JP6112721B2 - Organic molecularly encapsulated crystalline calcium carbonate and process for producing the same - Google Patents

Organic molecularly encapsulated crystalline calcium carbonate and process for producing the same Download PDF

Info

Publication number
JP6112721B2
JP6112721B2 JP2013136608A JP2013136608A JP6112721B2 JP 6112721 B2 JP6112721 B2 JP 6112721B2 JP 2013136608 A JP2013136608 A JP 2013136608A JP 2013136608 A JP2013136608 A JP 2013136608A JP 6112721 B2 JP6112721 B2 JP 6112721B2
Authority
JP
Japan
Prior art keywords
calcium carbonate
pyrene
water
organic
encapsulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013136608A
Other languages
Japanese (ja)
Other versions
JP2015010057A (en
Inventor
藤原 正浩
正浩 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2013136608A priority Critical patent/JP6112721B2/en
Publication of JP2015010057A publication Critical patent/JP2015010057A/en
Application granted granted Critical
Publication of JP6112721B2 publication Critical patent/JP6112721B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、水に不溶性もしくは難溶性の有機分子を内包する炭酸カルシウム及びその製造法に関する。   The present invention relates to calcium carbonate containing organic molecules that are insoluble or hardly soluble in water and a method for producing the same.

特許文献1は、炭酸カルシウムの内部にタンパク質やペプチド、低分子物質を内包させる技術を開示し、実施例では低分子物質としてフルオレセインナトリウムを炭酸カルシウムに内包させている。この材料は、カルサイト型炭酸カルシウムを内包すべき物質の水溶液で処理して前記物質を内包させており、水に難溶性もしくは不溶性の物質を内包させる技術思想は開示していない。 Patent Document 1 discloses a technique for encapsulating proteins, peptides, and low molecular substances in calcium carbonate. In the examples, sodium fluorescein is included in calcium carbonate as a low molecular substance. This material is treated with an aqueous solution of a substance to be encapsulated in calcite-type calcium carbonate to enclose the substance, and does not disclose a technical idea for encapsulating a substance that is hardly soluble or insoluble in water.

特開2011-144056JP2011-144056

本発明は、炭酸カルシウム内へ水に不溶性もしくは難溶性の有機分子を内包させる技術を提供することを目的とする。   An object of the present invention is to provide a technique for encapsulating organic molecules insoluble or hardly soluble in water into calcium carbonate.

上記のような観点から、本発明者は、有機溶媒に可溶性であり、水に難溶性又は不溶性である有機分子を有機溶媒に溶解後、カルサイト型炭酸カルシウムに含浸して有機溶媒を蒸発させてカルサイト型炭酸カルシウムの表面及び内部に有機分子を析出させ、次いでこの材料を水又は緩衝液もしくは塩類水溶液などの水中で処理し、カルサイト型炭酸カルシウムが溶解と結晶(カルサイト型もしくはバテライト型)の析出を繰り返す過程でカルサイト型炭酸カルシウムの表面及び内部に析出した有機分子が炭酸カルシウム結晶の内部に閉じこめられ、この有機分子は有機溶媒で含浸もしくは洗浄した場合でも容易に有機溶媒に接触できないために溶解せず、結晶性炭酸カルシウムの構造が破壊されて初めて有機分子が放出されることを見出し、本発明を完成した。 From the above viewpoint, the present inventor has dissolved an organic molecule that is soluble in an organic solvent and hardly soluble or insoluble in water in an organic solvent, and then impregnated with calcite-type calcium carbonate to evaporate the organic solvent. Then, organic molecules are precipitated on the surface and inside of the calcite type calcium carbonate, and then this material is treated in water or water such as a buffer solution or a salt solution to dissolve and crystallize the calcite type calcium carbonate (calcite type or vaterite). The organic molecules deposited on the surface and inside of the calcite-type calcium carbonate in the process of repeated precipitation of the calcium carbonate are trapped inside the calcium carbonate crystals, and these organic molecules are easily converted into an organic solvent even when impregnated or washed with an organic solvent. It is found that organic molecules are released only when the structure of crystalline calcium carbonate is destroyed because it cannot be contacted and thus does not dissolve. It was completed a light.

本発明は、以下の水に不溶性もしくは難溶性の有機分子を内包する炭酸カルシウム及びその製造法を提供するものである。
項1. バテライト型炭酸カルシウム粒子を、水に不溶性もしくは難溶性の有機分子の有機溶媒溶液に含浸後有機溶媒を蒸発させる工程、得られた炭酸カルシウム粒子を水あるいは緩衝液もしくは塩類水溶液で処理してバテライト相及び/又はカルサイト相からなる結晶性炭酸カルシウムに水に不溶性もしくは難溶性の有機分子を内包させる工程を包含することを特徴とする、水に不溶性もしくは難溶性の有機分子を内包した結晶性炭酸カルシウムの製造法。
項2. 前記有機分子の水への溶解度が、20℃において20mg/mL以下である、項1に記載の方法。
項3. 水に不溶性あるいは難溶性の有機分子をバテライト相及び/又はカルサイト相からなる結晶性炭酸カルシウムに内包してなる結晶性炭酸カルシウムであって、前記有機分子は有機溶媒に可溶性であり、前記結晶性炭酸カルシウムの有機溶媒による洗浄もしくは含浸で前記有機分子は実質的に溶出しないことを特徴とする、結晶性炭酸カルシウム。
The present invention provides the following calcium carbonate encapsulating organic molecules that are insoluble or hardly soluble in water and a method for producing the same.
Item 1. The process of evaporating the organic solvent after impregnating the vaterite-type calcium carbonate particles in an organic solvent solution of organic molecules that are insoluble or sparingly soluble in water, treating the obtained calcium carbonate particles with water, a buffer solution or an aqueous salt solution, And / or a step of encapsulating water-insoluble or hardly soluble organic molecules in crystalline calcium carbonate composed of a calcite phase. Calcium production method.
Item 2. The method according to Item 1, wherein the solubility of the organic molecule in water is 20 mg / mL or less at 20 ° C.
Item 3. Crystalline calcium carbonate in which organic molecules insoluble or sparingly soluble in water are encapsulated in crystalline calcium carbonate composed of a vaterite phase and / or a calcite phase, and the organic molecules are soluble in an organic solvent. The crystalline calcium carbonate is characterized in that the organic molecules are not substantially eluted by washing or impregnation of the crystalline calcium carbonate with an organic solvent.

本発明によれば、水への溶解性の低い有機分子を炭酸カルシウムの結晶内に閉じ込めることができる。本発明で得られる水に不溶性もしくは難溶性の有機分子を内包した結晶性炭酸カルシウムは、有機分子が蛍光性である微粒子の場合、生体内等のバイオセンシングへの応用が期待できる。また、有機分子が薬物の場合には、ドラッグデリバリーシステムに応用できる。薬物は水に難溶性もしくは不溶性の物質が多いので、本発明は特に有用である。 According to the present invention, an organic molecule having low solubility in water can be confined in a calcium carbonate crystal. The crystalline calcium carbonate encapsulating organic molecules insoluble or hardly soluble in water obtained by the present invention can be expected to be applied to biosensing in vivo when the organic molecules are fluorescent fine particles. When the organic molecule is a drug, it can be applied to a drug delivery system. Since many drugs are hardly soluble or insoluble in water, the present invention is particularly useful.

内包処理前のバテライト型炭酸カルシウム(上)と1Mトリス塩酸塩緩衝溶液を用いてピレン内包処理をした炭酸カルシウム(下)のSEM像SEM image of calcium carbonate (bottom) treated with pyrene by using vaterite-type calcium carbonate (top) and 1M Tris hydrochloride buffered solution before encapsulation 内包処理前のバテライト型炭酸カルシウム(左)と1Mトリス塩酸塩緩衝溶液を用いてピレン内包処理をした炭酸カルシウム(右)の粉末X線回折パターンPowder X-ray diffraction pattern of vaterite-type calcium carbonate before encapsulation (left) and calcium carbonate (right) treated with pyrene using 1M Tris hydrochloride buffer solution (左)1Mトリス塩酸塩緩衝溶液を用いてピレン内包処理した炭酸カルシウムの拡散反射紫外可視スペクトル、(右)1Mトリス塩酸塩緩衝溶液を用いてピレン内包処理した炭酸カルシウムの蛍光スペクトル(励起光:350nm)(Left) Diffuse reflection UV-visible spectrum of calcium carbonate encapsulated with pyrene using 1M Tris-hydrochloride buffer solution, (Right) Fluorescence spectrum of calcium carbonate encapsulated with pyrene-encapsulated with 1M Tris-hydrochloride buffer (excitation light: 350nm) (左)0.05Mトリス塩酸塩緩衝溶液を用いてピレン内包処理を行った炭酸カルシウムの粉末X線回折パターン、(右)0.05Mトリス塩酸塩緩衝溶液を用いてピレン内包処理を行った炭酸カルシウムの拡散反射紫外可視スペクトル(Left) Powder X-ray diffraction pattern of calcium carbonate treated with pyrene using 0.05 M Tris hydrochloride buffer solution, (Right) Calcium carbonate treated with pyrene using 0.05 M Tris hydrochloride buffer solution Diffuse reflection UV-visible spectrum (左)1Mの塩化ナトリウム水溶液を用いてピレン内包処理を行った炭酸カルシウムの粉末X線回折パターン、(右)1Mの塩化ナトリウム水溶液を用いてピレン内包処理を行った炭酸カルシウムの拡散反射紫外可視スペクトル(Left) Powder X-ray diffraction pattern of calcium carbonate treated with pyrene using a 1M aqueous sodium chloride solution, (Right) Diffuse reflection ultraviolet visible of calcium carbonate treated with pyrene using a 1M aqueous sodium chloride solution Spectrum (左)0.1Mの塩化ナトリウム水溶液を用いてピレン内包処理を行った炭酸カルシウムの粉末X線回折パターン、(右)0.1Mの塩化ナトリウム水溶液を用いてピレン内包処理を行った炭酸カルシウムの拡散反射紫外可視スペクトル(Left) Powder X-ray diffraction pattern of calcium carbonate treated with 0.1M sodium chloride aqueous solution, (Right) Diffuse reflection of calcium carbonate treated with pyrene encapsulated with 0.1M sodium chloride aqueous solution UV-visible spectrum (左)0.2Mの塩化カルシウム水溶液を用いてピレン内包処理を行った炭酸カルシウムの粉末X線回折パターン、(右)0.2Mの塩化カルシウム水溶液を用いてピレン内包処理を行った炭酸カルシウムの拡散反射紫外可視スペクトル(Left) Powder X-ray diffraction pattern of calcium carbonate encapsulated with 0.2M calcium chloride aqueous solution, (Right) Diffuse reflection of calcium carbonate encapsulated with 0.2M calcium chloride aqueous solution UV-visible spectrum 0.2Mの塩化カルシウム水溶液を用いてピレン内包処理を行った炭酸カルシウムの蛍光スペクトル(励起光:350nm)Fluorescence spectrum of calcium carbonate treated with pyrene by using 0.2M calcium chloride aqueous solution (excitation light: 350nm) (左)ピレン内包処理前の粉末X線回折パターン、(右)ピレン内包処理後の炭酸カルシウムの粉末X線回折パターン(Left) Powder X-ray diffraction pattern before pyrene encapsulation treatment, (Right) Powder X-ray diffraction pattern of calcium carbonate after pyrene encapsulation treatment ピレン内包処理前(点線)と処理後(太線)の炭酸カルシウムの拡散反射紫外可視スペクトルDiffuse reflection UV-visible spectrum of calcium carbonate before and after pyrene encapsulation (dotted line) and after treatment (thick line) 市販のカルサイト型炭酸カルシウムを用いたピレン内包処理前後の粉末X線回折パターンPowder X-ray diffraction patterns before and after pyrene encapsulation using commercially available calcite-type calcium carbonate 市販のカルサイト型炭酸カルシウムを用いたピレン内包処理後の拡散反射紫外可視スペクトル(実線)。参考として、実施例−5のスペクトルを示す。Diffuse reflection UV-visible spectrum (solid line) after pyrene encapsulation using commercially available calcite-type calcium carbonate. For reference, the spectrum of Example-5 is shown. アセトアミノフェン内包処理後の炭酸カルシウムの(左)粉末X線回折パターンと(右)SEM像(Left) powder X-ray diffraction pattern and (right) SEM image of calcium carbonate after acetaminophen encapsulation アセトアミノフェン内包処理後の炭酸カルシウムの拡散反射紫外可視スペクトルDiffuse reflection UV-visible spectrum of calcium carbonate after acetaminophen encapsulation アセトアミノフェン内包処理後の炭酸カルシウムの(左)粉末X線回折パターンと(右)拡散反射紫外可視スペクトル(Left) Powder X-ray diffraction pattern and (Right) Diffuse reflection UV-Vis spectrum of calcium carbonate after acetaminophen encapsulation アセトアミノフェン内包処理後の炭酸カルシウムの(左)粉末X線回折パターンと(右)拡散反射紫外可視スペクトル(Left) Powder X-ray diffraction pattern and (Right) Diffuse reflection UV-Vis spectrum of calcium carbonate after acetaminophen encapsulation

バテライト型炭酸カルシウムは、自然には存在しないが、公知の方法に従い合成することができる。バテライト型の炭酸カルシウムを良好な選択率で与える方法は、界面反応法による方法が好ましいが、良好な収率、選択率で得られるものであれば特に限定されない。   Vaterite-type calcium carbonate does not exist in nature, but can be synthesized according to a known method. The method of giving the vaterite-type calcium carbonate with a good selectivity is preferably a method by an interfacial reaction method, but is not particularly limited as long as it can be obtained with a good yield and selectivity.

原料となるバテライト型炭酸カルシウム及び本発明で得られる有機分子を内包した結晶性炭酸カルシウムの粒子サイズは、0.1〜100μm程度、好ましくは1〜10μm程度である。
本明細書において、「内包」とは、有機溶媒に可溶性であり、かつ、水に難溶性もしくは不溶性である炭酸カルシウムの結晶内に取り込まれ、可溶性である有機溶媒で洗浄するか、あるいは、有機溶媒中に含浸しても溶出せずに、結晶性炭酸カルシウム内に残存することを意味する。本発明の結晶性炭酸カルシウムは、このように有機溶媒による処理で溶出しない状態で有機分子が炭酸カルシウム結晶内で閉じこめられていることを特徴とする。有機溶媒により溶出する有機分子が炭酸カルシウムの結晶内に閉じこめられていれば、有機溶媒で容易に溶出する有機分子がさらに結晶性炭酸カルシウム表面に付着していてもよい。
本発明の製造法において、有機分子の有機溶媒溶液にバテライト型炭酸カルシウムを含浸し、有機溶媒を蒸発もしくは留去することで、粒子の表面及び内部(バテライト型炭酸カルシウムの結晶正面)に有機分子が付着する。この粒子を水あるいは緩衝液もしくは塩類水溶液で処理すると、バテライト型炭酸カルシウムの溶解と析出が結晶表面で繰り返される。この際、バテライト型結晶表面で炭酸カルシウムが析出するため、析出する結晶はバテライト型が生じやすいが、溶解と析出を繰り返す過程で徐々に安定なカルサイト型結晶に変化し、最終的にカルサイト型結晶に変化する。本発明の結晶性炭酸カルシウムは、全てカルサイト型であってもよく、全てバテライト型であってもよく、カルサイト型とバテライト型が任意の割合で混合されていてもよい。理論に拘束されることを望むものではないが、本発明者は、微細な炭酸カルシウムの結晶粒子間に有機分子が密に閉じこめられて内包されているため、有機分子は本来可溶性である有機溶媒によっても溶出できないと考えている。
本発明の有機分子は、有機溶媒には可溶性であり、水には難溶性もしくは不溶性の有機化合物である。ここで、水に難溶性とは水への溶解度が、20℃において20mg/mL以下、特に10mg/mL以下あるいは1mg/mL以下であり、水に不溶性とは、水への溶解度が、20℃において0.1mg/mL以下、特に0.01mg/mL以下あるいは0.001mg/mL以下であることを意味する。有機溶媒に可溶性とは、有機分子の有機溶媒への溶解度が、20℃において30mg/mL以上、50mg/mL以上あるいは100mg/mL以上であることを意味する。
有機溶媒としては、メタノール、エタノール、イソプロパノール、ブタノールなどの低級アルコール、クロロホルム、塩化メチレン、1,2-ジクロロエタン、四塩化炭素などのハロゲン化炭化水素、酢酸エチルなどのエステル類、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフランなどのエーテル類、ヘキサン、シクロヘキサンなどの脂肪族炭化水素、ベンゼン、トルエン、キシレンなどの芳香族炭化水素、アセトン、メチルエチルケトン、メチルブチルケトンなどのケトン類、アセトニトリル、ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、ジメチルアセトアミド、ホルムアミドなどが挙げられる。本発明の有機分子はこれら有機溶媒の少なくとも1種に可溶性であればよい。
本発明の有機分子としては、有機溶媒に可溶性で、かつ、水に難溶性もしくは不溶性であれば特に限定されないが、例えば薬物、蛍光物質などが挙げられる。
有機溶媒の蒸発により有機分子を析出させたバテライト型炭酸カルシウムは、水又は水あるいは緩衝液もしくは塩類水溶液で処理してバテライト相及び/又はカルサイト相からなる結晶性炭酸カルシウムに導く。緩衝液としては、pH5〜10程度、好ましくはpH6〜8の緩衝液が挙げられ、例えばトリス、ホウ酸などの有機酸とこれらの酸のナトリウム塩、カリウム塩、リチウム塩などのアルカリ金属塩が挙げられる。塩類水溶液としては、塩化ナトリウム、塩化カリウム、塩化リチウム、臭化ナトリウム、臭化カリウム、臭化リチウムなどのハロゲン化物イオンのアルカリ金属塩、塩化カリシウム、臭化カルシウム、ヨウ化カルシウムなどのハロゲン化カルシウム塩などが挙げられる。緩衝液と塩類は両方を含んだ水溶液であってもよい。これらの塩類又は緩衝液の濃度としては10モル/L以下、好ましくは5モル/L以下、特に1モル/L以下である。水あるいは緩衝液もしくは塩類水溶液での処理温度は5〜90℃程度、好ましくは10〜50℃程度であり、処理時間は、1〜48日間程度、好ましくは5〜24日間程度であり、液量は炭酸カルシウム1gあたり1〜1000ml程度が挙げられる。
The particle size of the crystalline calcium carbonate encapsulating the vaterite-type calcium carbonate as a raw material and the organic molecule obtained in the present invention is about 0.1 to 100 μm, preferably about 1 to 10 μm.
In the present specification, the term “encapsulation” refers to an organic solvent that is soluble in an organic solvent and is hardly soluble or insoluble in water, and is washed with an organic solvent that is soluble or organic. Even if impregnated in a solvent, it means that it remains in crystalline calcium carbonate without being eluted. The crystalline calcium carbonate of the present invention is characterized in that the organic molecules are confined in the calcium carbonate crystal in such a state that the crystalline calcium carbonate is not eluted by the treatment with the organic solvent. As long as the organic molecule eluted by the organic solvent is confined in the calcium carbonate crystal, the organic molecule easily eluted by the organic solvent may further adhere to the crystalline calcium carbonate surface.
In the production method of the present invention, an organic molecule solution is impregnated with a solution of organic molecules in an organic solvent, and the organic solvent is evaporated or distilled off. Adheres. When the particles are treated with water, a buffer solution or an aqueous salt solution, dissolution and precipitation of the vaterite-type calcium carbonate is repeated on the crystal surface. At this time, since calcium carbonate precipitates on the surface of the vaterite type crystal, the precipitated crystal tends to form the vaterite type, but gradually changes to a stable calcite type crystal in the process of dissolution and precipitation, and finally the calcite It changes into a type crystal. The crystalline calcium carbonate of the present invention may be all calcite type, all may be vaterite type, and calcite type and vaterite type may be mixed in an arbitrary ratio. Although not wishing to be bound by theory, the present inventor believes that organic molecules are inherently soluble because organic molecules are tightly enclosed between fine calcium carbonate crystal particles. It is thought that it can not be eluted even by.
The organic molecule of the present invention is an organic compound that is soluble in an organic solvent and hardly soluble or insoluble in water. Here, sparingly soluble in water means that the solubility in water is 20 mg / mL or less, particularly 10 mg / mL or less or 1 mg / mL or less at 20 ° C., and insoluble in water means that the solubility in water is 20 ° C. Means 0.1 mg / mL or less, particularly 0.01 mg / mL or less or 0.001 mg / mL or less. Soluble in an organic solvent means that the solubility of an organic molecule in an organic solvent is 30 mg / mL or more, 50 mg / mL or more, or 100 mg / mL or more at 20 ° C.
Organic solvents include lower alcohols such as methanol, ethanol, isopropanol and butanol, halogenated hydrocarbons such as chloroform, methylene chloride, 1,2-dichloroethane and carbon tetrachloride, esters such as ethyl acetate, diethyl ether and diisopropyl ether. , Ethers such as tetrahydrofuran, aliphatic hydrocarbons such as hexane and cyclohexane, aromatic hydrocarbons such as benzene, toluene and xylene, ketones such as acetone, methyl ethyl ketone and methyl butyl ketone, acetonitrile, dimethylformamide (DMF), dimethyl Examples thereof include sulfoxide (DMSO), dimethylacetamide, formamide and the like. The organic molecule of the present invention may be soluble in at least one of these organic solvents.
The organic molecule of the present invention is not particularly limited as long as it is soluble in an organic solvent and hardly soluble or insoluble in water, and examples thereof include drugs and fluorescent substances.
Vaterite-type calcium carbonate in which organic molecules are precipitated by evaporation of the organic solvent is treated with water, water, a buffer solution, or an aqueous salt solution, and led to crystalline calcium carbonate composed of a vaterite phase and / or a calcite phase. Examples of the buffer solution include a buffer solution having a pH of about 5 to 10, preferably a pH of 6 to 8. For example, organic acids such as tris and boric acid and alkali metal salts such as sodium salt, potassium salt, and lithium salt of these acids can be used. Can be mentioned. Examples of aqueous salt solutions include alkali metal salts of halide ions such as sodium chloride, potassium chloride, lithium chloride, sodium bromide, potassium bromide, and lithium bromide, calcium halides such as calcium chloride, calcium bromide, and calcium iodide. Examples include salt. The buffer solution and the salt may be an aqueous solution containing both. The concentration of these salts or buffer is 10 mol / L or less, preferably 5 mol / L or less, particularly 1 mol / L or less. The treatment temperature in water or a buffer solution or an aqueous salt solution is about 5 to 90 ° C., preferably about 10 to 50 ° C., the treatment time is about 1 to 48 days, preferably about 5 to 24 days. Is about 1 to 1000 ml per 1 g of calcium carbonate.

有機分子を内包した結晶性炭酸カルシウムの固体は、溶液よりデカンテーションやろ別による分離・回収することができる。乾燥処理等の方法も、有機分子が変性や分解を起こさない条件であれば特に限定されないが、空気中で室温から30℃程度での乾燥処理が良い。乾燥時間も特に限定されないが、1時間から20時間程度が好ましい。ただし、特段の乾燥処理を必要としない場合は、行わなくとも良い。蛋白質、ペプチド、低分子物質が溶けた水溶液をデカンテーションにより回収すれば、そのまま別のプロセスに用いることができ、最終的な内包効率を向上させることができる。
以下に実施例により本発明をより詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
The crystalline calcium carbonate solid encapsulating organic molecules can be separated and recovered from the solution by decantation or filtration. A method such as a drying process is not particularly limited as long as the organic molecules do not denature or decompose, but a drying process at room temperature to about 30 ° C. in air is preferable. The drying time is not particularly limited, but is preferably about 1 to 20 hours. However, when a special drying process is not required, it may not be performed. If an aqueous solution in which proteins, peptides, and low-molecular substances are dissolved is recovered by decantation, it can be used in another process as it is, and the final encapsulation efficiency can be improved.
EXAMPLES The present invention will be described below in more detail with reference to examples, but the present invention is not limited to these examples.

・実施例−1 1Mトリス塩酸塩緩衝溶液を用いた炭酸カルシウムへのピレンの内包

特許文献(特開2011-144056)に記載された方法を用いて合成したバテライト型炭酸カルシウム1gを、0.2gのピレンを溶解した50mLのテトラヒドロフランに加え、30分間ゆっくり撹拌した。その後、ロータリーエバポレーターで20Torrの減圧下、ウォ−ターバスで40℃に加熱しながらテトラヒドロフランを十分に留去し、ピレン含浸バテライト型炭酸カルシウムを得た。このバテライト型炭酸カルシウム1gを、20mLの1Mのトリス塩酸塩緩衝溶液(pH=7、株式会社ニッポンジーン)に浸漬し、室温を20〜30℃程度で調節した場所で24日間静置した。その後、固体をろ別し、1L以上のイオン交換水で十分に洗浄した。さらに、テトラヒドロフラン200mL中で2時間撹拌洗浄を計三度行った。一度目の洗浄テトラヒドロフランのろ液中には、分光スペクトルよりピレンの吸収が観測されたが、二度目の洗浄ろ液にはピレンの吸収が観測されなかったが、単に吸着しているだけのピレンを完全に除去させるためもう一度テトラヒドロフランによる洗浄を行い、三度目の洗浄ろ液中にもピレンの吸収が無いことを確認した。
Example 1 Encapsulation of pyrene in calcium carbonate using 1M Tris hydrochloride buffer solution

1 g of vaterite-type calcium carbonate synthesized by the method described in the patent document (Japanese Patent Laid-Open No. 2011-144056) was added to 50 mL of tetrahydrofuran in which 0.2 g of pyrene was dissolved, and the mixture was slowly stirred for 30 minutes. Then, tetrahydrofuran was sufficiently distilled off while heating to 40 ° C. with a water bath under a reduced pressure of 20 Torr with a rotary evaporator to obtain pyrene-impregnated vaterite-type calcium carbonate. 1 g of this vaterite-type calcium carbonate was immersed in 20 mL of 1 M Tris hydrochloride buffer solution (pH = 7, Nippon Gene Co., Ltd.), and allowed to stand for 24 days in a place where the room temperature was adjusted to about 20-30 ° C. Thereafter, the solid was filtered off and thoroughly washed with 1 L or more of ion exchange water. Further, the mixture was washed with stirring in 200 mL of tetrahydrofuran for 2 hours three times. Absorption of pyrene was observed in the first wash tetrahydrofuran filtrate from the spectroscopic spectrum, but no absorption of pyrene was observed in the second wash filtrate, but only adsorbed pyrene. In order to completely remove water, washing with tetrahydrofuran was performed once more, and it was confirmed that there was no absorption of pyrene in the third washing filtrate.

図1には、ピレン内包処理前のバテライト型炭酸カルシウムと、この内包処理後の炭酸カルシウムのSEM像を示した。内包処理前は球状粒子であるが、内包処理後の粒子は、六面体構造であった。それぞれの粒子の粉末X線回折パターンを図2に示す。内包処理後のパターンでは、内包処理前のバテライト型結晶のピークは完全に消失し、カルサイトのピークのみが観測され、完全に相転移が進行したことを確認できた。図3左には、ピレン内包処理を行った炭酸カルシウムの拡散反射紫外可視スペクトルを示す。300〜380nmに強い紫外線吸収が見られるが、これは内包処理前の炭酸カルシウムには存在せず、一方ピレンはこの領域に吸収を持つ。図3右には、このピレン内包処理を行った炭酸カルシウムの蛍光スペクトルを示す。励起光350nmでは、約460nmにピークを持つ蛍光発光が見られた。この発光は、ピレンのエキシマー発光に相当する。このように、本方法により、テトラヒドロフランでの十分な洗浄でも遊離しない形で、炭酸カルシウムの結晶内にピレン分子を内包させることができ、また当該炭酸カルシウム微粒子は、ピレンに由来する蛍光発光特性を持つことも見出した。

・実施例−2 0.05Mトリス塩酸塩緩衝溶液を用いた炭酸カルシウムへのピレンの内包

実施例1の方法で合成したバテライト型炭酸カルシウムを用い、実施例1と同じ方法で用いる水溶液を0.05Mのトリス塩酸塩緩衝溶液(pH=7.6、和光純薬製)とし、24日間静置した。その後、実施例1と同様の方法でろ別、水洗浄、テトラヒドロフラン洗浄処理を行った。このテトラヒドロフランの洗浄処理の場合も、二度目および三度目の洗浄ろ液にはピレンの吸収は観測されなかった。
In FIG. 1, the SEM image of the vaterite type | mold calcium carbonate before a pyrene inclusion process and the calcium carbonate after this inclusion process was shown. Although the particles were spherical before the encapsulation treatment, the particles after the encapsulation treatment had a hexahedral structure. The powder X-ray diffraction pattern of each particle is shown in FIG. In the pattern after the encapsulation treatment, the peak of the vaterite crystal before the encapsulation treatment disappeared completely, and only the peak of calcite was observed, confirming that the phase transition had progressed completely. The left side of FIG. 3 shows a diffuse reflection ultraviolet-visible spectrum of calcium carbonate subjected to pyrene encapsulation. Strong UV absorption is observed at 300 to 380 nm, which is not present in calcium carbonate before the encapsulation treatment, while pyrene has absorption in this region. The right side of FIG. 3 shows the fluorescence spectrum of calcium carbonate subjected to this pyrene encapsulation treatment. With excitation light of 350 nm, fluorescence emission having a peak at about 460 nm was observed. This emission corresponds to the excimer emission of pyrene. Thus, according to the present method, pyrene molecules can be encapsulated in the calcium carbonate crystals in a form that is not liberated even by sufficient washing with tetrahydrofuran, and the calcium carbonate fine particles exhibit fluorescence emission characteristics derived from pyrene. I also found it.

Example-2 Encapsulation of pyrene in calcium carbonate using 0.05M Tris hydrochloride buffer solution

Using the vaterite-type calcium carbonate synthesized by the method of Example 1, the aqueous solution used in the same manner as in Example 1 was 0.05 M Tris hydrochloride buffer solution (pH = 7.6, manufactured by Wako Pure Chemical Industries), and allowed to stand for 24 days. . Thereafter, filtration, water washing, and tetrahydrofuran washing treatment were performed in the same manner as in Example 1. Also in the case of this tetrahydrofuran washing treatment, no absorption of pyrene was observed in the second and third washing filtrates.

図4には、0.05Mトリス塩酸塩緩衝溶液を用いてピレン内包処理をした炭酸カルシウムの粉末X線回折パターンと拡散反射紫外可視スペクトルを示す。炭酸カルシウムの結晶相は完全にカルサイトへと相転移しており、また十分な洗浄の後もピレン由来の紫外線吸収が観測でき、炭酸カルシウム内にピレンが内包されていることがわかった。また、実施例1と同様の方法で測定した蛍光スペクトルでは、約460nmピークに持つ蛍光発光が見られた。

・実施例−3 1M塩化ナトリウム水溶液を用いた炭酸カルシウムへのピレンの内包

実施例1の方法で合成したバテライト型炭酸カルシウムを用い、実施例1と同じ方法で用いる水溶液を1Mの塩化ナトリウム溶液とし、24日間静置した。その後、実施例1と同様の方法でろ別、水洗浄、テトラヒドロフラン洗浄処理を行った。このテトラヒドロフランの洗浄処理の場合も、二度目および三度目の洗浄ろ液にはピレンの吸収は観測されなかった。
FIG. 4 shows a powder X-ray diffraction pattern and a diffuse reflection UV-visible spectrum of calcium carbonate treated with pyrene using a 0.05 M Tris hydrochloride buffer solution. The crystal phase of calcium carbonate was completely transformed into calcite, and UV absorption from pyrene was observed even after thorough washing, indicating that pyrene was encapsulated in calcium carbonate. Further, in the fluorescence spectrum measured by the same method as in Example 1, fluorescence emission having a peak at about 460 nm was observed.

Example-3 Encapsulation of pyrene in calcium carbonate using 1M sodium chloride aqueous solution

Using the vaterite-type calcium carbonate synthesized by the method of Example 1, the aqueous solution used by the same method as in Example 1 was made into a 1M sodium chloride solution and allowed to stand for 24 days. Thereafter, filtration, water washing, and tetrahydrofuran washing treatment were performed in the same manner as in Example 1. Also in the case of this tetrahydrofuran washing treatment, no absorption of pyrene was observed in the second and third washing filtrates.

図5には、1Mの塩化ナトリウム溶液を用いてピレン内包処理を行った炭酸カルシウムの粉末X線回折パターンと拡散反射紫外可視スペクトルを示す。炭酸カルシウムの結晶相は完全にカルサイトへと相転移しており、また十分な洗浄の後もピレン由来の紫外線吸収が観測でき、炭酸カルシウム内にピレンが内包されていることがわかった。また、実施例1と同様の方法で測定した蛍光スペクトルでは、約460nmピークに持つ蛍光発光が見られた。

・実施例−4 0.1M塩化ナトリウム水溶液を用いた炭酸カルシウムへのピレンの内包

実施例1の方法で合成したバテライト型炭酸カルシウムを用い、実施例1と同じ方法で用いる水溶液を0.1Mの塩化ナトリウム溶液とし、24日間静置した。その後、実施例1と同様の方法でろ別、水洗浄、テトラヒドロフラン洗浄処理を行った。このテトラヒドロフランの洗浄処理の場合も、二度目および三度目の洗浄ろ液にはピレンの吸収は観測されなかった。
FIG. 5 shows a powder X-ray diffraction pattern and a diffuse reflection ultraviolet-visible spectrum of calcium carbonate subjected to pyrene encapsulation using a 1M sodium chloride solution. The crystal phase of calcium carbonate was completely transformed into calcite, and UV absorption from pyrene was observed even after thorough washing, indicating that pyrene was encapsulated in calcium carbonate. Further, in the fluorescence spectrum measured by the same method as in Example 1, fluorescence emission having a peak at about 460 nm was observed.

Example 4 Encapsulation of pyrene in calcium carbonate using 0.1 M sodium chloride aqueous solution

Using the vaterite-type calcium carbonate synthesized by the method of Example 1, an aqueous solution used by the same method as in Example 1 was made into a 0.1 M sodium chloride solution and allowed to stand for 24 days. Thereafter, filtration, water washing, and tetrahydrofuran washing treatment were performed in the same manner as in Example 1. Also in the case of this tetrahydrofuran washing treatment, no absorption of pyrene was observed in the second and third washing filtrates.

図6には、0.1Mの塩化ナトリウム溶液を用いてピレン内包処理を行った炭酸カルシウムの粉末X線回折パターンと拡散反射紫外可視スペクトルを示す。炭酸カルシウムの結晶相は完全にカルサイトへと相転移しており、また十分な洗浄の後もピレン由来の紫外線吸収が観測でき、炭酸カルシウム内にピレンが内包されていることがわかった。また、実施例1と同様の方法で測定した蛍光スペクトルでは、約460nmピークに持つ蛍光発光が見られた。

・実施例−5 0.2M塩化カルシウム水溶液を用いた炭酸カルシウムへのピレンの内包

実施例1の方法で合成したバテライト型炭酸カルシウムを用い、実施例1と同じ方法で用いる水溶液を0.2Mの塩化カルシウム水溶液とし、24日間静置した。その後、実施例1と同様の方法でろ別、水洗浄、テトラヒドロフラン洗浄処理を行った。このテトラヒドロフランの洗浄処理の場合も、二度目および三度目の洗浄ろ液にはピレンの吸収は観測されなかった。
FIG. 6 shows a powder X-ray diffraction pattern and diffuse reflection UV-visible spectrum of calcium carbonate subjected to pyrene encapsulation using a 0.1 M sodium chloride solution. The crystal phase of calcium carbonate was completely transformed into calcite, and UV absorption from pyrene was observed even after thorough washing, indicating that pyrene was encapsulated in calcium carbonate. Further, in the fluorescence spectrum measured by the same method as in Example 1, fluorescence emission having a peak at about 460 nm was observed.

-Example-5 Encapsulation of pyrene in calcium carbonate using 0.2M calcium chloride aqueous solution

Using the vaterite-type calcium carbonate synthesized by the method of Example 1, the aqueous solution used in the same manner as in Example 1 was changed to a 0.2M calcium chloride aqueous solution and allowed to stand for 24 days. Thereafter, filtration, water washing, and tetrahydrofuran washing treatment were performed in the same manner as in Example 1. Also in the case of this tetrahydrofuran washing treatment, no absorption of pyrene was observed in the second and third washing filtrates.

図7には、0.2Mの塩化カルシウム水溶液を用いてピレンを内包させた炭酸カルシウムの粉末X線回折パターンと拡散反射紫外可視スペクトルを示す。炭酸カルシウムの結晶相は完全にカルサイトへと相転移しており、また十分な洗浄の後もピレン由来の紫外線吸収が観測でき、炭酸カルシウム内にピレンが内包されていることがわかった。また、図8に示すように、実施例1と同様の方法で測定した蛍光スペクトルでは、約460nmピークに持つ蛍光発光が見られた。

・実施例−6 1Mトリス塩酸塩緩衝溶液を用いた炭酸カルシウムへのピレンの内包

1Mの炭酸アンモニウム水溶液100mLを1Mの塩化カルシウム水溶液100mLに撹拌しながら加え、10分間撹拌の後、ろ別、十分量の水で洗浄、空気中で乾燥させることでバテライト型炭酸カルシウムを合成した。図9左には、この炭酸カルシウムの粉末X線回折パターンを示す。結晶型がバテライト型であり、実施例1で用いた炭酸カルシウムを類似の化合物が合成できたことを確認した。この炭酸カルシウム1gを、実施例1と同様の方法でピレンを含浸し、その後1Mのトリス塩酸塩緩衝溶液に実施例1と同様の方法で浸漬し、静置した。その後、実施例1と同様の方法でろ別、水洗浄、テトラヒドロフラン洗浄処理を行った。このテトラヒドロフランの洗浄処理の場合も、二度目および三度目の洗浄ろ液にはピレンの吸収は観測されなかった。
FIG. 7 shows a powder X-ray diffraction pattern and a diffuse reflection ultraviolet-visible spectrum of calcium carbonate in which pyrene is encapsulated using a 0.2 M calcium chloride aqueous solution. The crystal phase of calcium carbonate was completely transformed into calcite, and UV absorption from pyrene was observed even after thorough washing, indicating that pyrene was encapsulated in calcium carbonate. Further, as shown in FIG. 8, in the fluorescence spectrum measured by the same method as in Example 1, fluorescence emission having a peak at about 460 nm was observed.

Example-6 Incorporation of pyrene into calcium carbonate using 1M Tris hydrochloride buffer solution

100 mL of 1M aqueous ammonium carbonate solution was added to 100 mL of 1M aqueous calcium chloride solution with stirring. After stirring for 10 minutes, the solution was filtered, washed with a sufficient amount of water, and dried in air to synthesize vaterite-type calcium carbonate. The left side of FIG. 9 shows the powder X-ray diffraction pattern of this calcium carbonate. It was confirmed that the crystal type was a vaterite type and a similar compound could be synthesized from the calcium carbonate used in Example 1. 1 g of this calcium carbonate was impregnated with pyrene in the same manner as in Example 1, and then immersed in 1M Tris hydrochloride buffer solution in the same manner as in Example 1 and allowed to stand. Thereafter, filtration, water washing, and tetrahydrofuran washing treatment were performed in the same manner as in Example 1. Also in the case of this tetrahydrofuran washing treatment, no absorption of pyrene was observed in the second and third washing filtrates.

図9右には、1Mのトリス塩酸塩緩衝溶液を用いてピレン内包処理を行った炭酸カルシウムの粉末X線回折パターンを示す。炭酸カルシウムの結晶型が完全にカルサイト型に相転移したことが確認できた。また、図10には、ピレン内包処理前後の拡散反射紫外可視スペクトルを示す。内包処理前には全くない300〜380nmのピレンの吸収が観測された。また、実施例1と同様の方法で測定した蛍光スペクトルでは、約460nmピークに持つ蛍光発光が見られた。

・実施例−7 1Mトリス塩酸塩緩衝溶液を用いた市販カルサイト型炭酸カルシウムへのピレン内包の検証

市販のカルサイト型炭酸カルシウム(関東化学株式会社)を用い、実施例1と同じ方法でピレン内包処理を行った。その後、実施例1と同様の方法でろ別、水洗浄、テトラヒドロフラン洗浄処理を行った。このテトラヒドロフランの洗浄処理の場合も、一度目のろ液にはピレンは観測できたが、二度目および三度目の洗浄ろ液にはピレンの吸収は観測されなかった。
The right side of FIG. 9 shows a powder X-ray diffraction pattern of calcium carbonate subjected to pyrene encapsulation using a 1M Tris hydrochloride buffer solution. It was confirmed that the crystal form of calcium carbonate was completely transformed into the calcite type. Moreover, in FIG. 10, the diffuse reflection ultraviolet visible spectrum before and behind a pyrene inclusion process is shown. Absorption of pyrene at 300 to 380 nm, which was completely absent before the encapsulation treatment, was observed. Further, in the fluorescence spectrum measured by the same method as in Example 1, fluorescence emission having a peak at about 460 nm was observed.

-Example-7 Verification of pyrene inclusion in commercially available calcite-type calcium carbonate using 1M Tris hydrochloride buffer solution

Using commercially available calcite-type calcium carbonate (Kanto Chemical Co., Inc.), pyrene encapsulation treatment was performed in the same manner as in Example 1. Thereafter, filtration, water washing, and tetrahydrofuran washing treatment were performed in the same manner as in Example 1. In this tetrahydrofuran washing treatment, pyrene was observed in the first filtrate, but no absorption of pyrene was observed in the second and third washing filtrates.

図11には、ピレン内包処理前後の粉末X線回折パターンを示す。結晶構造に特に変化が無いことがわかった。図12には、このピレン内包処理後の拡散反射紫外可視スペクトルを示す。参考として示した実施例−5のスペクトルと比較して、この市販のカルサイト型炭酸カルシウムを用いた試料中にはピレンは内包されていないことがわかった。さらに、この炭酸カルシウムを少量の酢酸水溶液で溶解し、トルエン抽出した溶液を紫外可視スペクトルで分析した場合においてもピレンの吸収は全く観測できず、この炭酸カルシウム中にピレンが存在しないことを実証した。

・実施例−8 1Mトリス塩酸塩緩衝溶液を用いた炭酸カルシウムへのアセトアミノフェンの内包

実施例1に示す方法で、ピレンの代わりにアセトアミノフェンを用いて、炭酸カルシウムへのアセトアミノフェン内包処理を行った。その後、実施例1と同様の方法でろ別、水洗浄、テトラヒドロフラン洗浄処理を行った。このテトラヒドロフランの洗浄処理の場合も、一度目のろ液にはアセトアミノフェンは観測できたが、二度目および三度目の洗浄ろ液にアセトアミノフェンの吸収は観測されなかった。図13には、この炭酸カルシウムの粉末X線回折パターンとSEM像を示す。X線回折パターンより結晶型がカルサイト型であること、SEM像より粒子の形状は六面体構造であることが確認できた。図14には、このアセトアミノフェン内包処理後の炭酸カルシウムの拡散反射紫外可視スペクトルを示す。内包処理前には全くない250nmをピークに持つアセトアミノフェンの吸収が観測され、アセトアミノフェンが内包できていることを確認した。

・実施例−9 1M塩化ナトリウム水溶液を用いた炭酸カルシウムへのアセトアミノフェンの内包

実施例8に示す方法で、溶液に1M塩化ナトリウム水溶液を用いて、炭酸カルシウムへのアセトアミノフェン内包処理を行った。その後、実施例1と同様の方法でろ別、水洗浄、テトラヒドロフラン洗浄処理を行った。このテトラヒドロフランの洗浄処理の場合も、二度目および三度目の洗浄ろ液にはアセトアミノフェンの吸収が観測されなかった。図15には、このアセトアミノフェン内包処理後の炭酸カルシウムの粉末X線回折パターンと拡散反射紫外可視スペクトルを示す。X線回折パターンより結晶型がカルサイト型であること、また、内包処理前には全くない250nmをピークに持つアセトアミノフェンの吸収が観測され、アセトアミノフェンが内包できていることを確認した。

・実施例−10 0.2M塩化カルシウム水溶液を用いた炭酸カルシウムへのアセトアミノフェンの内包

実施例8に示す方法で、溶液に0.2M塩化カルシウム水溶液を用いて、炭酸カルシウムへのアセトアミノフェン内包処理を行った。その後、実施例1と同様の方法でろ別、水洗浄、テトラヒドロフラン洗浄処理を行った。このテトラヒドロフランの洗浄処理の場合も、二度目および三度目の洗浄ろ液にはアセトアミノフェンの吸収が観測されなかった。図16には、このアセトアミノフェン内包処理後の炭酸カルシウムの粉末X線回折パターンと拡散反射紫外可視スペクトルを示す。X線回折パターンより結晶型がカルサイト型であること、また、内包処理前には全くない250nmをピークに持つアセトアミノフェンの吸収が観測され、アセトアミノフェンが内包できていることを確認した。
FIG. 11 shows the powder X-ray diffraction patterns before and after the pyrene encapsulation treatment. It was found that there was no particular change in the crystal structure. FIG. 12 shows the diffuse reflection ultraviolet-visible spectrum after this pyrene encapsulation treatment. Compared to the spectrum of Example-5 shown as a reference, it was found that pyrene was not included in the sample using this commercially available calcite-type calcium carbonate. Furthermore, even when this calcium carbonate was dissolved in a small amount of acetic acid aqueous solution and the toluene-extracted solution was analyzed by UV-visible spectrum, no absorption of pyrene was observed, demonstrating the absence of pyrene in this calcium carbonate. .

Example-8 Encapsulation of acetaminophen in calcium carbonate using 1M Tris hydrochloride buffer solution

By the method shown in Example 1, acetaminophen inclusion treatment in calcium carbonate was performed using acetaminophen instead of pyrene. Thereafter, filtration, water washing, and tetrahydrofuran washing treatment were performed in the same manner as in Example 1. In this tetrahydrofuran washing treatment, acetaminophen was observed in the first filtrate, but no acetaminophen absorption was observed in the second and third washing filtrates. FIG. 13 shows the powder X-ray diffraction pattern and SEM image of this calcium carbonate. From the X-ray diffraction pattern, it was confirmed that the crystal type was calcite type, and that the particle shape was a hexahedral structure from the SEM image. FIG. 14 shows a diffuse reflection ultraviolet-visible spectrum of calcium carbonate after this acetaminophen encapsulation treatment. Absorption of acetaminophen having a peak at 250 nm, which was not present before the encapsulation treatment, was observed, and it was confirmed that acetaminophen was encapsulated.

Example 9 Encapsulation of acetaminophen in calcium carbonate using 1M aqueous sodium chloride solution

By the method shown in Example 8, 1M sodium chloride aqueous solution was used as the solution, and acetaminophen encapsulation treatment into calcium carbonate was performed. Thereafter, filtration, water washing, and tetrahydrofuran washing treatment were performed in the same manner as in Example 1. Also in this tetrahydrofuran washing treatment, no absorption of acetaminophen was observed in the second and third washing filtrates. FIG. 15 shows the powder X-ray diffraction pattern and diffuse reflection UV-visible spectrum of calcium carbonate after the acetaminophen encapsulation treatment. From the X-ray diffraction pattern, it was confirmed that the crystal type was calcite type, and absorption of acetaminophen having a peak of 250 nm, which was not included before the encapsulation treatment, was observed, and that acetaminophen was encapsulated. .

Example-10 Encapsulation of acetaminophen in calcium carbonate using 0.2M calcium chloride aqueous solution

By the method shown in Example 8, a 0.2-M calcium chloride aqueous solution was used for the solution, and acetaminophen encapsulation treatment into calcium carbonate was performed. Thereafter, filtration, water washing, and tetrahydrofuran washing treatment were performed in the same manner as in Example 1. Also in this tetrahydrofuran washing treatment, no absorption of acetaminophen was observed in the second and third washing filtrates. FIG. 16 shows the powder X-ray diffraction pattern and diffuse reflection UV-visible spectrum of calcium carbonate after the acetaminophen encapsulation. From the X-ray diffraction pattern, it was confirmed that the crystal type was calcite type, and absorption of acetaminophen having a peak of 250 nm, which was not included before the encapsulation treatment, was observed, and that acetaminophen was encapsulated. .

炭酸カルシウムは、石灰石、貝殻や鶏卵殻等の主成分であり、環境中や生体内での負荷はほとんど無く、分解性能も高い。この炭酸カルシウムに水への溶解性が低い有機分子を内包させることができれば、例えば、以下の様な分野で応用することができる。今回の特許技術では、蛍光性の分子であるピレンも内包できているため、種々の蛍光プローブ粒子への応用が期待できる。また、薬剤であるアセトアミノフェンが内包できているため、有機分子の薬剤を内包した炭酸カルシウムでは、酸やキレート剤の作用による炭酸カルシウムの溶解をトリガーとしたドラッグデリバリーシステムへの応用も可能である。   Calcium carbonate is a main component of limestone, shells, chicken eggshells, etc., has almost no load in the environment or in vivo, and has high decomposition performance. If this calcium carbonate can encapsulate organic molecules having low solubility in water, it can be applied in the following fields, for example. In this patented technology, pyrene, which is a fluorescent molecule, can also be encapsulated, so application to various fluorescent probe particles can be expected. In addition, since the drug acetaminophen is encapsulated, calcium carbonate encapsulating organic molecules can be applied to drug delivery systems triggered by dissolution of calcium carbonate by the action of acids and chelating agents. is there.

Claims (3)

バテライト型炭酸カルシウム粒子を、水に不溶性もしくは難溶性の有機分子の有機溶媒溶液に含浸後有機溶媒を蒸発させる工程、得られた炭酸カルシウム粒子を水あるいは緩衝液もしくは塩類水溶液で処理してバテライト相及び/又はカルサイト相からなる結晶性炭酸カルシウムに水に不溶性もしくは難溶性の有機分子を内包させる工程を包含することを特徴とする、水に不溶性もしくは難溶性の有機分子を内包した結晶性炭酸カルシウムの製造法。 The process of evaporating the organic solvent after impregnating the vaterite-type calcium carbonate particles in an organic solvent solution of organic molecules that are insoluble or sparingly soluble in water, treating the obtained calcium carbonate particles with water, a buffer solution or an aqueous salt solution, And / or a step of encapsulating water-insoluble or hardly soluble organic molecules in crystalline calcium carbonate composed of a calcite phase. Calcium production method. 前記有機分子の水への溶解度が、20℃において20mg/mL以下である、請求項1に記載の方法。 The method according to claim 1, wherein the solubility of the organic molecule in water is 20 mg / mL or less at 20 ° C. 水に不溶性あるいは難溶性の有機分子をカルサイト相からなる結晶性炭酸カルシウムに内包してなる結晶性炭酸カルシウムであって、前記有機分子は有機溶媒に可溶性であり、前記結晶性炭酸カルシウムの有機溶媒による洗浄もしくは含浸で前記有機分子は実質的に溶出しないことを特徴とする、結晶性炭酸カルシウム。 Crystalline calcium carbonate in which organic molecules that are insoluble or hardly soluble in water are encapsulated in crystalline calcium carbonate having a calcite phase, the organic molecules being soluble in an organic solvent, and the crystalline calcium carbonate organic Crystalline calcium carbonate, wherein the organic molecules are not substantially eluted by washing or impregnation with a solvent.
JP2013136608A 2013-06-28 2013-06-28 Organic molecularly encapsulated crystalline calcium carbonate and process for producing the same Expired - Fee Related JP6112721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013136608A JP6112721B2 (en) 2013-06-28 2013-06-28 Organic molecularly encapsulated crystalline calcium carbonate and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013136608A JP6112721B2 (en) 2013-06-28 2013-06-28 Organic molecularly encapsulated crystalline calcium carbonate and process for producing the same

Publications (2)

Publication Number Publication Date
JP2015010057A JP2015010057A (en) 2015-01-19
JP6112721B2 true JP6112721B2 (en) 2017-04-12

Family

ID=52303525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013136608A Expired - Fee Related JP6112721B2 (en) 2013-06-28 2013-06-28 Organic molecularly encapsulated crystalline calcium carbonate and process for producing the same

Country Status (1)

Country Link
JP (1) JP6112721B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5516953B2 (en) * 2010-01-12 2014-06-11 独立行政法人産業技術総合研究所 Substance-encapsulating calcium carbonate, its production method and use
EP2608772A2 (en) * 2010-08-23 2013-07-03 President and Fellows of Harvard College Particles for drug delivery and other applications
JP5639551B2 (en) * 2011-09-13 2014-12-10 株式会社コンカレント Method for producing spherical calcium carbonate fine particles

Also Published As

Publication number Publication date
JP2015010057A (en) 2015-01-19

Similar Documents

Publication Publication Date Title
Cevasco et al. Are ionic liquids a proper solution to current environmental challenges?
Lv et al. Improvement in thermal stability of sucralose by γ-cyclodextrin metal-organic frameworks
Chen et al. Tailor-made stable Zr (IV)-based metal–organic frameworks for laser desorption/ionization mass spectrometry analysis of small molecules and simultaneous enrichment of phosphopeptides
Miao et al. A Dual‐Functional Metallogel of Amphiphilic Copper (II) Quinolinol: Redox Responsiveness and Enantioselectivity
Wang et al. Fabrication of gelatin microgels by a “cast” strategy for controlled drug release
Cantaert et al. The role of poly (aspartic acid) in the precipitation of calcium phosphate in confinement
Devi et al. Eggshell membrane: a natural biotemplate to synthesize fluorescent gold nanoparticles
US10875795B2 (en) Process for removal of anion from aqueous solution
Parambil et al. Influence of solvent polarity and supersaturation on template-induced nucleation of carbamazepine crystal polymorphs
Gao et al. Self‐Assembly of Nanocellulose and Indomethacin into Hierarchically Ordered Structures with High Encapsulation Efficiency for Sustained Release Applications
US10829592B2 (en) Method for preparing polyaniline complex with antimicrobial activity and heavy metal removal efficiency using conductive poly aniline polymer doped with organic acid and metal ion in defined order
Mayans et al. Effect of Solvent Choice on the Self‐Assembly Properties of a Diphenylalanine Amphiphile Stabilized by an Ion Pair
JP6112721B2 (en) Organic molecularly encapsulated crystalline calcium carbonate and process for producing the same
Sulthan et al. A new era of chitin synthesis and dissolution using deep eutectic solvents-comparison with ionic liquids
Haines et al. Novel resorcinarene-based pH-triggered gelator
Vasiliu et al. In situ CaCO3 mineralization controlled by carbonate source within chitosan-based cryogels
Giuri et al. Water remediation from pollutant agents by the use of an environmentally friendly supramolecular hydrogel
Lim et al. Toroidal Nanostructures from Self‐Assembly of Block Copolypeptides Based on Poly (l‐Arginine) and β‐Sheet Peptide
Shilova et al. Polyelectrolyte complexes of chitosan with sodium carboxymethyl cellulose in water–alcohol media and microcapsules based on them
KR20150000757A (en) Microalgae bead, and preparing method of the same
Ghosh et al. Self-assembly and potassium ion triggered disruption of peptide-based soft structures
Yang et al. Two barbituric acid–polyoxometalate hybrids with morphology-tunable supramolecular self-assemblies for the degradation of organic dyes
CN109134699B (en) Chitosan nanocrystal, preparation method and dispersion liquid thereof
JP2009519284A (en) Salt of clopidogrel with polyanion and its use for the manufacture of pharmaceutical preparations
JP5272168B2 (en) Method for producing crosslinked chitosan

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170313

R150 Certificate of patent or registration of utility model

Ref document number: 6112721

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees