JP6115952B2 - Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same - Google Patents

Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same Download PDF

Info

Publication number
JP6115952B2
JP6115952B2 JP2013136924A JP2013136924A JP6115952B2 JP 6115952 B2 JP6115952 B2 JP 6115952B2 JP 2013136924 A JP2013136924 A JP 2013136924A JP 2013136924 A JP2013136924 A JP 2013136924A JP 6115952 B2 JP6115952 B2 JP 6115952B2
Authority
JP
Japan
Prior art keywords
visible light
composition
photoelectrode
photocatalyst
light responsive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013136924A
Other languages
Japanese (ja)
Other versions
JP2015010172A (en
Inventor
草間 仁
仁 草間
佐山 和弘
和弘 佐山
ニイニイ ワン
ニイニイ ワン
雄悟 三石
雄悟 三石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2013136924A priority Critical patent/JP6115952B2/en
Publication of JP2015010172A publication Critical patent/JP2015010172A/en
Application granted granted Critical
Publication of JP6115952B2 publication Critical patent/JP6115952B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Description

本発明は可視光応答性の組成物とこれを用いた光電極・光触媒・光センサーに関するものである。   The present invention relates to a visible light responsive composition and a photoelectrode / photocatalyst / photosensor using the composition.

近年、太陽光エネルギーを利用するための光電極、太陽光により環境汚染物質を分解除去する光触媒、両者を用いる水の分解反応による水素製造、及び光を定量的に測定するための光電変換素子型の光センサーが注目されており、それらの材料として様々な半導体の研究開発が行われている。酸化チタンはその代表的なものであり、実用的に最も多く用いられている。
しかし、この酸化チタンはバンドギャップが大きいため太陽光の大部分を占める可視光領域に吸収性がなく、太陽光を有効に利用することができない。また酸化チタンは吸収性のある紫外光領域が極めて弱い室内光や自動車の車内光では機能しない。
このための対策として、新たに利用可能な可視光応答性組成物を開発するため、酸化チタン等の既存の組成物に他の元素を微量ドープするなどの改良研究や全く新規な可視光応答性組成物を探索する研究が行われている(例えば、非特許文献1、2)。
しかしながら、様々な元素を異なった割合で含む組成物の組み合わせの数は膨大なため、新規な組成物を合成しその可視光応答性を評価するには多くの時間と労力が必要であり、その研究開発はこれまであまり進展していなかった。
そこで本発明者らは、多種類の元素を様々な比率で含む組成物の薄膜自動合成装置と、その薄膜の光照射に対する光電流応答性の自動評価装置を新たに開発し、可視光応答性を有し、光電極や光触媒、及び光センサー材料として有望な新規な組成物の高速探索研究を進めてきている(特許文献1)。本発明者らは、その過程でFe−Zr系やFe−Ti系の組成について着目し、研究開発を進め、Feが20%から80%、Zrが20%から50%、Tiが0%から30%の範囲にある可視光応答性複合酸化物(特許文献2)、Feが50%から85%、Zrが8%から48%、M(Al、Zn、In、Sn、Ta)が0.01%から29%の範囲にある可視光応答性複合酸化物(特許文献3)、Feが87%から90%、Tiが9%から10%、M(Si、Ba、Y)が0.1%から3%の範囲にある可視光応答性複合酸化物(特許文献4)、Feが85%から97%、Tiが1%から10%、M(La、Sr)が0.1%から7%の範囲にある可視光応答性複合酸化物(特許文献5)、Feが81%から90%、Tiが9%から10%、M(Ca、Bi)が0.1%から10%の範囲にある可視光応答性複合酸化物(特許文献6)、Feが89%から92%、Tiが1%から10%、Znが0.1%から10%の範囲にある可視光応答性複合酸化物(特許文献7)を見いだした。
しかしながら、Fe−Zr系やFe−Ti系以外の組成のものについては、未だ研究開発はあまり進展していない。
In recent years, a photoelectrode for using solar energy, a photocatalyst that decomposes and removes environmental pollutants by sunlight, hydrogen production by water decomposition reaction using both, and a photoelectric conversion element type for quantitatively measuring light Optical sensors are attracting attention, and various semiconductors are being researched and developed as their materials. Titanium oxide is a typical example and is most frequently used in practice.
However, since this titanium oxide has a large band gap, the visible light region that occupies most of the sunlight has no absorbability, and sunlight cannot be used effectively. Titanium oxide does not function in indoor light or in-car light of an automobile where the absorbing ultraviolet light region is extremely weak.
As a countermeasure for this, in order to develop a newly usable visible light responsive composition, improvement research such as doping a small amount of other elements into an existing composition such as titanium oxide or a completely new visible light responsiveness Studies for searching for compositions have been conducted (for example, Non-Patent Documents 1 and 2).
However, since the number of combinations of compositions containing various elements in different proportions is enormous, it takes a lot of time and labor to synthesize a new composition and evaluate its visible light response. R & D has not made much progress so far.
Therefore, the present inventors newly developed a thin film automatic synthesis apparatus for compositions containing various kinds of elements in various ratios, and an automatic evaluation apparatus for photocurrent response to light irradiation of the thin film, and visible light responsiveness. Research has been conducted on a high-speed search for a novel composition that is promising as a photoelectrode, photocatalyst, and photosensor material (Patent Document 1). In the process, the present inventors paid attention to the composition of Fe—Zr and Fe—Ti, and proceeded with research and development. Fe was 20% to 80%, Zr was 20% to 50% and Ti was 0%. Visible light-responsive composite oxide in the range of 30% (Patent Document 2), Fe is 50% to 85%, Zr is 8% to 48%, and M (Al, Zn, In, Sn, Ta) is 0.00. Visible light responsive complex oxide in the range of 01% to 29% (Patent Document 3), Fe 87% to 90%, Ti 9% to 10%, M (Si, Ba, Y) 0.1 % To 3% of visible light responsive complex oxide (Patent Document 4), Fe from 85% to 97%, Ti from 1% to 10%, M (La, Sr) from 0.1% to 7 % Visible light responsive complex oxide (Patent Document 5), Fe 81% to 90%, Ti 9% to 10%, M Visible light-responsive composite oxide (Ca, Bi) in the range of 0.1% to 10% (Patent Document 6), Fe 89% to 92%, Ti 1% to 10%, Zn 0.1% A visible light responsive complex oxide (Patent Document 7) in the range of 10% to 10% was found.
However, research and development have not progressed so far for compositions other than Fe-Zr and Fe-Ti.

特開2006−300812号公報JP 2006-300812 A 特開2009−73708号公報JP 2009-73708 A 特開2010−264351号公報JP 2010-264351 A 特開2010−277823号公報JP 2010-277823 A 特開2010−274186号公報JP 2010-274186 A 特開2010−274187号公報JP 2010-274187 A 特開2010−275145号公報JP 2010-275145 A

「光触媒標準研究法」、東京図書、2005年1月"Photocatalyst Standard Research Method", Tokyo Books, January 2005 Chemistry of Materials、第20巻、12号、3803〜3805頁(2008)Chemistry of Materials, Vol. 20, No. 12, 3803-3805 (2008)

以上のような背景から、本発明は、発明者らによるこれまでの検討をさらに発展させて、従来全く検討されてこなかった系の組成物についても幅広く検討を進め、可視光照射に対して光電流応答性を有し、光電極材料・光触媒材料・光センサー材料となり得る新規な組成物と、これにより構成される新しい光電極・光触媒・光センサー、及びこれら光電極・光触媒による新しい水分解方法を提供することを課題としている。   From the background as described above, the present invention further develops the studies by the inventors so far, and extensively studies the composition of the system that has not been studied at all so far. Novel composition having current responsiveness and capable of becoming photoelectrode material / photocatalyst material / photosensor material, new photoelectrode / photocatalyst / photosensor composed thereof, and new water decomposition method using these photoelectrode / photocatalyst It is an issue to provide.

本発明者らは、上記課題を解決するために鋭意検討し、上記した特許文献1に記載の装置を用いて新規な可視光応答性組成物を探索研究した結果、可視光照射に対しても光電流応答性を示す、光電極・光触媒・光センサーの材料となる新規な組成物を知見し、本発明を完成するに至った。酸素以外の3種類以上元素の特定の比率において非常に効果が大きいことを見いだしたものであり、手動での探索ではほぼ見つからなかった特殊な組成物である。   The present inventors diligently studied to solve the above-mentioned problems, and as a result of exploring and researching a novel visible light responsive composition using the apparatus described in Patent Document 1 described above, the present inventors have also performed visible light irradiation. The inventors have found a novel composition that exhibits photocurrent response and can be used as materials for photoelectrodes, photocatalysts, and photosensors, and have completed the present invention. It has been found to be very effective at a specific ratio of three or more elements other than oxygen, and is a special composition that was hardly found by manual search.

すなわち、この本発明は以下のことを特徴としている。
(1)Sn、Fe、V、酸素からなる組成物であって、Sn、Fe、Vの合計を100%としたときの元素含有比(モル比)がSn:30〜50%、Fe:30〜40%、V:20〜30%の範囲内にあることを特徴とする可視光応答性組成物。
(2)上記の可視光応答性組成物をもって構成されている光電極。
(3)上記の可視光応答性組成物をもって構成されている光触媒。
(4)上記の可視光応答性組成物をもって構成されている光センサー。
(5)上記(2)に記載の光電極及び/又は上記(3)に記載の光触媒による水分解方法。
That is, the present invention is characterized by the following.
(1) A composition composed of Sn, Fe, V, and oxygen, and the element content ratio (molar ratio) when Sn, Fe, and V are 100% is Sn: 30 to 50%, Fe: 30 Visible light-responsive composition characterized by being in the range of ˜40%, V: 20-30%.
(2) The photoelectrode comprised with said visible-light-responsive composition.
(3) The photocatalyst comprised with said visible light responsive composition.
(4) The optical sensor comprised with said visible light responsive composition.
(5) The water splitting method using the photoelectrode according to (2) and / or the photocatalyst according to (3).

本発明は、次のような態様とすることもできる。
(6)Vに対するFeのモル比が1.2〜1.7である上記(1)に記載された可視光応答性組成物。
(7)粒状体、薄膜、焼結体、又は、積層体である上記(1)又は(6)に記載された可視光応答性組成物。
(8)基板上又は基材上に形成されたものである上記(1)、(6)、又は、(7)に記載された可視光応答性組成物。
(9)熱分解法、焼結法、又は、気相成膜法により形成されたものである上記(1)、(6)〜(8)のいずれか1項に記載された可視光応答性組成物。
(10)上記(6)〜(9)のいずれか1項に記載された可視光応答性組成物をもって構成されている光電極。
(11)上記(6)〜(9)のいずれか1項に記載された可視光応答性組成物をもって構成されている光触媒。
(12)上記(6)〜(9)のいずれか1項に記載された可視光応答性組成物をもって構成されている光センサー。
(13)上記(10)に記載の光電極及び/又は上記(11)に記載の光触媒による水分解方法。
The present invention may be configured as follows.
(6) The visible light responsive composition as described in (1) above, wherein the molar ratio of Fe to V is 1.2 to 1.7.
(7) The visible light responsive composition described in the above (1) or (6), which is a granular body, a thin film, a sintered body, or a laminate.
(8) The visible light responsive composition described in the above (1), (6), or (7), which is formed on a substrate or a base material.
(9) Visible light responsiveness described in any one of (1) and (6) to (8) above, which is formed by a thermal decomposition method, a sintering method, or a vapor phase film forming method. Composition.
(10) A photoelectrode comprising the visible light responsive composition described in any one of (6) to (9) above.
(11) A photocatalyst comprising the visible light responsive composition described in any one of (6) to (9) above.
(12) An optical sensor comprising the visible light responsive composition described in any one of (6) to (9) above.
(13) The water splitting method using the photoelectrode according to (10) and / or the photocatalyst according to (11).

光電流は光電極材料として用いたときの性能を示すものであり、また光触媒が機能するための電荷分離の度合を示している。本発明の組成物は可視光照射によって電荷分離を生じて光電流を発生させることから、可視光応答性光電極や可視光応答性光触媒の材料として用いることができる。これらを用いて水を還元し水素を発生させ、光エネルギーを水素に変換することができる。また、特定の波長域のみの光センサーとして、可視光域にのみ分光感度を有する光センサーの材料を提供することができる。   The photocurrent indicates the performance when used as a photoelectrode material, and indicates the degree of charge separation for the photocatalyst to function. Since the composition of the present invention generates a photocurrent by generating charge separation by irradiation with visible light, it can be used as a material for a visible light responsive photoelectrode or a visible light responsive photocatalyst. These can be used to reduce water to generate hydrogen and convert light energy to hydrogen. In addition, as an optical sensor having only a specific wavelength range, a photosensor material having spectral sensitivity only in the visible light range can be provided.

本発明の可視光応答性組成物は、Sn、Fe、V、酸素の4元素を必須のものとして含むものである。ここで、Sn、Fe、Vの合計を100%としたときの元素含有比(モル比)がSn:30〜50%、Fe:30〜40%、V:20〜30%の範囲内にある。Vに対するFeのモル比は、好ましくは1.2〜1.7(より好ましくは1.3〜1.6)である。本発明の可視光応答性組成物は、基本的には、上記4元素からなるが、可視光応答性を大幅に低下させない限度において、他の元素の含有を排除しようとするものではない。また、他の元素を含有している場合でも、他の元素は、含有比からは除外し、合計に加算しない。   The visible light responsive composition of the present invention contains four elements of Sn, Fe, V, and oxygen as essential elements. Here, the element content ratio (molar ratio) when the total of Sn, Fe, and V is 100% is in the range of Sn: 30 to 50%, Fe: 30 to 40%, and V: 20 to 30%. . The molar ratio of Fe to V is preferably 1.2 to 1.7 (more preferably 1.3 to 1.6). The visible light responsive composition of the present invention basically comprises the above four elements, but does not intend to exclude the inclusion of other elements as long as the visible light responsiveness is not significantly reduced. Even when other elements are contained, other elements are excluded from the content ratio and are not added to the total.

本発明の組成物を用いて光電極を構成すると、上記した元素の含有比(モル比)の範囲において、可視光照射によって電荷分離を生じて大きな光電流が発生する。   When a photoelectrode is constituted using the composition of the present invention, charge separation occurs due to visible light irradiation and a large photocurrent is generated within the range of the above-described element content ratio (molar ratio).

本発明の組成物は、熱分解法や混合粉末の焼結法、電着法あるいはスパッタリング等のような気相成膜法等の各種の方法により製造可能とされるが、なかでも、熱分解法で作製することが好ましい。例えば、薄膜形状に作製する場合(塗布熱分解法)については詳細を実施例において説明する。この熱分解法ではそれぞれの元素を含む溶液(場合によってはコロイド溶液や懸濁液など)を良く混合して原料液を調製し、それを焼成することで組成物を作製する。熱分解法には、元素含有比(モル比)の正確な制御ができる、溶液で混合するので均一な組成物を作製できる、薄膜形状にする場合(塗布熱分解法)は塗布と焼成を繰り返して積層することで精密なものが作製できる等の利点がある。本発明に用いる熱分解法は、それぞれの元素を含む液を混合して焼成する方法ならばよく、ゾルゲル法、錯体重合法、有機金属分解法等も挙げることができる。薄膜の多孔性や溶液粘度を制御するためにポリエチレングリコールやエチルセルロースなどポリマーや有機物を溶液に添加しても良い。   The composition of the present invention can be produced by various methods such as a thermal decomposition method, a mixed powder sintering method, an electrodeposition method, a vapor deposition method such as sputtering, and the like. It is preferable to prepare by the method. For example, in the case of producing a thin film (coating pyrolysis method), details will be described in Examples. In this pyrolysis method, a solution containing each element (in some cases, a colloidal solution, a suspension, etc.) is mixed well to prepare a raw material solution, which is fired to produce a composition. In the thermal decomposition method, the element content ratio (molar ratio) can be accurately controlled, and a uniform composition can be prepared by mixing with a solution. In the case of a thin film shape (coating pyrolysis method), coating and baking are repeated. There is an advantage that a precise one can be produced by laminating the layers. The thermal decomposition method used in the present invention may be any method in which a liquid containing each element is mixed and fired, and examples thereof include a sol-gel method, a complex polymerization method, and an organometallic decomposition method. In order to control the porosity and solution viscosity of the thin film, a polymer or an organic substance such as polyethylene glycol or ethyl cellulose may be added to the solution.

本発明の組成物は、均一組成の複合酸化物でも良いし、ドーピング化合物でも良い。また複数の化合物が混合した状態で存在していても良い。
酸素や空気中で焼成して本組成物を合成すれば、通常は最も安定な組成の酸化物になるが、雰囲気ガスを制御して酸化物以外の組成物を合成しても良い。例えば、NH3やH2S、CH4ガスを流しながら合成すれば、N、S、Cを一部含んだ組成物を合成できる。
光電極や光センサーとして利用する場合は、本発明の組成物を導電性基板上に固定する。例えば、導電性ガラスや金属などの耐熱性の導電性基板上に各元素を含んだ溶液を塗布して熱分解法で成膜する。
The composition of the present invention may be a complex oxide having a uniform composition or a doping compound. A plurality of compounds may exist in a mixed state.
If the composition is synthesized by firing in oxygen or air, the oxide having the most stable composition is usually obtained, but a composition other than the oxide may be synthesized by controlling the atmospheric gas. For example, if synthesis is performed while flowing NH 3 , H 2 S, or CH 4 gas, a composition partially containing N, S, and C can be synthesized.
When used as a photoelectrode or photosensor, the composition of the present invention is fixed on a conductive substrate. For example, a solution containing each element is applied onto a heat-resistant conductive substrate such as conductive glass or metal, and a film is formed by a thermal decomposition method.

本組成物は、光電極として用いる場合は、基板に強く接合し且つ多孔質であることが望ましい。また、光触媒として用いる場合は比較的高い表面積で且つ結晶性が高いことが望ましい。   When the composition is used as a photoelectrode, it is desirable that the composition is strongly bonded to the substrate and is porous. When used as a photocatalyst, it is desirable that the surface area is relatively high and the crystallinity is high.

そして、本発明によれば、上記の組成物を用いての光電極、光触媒及び光センサーが提供されることになる。   And according to this invention, the photoelectrode, photocatalyst, and photosensor using said composition are provided.

以下、本発明を実施例によりさらに具体的に説明するが、本発明はこの実施例によって何ら限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the examples.

(実施例1〜4、比較例1〜10)
組成物薄膜の自動合成装置(特許文献1)を用いて塗布熱分解法によりSn−Fe−Vの3元系薄膜ライブラリーを合成した。この薄膜ライブラリーはそれぞれの元素の含有比が異なった組成物の薄膜を一枚の導電性ガラス基板上に間隔を置いて作製したものである。元素の含有量は表1のように変化させた。
(Examples 1-4, Comparative Examples 1-10)
An Sn-Fe-V ternary thin film library was synthesized by a coating pyrolysis method using an automatic composition thin film synthesis apparatus (Patent Document 1). This thin film library is prepared by forming thin films of compositions having different content ratios of elements on a single conductive glass substrate at intervals. The element content was changed as shown in Table 1.

塗布する原料溶液は、シンメトリックス社製のSn、Fe、Vの有機錯体溶液をモル濃度が0.2Mとなるように酢酸ブチルで希釈し、それらの体積比を変えて混合することによりそれぞれの含有量のモル比を調整した。それらの溶液には増粘剤として10重量%のエチルセルロースの酢酸ブチル溶液を体積比で等量加えて混合した。
導電性ガラス基板にそれぞれの溶液を所定の位置に塗布し焼成することを4回繰り返して積層膜を合成した。焼成は空気中550℃で0.5時間、700℃でさらに0.5時間行った。これらを(実施例1〜4、比較例1〜10)とした。
The raw material solution to be applied is diluted with butyl acetate so that the molar concentration of Sn, Fe, V organic complex solution manufactured by Symmetrics is 0.2M, and the volume ratio thereof is changed and mixed. The molar ratio of content was adjusted. To these solutions, 10% by weight of ethyl cellulose in butyl acetate as a thickener was added in an equal volume ratio and mixed.
Each solution was applied to a predetermined position on a conductive glass substrate and fired four times to synthesize a laminated film. Firing was performed in air at 550 ° C. for 0.5 hours and at 700 ° C. for another 0.5 hours. These were made into (Examples 1-4, Comparative Examples 1-10).

組成物の可視光応答性は光電流を測定して評価した。光電流は組成物の電荷分離能力や可視光反応性を示す尺度であり、大きいほど性能が高い。作製した組成物の薄膜ライブラリーを、水酸化ナトリウムでpH7.0に調整した0.1Mのリン酸二水素ナトリウム溶液中に入れ、420nmより短波長をカットするフィルターを装着した300WのXeランプを直径1mmのホールスリットを通して3.2mWで照射しながら、1V(vs.Ag/AgCl)において光電流を測定した。対極には白金を用いており、その上では電流値に対応した水素が発生する。表1に光電流の測定結果を示した。
なお、酸化チタンについても、本発明の実施例と同様に薄膜ライブラリーを合成して光電流を測定したが、光電流はほとんど生じなかった(0μA)。
Visible light responsiveness of the composition was evaluated by measuring photocurrent. The photocurrent is a scale indicating the charge separation ability and visible light reactivity of the composition, and the larger the performance, the higher the performance. A 300 W Xe lamp equipped with a filter that cuts wavelengths shorter than 420 nm is placed in a 0.1 M sodium dihydrogen phosphate solution adjusted to pH 7.0 with sodium hydroxide. The photocurrent was measured at 1 V (vs. Ag / AgCl) while irradiating at 3.2 mW through a 1 mm diameter hole slit. Platinum is used for the counter electrode, on which hydrogen corresponding to the current value is generated. Table 1 shows the measurement results of the photocurrent.
As for titanium oxide, photocurrent was measured by synthesizing a thin film library in the same manner as in the examples of the present invention, but almost no photocurrent was generated (0 μA).

Figure 0006115952
Figure 0006115952

表1から明らかなように、Sn、Feと、第3の成分としてVとを選択し、その組成をSn:30〜50%、Fe:30〜40%、V:20〜30%とした場合は、比較例に比べ顕著に大きな光電流の値を示し、その全ての例において、酸化チタンをはるかに上回る可視光応答性を示した。   As is apparent from Table 1, when Sn, Fe and V are selected as the third component, the composition is Sn: 30-50%, Fe: 30-40%, V: 20-30% Showed significantly larger photocurrent values than the comparative examples, and in all of the examples, visible light responsiveness far exceeding that of titanium oxide was exhibited.

本発明の組成物により光電極を構成すると可視光の吸収利用が促進され、水の分解による水素製造のような光電極による太陽光のより効率的な利用が可能になる。また建物の室内や自動車内のように紫外光が弱い場所においても、本発明の組成物により構成する光触媒によって室内光や車内光を用いて環境汚染物質の除去や消臭、抗菌、抗ウィルス、抗カビ、防汚、防曇等を可能にする。さらに可視光域の光にのみ反応する光センサーの材料を提供することが出来る。   When the photoelectrode is constituted by the composition of the present invention, the absorption and utilization of visible light is promoted, and more efficient use of sunlight by the photoelectrode such as hydrogen production by water decomposition becomes possible. In addition, even in places where ultraviolet light is weak such as indoors of buildings and automobiles, removal of environmental pollutants and deodorization, antibacterial, antiviral, using indoor light and in-car light by the photocatalyst constituted by the composition of the present invention, Enables antifungal, antifouling, antifogging, etc. Furthermore, a material for an optical sensor that reacts only to light in the visible light range can be provided.

Claims (5)

Sn、Fe、V、酸素からなる組成物であって、Sn、Fe、Vの合計を100%としたときの元素含有比(モル比)がSn:30〜50%、Fe:30〜40%、V:20〜30%の範囲内にあることを特徴とする可視光応答性組成物。 It is a composition comprising Sn, Fe, V, and oxygen, and the element content ratio (molar ratio) when Sn, Fe, V is 100% is Sn: 30-50%, Fe: 30-40% V: Visible light responsive composition characterized by being in the range of 20-30%. 請求項1に記載の可視光応答性組成物をもって構成されていることを特徴とする光電極。 A photoelectrode comprising the visible light responsive composition according to claim 1. 請求項1に記載の可視光応答性組成物をもって構成されていることを特徴とする光触媒。 A photocatalyst comprising the visible light responsive composition according to claim 1. 請求項1に記載の可視光応答性組成物をもって構成されていることを特徴とする光センサー。 An optical sensor comprising the visible light responsive composition according to claim 1. 請求項2に記載の光電極及び/又は請求項3に記載の光触媒による水分解方法。 A water splitting method using the photoelectrode according to claim 2 and / or the photocatalyst according to claim 3.
JP2013136924A 2013-06-28 2013-06-28 Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same Active JP6115952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013136924A JP6115952B2 (en) 2013-06-28 2013-06-28 Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013136924A JP6115952B2 (en) 2013-06-28 2013-06-28 Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same

Publications (2)

Publication Number Publication Date
JP2015010172A JP2015010172A (en) 2015-01-19
JP6115952B2 true JP6115952B2 (en) 2017-04-19

Family

ID=52303626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013136924A Active JP6115952B2 (en) 2013-06-28 2013-06-28 Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same

Country Status (1)

Country Link
JP (1) JP6115952B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104667943A (en) * 2015-02-26 2015-06-03 桂林理工大学 Photocatalyst Li2Cu2V8O23 with visible light response and preparation method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4626099B2 (en) * 2000-07-17 2011-02-02 株式会社豊田中央研究所 Photocatalyst
EP1175938A1 (en) * 2000-07-29 2002-01-30 The Hydrogen Solar Production Company Limited Photocatalytic film of iron oxide, electrode with such a photocatalytic film, method of producing such films, photoelectrochemical cell with the electrode and photoelectrochemical system with the cell, for the cleavage of water into hydrogen and oxygen
JP4029155B2 (en) * 2003-07-25 2008-01-09 独立行政法人産業技術総合研究所 Visible-light-responsive membranous porous semiconductor photoelectrode
WO2005014170A1 (en) * 2003-08-08 2005-02-17 Kabushiki Kaisha Toyota Chuo Kenkyusho Photocatalyst material being activated by visible light, raw material for the same and method for producing the same
JP2005131604A (en) * 2003-10-31 2005-05-26 Toshiba Lighting & Technology Corp Photocatalyst body
JP5196494B2 (en) * 2009-05-13 2013-05-15 独立行政法人産業技術総合研究所 Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same
JP5655827B2 (en) * 2011-11-14 2015-01-21 信越化学工業株式会社 Visible light responsive titanium oxide fine particle dispersion, method for producing the same, and member having a photocatalytic thin film formed on the surface using the dispersion
JP6048752B2 (en) * 2013-06-28 2016-12-21 国立研究開発法人産業技術総合研究所 Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same

Also Published As

Publication number Publication date
JP2015010172A (en) 2015-01-19

Similar Documents

Publication Publication Date Title
JP5207399B2 (en) Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same
JP5196494B2 (en) Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same
WO2014098251A1 (en) g-C3N4 FILM PRODUCTION METHOD, AND USE OF SAID FILM
Zheng et al. Highly enhancing photoelectrochemical performance of facilely-fabricated Bi-induced (002)-oriented WO3 film with intermittent short-time negative polarization
Nashim et al. Gd2Ti2O7/In2O3: Efficient Visible‐Light‐Driven Heterojunction‐Based Composite Photocatalysts for Hydrogen Production
JP5207398B2 (en) Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same
JP2014156434A (en) Functional metal-organic framework material containing novel composite particles
JPWO2016121700A1 (en) Tin (II) halide perovskite thin film and method for producing the same, and electronic device and photoelectric conversion apparatus using the same
JP5354587B2 (en) Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same
JP5360817B2 (en) Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same
JP6115952B2 (en) Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same
JP6352206B2 (en) Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same
JP6120330B2 (en) Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same
JP6359473B2 (en) Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same
JP6333757B2 (en) Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same
JP6048752B2 (en) Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same
JP5290554B2 (en) Composite oxide, semiconductor photoelectrode and photocatalyst using the same
JP6230059B2 (en) Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same
JP6229469B2 (en) Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same
JP6044993B2 (en) Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same
JP6044992B2 (en) Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same
JP6433815B2 (en) Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same
JP6388837B2 (en) Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same
JP6404144B2 (en) Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same
WO2017043586A1 (en) Method for synthesizing metal sulfur halide and/or metal selenium halide with metal oxyhalide as starting material, and method for producing semiconductor material using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170315

R150 Certificate of patent or registration of utility model

Ref document number: 6115952

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250