably 4 to 28, more preferably 6 to 24, and still more preferably 8 to 20. When the number of main chain atoms of the spacer is less than 4, sufficient flexibility is not expressed in the molecular structure of the thermoplastic resin, the crystallinity may be lowered, and the thermal conductivity may be lowered. Crystallinity may decrease and thermal conductivity may decrease. The type of atoms constituting the main chain of the spacer is not particularly limited, and any type can be used. However, it is preferably at least one atom selected from C, H, O, S, and N.
The spacer Sp corresponds to the general formula (5) in the following general formula (2), and can be preferably applied.
-A 1 -x-A 2 -OCO ( CH 2) m COO- . . . (2)
-OCO (CH 2) m COO-. . . (5)
(In the formula, A 1 and A 2 each independently represent a substituent selected from an aromatic group, a condensed aromatic group, an alicyclic group, and an alicyclic heterocyclic group. Bond, —O—, —S—, —CH 2 —CH 2 —, —C═C—, —C═C (Me) —, —C≡C—, —CO—O—, —CO—NH—. , —CH═N—, —CH═N—N═CH—, —N═N— or —N (O) ═N—, wherein m represents 2 to 20. Indicates an integer.)
m is preferably an integer of 2 to 20, and more preferably an integer of 4 to 14. M is preferably an even number. In the case of an odd number, since the mesogenic group is inclined, the crystallinity may be lowered and the thermal conductivity may be lowered. In particular, m is preferably at least one selected from 8, 10, and 12 from the viewpoint that a resin having excellent thermal conductivity can be obtained.

本発明の数平均分子量とは、ポリスチレンを標準とし、p−クロロフェノールとトルエンの体積比3:8混合溶媒に0.25重量%濃度となるように溶解して調製した溶液を用いて高温GPC(Viscotek:350 HT−GPC System)にてカラム温度80℃、検出器を示差屈折計(RI)として測定した値である。   The number average molecular weight of the present invention is high-temperature GPC using a solution prepared by dissolving polystyrene in a mixed solvent of p-chlorophenol and toluene at a volume ratio of 3: 8 so as to have a concentration of 0.25% by weight. (Viscotek: 350 HT-GPC System) is a value measured at a column temperature of 80 ° C. and a detector as a differential refractometer (RI).

本発明における熱可塑性樹脂の数平均分子量は3000〜40000であることが好ましく、上限を考慮すると3000〜30000であることがさらに好ましく、3000〜20000であることが特に好ましい。一方、下限を考慮すると、3000〜40000であることが好ましく、5000〜40000であることがさらに好ましく、7000〜40000であることが特に好ましい。さらに上限および下限を考慮すると、5000〜30000であることがさらに好ましく、7000〜20000であることが最も好ましい。数平均分子量が3000未満の場合は成形体としての機械強度が低くなる場合があり、40000より大きい場合は成形流動性が低下するまたは熱伝導率が低下する場合がある。   The number average molecular weight of the thermoplastic resin in the present invention is preferably 3000 to 40000, more preferably 3000 to 30000, and particularly preferably 3000 to 20000 in view of the upper limit. On the other hand, considering the lower limit, it is preferably 3000 to 40000, more preferably 5000 to 40000, and particularly preferably 7000 to 40000. Furthermore, when an upper limit and a lower limit are considered, it is more preferable that it is 5000-30000, and it is most preferable that it is 7000-20000. When the number average molecular weight is less than 3000, the mechanical strength as a molded product may be low, and when it is greater than 40000, the molding fluidity may be reduced or the thermal conductivity may be reduced.

本発明における熱可塑性樹脂は、その分子鎖の末端基の10%以上が末端封止剤により封止されているのが好ましく、60%以上が封止されているのがより好ましく、80%以上が封止されているのがさらに好ましく、実質100%封止されているのが特に好ましい。末端封止率が10%以上の場合、長期耐熱性がより優れ、また加熱時の分子量変化がより抑制される。   In the thermoplastic resin of the present invention, it is preferable that 10% or more of the end groups of the molecular chain are sealed with an end-capping agent, more preferably 60% or more are sealed, and 80% or more. Is more preferably sealed, particularly preferably 100% sealed. When the end-capping rate is 10% or more, the long-term heat resistance is more excellent, and the molecular weight change during heating is further suppressed.

熱可塑性樹脂の末端封止率は、熱可塑性樹脂の封止された末端官能基および封止されていない末端官能基の数をそれぞれ測定し、下記の式(6)により求めることができる。各末端基の数はH−NMRにより、各末端基に対応する特性シグナルの積分値より求めるのが精度、簡便さの点で好ましい。
末端封止率(%)=[封止された末端官能基数]/([封止された末端官能基数]+[封止されていない末端官能基数]) ...(6)
The end-capping rate of the thermoplastic resin can be obtained by the following formula (6) by measuring the number of end functional groups sealed and unsealed in the thermoplastic resin. The number of each terminal group is preferably determined from the integral value of the characteristic signal corresponding to each terminal group by 1 H-NMR in terms of accuracy and simplicity.
Terminal sealing rate (%) = [number of sealed terminal functional groups] / ([number of sealed terminal functional groups] + [number of unsealed terminal functional groups]). . . (6)

末端封止剤としては、ベース樹脂の熱伝導性を高める観点から炭素数1〜20のモノアミン、または脂肪族モノカルボン酸が好ましく、炭素数1〜20の脂肪族モノカルボン酸がより好ましく、炭素数10〜20の脂肪族モノカルボン酸がさらに好ましい。脂肪族モノカルボン酸の具体例としては、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン酸、トリデカン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ピバリン酸、イソ酪酸等の脂肪族モノカルボン酸、およびこれらの任意の混合物などを挙げることができる。これらのなかでも、ベース樹脂の熱伝導性を特に高める点から、ミリスチン酸、パルミチン酸、ステアリン酸、が好ましい。モノアミンの具体例としては、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ステアリルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン等の脂肪族モノアミン、およびこれらの任意の混合物などを挙げることができる。これらのなかでも、反応性、高沸点、封止末端の安定性および価格などの点から、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ステアリルアミン、シクロヘキシルアミン、が好ましい。   As the end-capping agent, a monoamine having 1 to 20 carbon atoms or an aliphatic monocarboxylic acid is preferable from the viewpoint of enhancing the thermal conductivity of the base resin, and an aliphatic monocarboxylic acid having 1 to 20 carbon atoms is more preferable. An aliphatic monocarboxylic acid of several 10 to 20 is more preferable. Specific examples of aliphatic monocarboxylic acids include fatty acids such as acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, lauric acid, tridecanoic acid, myristic acid, palmitic acid, stearic acid, pivalic acid, and isobutyric acid. Group monocarboxylic acids, and any mixtures thereof. Among these, myristic acid, palmitic acid, and stearic acid are preferable from the viewpoint of particularly improving the thermal conductivity of the base resin. Specific examples of monoamines include aliphatic monoamines such as methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, decylamine, stearylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, and any of these A mixture etc. can be mentioned. Among these, butylamine, hexylamine, octylamine, decylamine, stearylamine, and cyclohexylamine are preferable from the viewpoints of reactivity, high boiling point, stability of the capped end, and price.

本発明における熱可塑性樹脂は、公知のいかなる方法で製造されても構わない。構造の制御が簡便であるという観点から、メソゲン基の両末端に反応性官能基を有する化合物と、スペーサーの両末端に反応性官能基を有する化合物とを反応させて製造する方法が好ましい。このような反応性官能基としては水酸基、カルボキシル基、アルコキシ基、アミノ基、ビニル基、エポキシ基、シアノ基、など公知のものを使用でき、これらを反応させる条件もとくに限定されない。合成の簡便さという観点からは、メソゲン基の両末端に水酸基を有する化合物とスペーサーの両末端にカルボキシル基を有する化合物、またはメソゲン基の両末端にカルボキシル基を有する化合物とスペーサーの両末端に水酸基を有する化合物を反応させる製造方法が好ましい。   The thermoplastic resin in the present invention may be produced by any known method. From the viewpoint that the control of the structure is simple, a method of producing by reacting a compound having reactive functional groups at both ends of the mesogenic group and a compound having reactive functional groups at both ends of the spacer is preferable. As such a reactive functional group, known groups such as a hydroxyl group, a carboxyl group, an alkoxy group, an amino group, a vinyl group, an epoxy group, and a cyano group can be used, and the conditions for reacting these are not particularly limited. From the viewpoint of ease of synthesis, a compound having a hydroxyl group at both ends of the mesogen group and a compound having a carboxyl group at both ends of the spacer, or a compound having a carboxyl group at both ends of the mesogen group and a hydroxyl group at both ends of the spacer Preferred is a production method in which a compound having a reaction is made.

メソゲン基の両末端に水酸基を有する化合物とスペーサーの両末端にカルボキシル基を有する化合物からなる熱可塑性樹脂の製造方法の一例としては、両末端に水酸基を有するメソゲン基を無水酢酸等の低級脂肪酸を用いてそれぞれ個別に、または一括して酢酸エステルとした後、別の反応槽または同一の反応槽で、スペーサーの両末端にカルボキシル基を有する化合物と脱酢酸重縮合反応させる方法が挙げられる。重縮合反応は、実質的に溶媒の存在しない状態で、通常230〜350℃好ましくは250〜330℃の温度で、窒素等の不活性ガスの存在下、常圧または減圧下に、0.5〜5h行われる。反応温度が230℃より低いと反応の進行は遅く、350℃より高い場合は分解等の副反応が起こりやすい。減圧下で反応させる場合は段階的に減圧度を高くすることが好ましい。急激に高真空度まで減圧した場合、モノマーが揮発し、分子量を制御できない場合がある。到達真空度は50トル以下が好ましく、30トル以下がより好ましく、10トル以下が特に好ましい。真空度が50トルより大きい場合、重合反応に長時間を要する場合がある。多段階の反応温度を採用してもかまわないし、場合により昇温中あるいは最高温度に達したらすぐに反応生成物を溶融状態で抜き出し、回収することもできる。得られた熱可塑性樹脂はそのままでも使用してもよいし、未反応原料を除去するまたは、物性をあげる意味から固相重合を行なうこともできる。固相重合を行なう場合には、得られた熱可塑性樹脂を3mm以下好ましくは1mm以下の粒径の粒子に機械的に粉砕し、固相状態のまま100〜350℃で窒素等の不活性ガス雰囲気下、または減圧下に1〜20h処理することが好ましい。ポリマー粒子の粒径が3mm以上になると、処理が十分でなく、物性上の問題を生じるため好ましくない。固相重合時の処理温度や昇温速度は、熱可塑性樹脂粒子が融着を起こさないように選ぶことが好ましい。   As an example of a method for producing a thermoplastic resin comprising a compound having a hydroxyl group at both ends of a mesogenic group and a compound having a carboxyl group at both ends of a spacer, a mesogenic group having a hydroxyl group at both ends is substituted with a lower fatty acid such as acetic anhydride. Examples thereof include a method in which an acetate ester is individually or collectively used, and then subjected to a deacetic acid polycondensation reaction with a compound having a carboxyl group at both ends of the spacer in another reaction tank or the same reaction tank. The polycondensation reaction is carried out at a temperature of generally 230 to 350 ° C., preferably 250 to 330 ° C. in the presence of an inert gas such as nitrogen, at normal pressure or under reduced pressure, in the presence of substantially no solvent. ~ 5h done. When the reaction temperature is lower than 230 ° C., the reaction proceeds slowly, and when it is higher than 350 ° C., side reactions such as decomposition tend to occur. When making it react under reduced pressure, it is preferable to raise a pressure reduction degree in steps. When the pressure is rapidly reduced to a high degree of vacuum, the monomer volatilizes and the molecular weight may not be controlled. The ultimate vacuum is preferably 50 torr or less, more preferably 30 torr or less, and particularly preferably 10 torr or less. When the degree of vacuum is greater than 50 torr, the polymerization reaction may take a long time. A multi-stage reaction temperature may be employed. In some cases, the reaction product can be withdrawn in a molten state and recovered as soon as the temperature rises or when the maximum temperature is reached. The obtained thermoplastic resin may be used as it is, or it may be subjected to solid phase polymerization in order to remove unreacted raw materials or improve physical properties. In the case of performing solid phase polymerization, the obtained thermoplastic resin is mechanically pulverized into particles having a particle size of 3 mm or less, preferably 1 mm or less, and an inert gas such as nitrogen at 100 to 350 ° C. in the solid state. It is preferable to perform the treatment for 1 to 20 hours under an atmosphere or under reduced pressure. If the particle size of the polymer particles is 3 mm or more, the treatment is not sufficient, and problems with physical properties are caused, which is not preferable. It is preferable to select the treatment temperature and the rate of temperature increase during solid phase polymerization so that the thermoplastic resin particles do not cause fusion.

本発明における熱可塑性樹脂の製造に用いられる低級脂肪酸の酸無水物としては,炭素数2〜5個の低級脂肪酸の酸無水物,たとえば無水酢酸,無水プロピオン酸、無水モノクロル酢酸,無水ジクロル酢酸,無水トリクロル酢酸,無水モノブロム酢酸,無水ジブロム酢酸,無水トリブロム酢酸,無水モノフルオロ酢酸,無水ジフルオロ酢酸,無水トリフルオロ酢酸,無水酪酸,無水イソ酪酸,無水吉草酸,無水ピバル酸等が挙げられるが,無水酢酸,無水プロピオン酸,無水トリクロル酢酸が特に好適に用いられる。低級脂肪酸の酸無水物の使用量は,用いるメソゲン基が有する水酸基の合計に対し1.01〜1.50倍当量,好ましくは1.02〜1.20倍当量である。   Examples of the acid anhydride of the lower fatty acid used in the production of the thermoplastic resin in the present invention include acid anhydrides of lower fatty acids having 2 to 5 carbon atoms, such as acetic anhydride, propionic anhydride, monochloroacetic anhydride, dichloroacetic anhydride, Examples include trichloroacetic anhydride, monobromoacetic anhydride, dibromoacetic anhydride, tribromoacetic anhydride, monofluoroacetic anhydride, difluoroacetic anhydride, trifluoroacetic anhydride, butyric anhydride, isobutyric anhydride, valeric anhydride, pivalic anhydride, etc. Acetic anhydride, propionic anhydride, and trichloroacetic anhydride are particularly preferably used. The amount of the lower anhydride fatty acid used is 1.01 to 1.50 times equivalent, preferably 1.02 to 1.20 times equivalent to the total of hydroxyl groups of the mesogenic groups used.

本発明の熱可塑性樹脂は、その効果の発揮を失わない程度に他のモノマーを共重合して構わない。例えば芳香族ヒドロキシカルボン酸、芳香族ジカルボン酸、芳香族ジオール、芳香族ヒドロキシアミン、芳香族ジアミン、芳香族アミノカルボン酸またはカプロラクタム類、カプロラクトン類、脂肪族ジカルボン酸、脂肪族ジオール、脂肪族ジアミン、脂環族ジカルボン酸、および脂環族ジオール、芳香族メルカプトカルボン酸、芳香族ジチオールおよび芳香族メルカプトフェノールが挙げられる。   The thermoplastic resin of the present invention may be copolymerized with other monomers to such an extent that the effect is not lost. For example, aromatic hydroxycarboxylic acids, aromatic dicarboxylic acids, aromatic diols, aromatic hydroxyamines, aromatic diamines, aromatic aminocarboxylic acids or caprolactams, caprolactones, aliphatic dicarboxylic acids, aliphatic diols, aliphatic diamines, Examples include alicyclic dicarboxylic acids, and alicyclic diols, aromatic mercaptocarboxylic acids, aromatic dithiols, and aromatic mercaptophenols.

芳香族ヒドロキシカルボン酸の具体例としては、4−ヒドロキシ安息香酸、3−ヒドロキシ安息香酸、2−ヒドロキシ安息香酸、2−ヒドロキシ−6−ナフトエ酸、2−ヒドロキシ−5−ナフトエ酸、2―ヒドロキシ―7―ナフトエ酸、2―ヒドロキシ―3―ナフトエ酸、4’−ヒドロキシフェニル−4−安息香酸、3’−ヒドロキシフェニル−4−安息香酸、4’−ヒドロキシフェニル−3−安息香酸およびそれらのアルキル、アルコキシまたはハロゲン置換体などが挙げられる。   Specific examples of the aromatic hydroxycarboxylic acid include 4-hydroxybenzoic acid, 3-hydroxybenzoic acid, 2-hydroxybenzoic acid, 2-hydroxy-6-naphthoic acid, 2-hydroxy-5-naphthoic acid, 2-hydroxy 7-naphthoic acid, 2-hydroxy-3-naphthoic acid, 4'-hydroxyphenyl-4-benzoic acid, 3'-hydroxyphenyl-4-benzoic acid, 4'-hydroxyphenyl-3-benzoic acid and their Examples thereof include alkyl, alkoxy, and halogen-substituted products.

芳香族ジカルボン酸の具体例としては、テレフタル酸、イソフタル酸、2,6―ナフタレンジカルボン酸、1,6―ナフタレンジカルボン酸、2,7―ナフタレンジカルボン酸、4,4’―ジカルボキシビフェニル、3,4’―ジカルボキシビフェニル、4,4’’―ジカルボキシターフェニル、ビス(4−カルボキシフェニル)エーテル、ビス(4−カルボキシフェノキシ)ブタン、ビス(4−カルボキシフェニル)エタン、ビス(3−カルボキシフェニル)エーテルおよびビス(3−カルボキシフェニル)エタン等、これらのアルキル、アルコキシまたはハロゲン置換体などが挙げられる。   Specific examples of the aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 1,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 4,4′-dicarboxybiphenyl, 3 , 4′-dicarboxybiphenyl, 4,4 ″ -dicarboxyterphenyl, bis (4-carboxyphenyl) ether, bis (4-carboxyphenoxy) butane, bis (4-carboxyphenyl) ethane, bis (3- Carboxyphenyl) ether and bis (3-carboxyphenyl) ethane and the like, alkyl, alkoxy or halogen substituted products thereof.

芳香族ジオールの具体例としては、例えばピロカテコール、ハイドロキノン、レゾルシン、2,6−ジヒドロキシナフタレン、2,7−ジヒドロキシナフタレン、1,6−ジヒドロキシナフタレン、3,3’−ジヒドロキシビフェニル、3,4’−ジヒドロキシビフェニル、4,4’−ジヒドロキシビフェニル、4,4’−ジヒドロキシビフェノールエーテル、ビス(4−ヒドロキシフェニル)エタンおよび2,2’−ジヒドロキシビナフチル等、およびこれらのアルキル、アルコキシまたはハロゲン置換体などが挙げられる。
芳香族ヒドロキシアミンの具体例としては、4−アミノフェノール、N−メチル−4−アミノフェノール、3−アミノフェノール、3−メチル−4−アミノフェノール、4−アミノ−1−ナフトール、4−アミノ−4’−ヒドロキシビフェニル、4−アミノ−4’−ヒドロキシビフェニルエーテル、4−アミノ−4’−ヒドロキシビフェニルメタン、4−アミノ−4’−ヒドロキシビフェニルスルフィドおよび2,2’−ジアミノビナフチルおよびこれらのアルキル、アルコキシまたはハロゲン置換体などが挙げられる。
Specific examples of the aromatic diol include, for example, pyrocatechol, hydroquinone, resorcin, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 3,3′-dihydroxybiphenyl, 3,4 ′. -Dihydroxybiphenyl, 4,4'-dihydroxybiphenyl, 4,4'-dihydroxybiphenol ether, bis (4-hydroxyphenyl) ethane, 2,2'-dihydroxybinaphthyl, etc., and alkyl, alkoxy or halogen substituted products thereof Is mentioned.
Specific examples of the aromatic hydroxyamine include 4-aminophenol, N-methyl-4-aminophenol, 3-aminophenol, 3-methyl-4-aminophenol, 4-amino-1-naphthol, 4-amino- 4'-hydroxybiphenyl, 4-amino-4'-hydroxybiphenyl ether, 4-amino-4'-hydroxybiphenylmethane, 4-amino-4'-hydroxybiphenyl sulfide and 2,2'-diaminobinaphthyl and their alkyls , Alkoxy or halogen-substituted products.

芳香族ジアミンおよび芳香族アミノカルボン酸の具体例としては、1,4−フェニレンジアミン、1,3−フェニレンジアミン、N−メチル−1,4−フェニレンジアミン、N,N’−ジメチル−1,4−フェニレンジアミン、4,4’−ジアミノフェニルスルフィド(チオジアニリン)、4,4’−ジアミノビフェニルスルホン、2,5−ジアミノトルエン、4,4’−エチレンジアニリン、4,4’−ジアミノビフェノキシエタン、4,4’−ジアミノビフェニルメタン(メチレンジアニリン)、4,4’−ジアミノビフェニルエーテル(オキシジアニリン)、4−アミノ安息香酸、3−アミノ安息香酸、6−アミノ−2−ナフトエ酸および7−アミノ−2−ナフトエ酸およびこれらのアルキル、アルコキシまたはハロゲン置換体などが挙げられる。   Specific examples of the aromatic diamine and aromatic aminocarboxylic acid include 1,4-phenylenediamine, 1,3-phenylenediamine, N-methyl-1,4-phenylenediamine, N, N′-dimethyl-1,4. -Phenylenediamine, 4,4'-diaminophenyl sulfide (thiodianiline), 4,4'-diaminobiphenyl sulfone, 2,5-diaminotoluene, 4,4'-ethylenedianiline, 4,4'-diaminobiphenoxyethane 4,4′-diaminobiphenylmethane (methylenedianiline), 4,4′-diaminobiphenyl ether (oxydianiline), 4-aminobenzoic acid, 3-aminobenzoic acid, 6-amino-2-naphthoic acid and 7-amino-2-naphthoic acid and alkyl, alkoxy or halogen substituted products thereof It is below.

脂肪族ジカルボン酸の具体例としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸、テトラデカン二酸、フマル酸、マレイン酸などが挙げられる。   Specific examples of the aliphatic dicarboxylic acid include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, tetradecanedioic acid, fumaric acid, maleic acid Etc.

脂肪族ジアミンの具体例としては、1,2−エチレンジアミン、1,3−トリメチレンジアミン、1,4−テトラメチレンジアミン、1,6−ヘキサメチレンジアミン、1,8−オクタンジアミン、1,9−ノナンジアミン、1,10−デカンジアミン、および1,12−ドデカンジアミンなどが挙げられる。   Specific examples of the aliphatic diamine include 1,2-ethylenediamine, 1,3-trimethylenediamine, 1,4-tetramethylenediamine, 1,6-hexamethylenediamine, 1,8-octanediamine, 1,9- Nonanediamine, 1,10-decanediamine, 1,12-dodecanediamine, and the like can be given.

脂環族ジカルボン酸、脂肪族ジオールおよび脂環族ジオールの具体例としては、ヘキサヒドロテレフタル酸、トランス−1,4−シクロヘキサンジオール、シス−1,4−シクロヘキサンジオール、トランス−1,4−シクロヘキサンジメタノール、シス−1,4−シクロヘキサンジメタノール、トランス−1,3−シクロヘキサンジオール、シス−1,2−シクロヘキサンジオール、トランス−1,3−シクロヘキサンジメタノール、エチレングリコール、プロピレングリコール、ブチレングリコール、1,3−プロパンジオール、1,2−プロパンジオール、1,4−ブタンジオール、1,6−ヘキサンジオール、1,8−オクタンジオール、1,10−デカンジオール、1,12−ドデカンジオール、ネオペンチルグリコールなどの直鎖状または分鎖状脂肪族ジオールなど、ならびにそれらの反応性誘導体が挙げられる。   Specific examples of the alicyclic dicarboxylic acid, aliphatic diol and alicyclic diol include hexahydroterephthalic acid, trans-1,4-cyclohexanediol, cis-1,4-cyclohexanediol, and trans-1,4-cyclohexane. Dimethanol, cis-1,4-cyclohexanedimethanol, trans-1,3-cyclohexanediol, cis-1,2-cyclohexanediol, trans-1,3-cyclohexanedimethanol, ethylene glycol, propylene glycol, butylene glycol, 1,3-propanediol, 1,2-propanediol, 1,4-butanediol, 1,6-hexanediol, 1,8-octanediol, 1,10-decanediol, 1,12-dodecanediol, neo Such as pentyl glycol Such Jo or branched chain aliphatic diols, as well as reactive derivatives thereof.

芳香族メルカプトカルボン酸、芳香族ジチオールおよび芳香族メルカプトフェノールの具体例としては、4−メルカプト安息香酸、2−メルカプト−6−ナフトエ酸、2−メルカプト−7−ナフトエ酸、ベンゼン−1,4−ジチオール、ベンゼン−1,3−ジチオール、2,6−ナフタレン−ジチオール、2,7−ナフタレン−ジチオール、4−メルカプトフェノール、3−メルカプトフェノール、6−メルカプト−2−ヒドロキシナフタレン、7−メルカプト−2−ヒドロキシナフタレンなど、ならびにそれらの反応性誘導体が挙げられる。   Specific examples of the aromatic mercaptocarboxylic acid, aromatic dithiol and aromatic mercaptophenol include 4-mercaptobenzoic acid, 2-mercapto-6-naphthoic acid, 2-mercapto-7-naphthoic acid, benzene-1,4- Dithiol, benzene-1,3-dithiol, 2,6-naphthalene-dithiol, 2,7-naphthalene-dithiol, 4-mercaptophenol, 3-mercaptophenol, 6-mercapto-2-hydroxynaphthalene, 7-mercapto-2 -Hydroxynaphthalene and the like, as well as reactive derivatives thereof.

本発明における熱可塑性樹脂組成物には、本発明の効果の発揮を失わない範囲で、エポキシ樹脂、ポリオレフィン樹脂、ビスマレイミド樹脂、ポリイミド樹脂、ポリエーテル樹脂、フェノール樹脂、シリコーン樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリエステル樹脂、フッ素樹脂、アクリル樹脂、メラミン樹脂、ユリア樹脂、ウレタン樹脂等いかなる公知の樹脂も含有させて構わない。好ましい樹脂の具体例として、ポリカーボネート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、液晶ポリマー、ナイロン6、ナイロン6,6等が挙げられる。これら樹脂の使用量は、通常熱可塑性樹脂成形体に含まれる熱可塑性樹脂100重量部に対し、0〜10000重量部の範囲であることが好ましく、1〜800重量部の範囲であることがより好ましい。   The thermoplastic resin composition of the present invention includes an epoxy resin, a polyolefin resin, a bismaleimide resin, a polyimide resin, a polyether resin, a phenol resin, a silicone resin, a polycarbonate resin, and a polyamide as long as the effects of the present invention are not lost. Any known resin such as resin, polyester resin, fluorine resin, acrylic resin, melamine resin, urea resin, urethane resin may be contained. Specific examples of preferred resins include polycarbonate, polyethylene terephthalate, polybutylene terephthalate, liquid crystal polymer, nylon 6, nylon 6,6 and the like. The amount of these resins used is preferably in the range of 0 to 10000 parts by weight and more preferably in the range of 1 to 800 parts by weight with respect to 100 parts by weight of the thermoplastic resin usually contained in the thermoplastic resin molding. preferable.

本発明における熱可塑性樹脂組成物には、上記樹脂や充填材以外の添加剤として、さらに目的に応じて他のいかなる成分、例えば、補強剤、増粘剤、離型剤、カップリング剤、難燃剤、耐炎剤、顔料、着色剤、その他の助剤等を本発明の効果を失わない範囲で、添加することができる。これらの添加剤の使用量は、熱可塑性樹脂100重量部に対し、合計で0〜20重量部の範囲であることが好ましく、0.1〜15重量部の範囲であることがより好ましい。   In the thermoplastic resin composition of the present invention, as an additive other than the resin and the filler, any other components such as a reinforcing agent, a thickener, a release agent, a coupling agent, a difficulty agent, and the like, depending on the purpose. A flame retardant, a flame retardant, a pigment, a colorant, other auxiliary agents, and the like can be added as long as the effects of the present invention are not lost. The amount of these additives used is preferably in the range of 0 to 20 parts by weight and more preferably in the range of 0.1 to 15 parts by weight with respect to 100 parts by weight of the thermoplastic resin.

熱可塑性樹脂に対する配合物の配合方法としては特に限定されるものではない。例えば、上述した成分や添加剤等を乾燥させた後、単軸、2軸等の押出機のような溶融混練機にて溶融混練することにより製造することができる。また、配合成分が液体である場合は、液体供給ポンプ等を用いて溶融混練機に途中添加して製造することもできる。
本発明の絶縁ケースは、射出成形、押出成形、プレス成形、ブロー成形、など種々の樹脂成形法により成形することが可能である。これら成形方法の中でも簡便であることから、射出成形方法が好ましい。射出成形とは、射出成形機に金型を取り付け、成形機にて溶融可塑化された樹脂組成物を高速で金型内に注入し、樹脂組成物を冷却固化させて取り出す成形方法である。具体的には本発明における熱可塑性樹脂をスメクチック液晶状態に加熱し、金型に射出する。T未満の温度では成形できず、T以上の温度では樹脂は等方的に溶融するため熱伝導率が低下する場合がある。ここで、成形流動性の観点から、金型温度はT-100℃以上であることが好ましく、T-80℃以上であることがより好ましく、T-50℃以上であることがさらに好ましい。
It does not specifically limit as a compounding method of the compound with respect to a thermoplastic resin. For example, it can be produced by drying the above-described components, additives and the like and then melt-kneading them in a melt-kneader such as a single-screw or twin-screw extruder. Moreover, when a compounding component is a liquid, it can also manufacture by adding to a melt-kneader on the way using a liquid supply pump etc.
The insulating case of the present invention can be molded by various resin molding methods such as injection molding, extrusion molding, press molding, and blow molding. Among these molding methods, an injection molding method is preferable because it is simple. The injection molding is a molding method in which a mold is attached to an injection molding machine, a resin composition melt-plasticized by the molding machine is injected into the mold at a high speed, and the resin composition is cooled and solidified to be taken out. Specifically, the thermoplastic resin in the present invention is heated to a smectic liquid crystal state and injected into a mold. Molding cannot be performed at a temperature lower than T s, and at a temperature equal to or higher than T i , the resin melts isotropically, so that the thermal conductivity may decrease. Here, from the viewpoint of molding fluidity, the mold temperature is preferably T s -100 ° C or higher, more preferably T s -80 ° C or higher, and further T s -50 ° C or higher. preferable.

本発明の絶縁ケースは、厚み方向への高熱伝導性、150℃の長期耐熱性を有する。また絶縁ケースを構成する樹脂組成物は高熱伝導化を目的に熱伝導性充填材を大量に必要としないことから、低比重、良成形流動性を有する。このような絶縁ケースは発電機、電動機、変圧器、変流器、電圧調整器、整流器、インバーター、充電器のような大電流を取り扱う電気・電子機器、特にパワーモジュールにおいて、バスバーの封止樹脂、バスバーやコイルを収容し金属製放熱部材との間に絶縁性を確保する絶縁ケースなどとして好適に使用することができる。   The insulating case of the present invention has high thermal conductivity in the thickness direction and long-term heat resistance of 150 ° C. Further, the resin composition constituting the insulating case does not require a large amount of heat conductive filler for the purpose of achieving high heat conductivity, and thus has a low specific gravity and good molding fluidity. Such insulation cases are used for encapsulating resin for bus bars in electrical and electronic devices that handle large currents such as generators, motors, transformers, current transformers, voltage regulators, rectifiers, inverters, and chargers, especially power modules. In addition, it can be suitably used as an insulating case that houses a bus bar and a coil and secures insulation between the bus bar and the coil.

次に、本発明の絶縁ケースについて、製造例、実施例及び比較例を挙げさらに詳細に説明するが、本発明はかかる実施例のみに制限されるものではない。なお、以下に挙げる各試薬は特記しない限り、和光純薬工業製の試薬を精製せずに用いた。   Next, the insulating case of the present invention will be described in more detail with reference to production examples, examples and comparative examples, but the present invention is not limited to such examples. Unless otherwise specified, the reagents listed below were used without purification from Wako Pure Chemical Industries.

樹脂組成物の調製に用いる原料成分を以下に示す。   The raw material components used for preparing the resin composition are shown below.

[他樹脂]
・ポリエチレンテレフタレート樹脂(PET):
三菱化学株式会社製 ノバペックス PBKII
・ポリブチレンテレフタレート(PBT):
三菱エンジニアリングプラスチックス株式会社製 ノバデュラン5008L
・ネマチック液晶ポリマー(UENOLCP):
上野製薬株式会社製 UENOLCP A−2100
[Other resins]
・ Polyethylene terephthalate resin (PET):
Novapex PBKII manufactured by Mitsubishi Chemical Corporation
-Polybutylene terephthalate (PBT):
NOVADURAN 5008L manufactured by Mitsubishi Engineering Plastics Co., Ltd.
-Nematic liquid crystal polymer (UENOLCP):
UENOLCP A-2100 manufactured by Ueno Pharmaceutical Co., Ltd.

[球状または粒状の熱伝導性充填材(B1)]
・酸化マグネシウム(MgO):
宇部マテリアル株式会社製 RF−98(MgO−1、表面処理無、吸水率0.5%以下、平均粒子径50μm)およびRF−50−SC(MgO−2、表面処理無、吸水率0.3%以下、平均粒子径50μm)
・窒化アルミニウム(AlN):
東洋アルミ株式会社製 トーヤルナイトFLA、平均粒子径12μm、
[Spherical or granular thermally conductive filler (B1)]
Magnesium oxide (MgO):
RF-98 (MgO-1, no surface treatment, water absorption 0.5% or less, average particle size 50 μm) and RF-50-SC (MgO-2, no surface treatment, water absorption 0.3) manufactured by Ube Material Co., Ltd. %, Average particle size 50 μm)
Aluminum nitride (AlN):
Toyorunite FLA manufactured by Toyo Aluminum Co., Ltd., average particle size 12μm,

[板状の熱伝導性充填材(B2)]
・窒化ホウ素粉末(BN):
モメンティブパフォーマンスマテリアルズ社製 PT110(BN−1、平均粒子径45μm)、およびPT100(BN−2、平均粒子径13μm)
・タルク:
日本タルク株式会社製 MS−KY、平均粒子径23μm
[Plate-like thermally conductive filler (B2)]
Boron nitride powder (BN):
PT110 (BN-1, average particle diameter 45 μm) and PT100 (BN-2, average particle diameter 13 μm) manufactured by Momentive Performance Materials
·talc:
MS-KY manufactured by Nippon Talc Co., Ltd., average particle size 23 μm

[強化材(C)]
・ガラス繊維(GF):
日本電気硝子株式会社製T187H/PL、繊維直径13μm、数平均繊維長3.0mm
・ワラストナイト(WN):
巴工業株式会社製 NYGLOS8、繊維直径8μm、数平均繊維長136μm
[Reinforcing material (C)]
・ Glass fiber (GF):
T187H / PL manufactured by Nippon Electric Glass Co., Ltd., fiber diameter 13 μm, number average fiber length 3.0 mm
・ Wollastonite (WN):
NYGLOS8 manufactured by Sakai Kogyo Co., Ltd., fiber diameter 8 μm, number average fiber length 136 μm

[難燃剤(D)]
以下臭素系難燃剤とアンチモン酸ソーダの混合物
・BT−Sb:
BT−93/W:Sb=23:6(重量比)
・EM−Sb:
Emerald1000:Sb=17:8(重量比)
臭素系難燃剤:
・アルベマール日本株式会社製 SAYTEX BT−93/W(BT)
ケムチュラ社製 Emerald1000(EM)
・アンチモン酸ソーダ(Sb):
日本精鉱株式会社製 SA−A
[Flame Retardant (D)]
A mixture of brominated flame retardant and sodium antimonate, BT-Sb:
BT-93 / W: Sb = 23: 6 (weight ratio)
・ EM-Sb:
Emerald 1000: Sb = 17: 8 (weight ratio)
Brominated flame retardant:
-SAYTEX BT-93 / W (BT) manufactured by Albemarle Japan
Emerald1000 (EM) manufactured by Chemtura
・ Sodium antimonate (Sb):
SA-A manufactured by Nippon Seiko Co., Ltd.

[評価方法]
数平均分子量:本発明に用いる熱可塑性樹脂をp−クロロフェノール(東京化成工業製)とトルエンの体積比3:8混合溶媒に0.25重量%濃度となるように溶解して試料を調製した。標準物質はポリスチレンとし、同様の試料溶液を調製した。高温GPC(Viscotek社製 350 HT−GPC System)にてカラム温度:80℃、流速1.00mL/minの条件で測定した。検出器としては、示差屈折計(RI)を使用した。
[Evaluation method]
Number average molecular weight: A sample was prepared by dissolving the thermoplastic resin used in the present invention in a mixed solvent of p-chlorophenol (manufactured by Tokyo Chemical Industry Co., Ltd.) and toluene in a volume ratio of 3: 8 to a concentration of 0.25% by weight. . The standard material was polystyrene, and a similar sample solution was prepared. The measurement was performed using a high temperature GPC (350 HT-GPC System manufactured by Viscotek) under conditions of a column temperature of 80 ° C. and a flow rate of 1.00 mL / min. A differential refractometer (RI) was used as a detector.

示差走査熱量測定(DSC測定):50℃から320℃の範囲で1度10℃/minで昇降温させ、2度目の10℃/minでの昇温時の吸熱ピークのピークトップから、結晶相から液晶相への転移点(T)および液晶相から等方相への転移点(T)を求めた。
光学偏光顕微鏡観察:熱可塑性樹脂(A)をホットステージ上でT以上に加熱し、10℃/minで液晶を示す温度まで降温して、液晶の光学組織を観察した。
Differential scanning calorimetry (DSC measurement): The temperature is raised and lowered at a rate of 10 ° C./min in the range of 50 ° C. to 320 ° C., and from the peak top of the endothermic peak at the second temperature rise of 10 ° C./min, The transition point (T s ) from the liquid crystal phase to the liquid crystal phase and the transition point (T i ) from the liquid crystal phase to the isotropic phase were determined.
Observation with an optical polarizing microscope: The thermoplastic resin (A) was heated to Ti or higher on a hot stage, and the temperature was lowered to a temperature showing liquid crystal at 10 ° C./min, and the optical structure of the liquid crystal was observed.

試験片成形条件:得られたペレット状の樹脂組成物を、熱風乾燥機を用いて120℃で4時間乾燥した後、射出成形機にて各種試験片を成形した。このとき、シリンダー温度はスメクチック液晶性の熱可塑性樹脂のT+30℃とし、金型温度120〜150℃に設定し、射出した。ただし、スメクチック液晶性の熱可塑性樹脂を使用しない場合は、シリンダー温度は使用する熱可塑性樹脂の融点+30℃とした。 Test piece molding conditions: The obtained pellet-shaped resin composition was dried at 120 ° C. for 4 hours using a hot air dryer, and then various test pieces were molded using an injection molding machine. At this time, the cylinder temperature was set to T s + 30 ° C. of a smectic liquid crystalline thermoplastic resin, the mold temperature was set to 120 to 150 ° C., and injection was performed. However, when the smectic liquid crystalline thermoplastic resin was not used, the cylinder temperature was set to the melting point of the thermoplastic resin used + 30 ° C.

熱伝導率:厚み1mm×25mmφの円板状サンプルにて、レーザーフラッシュ法熱伝導率測定装置(NETZSCH社製 LFA447)で、室温大気中におけるサンプルの面内方向の熱伝導率を測定した。   Thermal conductivity: In a disk-shaped sample having a thickness of 1 mm × 25 mmφ, the thermal conductivity in the in-plane direction of the sample in the room temperature atmosphere was measured with a laser flash method thermal conductivity measuring device (LFA447 manufactured by NETZSCH).

比重:厚み1mm×25mmφの円板状サンプルを用いて、アルキメデス法により算出した。   Specific gravity: Calculated by the Archimedes method using a disk-shaped sample having a thickness of 1 mm × 25 mmφ.

成形加工性:厚み1mmのスパイラルフローによる試験から、次のように成形性を判断した。○:流動長が100mm以上、△:流動長が50〜100mm、×:流動長が50mm未満。   Formability: Formability was judged as follows from a test by a spiral flow having a thickness of 1 mm. ○: Flow length is 100 mm or more, Δ: Flow length is 50 to 100 mm, X: Flow length is less than 50 mm.

長期耐熱試験:試験片(4×10×80mm)を空気下、150℃の乾燥機中にて2000時間加熱処理し、加熱処理有りと無しとの試験片の曲げ強度をISO178に従い測定し、曲げ強度の保持率を算出した。   Long-term heat resistance test: A test piece (4 × 10 × 80 mm) is heat-treated in a drier at 150 ° C. for 2000 hours in air, and the bending strength of the test piece with and without heat treatment is measured in accordance with ISO178. The strength retention was calculated.

絶縁破壊強度:試験片(2×100×100mm)を用いて、ASTM D149に従い測定した。   Dielectric strength: measured according to ASTM D149 using a test piece (2 × 100 × 100 mm).

[製造例1]
還流冷却器、温度計、窒素導入管及び攪拌棒を備え付けた密閉型反応器に、4,4’−ジヒドロキシビフェニル、ドデカン二酸、無水酢酸をモル比でそれぞれ1.0:1.1:2.1の割合で仕込み、酢酸ナトリウムを触媒とし、常圧、窒素雰囲気下で145℃にて反応させ均一な溶液を得た後、酢酸を留去しながら2℃/minで250℃まで昇温し、250℃で1時間撹拌した。引き続きその温度を保ったまま、約40分かけて10Torrまで減圧した後、減圧状態を維持した。減圧開始から3時間後、窒素ガスで常圧に戻し、生成したポリマーを取り出した。得られた樹脂の数平均分子量は9500、Tは205℃、Tは255℃、末端封止率は0%であった。偏光顕微鏡観察から液晶状態にてバトネット組織が見られたことから、液晶がスメクチック液晶であることを確認した。得られた樹脂を(A−1)とし、分子構造を表1に示す。
[Production Example 1]
In a closed reactor equipped with a reflux condenser, a thermometer, a nitrogen introduction tube, and a stirring rod, 4,4′-dihydroxybiphenyl, dodecanedioic acid, and acetic anhydride were each in a molar ratio of 1.0: 1.1: 2. .1 was charged, and sodium acetate was used as a catalyst to react at 145 ° C. under normal pressure and nitrogen atmosphere to obtain a uniform solution, and then the temperature was raised to 250 ° C. at 2 ° C./min while acetic acid was distilled off. And stirred at 250 ° C. for 1 hour. Subsequently, while maintaining the temperature, the pressure was reduced to 10 Torr over about 40 minutes, and then the reduced pressure state was maintained. Three hours after the start of pressure reduction, the pressure was returned to normal pressure with nitrogen gas, and the produced polymer was taken out. The number average molecular weight of the obtained resin was 9500, T S was 205 ° C., T i was 255 ° C., and the end capping rate was 0%. From the observation with a polarizing microscope, a batnet structure was observed in a liquid crystal state, and it was confirmed that the liquid crystal was a smectic liquid crystal. The obtained resin is (A-1), and the molecular structure is shown in Table 1.

[製造例2]
還流冷却器、温度計、窒素導入管及び攪拌棒を備え付けた密閉型反応器に、4,4’−ジヒドロキシビフェニル、テトラデカン二酸、無水酢酸をモル比でそれぞれ0.9:1.09:0.1:2.1の割合で仕込み、酢酸ナトリウムを触媒とし、常圧、窒素雰囲気下で145℃にて反応させ均一な溶液を得た後、酢酸を留去しながら2℃/minで240℃まで昇温し、240℃で30分撹拌した。さらに1℃/minで260℃まで昇温し、260℃で1時間撹拌した。引き続きその温度を保ったまま、約40分かけて10Torrまで減圧した後、減圧状態を維持した。減圧開始から3時間後、窒素ガスで常圧に戻し、生成したポリマーを取り出した。得られた樹脂の数平均分子量は10000、Tは190℃、Tは240℃、末端封止率は0%であった。偏光顕微鏡観察から液晶状態にてバトネット組織が見られたことから、液晶がスメクチック液晶であることを確認した。得られた樹脂を(A−2)とし、分子構造を表1に示す。
[Production Example 2]
In a closed reactor equipped with a reflux condenser, a thermometer, a nitrogen introduction tube and a stirring rod, 4,4′-dihydroxybiphenyl, tetradecanedioic acid, and acetic anhydride were each in a molar ratio of 0.9: 1.09: 0. The mixture was charged at a ratio of 1: 2.1 and reacted at 145 ° C. under normal pressure and nitrogen atmosphere using sodium acetate as a catalyst to obtain a homogeneous solution, and then 240 ° C. at 2 ° C./min while distilling off acetic acid. The temperature was raised to ° C and stirred at 240 ° C for 30 minutes. Furthermore, it heated up to 260 degreeC at 1 degreeC / min, and stirred at 260 degreeC for 1 hour. Subsequently, while maintaining the temperature, the pressure was reduced to 10 Torr over about 40 minutes, and then the reduced pressure state was maintained. Three hours after the start of pressure reduction, the pressure was returned to normal pressure with nitrogen gas, and the produced polymer was taken out. The number average molecular weight of the resin 10000, T S is 190 ° C., T i is 240 ° C., terminal blocking ratio was 0%. From the observation with a polarizing microscope, a batnet structure was observed in a liquid crystal state, and it was confirmed that the liquid crystal was a smectic liquid crystal. The obtained resin is (A-2), and the molecular structure is shown in Table 1.

[製造例3]
還流冷却器、温度計、窒素導入管及び攪拌棒を備え付けた密閉型反応器に、4,4’−ジヒドロキシビフェニル、セバシン酸、カテコール、ステアリン酸、無水酢酸をモル比でそれぞれ1:1.01:0.05:0.08:2.2の割合で仕込み、酢酸ナトリウムを触媒とし、常圧、窒素雰囲気下で145℃にて反応させ均一な溶液を得た後、酢酸を留去しながら2℃/minで240℃まで昇温し、240℃で30分撹拌した。さらに1℃/minで260℃まで昇温し、260℃で1時間撹拌した。引き続きその温度を保ったまま、約40分かけて10Torrまで減圧した後、減圧状態を維持した。減圧開始から3時間後、窒素ガスで常圧に戻し、生成したポリマーを取り出した。得られた樹脂の数平均分子量は15000、Tは210℃、Tは275℃、末端封止率は99%であった。偏光顕微鏡観察から液晶状態にてバトネット組織が見られたことから、液晶がスメクチック液晶であることを確認した。得られた樹脂を(A−3)とし、分子構造を表1に示す。
[Production Example 3]
In a closed reactor equipped with a reflux condenser, a thermometer, a nitrogen introduction tube and a stirring rod, 4,4′-dihydroxybiphenyl, sebacic acid, catechol, stearic acid, and acetic anhydride were each in a molar ratio of 1: 1.01. : 0.05: 0.08: 2.2 was charged, sodium acetate was used as a catalyst, and the reaction was carried out at 145 ° C. under normal pressure and nitrogen atmosphere to obtain a uniform solution, and then acetic acid was distilled off. The temperature was raised to 240 ° C. at 2 ° C./min and stirred at 240 ° C. for 30 minutes. Furthermore, it heated up to 260 degreeC at 1 degreeC / min, and stirred at 260 degreeC for 1 hour. Subsequently, while maintaining the temperature, the pressure was reduced to 10 Torr over about 40 minutes, and then the reduced pressure state was maintained. Three hours after the start of pressure reduction, the pressure was returned to normal pressure with nitrogen gas, and the produced polymer was taken out. The number average molecular weight of the obtained resin 15000, T S is 210 ° C., T i is 275 ° C., terminal blocking ratio was 99%. From the observation with a polarizing microscope, a batnet structure was observed in a liquid crystal state, and it was confirmed that the liquid crystal was a smectic liquid crystal. The obtained resin is (A-3), and the molecular structure is shown in Table 1.

[実施例1〜7および比較例1〜4]
表1に示す熱可塑性樹脂(A)およびその他樹脂材料を熱風乾燥機を用いて120℃で4時間乾燥した後、樹脂成分と表1に示す量の各種配合物とを、熱可塑性樹脂(A)が液晶状態となる温度、比較例1では290℃にて15mm同方向回転完全噛合型二軸押出機KZW15−45MG(株式会社テクノベル製)を用いてストランド状に押出し、ペレタイザにより切断してペレット状の熱可塑性樹脂組成物を得た。得られた樹脂組成物を使用し、前記の各種試験片を作製して各種物性を評価した。結果を表2および表3に示す。
[Examples 1 to 7 and Comparative Examples 1 to 4]
After the thermoplastic resin (A) shown in Table 1 and other resin materials were dried at 120 ° C. for 4 hours using a hot air dryer, the resin component and various blends in the amounts shown in Table 1 were combined with the thermoplastic resin (A ) In a liquid crystal state, in Comparative Example 1, it was extruded into a strand using a 15 mm co-rotating fully meshed twin screw extruder KZW15-45MG (manufactured by Technobell Co., Ltd.) at 290 ° C., cut by a pelletizer and pellets A thermoplastic resin composition was obtained. Using the obtained resin composition, the above-mentioned various test pieces were produced and various physical properties were evaluated. The results are shown in Table 2 and Table 3.

Figure 0006116881
Figure 0006116881

Figure 0006116881
Figure 0006116881

Figure 0006116881
Figure 0006116881

表1、表2から明らかなように、実施例1〜7の樹脂組成物は、厚み方向に2.0W/(m・K)以上の高熱伝導性を有し、成形加工性、長期耐熱性、絶縁破壊強度に優れる。それに対し比較例1の樹脂組成物は、ベース樹脂がスメクチック液晶性を示さない樹脂であるため、ベース樹脂の熱伝導率が低いことに由来し、樹脂組成物の厚み方向の熱伝導率は1.1W/(m・K)と低い。また長期耐熱性試験後の曲げ強度保持率も85%未満となる。比較例2の樹脂組成物は、ベース樹脂がネマチック液晶性の樹脂であり、融点の高い樹脂であるため長期耐熱性には優れているが、樹脂組成物の厚み方向の熱伝導率は低い。比較例3の樹脂組成物の場合は、MgOが熱可塑性樹脂(A)100重量部に対し、250重量部を超えているため、成形加工性が悪い。比較例4の樹脂組成物の場合は、球状または粒状の熱伝導性充填材(B1)を全く含有せず、板状の熱伝導性充填材(B2)のみを大量に使用しているが、この充填材が射出成形により面内方向に配向するため、厚み方向の熱伝導率が2W/(m・K)未満となってしまう。比較例5の樹脂組成物の場合、強化材(C)を全く含有していないため、長期耐熱性試験後の曲げ強度保持率が85%未満となっている。   As is clear from Tables 1 and 2, the resin compositions of Examples 1 to 7 have a high thermal conductivity of 2.0 W / (m · K) or more in the thickness direction, molding processability, and long-term heat resistance. Excellent dielectric breakdown strength. On the other hand, the resin composition of Comparative Example 1 is derived from the low thermal conductivity of the base resin because the base resin does not exhibit smectic liquid crystallinity, and the thermal conductivity in the thickness direction of the resin composition is 1 Low at 1 W / (m · K). Also, the bending strength retention after the long-term heat resistance test is less than 85%. In the resin composition of Comparative Example 2, since the base resin is a nematic liquid crystalline resin and has a high melting point, the resin composition is excellent in long-term heat resistance, but the thermal conductivity in the thickness direction of the resin composition is low. In the case of the resin composition of Comparative Example 3, since MgO exceeds 250 parts by weight with respect to 100 parts by weight of the thermoplastic resin (A), the molding processability is poor. In the case of the resin composition of Comparative Example 4, the spherical or granular thermal conductive filler (B1) is not contained at all, and only the plate-shaped thermal conductive filler (B2) is used in a large amount. Since this filler is oriented in the in-plane direction by injection molding, the thermal conductivity in the thickness direction is less than 2 W / (m · K). In the case of the resin composition of Comparative Example 5, since the reinforcing material (C) is not contained at all, the bending strength retention after the long-term heat resistance test is less than 85%.

本発明の絶縁ケースは、厚み方向に2.0W/(m・K)以上の高熱伝導性を有し、成形加工性、長期耐熱性、絶縁破壊強度に優れる。そのため、ハイブリッド車、電気自動車などで使用される電力変換装置や充電器のような大電流を取り扱う電気・電子機器中の、バスバーやコイルなどから発生する熱を、金属製ヒートシンクなどの電気伝導性の放熱部材へ効率よく伝熱し、また発熱体同士または発熱体と放熱部材との絶縁性を確保することを目的とした絶縁物として好適に使用することができる。これにより、電気・電子機器の小型化もしくは大きさを維持した高性能化が実現可能となるため、産業上の利点は非常に大きいものである。   The insulating case of the present invention has a high thermal conductivity of 2.0 W / (m · K) or more in the thickness direction, and is excellent in molding processability, long-term heat resistance, and dielectric breakdown strength. Therefore, heat generated from bus bars and coils in electrical / electronic devices that handle large currents, such as power converters and chargers used in hybrid vehicles and electric vehicles, is electrically conductive, such as metal heat sinks. It can be suitably used as an insulator for the purpose of efficiently transferring heat to the heat dissipating member and ensuring insulation between the heat generating members or between the heat generating member and the heat dissipating member. This makes it possible to achieve high performance while maintaining the size or size of the electric / electronic device, and thus the industrial advantage is very large.

Claims (14)

加熱時にスメクチック液晶性を示し、結晶相からスメクチック液晶相への転移点が180℃以上であることを特徴とする熱可塑性樹脂(A)100重量部に対し、球状または粒状の熱伝導性充填材(B1)を50〜250重量部、および繊維状充填材および針状充填材からなる群より選ばれる少なくとも1種の強化材(C)を10〜100重量部を含有する熱伝導性樹脂組成物からなる絶縁ケース。   A spherical or granular thermal conductive filler with respect to 100 parts by weight of the thermoplastic resin (A), which exhibits a smectic liquid crystal property upon heating and has a transition point from a crystal phase to a smectic liquid crystal phase of 180 ° C. or higher. Thermally conductive resin composition containing 10 to 100 parts by weight of (B1) at 50 to 250 parts by weight and at least one reinforcing material (C) selected from the group consisting of a fibrous filler and an acicular filler. Insulating case consisting of 前記熱伝導性樹脂組成物が5〜100重量部の難燃剤(D)をさらに含有する請求項1に記載の絶縁ケース。   The insulating case according to claim 1, wherein the heat conductive resin composition further contains 5 to 100 parts by weight of a flame retardant (D). 前記熱伝導性樹脂組成物が板状の熱伝導性充填材(B2)をさらに20〜200重量部含有し、球状または粒状の熱伝導性充填材(B1)との含有率が体積比で(B1)/(B2)=5/95〜70/30である請求項1または2に記載の絶縁ケース。   The thermally conductive resin composition further contains 20 to 200 parts by weight of a plate-like thermally conductive filler (B2), and the content ratio with the spherical or granular thermally conductive filler (B1) is in a volume ratio ( The insulating case according to claim 1 or 2, wherein B1) / (B2) = 5/95 to 70/30. 球状または粒状の熱伝導性充填材(B1)が、吸水率が0.5%以下の酸化マグネシウムである、請求項1〜3のいずれか1項に記載の絶縁ケース。 Spherical or granular thermal-(B1), having a water absorption rate of magnesium oxide 0.5%, the insulation case according to any one of claims 1 to 3. 板状の熱伝導性充填材(B2)がタルク、六方晶窒化ほう素から選ばれる少なくとも1種である、請求項3または4に記載の絶縁ケース。   The insulating case according to claim 3 or 4, wherein the plate-like thermally conductive filler (B2) is at least one selected from talc and hexagonal boron nitride. 強化材(C)が、ガラス繊維、ワラストナイト、チタン酸カリウムウィスカー、およびホウ酸アルミニウムウィスカーよりなる群より選ばれる少なくとも1つである請求項1〜5のいずれか1項に記載の絶縁ケース。 Reinforcement (C) is glass fiber, wollastonite, insulation case according to claim 1 is at least one selected from the group consisting of potassium titanate whisker and aluminum borate whisker, . 前記熱伝導性樹脂組成物が空気雰囲気下、150℃で2000時間加熱処理後に、曲げ強度の保持率が100%以上であり、且つ厚み方向の熱伝導率が2W/(m・K)以上である請求項1〜6のいずれか1項に記載の絶縁ケース。 The thermal-conductive resin composition is under an air atmosphere, after 2000 hours of heat treatment at 0.99 ° C., flexural der retention over 100% of the strength is, and the thickness direction of the thermal conductivity of 2W / (m · K) or higher insulation case according to any one of claims 1 to 6 der Ru. 前記熱可塑性樹脂の主鎖の構造が、主として一般式(1)で示される単位の繰り返し単位からなる請求項1〜7のいずれか1項に記載の絶縁ケース。
−M−Sp− ...(1)
(式中、Mはメソゲン基、Spはスペーサーを示す。)
Insulation case according to any one of the heat backbone structure of the thermoplastic resin, according to claim 7 comprising repeating units of units represented mainly by the general formula (1).
-M-Sp-. . . (1)
(In the formula, M represents a mesogenic group, and Sp represents a spacer.)
前記熱可塑性樹脂が主として下記一般式(2)で示される単位の繰り返しからなる請求項8に記載の絶縁ケース。
−A−x−A−OCO(CHCOO− ...(2)
(式中、AおよびAは、各々独立して芳香族基、縮合芳香族基、脂環基、脂環式複素環基から選ばれる置換基を示す。xは、各々独立して直接結合、−O−、−S−、−CH−CH−、−C=C−、−C=C(Me)−、−C≡C−、−CO−O−、−CONH−、−CH=N−、−CH=N−N=CH−、−N=N−または−N(O)=N−の群から選ばれる2価の置換基を示す。mは2〜20の整数を示す。)
The insulating case according to claim 8, wherein the thermoplastic resin is mainly composed of repeating units represented by the following general formula (2).
-A 1 -x-A 2 -OCO ( CH 2) m COO-. . . (2)
(In the formula, A 1 and A 2 each independently represent a substituent selected from an aromatic group, a condensed aromatic group, an alicyclic group, and an alicyclic heterocyclic group. Bond, —O—, —S—, —CH 2 —CH 2 —, —C═C—, —C═C (Me) —, —C≡C—, —CO—O—, —CONH—, — A divalent substituent selected from the group of CH = N-, -CH = N-N = CH-, -N = N- or -N (O) = N-, where m is an integer of 2 to 20. Show.)
前記熱可塑性樹脂の−A−x−A−が下記一般式(3)であることを特徴とする、請求項9に記載の絶縁ケース
Figure 0006116881
(式中、Rはそれぞれ独立して脂肪族炭化水素基、F、Cl、Br、I、CN、またはNO、yは2〜4の整数、nは0〜4の整数を示す。)
Wherein the thermoplastic resin -A 1 -x-A 2 -, wherein the is represented by the following general formula (3), an insulating case of claim 9.
Figure 0006116881
(In the formula, each R is independently an aliphatic hydrocarbon group, F, Cl, Br, I, CN, or NO 2 , y is an integer of 2 to 4, and n is an integer of 0 to 4.)
前記熱可塑性樹脂のmが4〜14の偶数から選ばれる少なくとも1種である請求項9または10のいずれか1項に記載の絶縁ケース。 The insulating case according to claim 9, wherein m of the thermoplastic resin is at least one selected from an even number of 4 to 14. 11 . 前記熱可塑性樹脂の数平均分子量が3000〜40000である、請求項1〜11のいずれか1項に記載の絶縁ケース。 Is 3,000 to 40,000 number average molecular weight of the thermoplastic resin, the insulation case according to any one of claims 1 to 11. 前記熱可塑性樹脂(A)の分子鎖の末端基の10%以上が末端封止材により封止されている、請求項1〜12のいずれか1項に記載の絶縁ケース。The insulation case of any one of Claims 1-12 in which 10% or more of the terminal groups of the molecular chain of the thermoplastic resin (A) are sealed with a terminal sealing material. 請求項1〜請求項13のいずれか1項に記載の絶縁ケースを用いて形成してなるパワーモジュール。 Power module formed by using a insulating case according to any one of claims 1 to 13.
JP2012268677A 2012-12-07 2012-12-07 Insulation case Expired - Fee Related JP6116881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012268677A JP6116881B2 (en) 2012-12-07 2012-12-07 Insulation case

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012268677A JP6116881B2 (en) 2012-12-07 2012-12-07 Insulation case

Publications (2)

Publication Number Publication Date
JP2014116421A JP2014116421A (en) 2014-06-26
JP6116881B2 true JP6116881B2 (en) 2017-04-19

Family

ID=51172134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012268677A Expired - Fee Related JP6116881B2 (en) 2012-12-07 2012-12-07 Insulation case

Country Status (1)

Country Link
JP (1) JP6116881B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6652182B2 (en) * 2018-04-20 2020-02-19 住友電気工業株式会社 Resin composition, inorganic filler, DC power cable, and method for manufacturing DC power cable
CN112789328B (en) * 2018-10-05 2022-02-01 宝理塑料株式会社 Liquid crystalline resin composition for ball bearing sliding wear resistant member and ball bearing sliding wear resistant member using same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714744B2 (en) * 1988-12-15 1995-02-22 旭有機材工業株式会社 Tray for integrated circuits
JPH06216484A (en) * 1993-01-18 1994-08-05 Hitachi Chem Co Ltd Metal-based copper-clad laminated board
JP5177089B2 (en) * 2008-07-30 2013-04-03 東レ株式会社 Polyarylene sulfide resin composition, polyarylene sulfide resin composition tablet and molded product obtained therefrom
JP5155769B2 (en) * 2008-08-07 2013-03-06 ポリプラスチックス株式会社 Totally aromatic polyester and polyester resin composition
JP5490604B2 (en) * 2009-09-18 2014-05-14 株式会社カネカ Thermoplastic resin composition and resin material for heat dissipation and heat transfer
JP5665846B2 (en) * 2010-03-10 2015-02-04 新日鉄住金化学株式会社 Thermally conductive polyimide film and thermal conductive laminate using the same

Also Published As

Publication number Publication date
JP2014116421A (en) 2014-06-26

Similar Documents

Publication Publication Date Title
JP5941840B2 (en) High thermal conductivity thermoplastic resin
JP5731199B2 (en) High thermal conductivity thermoplastic resin composition and molded article of thermoplastic resin
JP5366533B2 (en) Thermoplastic resin composition
JP5490604B2 (en) Thermoplastic resin composition and resin material for heat dissipation and heat transfer
JP5542513B2 (en) High thermal conductivity thermoplastic resin composition for extrusion molding
JP6117178B2 (en) Thermally conductive resin molded body and method for producing the thermally conductive resin molded body
JP6364024B2 (en) High heat conductive resin composition, heat dissipation / heat transfer resin material containing the same, and heat conductive film
JP5684999B2 (en) High thermal conductivity thermoplastic resin composition for blow molding
JP6046484B2 (en) Thermally conductive thermoplastic resin molding
JP5476203B2 (en) High thermal conductivity thermoplastic resin composition
JP5468975B2 (en) High heat conductivity thermoplastic resin heat sink
JP5757940B2 (en) High thermal conductivity thermoplastic resin
JP6116881B2 (en) Insulation case
JP5680873B2 (en) High thermal conductivity thermoplastic resin and thermoplastic resin molding
JP2016037540A (en) Thermoplastic resin and resin composition, and heat radiation/heat transfer resin material and heat conduction film comprising the same
JP2015183033A (en) High-thermal-conductivity resin composition and resin material for heat release/heat transfer and heat conductive film containing the same
JP5646874B2 (en) Flame retardant high thermal conductivity thermoplastic resin composition
JP5525322B2 (en) High thermal conductivity thermoplastic resin composition
JP5612517B2 (en) Method for producing high thermal conductive resin composition and method for producing molded body
JP6122637B2 (en) Insulating film and manufacturing method thereof
JP5795866B2 (en) High thermal conductivity thermoplastic liquid crystal resin and molding method of resin composition
JP6101501B2 (en) High thermal conductivity thermoplastic resin composition and method for producing high thermal conductivity thermoplastic resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160802

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170322

R150 Certificate of patent or registration of utility model

Ref document number: 6116881

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees