JP6109472B2 - Liquid crystal display device and method of manufacturing liquid crystal display device - Google Patents

Liquid crystal display device and method of manufacturing liquid crystal display device Download PDF

Info

Publication number
JP6109472B2
JP6109472B2 JP2011257646A JP2011257646A JP6109472B2 JP 6109472 B2 JP6109472 B2 JP 6109472B2 JP 2011257646 A JP2011257646 A JP 2011257646A JP 2011257646 A JP2011257646 A JP 2011257646A JP 6109472 B2 JP6109472 B2 JP 6109472B2
Authority
JP
Japan
Prior art keywords
liquid crystal
substrate
display device
micropore
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011257646A
Other languages
Japanese (ja)
Other versions
JP2013113904A (en
Inventor
動旭 趙
動旭 趙
Original Assignee
エルジー ディスプレイ カンパニー リミテッド
エルジー ディスプレイ カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エルジー ディスプレイ カンパニー リミテッド, エルジー ディスプレイ カンパニー リミテッド filed Critical エルジー ディスプレイ カンパニー リミテッド
Priority to JP2011257646A priority Critical patent/JP6109472B2/en
Priority to KR1020120122531A priority patent/KR101941454B1/en
Publication of JP2013113904A publication Critical patent/JP2013113904A/en
Application granted granted Critical
Publication of JP6109472B2 publication Critical patent/JP6109472B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13793Blue phases

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)

Description

本発明は、液晶材料としてブルー相液晶を含む液晶表示装置に関し、性能面、製造面での改善を図った液晶表示装置および液晶表示装置の製造方法に関する。   The present invention relates to a liquid crystal display device including a blue phase liquid crystal as a liquid crystal material, and relates to a liquid crystal display device improved in performance and manufacturing, and a method of manufacturing the liquid crystal display device.

液晶パネルに用いられる液晶材料の1つとして、ブルー相液晶が挙げられる。ブルー相液晶は、らせんピッチの比較的短いキラルネマチック相と等方相の間に出現する液晶相である。そして、このブルー相液晶は、ネマティック液晶と比較して、高速な応答を実現することができ、より具体的には、応答速度が10〜100μSと速い特徴がある。   One of liquid crystal materials used for liquid crystal panels is blue phase liquid crystal. A blue phase liquid crystal is a liquid crystal phase that appears between a chiral nematic phase having a relatively short helical pitch and an isotropic phase. The blue phase liquid crystal can realize a high-speed response as compared with the nematic liquid crystal, and more specifically, has a feature that the response speed is as fast as 10 to 100 μS.

このブルー相液晶を適用する従来技術として、高分子を用いてブルー相液晶を安定化させる技術がある。従来の高分子安定化を図った、ブルー相液晶を含む液晶表示装置の製造工程は、以下のようになる。
ステップ1:液晶に光重合性モノマーを添加することで、モノマーを液晶に混ぜる。
ステップ2:ホットプレート上でブルー相液晶が現れる温度に制御する。(ブルー相は±0.5℃制御が必要)
ステップ3:ブルー相液晶が現れた状態でUV照射し、高分子化することでブルー相を安定化する。
As a conventional technique to which the blue phase liquid crystal is applied, there is a technique for stabilizing the blue phase liquid crystal using a polymer. A manufacturing process of a conventional liquid crystal display device including a blue phase liquid crystal in which the polymer is stabilized is as follows.
Step 1: Add monomer to liquid crystal by adding photopolymerizable monomer to liquid crystal.
Step 2: Control the temperature so that the blue phase liquid crystal appears on the hot plate. (Blue phase needs to be controlled at ± 0.5 ℃)
Step 3: The blue phase is stabilized by irradiating with UV in a state where the blue phase liquid crystal appears and polymerizing.

このような工程を経ることで、高分子ネットワークが作られて、その中で、ブルー相液晶に配向を持たせることができる。この結果、電圧の印加により、高速駆動が可能な液晶表示素子を得ることができる(例えば、特許文献1参照)。   Through such a process, a polymer network is formed, in which the blue phase liquid crystal can be oriented. As a result, a liquid crystal display element capable of high-speed driving can be obtained by applying a voltage (see, for example, Patent Document 1).

図5は、液晶材料としてブルー相液晶を含む従来の液晶表示装置のパネル断面を示す図である。図2に示すように、スペーサを介して向かい合う画素基板と対向基板の間に、UV照射によって高分子ネットワークが形成され、この高分子ネットワーク内のブルー相液晶により、高速駆動を実現している。   FIG. 5 is a diagram showing a panel cross section of a conventional liquid crystal display device including a blue phase liquid crystal as a liquid crystal material. As shown in FIG. 2, a polymer network is formed by UV irradiation between a pixel substrate and a counter substrate facing each other via a spacer, and high-speed driving is realized by a blue phase liquid crystal in the polymer network.

国際公開第2005/090520号パンフレットInternational Publication No. 2005/090520 Pamphlet

しかしながら、ブルー相液晶を含む液晶表示装置の実用化に当たって、従来技術には、以下のような課題がある。
従来技術においては、液晶に光重合性モノマーを添加して、UV照射による高分子化を行っている。しかしながら、ブラックマトリクスなどの遮光層により、UV光が照射されない領域が存在し、未反応のモノマーが残ることとなる。これにより、保持率の低下が起こり、表示ムラが発生する。
However, the prior art has the following problems in putting a liquid crystal display device including a blue phase liquid crystal into practical use.
In the prior art, a photopolymerizable monomer is added to a liquid crystal and polymerized by UV irradiation. However, due to a light shielding layer such as a black matrix, there is a region that is not irradiated with UV light, and unreacted monomers remain. As a result, the retention rate decreases and display unevenness occurs.

また、UV照射の面内均一性、あるいはブルー相液晶を現出させるための温度管理が正確でないと、形成されるポリマーが不完全となり、面内で不均一になる。これにより、初期表示ムラが発生する、あるいは、長時間駆動した際にポリマーの網目構造が壊れることによる表示ムラが発生する。   Further, if the in-plane uniformity of UV irradiation or the temperature control for revealing the blue phase liquid crystal is not accurate, the polymer to be formed becomes incomplete and non-uniform in the plane. As a result, initial display unevenness occurs, or display unevenness occurs due to breakage of the polymer network structure when driven for a long time.

さらに、ブルー相液晶を得るためには、先のステップ2において、ブルー相液晶の出現範囲である約1度以内の範囲の温度制御が必要となり、製造過程における大きな制約となってしまう。   Furthermore, in order to obtain a blue phase liquid crystal, in the previous step 2, temperature control within a range of about 1 degree, which is the appearance range of the blue phase liquid crystal, is necessary, which is a major limitation in the manufacturing process.

このような問題点を、性能上の問題点と、工程上の問題点とに大別すると、以下のように整理することができる。
(1)性能上の問題点
・初期表示ムラ、低コントラスト
・長時間駆動による表示ムラ
・保持率低下
(2)工程上の問題点
・高い精度の温度制御(±0.5度)、および面内均一UV照射工程が必要
Such problems can be roughly classified into performance problems and process problems as follows.
(1) Performance problems-Initial display unevenness, low contrast-Display unevenness due to long-time driving-Retention rate reduction (2) Problems in process-High-accuracy temperature control (± 0.5 degrees) and surface Requires uniform UV irradiation process

本発明は、前記のような課題を解決するためになされたものであり、液晶材料としてブルー相液晶を用いた際に生じる性能面と工程面の問題を解決し、より実用的な液晶表示素子および液晶表示装置の製造方法を得ることを目的とする。   The present invention has been made in order to solve the above-described problems, and solves the performance and process problems that occur when a blue phase liquid crystal is used as a liquid crystal material. And it aims at obtaining the manufacturing method of a liquid crystal display device.

本発明に係る液晶表示装置は、互いに対向する第1基板および第2基板と、第1基板と第2基板との間に封止される液晶とを備えた液晶表示装置であって、液晶として、ブルー相液晶を含む液晶材料が用いられ、1つ1つの小部屋としての微細孔が、空間的に互いに連結しながら3次元的に配列されて1つの大空間を形成し、第1基板と第2基板との間に挿入される微細孔構造層をさらに備え、ブルー相液晶は、微細孔構造層の1つの大空間内に注入された状態となることで、微細孔構造層に設けられた微細孔のそれぞれに分かれて封止された状態となり、微細孔構造層に設けられた微細孔のそれぞれは、0.3μm以上、1μm以下の直径を有する略球形で構成されているものである。 A liquid crystal display device according to the present invention is a liquid crystal display device including a first substrate and a second substrate facing each other, and a liquid crystal sealed between the first substrate and the second substrate, and the liquid crystal display device A liquid crystal material including a blue phase liquid crystal is used, and the micro holes as the small chambers are spatially connected to each other to be three-dimensionally arranged to form one large space, further comprising a microporous structure layer inserted between the second substrate, the blue phase liquid crystal is a Rukoto such as the one state is injected into a large space of microporous structure layer, provided on the microporous structure layer was a state sealed divided into respective micropores, each of fine holes provided in the microporous structure layer, 0.3 [mu] m or more, those which are constituted by a substantially spherical having a diameter of less than 1μm is there.

また、本発明に係る液晶表示装置の製造方法は、1つ1つの小部屋としての微細孔が、空間的に互いに連結しながら3次元的に配列されて1つの大空間を形成する微細孔構造層の一方の面に第1基板を貼り付け、一方の面と反対側の他方の面に第2基板を貼り付けるステップと、第1基板と第2基板との間に挟まれた微細孔構造層の1つの大空間内にブルー相液晶を注入することで、微細孔構造層に設けられた微細孔のそれぞれにブルー相液晶を封止するステップとを備え、微細孔構造層に設けられた微細孔のそれぞれは、0.3μm以上、1μm以下の直径を有する略球形で構成されているものである。 In addition, the method for manufacturing a liquid crystal display device according to the present invention has a micropore structure in which micropores as individual small chambers are three-dimensionally arranged while being spatially connected to each other to form one large space. A step of attaching a first substrate to one surface of the layer and attaching a second substrate to the other surface opposite to the one surface; and a microporous structure sandwiched between the first substrate and the second substrate A step of sealing the blue phase liquid crystal in each of the micropores provided in the microporous structure layer by injecting the blue phase liquid crystal into one large space of the layer. Each of the micropores is 0 . It is comprised by the substantially spherical shape which has a diameter of 3 micrometers or more and 1 micrometer or less.

本発明によれば、従来のような高分子ネットワークを用いる代わりに、微細孔が形成された構造層を用い、この構造層の隙間にブルー相液晶を充填することで、モノマーを高分子化するためのUV照射、温度制御を不要とすることにより、液晶材料としてブルー相液晶を用いた際に生じる性能面と工程面の問題を解決し、より実用的な液晶表示素子および液晶表示装置の製造方法を得ることができる。   According to the present invention, instead of using a conventional polymer network, a structural layer in which micropores are formed is used, and a monomer is polymerized by filling a gap between the structural layers with a blue phase liquid crystal. By eliminating the need for UV irradiation and temperature control, the problems of performance and process that occur when using blue phase liquid crystal as a liquid crystal material are solved, and more practical liquid crystal display elements and liquid crystal display devices are manufactured. You can get the method.

本発明の実施の形態1において、液晶材料としてブルー相液晶を含む液晶表示装置のパネル断面を示す図である。In Embodiment 1 of this invention, it is a figure which shows the panel cross section of the liquid crystal display device which contains a blue phase liquid crystal as a liquid-crystal material. 本発明の実施の形態1における微細孔構造フィルムの模式図である。It is a schematic diagram of the microporous structure film in Embodiment 1 of this invention. 本発明の実施の形態1における液晶表示装置の製造に関する一連処理を示したフローチャートである。It is the flowchart which showed the series of processes regarding manufacture of the liquid crystal display device in Embodiment 1 of this invention. 本発明の実施の形態1における液晶表示装置の性能検証試験の結果をまとめたものである。The result of the performance verification test of the liquid crystal display device in Embodiment 1 of this invention is put together. 液晶材料としてブルー相液晶を含む従来の液晶表示装置のパネル断面を示す図である。It is a figure which shows the panel cross section of the conventional liquid crystal display device containing a blue phase liquid crystal as a liquid crystal material.

以下、本発明の液晶表示素子および液晶表示装置の製造方法の好適な実施の形態につき図面を用いて説明する。   Hereinafter, preferred embodiments of a liquid crystal display element and a method for producing a liquid crystal display device of the present invention will be described with reference to the drawings.

実施の形態1.
上述したように、ブルー相液晶を充填するための安定化構造(安定化法)として高分子構造を用いる従来の方法では、高精度にUV照射や温度制御を行う必要があった。これに対して、本発明は、高分子構造の代わりに、微細孔が形成されたフィルムを用いることで、均一でありながら、丈夫な安定化構造を容易に実現することを技術的特徴としている。
Embodiment 1 FIG.
As described above, in the conventional method using a polymer structure as a stabilization structure (stabilization method) for filling the blue phase liquid crystal, it is necessary to perform UV irradiation and temperature control with high accuracy. On the other hand, the present invention has a technical feature of easily realizing a strong and stable structure while being uniform by using a film in which micropores are formed instead of a polymer structure. .

図1は、本発明の実施の形態1において、液晶材料としてブルー相液晶を含む液晶表示装置のパネル断面を示す図である。この図1に示す本実施の形態1に係る液晶表示装置は、ブルー相液晶1、水平電極11、画素基板12、対向基板13、および微細孔構造フィルム21を備えて構成されている。   FIG. 1 is a diagram showing a panel cross section of a liquid crystal display device including a blue phase liquid crystal as a liquid crystal material in Embodiment 1 of the present invention. The liquid crystal display device according to the first embodiment shown in FIG. 1 includes a blue phase liquid crystal 1, a horizontal electrode 11, a pixel substrate 12, a counter substrate 13, and a microporous structure film 21.

一方の面に水平電極11が設けられた画素基板12と、水平電極11と向かい合うように画素基板12に対向する対向基板13との間には、微細孔構造フィルム21(微細孔構造層に相当)が挟み込まれている。   A fine pore structure film 21 (corresponding to a fine pore structure layer) is provided between the pixel substrate 12 provided with the horizontal electrode 11 on one surface and the counter substrate 13 facing the pixel substrate 12 so as to face the horizontal electrode 11. ) Is sandwiched.

ここで、微細孔構造フィルム21としては、例えば、住友3M社製の多孔質フィルムプロポアファブリックを用いることができる(Microporous Film ProporeFabric http://www.mmm.co.jp/pcrp/microp/index.html参照)   Here, as the microporous structure film 21, for example, a porous film Propore fabric manufactured by Sumitomo 3M can be used (Microporous Film ProporeFabric http://www.mmm.co.jp/pcrp/microp/index). (See .html)

この微細孔構造フィルム21は、1つ1つの小部屋としての微細孔が、空間的に互いに連結、かつ空間的に連続しながら3次元的に配列されて、構成されている。すなわち、各微細孔は、隣接する微細孔と空間的につながれているとともに、小部屋を形成するためのフィルムにより、互いに連結されて3次元的に配列され、結果的に、連続した1つの大空間を有している。   The microporous structure film 21 is configured such that micropores as individual small chambers are spatially connected to each other and arranged three-dimensionally while being spatially continuous. That is, each micropore is spatially connected to adjacent micropores, and is connected to each other and arranged three-dimensionally by a film for forming a small chamber, resulting in one continuous large pore. Has a space.

より具体的には、一例として、画素基板12と対向基板13との間隔は、5μm程度であり、その間に挟み込まれ、同等の5μm程度の厚みを有する微細孔構造フィルム21は、1μm以下の直径を有する略球形で構成された微細孔が3次元的に配列され、連続した1つの大空間を形成している。   More specifically, as an example, the distance between the pixel substrate 12 and the counter substrate 13 is about 5 μm, and the microporous structure film 21 sandwiched between them and having an equivalent thickness of about 5 μm has a diameter of 1 μm or less. The micropores having a substantially spherical shape having three are arranged three-dimensionally to form one continuous large space.

そして、微細孔構造フィルム21のある1箇所から、ブルー相液晶を充填することで、1つの大空間内にブルー相液晶を注入でき、その結果、各微細孔における小部屋に対して、ブルー相液晶1が封止されることとなる。   Then, the blue phase liquid crystal can be injected into one large space by filling the blue phase liquid crystal from one place where the microporous structure film 21 exists. As a result, the blue phase is injected into the small chamber in each micropore. The liquid crystal 1 is sealed.

図2は、本発明の実施の形態1における微細孔構造フィルムの模式図であり、小部屋に分かれている様子をパネル断面図として模式的に示したものである。図2に示すように、微細孔構造フィルム21に設けられたそれぞれの小部屋ごとに、ブルー相液晶1が封止され、電圧制御されることで、所望の画像表示を実現することとなる。   FIG. 2 is a schematic diagram of the microporous structure film according to Embodiment 1 of the present invention, and schematically shows a state of being divided into small rooms as a panel cross-sectional view. As shown in FIG. 2, the blue phase liquid crystal 1 is sealed and voltage-controlled for each small room provided in the microporous structure film 21, thereby realizing a desired image display.

このように、微細孔構造フィルム21を用いることで、従来のように、モノマーを高分子化するためのUV照射/温度制御が不要となり、製造コストを低減することが可能となる。   Thus, by using the microporous structure film 21, the UV irradiation / temperature control for polymerizing the monomer is unnecessary as in the conventional case, and the manufacturing cost can be reduced.

また、従来のポリマーによる高分子構造は、長時間駆動させた場合には、液晶のスイッチングで、網目構造が壊れやすいという欠点があった。しかしながら、高分子構造の代わりに、微細孔構造を用いることで、長時間駆動させた場合にも、微細孔構造が壊れるおそれがなく、配向が安定で、高コントラストを維持できる液晶表示装置を実現できる。   Further, the polymer structure of the conventional polymer has a disadvantage that the network structure is easily broken by switching of the liquid crystal when driven for a long time. However, by using a microporous structure instead of a polymer structure, a liquid crystal display device that can maintain a high contrast with stable orientation without the possibility of breaking the microporous structure even when driven for a long time is realized. it can.

さらに、画素基板12と対向基板13との間のセル厚も、微細孔構造フィルム21の厚みを管理することで、容易に所望の厚みとすることができる。この結果、セル厚を制御するために用いるスペーサの形成が不要となり、パネルの大型化も可能となる。   Furthermore, the cell thickness between the pixel substrate 12 and the counter substrate 13 can be easily set to a desired thickness by managing the thickness of the microporous film 21. As a result, it is not necessary to form a spacer used for controlling the cell thickness, and the panel can be enlarged.

次に、本実施の形態1における液晶表示装置の製造方法、および性能検証実験について、フローチャートを用いて説明する。図3は、本発明の実施の形態1における液晶表示装置の製造方法および性能検証実験に関する一連処理を示したフローチャートである。まず始めに、ステップS301において、水平電極11が設けられた画素基板12と対向基板13を、微細孔構造フィルム21を挟んだ状態で貼り合わせる。   Next, a method for manufacturing a liquid crystal display device and a performance verification experiment in the first embodiment will be described with reference to flowcharts. FIG. 3 is a flowchart showing a series of processes relating to the manufacturing method and performance verification experiment of the liquid crystal display device according to the first embodiment of the present invention. First, in step S301, the pixel substrate 12 provided with the horizontal electrode 11 and the counter substrate 13 are bonded together with the microporous film 21 interposed therebetween.

次に、ステップS302において、両基板の貼り合わせが完了した微細孔構造フィルム21の1つの大空間内にブルー相液晶1を注入することで、各微細孔にブルー相液晶1を充填する。次に、ステップS303において、ステップS301、S302を経て製造されたパネルを用いて、ブルー相液晶1の温度範囲測定を行う。なお、温度範囲の測定結果については、図4を用いて、後で詳細に説明する。   Next, in step S302, the blue phase liquid crystal 1 is injected into one large space of the microporous structure film 21 in which the bonding of both substrates is completed, so that the blue phase liquid crystal 1 is filled in each micropore. Next, in step S303, the temperature range of the blue phase liquid crystal 1 is measured using the panel manufactured through steps S301 and S302. The measurement result of the temperature range will be described later in detail with reference to FIG.

次に、ステップS304において、温度範囲測定後のパネルに、偏光板を貼り付ける。そして、ステップS305において、電圧を印加する前の状態(黒画像表示状態)と、電圧を印加した後の状態(白画像表示状態)とに基づいて、コントラストの測定を行う。また、表示不良の検証も合わせて行う。   Next, in step S304, a polarizing plate is attached to the panel after the temperature range measurement. In step S305, the contrast is measured based on the state before the voltage is applied (black image display state) and the state after the voltage is applied (white image display state). In addition, display defects are also verified.

図4は、本発明の実施の形態1における液晶表示装置の性能検証試験の結果をまとめたものである。なお、このデータを収集するに当たっては、微細孔の直径が、0.3μm、1μm、2μmの3種の微細孔構造フィルム21を用いている。また、従来の高分子構造を用いた場合との比較も行っている。   FIG. 4 summarizes the results of the performance verification test of the liquid crystal display device according to Embodiment 1 of the present invention. In collecting this data, three kinds of fine pore structure films 21 having a fine pore diameter of 0.3 μm, 1 μm, and 2 μm are used. In addition, a comparison with a conventional polymer structure is also performed.

まず、温度範囲については、微細孔の直径が1μm以下であれば、従来と同等以上の温度範囲が得られ、特に、微細孔の直径が0.3μmの場合には、従来の1.8倍程度の温度範囲をカバーできることがわかった。   First, with respect to the temperature range, if the diameter of the micropores is 1 μm or less, a temperature range equal to or higher than that of the conventional one can be obtained. In particular, when the diameter of the micropores is 0.3 μm, it is 1.8 times the conventional one. It was found that the temperature range could be covered.

また、表示不良に関しては、微細孔の直径がいずれの場合にも、良好な結果が得られ、白輝度に関しては、微細孔の直径が1μm以下であれば、従来と同等の白輝度が得られることがわかった。   In addition, good results can be obtained with respect to display defects regardless of the diameter of the fine holes, and white brightness can be obtained as long as the diameter of the fine holes is 1 μm or less. I understood it.

さらに、コントラストに関しては、微細孔の直径が2μmの場合に、従来と同等のコントラストが得られ、微細孔の直径が1μmの場合には約2倍、微細孔の直径が0.3μmの場合には約4倍のコントラスト比が得られることがわかった。また、微細孔の直径がいずれの場合にも、24時間駆動後のコントラストが、初期のコントラストからほとんど劣化しない良好な結果が得られた。   Furthermore, regarding the contrast, when the diameter of the micropore is 2 μm, the same contrast as the conventional one can be obtained. When the diameter of the micropore is 1 μm, it is about twice, and when the diameter of the micropore is 0.3 μm. It was found that a contrast ratio of about 4 times was obtained. In addition, in any case of the fine hole diameter, a good result was obtained in which the contrast after driving for 24 hours hardly deteriorated from the initial contrast.

また、図4には示していないが、微細孔構造フィルム21のうち、各微細孔で形成される空間部分の占める割合を微細孔存在率と定義すると、微細孔の直径がいずれの場合にも、この微細孔存在率が95%以上であれば、白輝度として良好な輝度が得られることが実証できた。   Although not shown in FIG. 4, if the proportion of the space portion formed by each micropore in the micropore structure film 21 is defined as the micropore existence ratio, the diameter of the micropore is in any case. It was proved that when the micropore existence ratio was 95% or more, good luminance was obtained as white luminance.

以上のように、実施の形態1によれば、微細孔構造層を適用することで、従来の高分子構造を備えた液晶表示装置と比較して、低コスト化、高信頼性、パネルの大型化といった効果を有する、ブルー液晶による液晶表示装置およびその製造方法を実現することができる。   As described above, according to the first embodiment, by applying the microporous structure layer, compared with a liquid crystal display device having a conventional polymer structure, cost reduction, high reliability, and large panel size are achieved. It is possible to realize a liquid crystal display device using blue liquid crystal and a method for manufacturing the same, which has an effect of making it possible.

また、検証試験により、温度範囲、表示不良、コントラストの観点からは、微細孔構造フィルムに設けられる微細孔は、その直径に関しては1μm以下が好ましく、微細孔存在率に関しては95%以上が好ましいことが実証された。   In addition, from the viewpoint of the temperature range, display failure, and contrast, the micropores provided in the microporous structure film preferably have a diameter of 1 μm or less, and the micropore presence rate is preferably 95% or more by a verification test. Has been demonstrated.

1 ブルー相液晶、11 水平電極、12 画素基板、13 対向基板、21 微細孔構造フィルム(微細孔構造層)。   DESCRIPTION OF SYMBOLS 1 Blue phase liquid crystal, 11 Horizontal electrode, 12 Pixel substrate, 13 Opposite substrate, 21 Micropore structure film (micropore structure layer).

Claims (3)

互いに対向する第1基板および第2基板と、
前記第1基板と前記第2基板との間に封止される液晶と
を備えた液晶表示装置であって、
前記液晶として、ブルー相液晶を含む液晶材料が用いられ、
1つ1つの小部屋としての微細孔が、空間的に互いに連結しながら3次元的に配列されて1つの大空間を形成し、前記第1基板と前記第2基板との間に挿入される微細孔構造層をさらに備え、
前記ブルー相液晶は、前記微細孔構造層の前記1つの大空間内に注入された状態となることで、前記微細孔構造層に設けられた前記微細孔のそれぞれに分かれて封止された状態となり
前記微細孔構造層に設けられた前記微細孔のそれぞれは、0.3μm以上、1μm以下の直径を有する略球形で構成されている
ことを特徴とする液晶表示装置。
A first substrate and a second substrate facing each other;
A liquid crystal display device comprising: a liquid crystal sealed between the first substrate and the second substrate,
As the liquid crystal, a liquid crystal material including a blue phase liquid crystal is used,
The micro holes as the small chambers are arranged three-dimensionally while being spatially connected to each other to form one large space, and are inserted between the first substrate and the second substrate. Further comprising a microporous structure layer,
The blue phase liquid crystal, in the one Rukoto such a state of being injected into a large space of the microporous structure layer, sealed divided into each of the fine pore structure wherein provided in the layer micropores State
Each of the said micropore provided in the said micropore structure layer is comprised by the substantially spherical shape which has a diameter of 0.3 micrometer or more and 1 micrometer or less. The liquid crystal display device characterized by the above-mentioned.
請求項1に記載の液晶表示装置において、
前記微細孔構造層は、各微細孔で形成される空間部分が前記微細孔構造層に対して占める割合を微細孔存在率と定義した際に、前記微細孔存在率が95%以上である
ことを特徴とする液晶表示装置。
The liquid crystal display device according to claim 1.
The micropore structure layer has a micropore existence ratio of 95% or more when the ratio of the space portion formed by each micropore to the micropore structure layer is defined as the micropore existence ratio. A liquid crystal display device.
1つ1つの小部屋としての微細孔が、空間的に互いに連結しながら3次元的に配列されて1つの大空間を形成する微細孔構造層の一方の面に第1基板を貼り付け、前記一方の面と反対側の他方の面に第2基板を貼り付けるステップと、
前記第1基板と前記第2基板との間に挟まれた前記微細孔構造層の前記1つの大空間内にブルー相液晶を注入することで、前記微細孔構造層に設けられた前記微細孔のそれぞれに前記ブルー相液晶を封止するステップと
を備え、
前記微細孔構造層に設けられた前記微細孔のそれぞれは、0.3μm以上、1μm以下の直径を有する略球形で構成されている
ことを特徴とする液晶表示装置の製造方法。
The first substrate is attached to one surface of the microporous structure layer in which the micropores as the individual small chambers are spatially connected to each other and are three-dimensionally arranged to form one large space, Affixing a second substrate on the other surface opposite to the one surface;
The micropores provided in the micropore structure layer by injecting a blue phase liquid crystal into the one large space of the micropore structure layer sandwiched between the first substrate and the second substrate. Sealing each of the blue phase liquid crystals,
Each of the said micropore provided in the said micropore structure layer is comprised by the substantially spherical shape which has a diameter of 0.3 micrometer or more and 1 micrometer or less. The manufacturing method of the liquid crystal display device characterized by the above-mentioned.
JP2011257646A 2011-11-25 2011-11-25 Liquid crystal display device and method of manufacturing liquid crystal display device Active JP6109472B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011257646A JP6109472B2 (en) 2011-11-25 2011-11-25 Liquid crystal display device and method of manufacturing liquid crystal display device
KR1020120122531A KR101941454B1 (en) 2011-11-25 2012-10-31 Liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011257646A JP6109472B2 (en) 2011-11-25 2011-11-25 Liquid crystal display device and method of manufacturing liquid crystal display device

Publications (2)

Publication Number Publication Date
JP2013113904A JP2013113904A (en) 2013-06-10
JP6109472B2 true JP6109472B2 (en) 2017-04-05

Family

ID=48709533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011257646A Active JP6109472B2 (en) 2011-11-25 2011-11-25 Liquid crystal display device and method of manufacturing liquid crystal display device

Country Status (2)

Country Link
JP (1) JP6109472B2 (en)
KR (1) KR101941454B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6171632B2 (en) * 2013-07-01 2017-08-02 東芝ライテック株式会社 Liquid crystal panel manufacturing apparatus and liquid crystal panel manufacturing method
CN110082947B (en) * 2019-04-08 2020-10-13 深圳市华星光电技术有限公司 Electro-optical transmittance changing structure and manufacturing method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3504159B2 (en) * 1997-10-16 2004-03-08 株式会社東芝 Liquid crystal optical switch element
US7327433B2 (en) * 2004-01-15 2008-02-05 Sharp Kabushiki Kaisha Display element, display device, and manufacturing method of display element
KR100781819B1 (en) 2004-03-19 2007-12-03 도꾸리쯔교세이호징 가가꾸 기쥬쯔 신꼬 기꼬 Liquid crystal display device
KR100853069B1 (en) * 2004-08-31 2008-08-19 샤프 가부시키가이샤 Display element and display unit

Also Published As

Publication number Publication date
JP2013113904A (en) 2013-06-10
KR20130058600A (en) 2013-06-04
KR101941454B1 (en) 2019-01-23

Similar Documents

Publication Publication Date Title
US8629967B2 (en) Liquid crystal display device
JP6285126B2 (en) Color filter substrate, array substrate, liquid crystal display, method for manufacturing color filter substrate, and method for manufacturing array substrate
WO2012053479A1 (en) Display panel, and display device
WO2014183397A1 (en) Display apparatus
JPH11258584A (en) Plastic liquid crystal display elements
JP2008046588A (en) Display panel and method of manufacturing the same
JP5299776B2 (en) Liquid crystal display element, display device and driving method thereof
CN103383505A (en) Liquid crystal display panel and liquid crystal display device
JP2016166982A5 (en) Liquid crystal display device and method of manufacturing liquid crystal display device
JP6109472B2 (en) Liquid crystal display device and method of manufacturing liquid crystal display device
US20190107753A1 (en) Display panel
KR20220044253A (en) Liquid crystal display device having polarizing plate and method for fabricating the same
CN103969903B (en) Liquid crystal display device and the equipment for being equipped with liquid crystal display device
WO2015027642A1 (en) Liquid crystal panel, manufacturing method therefor, and display
JP2017062362A (en) Lighting control film
KR101108740B1 (en) Liquid Crystal Display device and the fabrication method thereof
CN110850640B (en) Liquid crystal display panel and preparation method thereof
KR101992886B1 (en) Liquid crystal display and method of fabricating the same
US7773192B2 (en) Method for measuring a cell gap in a liquid crystal display
JP2017181896A (en) Method for manufacturing liquid crystal cell
JP4220816B2 (en) Liquid crystal light modulator, manufacturing method thereof, and liquid crystal display device
JP6565505B2 (en) Method for producing liquid crystal cell and method for producing light control film
CN219475955U (en) Wide-viewing angle TN type liquid crystal display device
JP2018005040A (en) Light control film and method for forming the light control film
JP5735303B2 (en) Liquid crystal display element and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150501

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160303

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160311

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20160513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170308

R150 Certificate of patent or registration of utility model

Ref document number: 6109472

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250