JP6116239B2 - Subject information acquisition apparatus and subject information acquisition method - Google Patents

Subject information acquisition apparatus and subject information acquisition method Download PDF

Info

Publication number
JP6116239B2
JP6116239B2 JP2012286687A JP2012286687A JP6116239B2 JP 6116239 B2 JP6116239 B2 JP 6116239B2 JP 2012286687 A JP2012286687 A JP 2012286687A JP 2012286687 A JP2012286687 A JP 2012286687A JP 6116239 B2 JP6116239 B2 JP 6116239B2
Authority
JP
Japan
Prior art keywords
subject
transducers
pattern
ultrasonic waves
object information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012286687A
Other languages
Japanese (ja)
Other versions
JP2014128328A (en
Inventor
尚史 海老澤
尚史 海老澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2012286687A priority Critical patent/JP6116239B2/en
Publication of JP2014128328A publication Critical patent/JP2014128328A/en
Application granted granted Critical
Publication of JP6116239B2 publication Critical patent/JP6116239B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)

Description

本発明は、被検体情報取得装置及び被検体情報取得方法に関する。   The present invention relates to a subject information acquisition apparatus and a subject information acquisition method.

超音波診断装置は、X線による被ばくの心配がない等の理由から、被検体情報取得装置として注目されている。その用途の一つである乳がん診断(マンモグラフィー)等においては、被検体である乳房を圧迫保持した状態で診断(測定)が行われることがある。このような場合、被検体を圧迫保持する保持部材を介して測定のための超音波送受信が行われるが、保持部材と被検体との音響インピーダンスの違いに起因して、保持部材内で超音波が多重反射し、この多重反射した超音波がアーチファクトを生じるという問題があった。この問題を解決するため、特許文献1では、多重反射によるアーチファクトを含んだ画像から、多重反射した超音波によって生じたアーチファクト部分を差し引くことで、アーチファクトの低減された診断画像を得る技術が開示されている。   Ultrasound diagnostic devices are attracting attention as subject information acquisition devices because they do not worry about exposure to X-rays. In breast cancer diagnosis (mammography), which is one of the uses, diagnosis (measurement) may be performed in a state where the subject breast is pressed and held. In such a case, ultrasonic transmission / reception for measurement is performed via a holding member that compresses and holds the subject, but due to the difference in acoustic impedance between the holding member and the subject, ultrasonic waves are generated in the holding member. There is a problem that multiple reflection occurs and the multiple reflected ultrasonic waves cause artifacts. In order to solve this problem, Patent Document 1 discloses a technique for obtaining a diagnostic image with reduced artifacts by subtracting an artifact portion caused by multiple reflected ultrasonic waves from an image including artifacts due to multiple reflections. ing.

特開2009−82450号公報JP 2009-82450 A

しかしながら、特許文献1の装置で得た画像では、被検体情報が欠損する恐れがある。その理由は、受信した超音波から得た画像から、多重反射せずに受信した超音波(被検体情報を正しく反映した超音波)と、多重反射したのち受信した超音波(アーチファクト要因の超音波)とを正確に分離するのは現実には困難な為アーチファクトではない情報まで取り除いてしまう場合がある。   However, in the image obtained by the apparatus of Patent Document 1, there is a risk that the subject information is lost. The reason is that, from the image obtained from the received ultrasonic wave, the ultrasonic wave received without multiple reflection (the ultrasonic wave that correctly reflects the subject information) and the ultrasonic wave received after multiple reflection (the ultrasonic wave of the artifact factor) It is difficult in practice to accurately separate the) and information that is not an artifact may be removed.

本発明は、上記の課題に鑑みてなされたものであり、その目的は、部材を介して被検体情報を取得し画像を得る(再構成する)被検体情報取得装置において、被検体情報の欠損を抑えつつ多重反射による画像劣化を軽減する事である。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a defect in subject information in a subject information acquisition apparatus that obtains subject information through a member and obtains (reconstructs) an image. It is to reduce image degradation due to multiple reflections while suppressing the above.

上記課題を解決する本発明は、被検体に超音波を送信し、該被検体で反射した反射超音波を受信して受信信号を出力する複数の振動子と、
前記振動子の駆動を制御する制御手段と、
各振動子が受信した受信信号を補正する信号調整手段と、
を有し、
前記信号調整手段は、前記複数の振動子の駆動パターン、前記複数の振動子同士の位置関係、および、前記被検体と前記振動子との間に設けられる部材の形状の少なくとも一つに基づいて定まる前記反射超音波に含まれる多重反射成分を低減するように、前記受信信号に対するゲインを設定することを特徴とする被検体情報取得装置である。
The present invention that solves the above-described problems includes a plurality of transducers that transmit ultrasonic waves to a subject, receive reflected ultrasonic waves reflected by the subject, and output reception signals;
Control means for controlling the drive of the vibrator;
Signal adjusting means for correcting the received signal received by each transducer;
Have
The signal adjusting means is based on at least one of a drive pattern of the plurality of vibrators, a positional relationship between the plurality of vibrators, and a shape of a member provided between the subject and the vibrator. An object information acquiring apparatus characterized in that a gain for the received signal is set so as to reduce a multiple reflection component included in the reflected ultrasound to be determined.

また、上記課題を解決する別の発明は、被検体の情報を取得する情報取得方法であって、
複数の振動子と被検体との間に該被検体とは異なる音響インピーダンスを有する部材を介在させた状態で、該複数の振動子を駆動して該被検体に超音波を送信し、該被検体で反射した反射超音波を該複数の振動子で受信して受信信号を取得する工程と、
取得した受信信号を補正する工程と、を有し、
前記補正する工程は、前記複数の振動子の駆動パターン、前記複数の振動子同士の位置関係、および、前記部材の形状の少なくとも一つに基づいて定まる前記反射超音波に含まれる多重反射成分を低減するように、前記受信信号に対するゲインを設定する工程を含むことを特徴とする。
Another invention for solving the above problem is an information acquisition method for acquiring information of a subject,
With a member having an acoustic impedance different from that of the subject interposed between the plurality of transducers and the subject, the plurality of transducers are driven to transmit ultrasonic waves to the subject, and the subject Receiving the reflected ultrasound reflected by the specimen with the plurality of transducers to obtain a received signal;
Correcting the acquired received signal,
In the correcting step, a multiple reflection component included in the reflected ultrasonic wave determined based on at least one of a driving pattern of the plurality of transducers, a positional relationship between the plurality of transducers, and a shape of the member. The method includes a step of setting a gain for the received signal so as to reduce the received signal.

本発明によれば、アーチファクトを軽減しつつ、被検体情報の欠損をより低減した画像を得る事が可能になる。   According to the present invention, it is possible to obtain an image with reduced loss of subject information while reducing artifacts.

本発明の実施の形態に係る被検体情報取得装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the subject information acquisition apparatus which concerns on embodiment of this invention. 本発明のビームフォーミング部の第一の構成を示す模式図である。It is a schematic diagram which shows the 1st structure of the beam forming part of this invention. 本発明のビームフォーミング部の第二の構成を示す模式図である。It is a schematic diagram which shows the 2nd structure of the beam forming part of this invention. 本発明の実施例1の構成概略図である。1 is a schematic configuration diagram of Embodiment 1 of the present invention. 開口素子が受信する信号のパターンを示す図である。It is a figure which shows the pattern of the signal which an aperture element receives. 本発明の実施例2の構成概略図である。It is the structure schematic of Example 2 of this invention. 本発明の実施例3の構成概略図である。It is the structure schematic of Example 3 of this invention. 実施例1の効果を表す図である。FIG. 6 is a diagram illustrating an effect of Example 1. 補正パターンとゲインのかかり方を示した図である。It is a figure showing how to apply a correction pattern and gain. 送信パターン、保持部材の特性、圧電素子の位置関係と、アーチファクトの関係を示す図Diagram showing transmission pattern, holding member characteristics, positional relationship of piezoelectric elements, and artifacts

本発明の実施の形態を、図面を用いて説明する。図1は本実施形態の被検体情報取得装置の概略構成を示す図である。本実施の形態における被検体情報取得装置は、振動子である圧電素子3と、被検体とは異なる音響インピーダンスを有する部材である保持部材1と、信号調整手段であるビームフォーミング部5と、振動子の駆動を制御する制御手段である送信処理部4とを有する。   Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram illustrating a schematic configuration of a subject information acquisition apparatus according to the present embodiment. The subject information acquisition apparatus according to the present embodiment includes a piezoelectric element 3 that is a vibrator, a holding member 1 that is a member having an acoustic impedance different from that of the subject, a beam forming unit 5 that is a signal adjustment unit, and a vibration. And a transmission processing unit 4 which is a control means for controlling the driving of the child.

振動子である圧電素子3は、被検体に超音波を送信し、被検体で反射した反射超音波を受信して受信信号を出力するものである。また、保持部材1は、被検体と振動子である圧電素子3との間に位置し、振動子が送信する超音波及び受信する反射超音波を透過する部材である。制御手段である送信処理部4は、振動子である圧電素子3の駆動を制御するものである。また、信号調整手段であるビームフォーミング部5は、各振動子である圧電素子3が受信した受信信号を補正するものである。そして、信号調整手段であるビームフォーミング部5が行う補正は、被検体とは異なる音響インピーダンスを有する部材である保持部材1の形状と、制御手段を構成する送信処理部4による振動子の駆動パターンと、複数の振動子同士の位置関係とに基づいて行われる。これによって、アーチファクトを軽減しつつ、被検体情報の欠損をより低減した画像を得る事が可能になる。以下これについて説明する。尚、図1に示すように、以下においては、振動子である圧電素子3を複数備えた構造を探触子2として説明する。   The piezoelectric element 3 as a vibrator transmits ultrasonic waves to a subject, receives reflected ultrasonic waves reflected by the subject, and outputs a reception signal. The holding member 1 is a member that is located between the subject and the piezoelectric element 3 that is a vibrator, and that transmits the ultrasonic waves transmitted by the vibrator and the reflected ultrasonic waves received by the vibrator. The transmission processing unit 4 serving as a control unit controls driving of the piezoelectric element 3 serving as a vibrator. The beam forming unit 5 serving as a signal adjusting unit corrects a reception signal received by the piezoelectric element 3 serving as each transducer. And the correction | amendment which the beam forming part 5 which is a signal adjustment means performs the shape of the holding member 1 which is a member which has an acoustic impedance different from a test object, and the drive pattern of the vibrator | oscillator by the transmission process part 4 which comprises a control means. And based on the positional relationship between the plurality of transducers. As a result, it is possible to obtain an image with reduced loss of subject information while reducing artifacts. This will be described below. In the following, as shown in FIG. 1, a structure including a plurality of piezoelectric elements 3 that are vibrators will be described as a probe 2.

図5(a)は複数の振動子である圧電素子が直線状に並んでいる探触子を用いて、探触子の中央部分の直下に位置する反射体から反射された反射超音波を受信した際の各圧電素子での受信タイミングを示す図である。図5(a)に示すように、探触子の中央に位置する圧電素子が最初に反射超音波を受信し、以後徐々に中央周辺の圧電素子が受信し、端部の圧電素子が最後に受信する。この受信タイミングの差は、反射体と各圧電素子との距離の差に起因して発生する。図5(b)は、この受信状況の実測データを可視化したものであり、図中の白の部分が受信された反射超音波の強い部分を示し、また図中右側ほど反射超音波が圧電素子に早く到達した(受信された)ことを意味している。一方、図5(c)は、保持部材による多重反射の信号を受信した際の実測データを可視化したものであり、図5(c)は、複数の圧電素子3を用いて超音波を送信する際に、圧電素子を駆動するタイミングをずらして、超音波ビームを探触子の中央直下にフォーカスした場合を示している。この場合、図5(c)に示すように、保持部材での多重反射による反射超音波は、最初に探触子の端部の圧電素子に到達して受信され、以後徐々に中央部の素子に向かって到達して受信される。更にそれ以降は、徐々に探触子中央周辺の圧電素子に到達して受信され、最後に探触子端部の圧電素子に到達して受信され、図5(c)に示すように、アルファベットのXのようなパターンで受信される。また、図示していないが、我々の検討の結果、複数の圧電素子を用いて超音波を送信する際に、圧電素子を駆動するタイミングを揃えて送信する場合、保持部材での多重反射による反射超音波は、最初に全圧電素子に到達して受信される。そしてそれ以降は、徐々に探触子中央部の圧電素子から端部の圧電素子へと順に到達して受信され、結果、先に説明した図5(c)に類似した、アルファベットのKのようなパターンで受信されることが判明した。   FIG. 5 (a) receives reflected ultrasonic waves reflected from a reflector located directly below the central portion of the probe using a probe in which piezoelectric elements as a plurality of transducers are arranged in a straight line. It is a figure which shows the reception timing in each piezoelectric element at the time of performing. As shown in FIG. 5 (a), the piezoelectric element located at the center of the probe receives the reflected ultrasonic wave first, then gradually receives the piezoelectric element around the center, and the piezoelectric element at the end ends. Receive. This difference in reception timing occurs due to a difference in distance between the reflector and each piezoelectric element. FIG. 5B is a visualization of the actual measurement data of the reception status, and the white part in the figure shows the strong part of the received reflected ultrasonic wave, and the reflected ultrasonic wave becomes a piezoelectric element toward the right side in the figure. Means that it was reached early (received). On the other hand, FIG. 5C visualizes actual measurement data when receiving a signal of multiple reflection by the holding member, and FIG. 5C transmits ultrasonic waves using a plurality of piezoelectric elements 3. In this case, the timing of driving the piezoelectric element is shifted and the ultrasonic beam is focused directly below the center of the probe. In this case, as shown in FIG. 5 (c), the reflected ultrasonic wave due to the multiple reflection at the holding member first reaches the piezoelectric element at the end of the probe and is received, and thereafter gradually becomes the element at the center. Reaching toward is received. After that, it gradually reaches the piezoelectric element around the center of the probe and is received, and finally reaches the piezoelectric element at the end of the probe and is received. As shown in FIG. Is received in a pattern like X. Although not shown in the figure, as a result of our examination, when transmitting ultrasonic waves using a plurality of piezoelectric elements, when transmitting at the same timing for driving the piezoelectric elements, reflection due to multiple reflection at the holding member The ultrasonic wave first reaches all the piezoelectric elements and is received. After that, it gradually reaches the piezoelectric element at the end from the piezoelectric element at the center of the probe and receives it. As a result, like the alphabet K described above, it is similar to FIG. It turned out that it was received with a simple pattern.

このように、被検体とは異なる音響インピーダンスを有する部材を介在して、超音波の送信及び反射超音波の受信を行う場合には、上記のような特定のパターンで多重反射超音波が受信されることが我々の鋭意研究から判明した。そしていずれのパターン(または類似パターン)で受信されるかは、被検体と振動子である圧電素子との間に介在する部材(本実施形態では保持部材)の形状と振動子である圧電素子の駆動パターンと複数の振動子同士の位置関係とに依存して決まることが我々の検討で判明した。具体的には、上記の通り、複数の振動子である圧電素子の超音波送信時の駆動パターンを、複数の振動子を同時に駆動するパターンでは、多重反射超音波はKパターンとなるタイミングで受信される。一方、複数の圧電素子の超音波送信時の駆動パターンを、送信された超音波が被検体内で収束するように、複数の振動子を互いに異なるタイミングで駆動するパターンでは、多重反射超音波はXパターンとなるタイミングで受信される。同様に、被検体と振動子である圧電素子との間に介在する、被検体とは異なる音響インピーダンスの部材の形状の変化、複数の振動子同士の位置関係の変化によっても、Xパターン、Kパターンがそれぞれ変化することが我々の研究で判明しており、これを図10に示す。   As described above, when transmitting an ultrasonic wave and receiving a reflected ultrasonic wave through a member having an acoustic impedance different from that of the subject, multiple reflected ultrasonic waves are received in a specific pattern as described above. It became clear from our earnest research. Which pattern (or similar pattern) is received depends on the shape of the member (holding member in this embodiment) interposed between the subject and the piezoelectric element that is the vibrator and the piezoelectric element that is the vibrator. Our study revealed that it was determined depending on the drive pattern and the positional relationship between multiple transducers. Specifically, as described above, the drive pattern at the time of ultrasonic transmission of the piezoelectric elements that are a plurality of transducers is received at the timing when the multiple reflected ultrasound becomes the K pattern in the pattern that simultaneously drives the plurality of transducers. Is done. On the other hand, in the pattern of driving multiple transducers at different timings so that the transmitted ultrasonic waves converge within the subject, the multiple reflected ultrasonic waves are Received at the timing of the X pattern. Similarly, the X pattern, the K pattern can be changed by a change in the shape of a member having an acoustic impedance different from that of the subject and a change in the positional relationship between the plurality of transducers, which are interposed between the subject and the piezoelectric element as the vibrator. Our study has shown that each pattern changes, and this is shown in FIG.

多重反射超音波の振動子である圧電素子での受信パターンと、被検体とは異なる音響インピーダンスの部材の形状、振動子の駆動パターン、複数の振動子同士の位置関係との関係性の詳細は不明な部分もあるが、発明者らは、これらがいずれも振動子への反射超音波の到達時間に影響を与えているためであると考えている。これについて、以下説明する。   For details on the relationship between the reception pattern of the piezoelectric element, which is a multi-reflection ultrasonic transducer, and the shape of the member of the acoustic impedance different from the subject, the drive pattern of the transducer, and the positional relationship between multiple transducers Although there are unclear parts, the inventors believe that these all affect the arrival time of the reflected ultrasonic wave to the vibrator. This will be described below.

上記、多重反射超音波の受信パターンはいずれも、各圧電素子に少なくとも2つのタイミングで多重反射超音波が到達していることが分かる。これは各圧電素子が、自ら送信した超音波の多重反射超音波と、他の圧電素子が送信した超音波の多重反射超音波を異なるタイミングで受信しているからである。この2つのタイミングは、自ら送信した超音波による多重反射超音波と他の圧電素子が送信した超音波の多重反射超音波が各圧電素子に到達する時間差によって決まり、この時間差を決める主要因が、被検体とは異なる音響インピーダンスの部材の形状、振動子の駆動パターン、複数の振動子同士の位置関係であると、発明者等は考えている。つまり、例えば、被検体とは異なる音響インピーダンスの部材の形状(例えば厚み)は、図10に示すように、厚みが厚くなるほど各多重反射超音波の部材内での往復距離の差が小さくなるため、2つのタイミングの差(時間差)が小さくなる。この結果、図10に示すように、Xパターンであれば開きの小さいXパターンになる。また振動子の駆動パターンは、図10に示すように、送信フォーカス位置が浅いほど、換言するとフォーカス位置が被検体に近いほど、振動子間での駆動タイミングの時間差が大きくなるため、結果2つのタイミングの差(時間差)も大きくなる。尚、これは、送信フォーカス位置が深くなると、平面波送信(複数振動子を同時に駆動するパターン)に類似してくることからも理解できる。また、複数の振動子同士の位置関係は、図10に示すように、隣り合う振動子である圧電素子の間隔が大きいほど、または隣り合う振動子間のピッチが大きいほど、各多重反射超音波の部材内での往復距離の差が大きくなるため、2つのタイミングの差(時間差)も大きくなる。よって、これら知見に基づいて振動子が出力する受信信号を補正することで、効率的且つより正確にノイズ要因を補正する(ノイズ領域のみを補正する)ことが出来るため、アーチファクトを軽減しつつ、被検体情報の欠損をより低減した画像を得る事が可能になる。   It can be seen that the multiple reflection ultrasonic wave reception patterns reach each piezoelectric element at least at two timings. This is because each piezoelectric element receives multiple reflected ultrasonic waves of ultrasonic waves transmitted by itself and multiple reflected ultrasonic waves of ultrasonic waves transmitted by other piezoelectric elements at different timings. These two timings are determined by the time difference when the multi-reflection ultrasonic waves of the ultrasonic waves transmitted by themselves and the multi-reflection ultrasonic waves of the ultrasonic waves transmitted by other piezoelectric elements reach each piezoelectric element, and the main factor determining this time difference is: The inventors consider the shape of the member having an acoustic impedance different from that of the subject, the drive pattern of the vibrator, and the positional relationship between the plurality of vibrators. That is, for example, as shown in FIG. 10, the shape (for example, thickness) of the member having an acoustic impedance different from that of the subject decreases the difference in the round-trip distance within each member of the multi-reflection ultrasonic wave as the thickness increases. The difference between the two timings (time difference) is reduced. As a result, as shown in FIG. 10, if the X pattern, an X pattern with a small opening is obtained. In addition, as shown in FIG. 10, the driving pattern of the transducer is such that, as the transmission focus position is shallower, in other words, the closer the focus position is to the subject, the greater the time difference between the driving timings between the transducers. The timing difference (time difference) also increases. This can also be understood from the fact that when the transmission focus position is deepened, it is similar to plane wave transmission (a pattern in which a plurality of transducers are driven simultaneously). Further, as shown in FIG. 10, the positional relationship between the plurality of transducers is such that each of the multiple reflected ultrasonic waves becomes larger as the interval between the piezoelectric elements that are adjacent transducers is larger or the pitch between the adjacent transducers is larger. Since the difference in the reciprocating distance within the member increases, the difference between the two timings (time difference) also increases. Therefore, by correcting the reception signal output from the vibrator based on these findings, it is possible to efficiently and more accurately correct the noise factor (correct only the noise region), while reducing artifacts, It is possible to obtain an image in which the loss of the subject information is further reduced.

次に、具体的な補正内容について図9を用いて説明する。   Next, specific correction contents will be described with reference to FIG.

図9(a)は、上述のXパターンの多重反射超音波を受信した際の補正を説明する図であり、図9(b)、図9(c)は、それぞれ時刻t1、t2における、各受信信号に対するゲイン補正を示した図である。図9(b)に示すように、時刻t1においては、中央部の振動子で受信した反射超音波による受信信号に対して行うゲイン補正が、端部(開口端部)の振動子で受信した反射超音波による受信信号に対して行うゲイン補正より小さくなる(ゲイン値が小さくなる)ように補正する。一方、時刻t2においては、中央部の振動子で受信した反射超音波による受信信号に対して行うゲイン補正が、端部(開口端部)の振動子で受信した反射超音波による受信信号に対して行うゲイン補正より大きくなる(ゲイン値が大きくなる)ように補正する。このように各時刻において、被検体とは異なる音響インピーダンスの部材の形状、振動子の駆動パターン、複数の振動子同士の位置関係に基づいて得られた多重反射超音波の形状パターンに対応する補正パターンで補正することで、アーチファクトを効率よく且つ正確に低減できる。尚、図9(d)に示すKパターンにおいても、図9(d)に示すように時刻t1を設定する(中央の振動子に多重反射超音波が到達する時刻に設定する)ことで、図9(b)、9(c)に示す補正を行って、アーチファクトを低減できる。尚、いずれのパターンも中央部にアーチファクトが存在しているので、図9(e)に示すように、時刻t1〜t3の間に、図9(b)に示す補正を行うことでも、十分アーチファクトを低減できる。   FIG. 9A is a diagram for explaining correction when receiving the above-described X-pattern multiple reflection ultrasonic waves. FIGS. 9B and 9C are diagrams illustrating the correction at times t1 and t2, respectively. It is the figure which showed the gain correction with respect to a received signal. As shown in FIG. 9 (b), at time t1, gain correction performed on the received signal by the reflected ultrasonic wave received by the central vibrator is received by the vibrator at the end (opening end). Correction is performed so as to be smaller (gain value is smaller) than the gain correction performed on the received signal by the reflected ultrasonic wave. On the other hand, at time t2, gain correction performed on the received signal from the reflected ultrasonic wave received by the central vibrator is performed on the received signal from the reflected ultrasonic wave received by the end (opening end) vibrator. The gain is corrected so as to be larger than the gain correction performed (the gain value is increased). As described above, at each time, correction corresponding to the shape pattern of the multiple reflected ultrasound obtained based on the shape of the member having an acoustic impedance different from that of the subject, the driving pattern of the transducer, and the positional relationship between the plurality of transducers. By correcting with patterns, artifacts can be reduced efficiently and accurately. In the K pattern shown in FIG. 9 (d), the time t1 is set as shown in FIG. 9 (d) (by setting the time when the multi-reflection ultrasonic wave reaches the central transducer). Artifacts can be reduced by performing the correction shown in 9 (b) and 9 (c). Note that since there is an artifact in the center of each pattern, as shown in FIG. 9 (e), it is sufficient to perform the correction shown in FIG. 9 (b) between times t1 and t3. Can be reduced.

次に、本実施形態の被検体情報取得装置の各構成について、図1〜4を用いて順に説明する。   Next, each structure of the subject information acquisition apparatus of this embodiment is demonstrated in order using FIGS.

図1に示す、被検体を保持する保持部材1、圧電素子3を複数備える探触子2、圧電素子の超音波送信時の駆動を制御する送信処理部4、圧電素子から出力された受信信号を補正するビームフォーミング部5については上述の通りである。図1に示す本実施形態の被検体情報取得装置は、好ましい形態として、更にビームフォーミング部5で補正した受信信号にLOG圧縮等の画像調整を行う画像処理部6と、得られた画像データを表示する画像表示部7と、ビームフォーミング部5で行う補正について、補正パターンを予め記憶するメモリ8とを備える。次に、各構成の動作について説明する。   1, a holding member 1 for holding a subject, a probe 2 having a plurality of piezoelectric elements 3, a transmission processing unit 4 for controlling driving of the piezoelectric elements during ultrasonic transmission, and a reception signal output from the piezoelectric elements The beam forming unit 5 for correcting the above is as described above. The object information acquisition apparatus of the present embodiment shown in FIG. 1 preferably has an image processing unit 6 that performs image adjustment such as LOG compression on the received signal corrected by the beam forming unit 5 and the obtained image data. An image display unit 7 to display and a memory 8 that stores a correction pattern in advance for correction performed by the beam forming unit 5 are provided. Next, the operation of each component will be described.

送信処理部4は、任意の位置に送信ビームをフォーカスする為に、送信開口を形成する各圧電素子3の群を駆動する際の駆動遅延時間を決定する。その遅延時間を基に送信処理部4から各圧電素子3に対して電気信号を送る。各圧電素子3は電気信号を受けると超音波を発生し、保持部材1を介して被検体に超音波を照射する。このため保持部材1は超音波を通過させる必要があり、また被検体と保持部材1の界面での超音波の反射を抑える材料が好ましい。具体的には、被検体9との音響インピーダンスの差が小さい材料が好ましい。例えば、ポリメチルペンテンなどの樹脂材料が好ましい。また保持部材1の厚みについては、超音波が保持部材1を通過する際の減衰を考慮し、より薄いものが好ましいが、被検体を保持する際の部材の変形を抑えるため、適当な厚さが必要であり、5mm〜10mm程度が好ましい。   The transmission processing unit 4 determines a drive delay time when driving each group of piezoelectric elements 3 forming the transmission aperture in order to focus the transmission beam at an arbitrary position. Based on the delay time, an electrical signal is sent from the transmission processing unit 4 to each piezoelectric element 3. Each piezoelectric element 3 generates an ultrasonic wave when it receives an electrical signal, and irradiates the subject with the ultrasonic wave via the holding member 1. For this reason, it is necessary for the holding member 1 to pass ultrasonic waves, and a material that suppresses reflection of ultrasonic waves at the interface between the subject and the holding member 1 is preferable. Specifically, a material having a small difference in acoustic impedance with the subject 9 is preferable. For example, a resin material such as polymethylpentene is preferable. Further, the thickness of the holding member 1 is preferably thinner in consideration of attenuation when ultrasonic waves pass through the holding member 1, but an appropriate thickness is used in order to suppress deformation of the member when holding the subject. Is necessary, and about 5 mm to 10 mm is preferable.

このようにして被検体に向かって送信された超音波は、被検体によって反射され、反射超音波として圧電素子3に戻ってくる。このうち受信開口を形成する複数の圧電素子3の群において受信された反射超音波は、電気信号に変換され受信信号として取得される。そして受信信号は、ビームフォーミング部5において補正(信号処理)される。   The ultrasonic waves transmitted toward the subject in this way are reflected by the subject and return to the piezoelectric element 3 as reflected ultrasonic waves. Among these, the reflected ultrasonic waves received by the group of the plurality of piezoelectric elements 3 forming the reception aperture are converted into electric signals and acquired as reception signals. The received signal is corrected (signal processing) in the beamforming unit 5.

図2〜図4はビームフォーミング部5の構成と、各構成によってなされる信号処理状態を示している。図中、10は各圧電素子3が受信した反射超音波に基づく受信信号の位相を揃える整相遅延部である。また11は遅延された各受信信号を重みづけして補正する素子重み調整部であり、多重反射超音波に基づく信号成分を低減または除去する。12は補正された受信信号を合計する加算部である。また13は加算された信号にヒルベルト変換を施すヒルベルト変換部であり、14は検波する為の直交検波部である。   2 to 4 show the configuration of the beam forming unit 5 and the signal processing state performed by each configuration. In the figure, reference numeral 10 denotes a phasing delay unit for aligning the phases of received signals based on the reflected ultrasonic waves received by the piezoelectric elements 3. Reference numeral 11 denotes an element weight adjustment unit that weights and corrects each delayed received signal, and reduces or eliminates signal components based on multiple reflection ultrasonic waves. Reference numeral 12 denotes an adder for summing the corrected received signals. Reference numeral 13 denotes a Hilbert transform unit that performs Hilbert transform on the added signal, and reference numeral 14 denotes a quadrature detection unit for detection.

整相遅延部10では、送信された超音波を反射した位置(深さ)の情報を元に受信信号の遅延時間を決定し、各受信信号に対して遅延処理を行う。この遅延時間は探触子2を構成する各圧電素子3の構造や被検体の音響特性のみならず、保持部材1の厚みや音響特性なども考慮して決定する。   The phasing delay unit 10 determines a delay time of the received signal based on information on a position (depth) where the transmitted ultrasonic wave is reflected, and performs a delay process on each received signal. This delay time is determined in consideration of not only the structure of each piezoelectric element 3 constituting the probe 2 and the acoustic characteristics of the subject but also the thickness and acoustic characteristics of the holding member 1.

遅延処理された受信信号は素子重み調整部11において、上述の通り保持部材1の特性、圧電素子の駆動パターン、及び圧電素子の位置関係によって予め決められた重みを付加された補正値を用いて補正される。なお、この補正値のパターン(以下、重みパターンという場合有)は、受信時間毎に時系列的に設定され、メモリ8に記録される。図2及び図4はXパターン補正、図3はKパターン補正の例を示しており、これら補正値のパターンについては上述の通り故、説明を省略する。   The received signal subjected to the delay process is corrected by the element weight adjusting unit 11 using a correction value to which a weight determined in advance by the characteristics of the holding member 1, the drive pattern of the piezoelectric element, and the positional relationship of the piezoelectric element is added as described above. It is corrected. The correction value pattern (hereinafter sometimes referred to as a weight pattern) is set in time series for each reception time and is recorded in the memory 8. 2 and 4 show an example of X pattern correction, and FIG. 3 shows an example of K pattern correction. Since these correction value patterns are as described above, description thereof will be omitted.

補正された(重みを調整された)各受信信号は、加算部12にて合計される。その後、合成信号はヒルベルト変換部13と直交検波部14においてヒルベルト変換と直交検波がなされる。なお、ここでのビームフォーミング部5の処理の手法は、一般的な超音波診断装置で使用される整相加算処理の手法を記載しているが、適応型信号処理などの手法も有効である。   Each corrected received signal (weight adjusted) is summed by the adder 12. Thereafter, the combined signal is subjected to Hilbert transform and quadrature detection in the Hilbert transform unit 13 and the quadrature detection unit 14. Note that the processing method of the beam forming unit 5 here is a phasing addition processing method used in a general ultrasonic diagnostic apparatus, but a technique such as adaptive signal processing is also effective. .

これらの処理を経たデータは、図1に示すように画像処理部6においてLOG圧縮される。圧縮後のデータは画像表示部7にて表示される。画像表示部7としては、液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイ、FEDなどを利用することができる。   The data that has undergone these processes is LOG compressed in the image processing unit 6 as shown in FIG. The compressed data is displayed on the image display unit 7. As the image display unit 7, a liquid crystal display, a plasma display, an organic EL display, an FED, or the like can be used.

尚、素子重み調整部11による代表的な補正パターン(重みパターン)は、上述の図9の(b),(c)に示されたような複数の圧電素子のうちの両端部(開口両端部)よりも中央部の重みが小さいか、開口中央部と両端部がそれ以外よりも重みが大きいパターンになる。尚、素子重み調整部11は一般的な超音波装置における開口制御処理とアポダイゼーション処理にも使用できる。しかし、深さ毎の解像度を均一化する開口制御処理と、サイドローブレベルを抑える為の一般的アポダイゼーション処理では、開口中央部のみを両端部の重みより大きくする補正を使用しており、本発明とは異なる処理である。   Note that a typical correction pattern (weight pattern) by the element weight adjustment unit 11 is both end portions (open end portions) of a plurality of piezoelectric elements as shown in FIGS. 9B and 9C described above. ), Or a pattern in which the weight at the center and both ends of the opening is greater than the other weight. The element weight adjustment unit 11 can also be used for aperture control processing and apodization processing in a general ultrasonic apparatus. However, in the aperture control processing for equalizing the resolution at each depth and the general apodization processing for suppressing the side lobe level, correction is performed so that only the central portion of the aperture is larger than the weights at both ends. This is a different process.

上述の通り、Xパターン、Kパターンに代表される多重反射を抑制する補正パターンは、送信処理部によって設定される送信パターン、開口を構成する複数の圧電素子3の数、ピッチに代表される圧電素子3の関係性、及び厚み、音速、たわみ形状等の保持部材の形状(特性)情報によって変化する。しかし条件が決まれば、計算によって(あるいは実験によって)正確に算出される、再現性の高い現象である。因みに計算によって多重反射超音波の受信パターン(補正パターン)を再現する手法としては、数値解析プログラムを使用するのが好ましい。超音波波形の送受信を再現するシミュレーションソフトを用い、上記の圧電素子の関係性等を設定する事で、多重反射信号の受信タイミング(補正パターン)を求める事が出来る。   As described above, the correction pattern for suppressing the multiple reflection represented by the X pattern and the K pattern is the transmission pattern set by the transmission processing unit, the number of the plurality of piezoelectric elements 3 constituting the aperture, and the piezoelectric represented by the pitch. It varies depending on the relationship of the element 3 and the shape (characteristic) information of the holding member such as the thickness, the speed of sound, and the deflection shape. However, it is a highly reproducible phenomenon that is accurately calculated by calculation (or by experiment) if conditions are determined. Incidentally, it is preferable to use a numerical analysis program as a technique for reproducing the reception pattern (correction pattern) of multiple reflection ultrasonic waves by calculation. The reception timing (correction pattern) of the multiple reflection signal can be obtained by using the simulation software that reproduces the transmission / reception of the ultrasonic waveform and setting the relationship between the piezoelectric elements.

また、多重反射超音波の受信タイミングを算出する際に、上記のように計算するのではなく、実験によって多重反射超音波パターンを計測し、補正パターンを設定する事も効果的である。この際、被検体を保持しない状況にて計測するのが好ましい。なぜなら、空気と保持部材の音響インピーダンス差は大きい為、多重反射超音波をより顕著に把握する事が可能だからである。   Also, when calculating the reception timing of multiple reflection ultrasonic waves, it is also effective to set a correction pattern by measuring a multiple reflection ultrasonic pattern by experiment instead of calculating as described above. At this time, it is preferable to perform measurement in a state where the subject is not held. This is because the difference in acoustic impedance between the air and the holding member is large, so that it is possible to more clearly grasp the multi-reflection ultrasonic waves.

以上、本実施形態では、素子重み調整部11で補正することで、予測される多重反射超音波を低減、除去し、被検体からの信号を欠損すること無く、多重反射超音波による画像の劣化を低減する事が可能となる。   As described above, in the present embodiment, correction by the element weight adjusting unit 11 reduces and removes the predicted multiple reflection ultrasound, and the image degradation due to the multiple reflection ultrasound without losing the signal from the subject. Can be reduced.

以下、具体的な実施例を挙げて本発明を詳しく説明する。   Hereinafter, the present invention will be described in detail with specific examples.

本実施例の被検体情報取得装置のシステム概略図を図1及び図4に示す。   System schematic diagrams of the subject information acquisition apparatus of the present embodiment are shown in FIGS.

探触子2としては128chのリニアプローブを使用した。また、圧電素子3は中心周波数が6MHzであるピエゾ素子(PZT)を用いた。被検体を保持する保持部材には、厚さ7mmのポリメチルペンテンからなる樹脂の平板を用いた。送信処理部4により、目標フォーカス位置に送信ビームを形成する電気信号が圧電素子3に送られることで超音波を発生し、被検体へと送信(伝播)される。伝播された超音波は被検体によって反射・散乱されて反射超音波として受信開口を形成する複数の圧電素子3に、保持部材1を介して受信される。なお、本実施例では32個の圧電素子3の群によって受信開口を形成している為、走査ライン上の画像データはこの32個の圧電素子による受信信号から得られる。そしてこの受信信号は、ビームフォーミング部に送られ、信号処理(補正)される。   A 128-ch linear probe was used as the probe 2. The piezoelectric element 3 is a piezoelectric element (PZT) having a center frequency of 6 MHz. A resin flat plate made of polymethylpentene having a thickness of 7 mm was used as a holding member for holding the subject. The transmission processing unit 4 generates an ultrasonic wave by transmitting an electric signal that forms a transmission beam at the target focus position to the piezoelectric element 3, and transmits (propagates) the ultrasonic wave to the subject. The propagated ultrasonic waves are reflected / scattered by the subject and received as reflected ultrasonic waves via the holding member 1 by a plurality of piezoelectric elements 3 that form reception openings. In this embodiment, since the reception aperture is formed by a group of 32 piezoelectric elements 3, the image data on the scanning line is obtained from the reception signals from the 32 piezoelectric elements. Then, this received signal is sent to the beam forming unit and subjected to signal processing (correction).

信号処理(補正)された受信信号は画像処理部6に送られ、LOG圧縮処理を施される。以上の工程で作成されたデータはLCDをはじめとする画像表示部7に送られ、画像が表示される。なお、本実施例では画像表示部7としてLCDを用いた。   The received signal subjected to signal processing (correction) is sent to the image processing unit 6 and subjected to LOG compression processing. The data created in the above process is sent to the image display unit 7 including the LCD, and an image is displayed. In this embodiment, an LCD is used as the image display unit 7.

(ビームフォーミング部の動作)
ビームフォーミング部内の補正を含む信号処理の工程について図1及び図4を用いて説明する。開口を形成する32個の圧電素子3から受信した電気信号(受信信号)は、整相遅延部10において、遅延処理が行われる。ここでは各受信信号は深さ情報から算出される遅延時間を基に遅延処理を施される。その後、素子重み調整部11に送られ、受信時間毎に特定の信号を0にする補正処理を行った。この0にするタイミングは、予め被検体を設置しない状況において、様々なパターン(送信開口数、フォーカス位置)で超音波をテスト送信した際に取得した多重反射超音波信号を基に、保持部材の厚さを考慮して設定した補正パターンを作成し、図1記載のメモリ008に保存した。
(Operation of beam forming section)
A signal processing process including correction in the beam forming unit will be described with reference to FIGS. The phasing delay unit 10 performs delay processing on the electrical signals (reception signals) received from the 32 piezoelectric elements 3 forming the openings. Here, each received signal is subjected to delay processing based on the delay time calculated from the depth information. Then, the correction process which is sent to the element weight adjustment part 11 and makes a specific signal 0 for every reception time was performed. The timing for setting this to 0 is based on the multiple reflection ultrasonic signal acquired when the ultrasonic wave is test-transmitted with various patterns (transmission numerical aperture, focus position) in a situation where the subject is not set in advance. A correction pattern set in consideration of the thickness was created and stored in the memory 008 shown in FIG.

補正(重み調整)された各受信信号は、加算部12において合計された後、ゲイン補正部15による補正によって変動した出力値(ゲイン変化)が、補正を行わない時に等しくなるように調整した。つまり、素子重み調整部11において10素子分の信号を0にした場合は、32/(32−10)=1.45倍のゲイン調整を行う。その後、ヒルベルト変換部13と直交検波部14に送られる。   Each received signal that has been corrected (weight adjusted) is summed in the adder 12 and then adjusted so that the output value (gain change) that has been changed by the correction by the gain corrector 15 becomes equal when correction is not performed. That is, when the signal for 10 elements is set to 0 in the element weight adjusting unit 11, the gain adjustment is performed by 32 / (32-10) = 1.45 times. Then, it is sent to the Hilbert transformer 13 and the quadrature detector 14.

以上のシステムを実際に使用し、素子重み調整部11とゲイン調整部15の両方の処理を使用した場合と、両方の処理をしなかった場合とを比較した。尚、測定は、超音波画像診断装置にて画像確認用に一般的に使用される超音波ファントムのワイヤーターゲットを用いた。補正パターンとしては、開口中央部10素子分を1μ秒の間、信号レベルを0にするパターンに設定した(図9(b))。また、ゲイン調整部では1.45倍のゲイン調整を行った。図8の(a)に補正(重み調整)を行わなかった画像、図8(b)に補正(重み調整)を行った画像を提示する。   The above system was actually used, and the case where both processes of the element weight adjustment unit 11 and the gain adjustment unit 15 were used was compared with the case where both processes were not performed. In addition, the measurement used the wire target of the ultrasonic phantom generally used for image confirmation with an ultrasonic image diagnostic apparatus. As a correction pattern, a pattern for setting the signal level to 0 for 10 elements in the central portion of the opening for 1 μsec was set (FIG. 9B). Further, the gain adjustment unit performed 1.45 times gain adjustment. FIG. 8A shows an image that has not been corrected (weight adjustment), and FIG. 8B shows an image that has been corrected (weight adjustment).

まず、補正を行わない場合では、保持部材1の多重反射が横筋としてくっきり表示された。それに対して、補正を行った場合は、多重反射成分はほぼ目立たない程度にまで軽減する事が出来た。   First, when no correction is performed, the multiple reflections of the holding member 1 are clearly displayed as horizontal stripes. On the other hand, when the correction was performed, the multiple reflection component could be reduced to an almost inconspicuous level.

実施例1では補正パターンを固定した場合を示したが、本実施例では探触子2の座標の変化に対応して補正パターンを変化させる場合を、図6を用いて説明する。   Although the case where the correction pattern is fixed is shown in the first embodiment, the case where the correction pattern is changed in accordance with the change in the coordinates of the probe 2 will be described with reference to FIG.

実施例2が実施例1と異なる点は、探触子2を任意の位置に移動(走査)させることが出来、補正パターンを探触子2の位置に対応して選択する点である。   The second embodiment is different from the first embodiment in that the probe 2 can be moved (scanned) to an arbitrary position and a correction pattern is selected corresponding to the position of the probe 2.

走査手段である可動システム部16はステッピングモータとボールねじを組み合わせ、保持部材表面に沿って水平方向(紙面奥行き方向)に探触子2が駆動できるように設置した。尚、駆動系に関しては、リニアモータ等の移動量を調整できるものであれば構わない。
振動子である圧電素子3の位置を検知するための検知手段である、探触子位置情報検出部17では、探触子2の位置を検出している。本実施例では接触センサを用いて探触子2の原点位置設定を行い、ステッピングモータの駆動数を取得して原点からの変位量を算出する計算機を使用した。
The movable system unit 16 serving as a scanning means is installed in such a manner that a stepping motor and a ball screw are combined so that the probe 2 can be driven in the horizontal direction (the depth direction on the paper surface) along the surface of the holding member. The drive system may be anything that can adjust the amount of movement of a linear motor or the like.
A probe position information detection unit 17, which is detection means for detecting the position of the piezoelectric element 3 that is a vibrator, detects the position of the probe 2. In the present embodiment, a computer is used that sets the origin position of the probe 2 using a contact sensor, obtains the number of drive of the stepping motor, and calculates the amount of displacement from the origin.

メモリ8には、探触子2の位置によって、保持部材1の音響特性のバラつきや、厚み、たわみなどの構造特性が異なっており、これに基づく多重反射超音波の受信状況が変化する事に対応するため、複数の補正パターンを記録している。本実施例では、保持部材1内を16のエリアに分割し、各エリアにおいて代表される多重反射超音波パターンに基づき、補正パターンをそれぞれ作成しメモリ8に記録している。尚、本実施例では16パターンであるが、メモリ8の容量に余裕がある場合は、さらに細かく設定するとより有効である。選択部18では、探触子2の位置情報に対応した補正パターンをメモリ8から呼び出し、素子重み調整部11での各補正パターンに適用する。   Depending on the position of the probe 2, the memory 8 has different acoustic characteristics of the holding member 1, structural characteristics such as thickness and deflection, and the reception status of the multiple reflection ultrasonic waves changes based on this. To cope with this, a plurality of correction patterns are recorded. In this embodiment, the inside of the holding member 1 is divided into 16 areas, and correction patterns are created and recorded in the memory 8 based on the multiple reflection ultrasonic patterns represented in each area. In this embodiment, there are 16 patterns, but if the memory 8 has a sufficient capacity, it is more effective to set it more finely. In the selection unit 18, a correction pattern corresponding to the position information of the probe 2 is called from the memory 8 and applied to each correction pattern in the element weight adjustment unit 11.

補正パターンを固定した場合は、探触子2の位置のよっては多重反射によるムラが残る場合があった。それに対し、本実施例のように補正パターンを変化させた場合は、探触子2の位置が変化した場合でも、多重反射のムラをより軽減出来る事が確認出来た。   When the correction pattern is fixed, unevenness due to multiple reflection may remain depending on the position of the probe 2. On the other hand, when the correction pattern was changed as in this example, it was confirmed that even when the position of the probe 2 was changed, the unevenness of multiple reflection could be further reduced.

本実施例を図7を用いて説明する。   This embodiment will be described with reference to FIG.

(装置の構成)
本実施例の被検体情報取得装置は、保持部材1を設けず(保持部材1を介在することなく)被検体に超音波送受信を行う例である。
(Device configuration)
The subject information acquisition apparatus according to the present embodiment is an example in which ultrasound is transmitted to and received from a subject without the holding member 1 (without the holding member 1 interposed).

(装置の動作)
本実施例においては、圧電素子3から送信(伝播)される超音波は、保持部材を介在させない状態で、整合層や音響レンズなどの複数の層を通過した後、被検体9に到達する。この場合、わずかではあるが、整合層や音響レンズ等の各層での多重反射超音波による受信信号が画像に重畳されてしまう。本実施例では、様々なパターン(送信開口、フォーカス位置)で超音波をテスト送信した際に、被検体とは異なる音響インピーダンスを有する部材である整合層や音響レンズでの多重反射超音波信号を基に設定した補正パターンを作成した。具体的には、実施例1のように保持部材を介した超音波送受信時よりも、比較的浅い位置(時間的に短い時点)で多重反射超音波が受信される傾向が確認できたので、実施例1と同様に、図9(b)の補正を、0.5μsの間適用した。なお、探触子2の種類や音響レンズの形状、送信パターンによって、多重反射の受信パターンは異なる為、図9(b)の補正パターンに限らず、図9(a)の補正パターン(XパターンやKパターン)を利用する事も効果的である。
(Device operation)
In the present embodiment, the ultrasonic wave transmitted (propagated) from the piezoelectric element 3 reaches the subject 9 after passing through a plurality of layers such as a matching layer and an acoustic lens without the holding member interposed. In this case, the reception signal by the multiple reflection ultrasonic waves in each layer such as the matching layer and the acoustic lens is superimposed on the image although it is slight. In this embodiment, when ultrasonic waves are transmitted in a test pattern with various patterns (transmission aperture, focus position), multiple reflected ultrasonic signals from a matching layer or acoustic lens, which is a member having an acoustic impedance different from that of the subject, are used. A correction pattern set based on the above was created. Specifically, as in Example 1, it was confirmed that there is a tendency to receive multi-reflection ultrasound at a relatively shallow position (at a time point shorter in time) than at the time of ultrasonic transmission / reception via the holding member. As in Example 1, the correction of FIG. 9B was applied for 0.5 μs. Since the reception pattern of multiple reflection differs depending on the type of the probe 2, the shape of the acoustic lens, and the transmission pattern, the correction pattern (X pattern) in FIG. 9A is not limited to the correction pattern in FIG. 9B. It is also effective to use (K pattern).

本実施例においても、素子重み調整部11による補正を行った場合、補正を行わなかった場合に比べて画像に重畳される多重反射成分が軽減されている事が確認できた。   Also in this example, it was confirmed that when the correction by the element weight adjustment unit 11 was performed, the multiple reflection component superimposed on the image was reduced as compared with the case where the correction was not performed.

尚、上述の実施例においては、図9(b)の補正パターンによる補正を行ったが、探触子2の種類や音響レンズの形状、送信パターンによって、多重反射の受信パターンは異なる為、図9(a)の補正パターン(XパターンやKパターン)を利用する事も効果的である。   In the above-described embodiment, correction was performed using the correction pattern shown in FIG. 9B. However, the multiple reflection reception pattern differs depending on the type of the probe 2, the shape of the acoustic lens, and the transmission pattern. It is also effective to use the correction pattern 9 (a) (X pattern or K pattern).

1 保持部材
2 探触子
3 圧電素子
4 送信処理部
5 ビームフォーミング部
6 画像処理部
7 画像表示部
8 メモリ
11 素子重み調整部
16 可動システム
17 探触子位置情報検出部
DESCRIPTION OF SYMBOLS 1 Holding member 2 Probe 3 Piezoelectric element 4 Transmission processing part 5 Beam forming part 6 Image processing part 7 Image display part 8 Memory 11 Element weight adjustment part 16 Movable system 17 Probe position information detection part

Claims (11)

被検体に超音波を送信し、該被検体で反射した反射超音波を受信して受信信号を出力する複数の振動子と、
前記振動子の駆動を制御する制御手段と、
各振動子が受信した受信信号を補正する信号調整手段と、
を有し、
前記信号調整手段は、前記複数の振動子の駆動パターン、前記複数の振動子同士の位置関係、および、前記被検体と前記振動子との間に設けられる部材の形状の少なくとも一つに基づいて定まる前記反射超音波に含まれる多重反射成分を低減するように、前記受信信号に対するゲインを設定することを特徴とする被検体情報取得装置。
A plurality of transducers that transmit ultrasonic waves to a subject, receive reflected ultrasonic waves reflected by the subject, and output reception signals;
Control means for controlling the drive of the vibrator;
Signal adjusting means for correcting the received signal received by each transducer;
Have
The signal adjusting means is based on at least one of a drive pattern of the plurality of vibrators, a positional relationship between the plurality of vibrators, and a shape of a member provided between the subject and the vibrator. An object information acquiring apparatus, wherein a gain for the received signal is set so as to reduce a multiple reflection component included in the reflected ultrasound to be determined.
前記部材の形状が、前記部材の厚みであることを特徴とする請求項1に記載の被検体情報取得装置。   The object information acquiring apparatus according to claim 1, wherein the shape of the member is a thickness of the member. 前記駆動パターンが、前記複数の振動子を同時の駆動するパターンであることを特徴とする請求項1または2に記載の被検体情報取得装置。   The object information acquiring apparatus according to claim 1, wherein the driving pattern is a pattern for simultaneously driving the plurality of vibrators. 前記駆動パターンが、前記送信された超音波が前記被検体内で収束するように、前記複数の振動子を互いに異なるタイミングで駆動するパターンであることを特徴とする請求項1または2に記載の被検体情報取得装置。   3. The drive pattern according to claim 1, wherein the drive pattern is a pattern that drives the plurality of transducers at different timings so that the transmitted ultrasonic waves converge within the subject. Subject information acquisition apparatus. 前記複数の振動子同士の位置関係が、隣り合う振動子の間隔であることを特徴とする請求項1〜4のいずれか1項に記載の被検体情報取得装置。   The object information acquisition apparatus according to claim 1, wherein the positional relationship between the plurality of transducers is an interval between adjacent transducers. 前記複数の振動子同士の位置関係が、前記受信信号を出力する振動子の数であることを特徴とする請求項1〜4のいずれか1項に記載の被検体情報取得装置。   The object information acquiring apparatus according to claim 1, wherein the positional relationship between the plurality of transducers is the number of transducers that output the reception signal. 前記部材が、前記被検体を保持する保持部材であることを特徴とする請求項1〜6のいずれか1項に記載の被検体情報取得装置。   The object information acquiring apparatus according to claim 1, wherein the member is a holding member that holds the object. 前記部材が、音響レンズであることを特徴とする請求項1〜6のいずれか1項に記載の被検体情報取得装置。   The object information acquiring apparatus according to claim 1, wherein the member is an acoustic lens. 前記保持部材が、光を透過することを特徴とする請求項7に記載の被検体情報取得装置。   The object information acquiring apparatus according to claim 7, wherein the holding member transmits light. 前記複数の振動子を前記保持部材表面に沿って走査させる走査手段と、該振動子の位置を検知する検知手段とを更に有することを特徴とする請求項7または9に記載の被検体情報取得装置。   The object information acquisition according to claim 7, further comprising: a scanning unit that scans the plurality of transducers along the surface of the holding member; and a detection unit that detects a position of the transducer. apparatus. 被検体の情報を取得する情報取得方法であって、
複数の振動子と被検体との間に該被検体とは異なる音響インピーダンスを有する部材を介在させた状態で、該複数の振動子を駆動して該被検体に超音波を送信し、該被検体で反射した反射超音波を該複数の振動子で受信して受信信号を取得する工程と、
取得した受信信号を補正する工程と、
を有し、
前記補正する工程は、前記複数の振動子の駆動パターン、前記複数の振動子同士の位置関係、および、前記部材の形状の少なくとも一つに基づいて定まる前記反射超音波に含まれる多重反射成分を低減するように、前記受信信号に対するゲインを設定する工程を含むことを特徴とする被検体情報の取得方法。
An information acquisition method for acquiring information on a subject,
With a member having an acoustic impedance different from that of the subject interposed between the plurality of transducers and the subject, the plurality of transducers are driven to transmit ultrasonic waves to the subject, and the subject Receiving the reflected ultrasound reflected by the specimen with the plurality of transducers to obtain a received signal;
Correcting the acquired received signal;
Have
In the correcting step, a multiple reflection component included in the reflected ultrasonic wave determined based on at least one of a driving pattern of the plurality of transducers, a positional relationship between the plurality of transducers, and a shape of the member. A method for acquiring subject information, comprising the step of setting a gain for the received signal so as to reduce the received signal.
JP2012286687A 2012-12-28 2012-12-28 Subject information acquisition apparatus and subject information acquisition method Expired - Fee Related JP6116239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012286687A JP6116239B2 (en) 2012-12-28 2012-12-28 Subject information acquisition apparatus and subject information acquisition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012286687A JP6116239B2 (en) 2012-12-28 2012-12-28 Subject information acquisition apparatus and subject information acquisition method

Publications (2)

Publication Number Publication Date
JP2014128328A JP2014128328A (en) 2014-07-10
JP6116239B2 true JP6116239B2 (en) 2017-04-19

Family

ID=51407368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012286687A Expired - Fee Related JP6116239B2 (en) 2012-12-28 2012-12-28 Subject information acquisition apparatus and subject information acquisition method

Country Status (1)

Country Link
JP (1) JP6116239B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9642855B2 (en) 2012-06-29 2017-05-09 Pfizer Inc. Substituted pyrrolo[2,3-d]pyrimidines as LRRK2 inhibitors
US9695171B2 (en) 2013-12-17 2017-07-04 Pfizer Inc. 3,4-disubstituted-1 H-pyrrolo[2,3-b]pyridines and 4,5-disubstituted-7H-pyrrolo[2,3-c]pyridazines as LRRK2 inhibitors
US10039753B2 (en) 2015-09-14 2018-08-07 Pfizer Inc. Imidazo[4,5-c]quinoline and imidazo[4,5-c][1,5]naphthyridine derivatives as LRRK2 inhibitors

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5027187Y1 (en) * 1969-11-07 1975-08-13

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9642855B2 (en) 2012-06-29 2017-05-09 Pfizer Inc. Substituted pyrrolo[2,3-d]pyrimidines as LRRK2 inhibitors
US9695171B2 (en) 2013-12-17 2017-07-04 Pfizer Inc. 3,4-disubstituted-1 H-pyrrolo[2,3-b]pyridines and 4,5-disubstituted-7H-pyrrolo[2,3-c]pyridazines as LRRK2 inhibitors
US10039753B2 (en) 2015-09-14 2018-08-07 Pfizer Inc. Imidazo[4,5-c]quinoline and imidazo[4,5-c][1,5]naphthyridine derivatives as LRRK2 inhibitors

Also Published As

Publication number Publication date
JP2014128328A (en) 2014-07-10

Similar Documents

Publication Publication Date Title
CN102670261A (en) Ultrasound diagnostic apparatus and method of producing ultrasound image
JP6590519B2 (en) Subject information acquisition device
WO2007075040A1 (en) Method of acquiring an ultrasound image
JP2012217611A (en) Ultrasonic diagnostic apparatus and method for generating ultrasonic image
WO2014050797A1 (en) Ultrasonic inspection device, ultrasonic inspection method, program, and recording medium
US9320497B2 (en) Ultrasound diagnostic apparatus and method of producing ultrasound image
JP6261159B2 (en) Subject information acquisition apparatus and subject information acquisition method
JP6074299B2 (en) Ultrasonic diagnostic apparatus, signal processing method and program for ultrasonic diagnostic apparatus
CN102793562A (en) Signal processing apparatus, signal processing system, probe, signal processing method, and program
JP6116239B2 (en) Subject information acquisition apparatus and subject information acquisition method
US20120215107A1 (en) Ultrasound probe and ultrasound diagnostic apparatus
US9354300B2 (en) Ultrasound diagnostic apparatus and ultrasound image producing method
JP2014023022A (en) Array type ultrasonic probe and ultrasonic inspection device using the same
JP2012192133A (en) Ultrasound diagnostic apparatus and ultrasound image producing method
US20150025382A1 (en) Ultrasound diagnostic apparatus and method of producing ultrasound image
US20120210795A1 (en) Two-dimensional virtual array probe for three-dimensional ultrasonic imaging
US20160139252A1 (en) Ultrasound diagnostic device, method for generating acoustic ray signal of ultrasound diagnostic device, and program for generating acoustic ray signal of ultrasound diagnostic device
US8663115B2 (en) Ultrasound probe and ultrasound diagnostic apparatus
JP5346987B2 (en) Ultrasonic diagnostic equipment
US9291601B2 (en) Ambient sound velocity obtaining method and apparatus
JP2012192075A (en) Ultrasound diagnostic apparatus and ultrasound image generation method
JP2011055902A (en) Ultrasonic diagnostic apparatus and method
JP2013102960A (en) Ultrasonic diagnostic apparatus and method
JP5247844B2 (en) Ultrasonic diagnostic apparatus and ultrasonic image generation method
JP5296824B2 (en) Ultrasonic diagnostic equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170321

R151 Written notification of patent or utility model registration

Ref document number: 6116239

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees